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OV. An overview.
OV.1. The scope of this overview.

This paper is part of a general program that was originally designed
to study the “Heat diffusion kernel on Lie groups”. The scope of this
introductory section is the following:

i) Explain in general terms and with emphasis on intuition, what
this program is about, and explain how this program fits in the general
context of Lie groups.

ii) Explain how the present paper fits in this program.

iii) This introductory section is addressed to non experts. The only
prerequisite that is needed is the definition of a Lie group and its Haar
measure, and the definition of the convolution of measure on such a
group. The definition of the Lie algebra and of a soluble Lie algebra
will be given in Section OV.3 below. I will not give the definition of
the Heat diffusion semigroup T} = e~*2 that appears in Section OV.2,
but the reader could either ignore this and concentrate on convolutions
of measures, or could refer to [17] for a formal definition. If any other
unknown words crop up the reader should disregard them and move on.

iv) The price that inevitably had to be paid for making this over-
view accessible to the “general public” is in the precision and even the
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accuracy of the presentation. In fact some of the assertions made in
this overview are, as such incorrect. But these inaccuracies can easily
be corrected, and this is done in the course of the paper.

v) At the end of Part 0 of this paper I shall give a “guide to the
reader” that is quite detailed, and where a serious effort is made to help
the reader who wishes to “grind” his way through the proofs.

OV.2. The previous work in the area.

Let G be some locally compact group and let du(x) = p(z) dx be
some probability measure, where ¢ € Cy(G) is continuous with compact
support, where dz is the left Haar measure and where du(z~1) = du(z)
(i.e. the mapping & — x~1 stabilizes ). We shall consider the
convolution powers of u

(OV.1) dp*™ (z) = oy (x) dx, n>1.
We shall fix g € G, say g = e € GG, the neutral element, and consider

(OV.2) ¢(n) =enlg), n=1.

It is a central issue to study the behaviour of ¢(n) as n — oo. Indeed,
apart from its intrinsic interest, the behaviour of ¢(n) controls the
analysis and the geometry of G. The reader could think of the Heat or
the Poisson convolution semigroups on G = R¢

2
Hy(x) = ct=4? exp ( - ﬂ)
4t /"’

ct
(2 + |x|2)(d+1)/2 ’

Pi(x) =

and refer to the classical literature in Real Analysis (¢f. [19]) where
these semigroups are used systematically to prove geometric results,
such as the Sobolev inequalities and such like. The same analysis can
be made on a general Lie group G by considering the generalized Heat
diffusion semigroup Ty = e ', where A = —EX]2 is a generalized
Laplacian (cf. [17]). T} is then, as in the classical case, a convolution
semigroup: Ty, * Ty, = T}, 4¢,. From this the importance of ¢(n) in
(OV.2) becomes amply apparent.
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Much progress on the above problem was made in the decade 1980-
90, and this was reported in the book [17]. The main geometric invarient
used in that approach was the volume growth of the group

(OV.3) v(n) = Haar measure (2"), n>1,

where e € = Q7! is some compact neighbourhood of the neutral
element e € G. What emerges is that, for unimodular locally compact
groups (i.e. for the groups where the left and the right Haar measures
coinside, e.g. discrete groups), we have the following dichotomy:

Dq) If v(n) > e for some ¢ > 0, i.e. if y(n) grows as fast as an
exponential, then
1/3

¢(n) =0 (™" ),

for some ¢; > 0. The above is sharp, and perhaps also, at first sight,
surprising.

Dy) If v(n) =~ nP, then
d(n) ~ n=P7%,

as one would expect from the classical case G = R?.

The unimodularity is essential for the above dichotomy. Indeed
every non unimodular group can immediately be seen to satisfy v(n) >
€™, and yet the simplest non abelian Lie group of affine transformations
on R

r+—ax+Db, a>0,beR,

satisfies ¢(n) ~ n~3/2 (¢f. [20]). That group is of course not unimodu-
lar.

The scope of the above program can be described by saying that
we want to find the analog of the above classification for all Lie groups
and not just the unimodular ones.

OV.3. The Lie algebra.

The dichotomy described in Section OV.2 holds for all locally com-
pact groups and not only Lie groups. If G is a connected Lie group we
can go much further because we have at our disposal the very powerful
tool of the Lie algebra g of G. This is the finite dimension vector space
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(in 1-1 correspondence with T, (G) the tangent space at e) of all vector
fields on G that are invariant by the left action of G. g then admits the
natural algebra structure that is induced by the bracket operation on
vector fields

[va]f:(XY_YX)fv fECOO(G),X,Yeg

It is customary and convenient to define then

(OV.4) ad (z) : g — g, ad (x) € L(g),
ad (z) y = [z, y] the algebra multiplication.

One says that g is an R-algebra if all the eigenvalues of ad (x) (z € g) are
pure imaginary. One also says that g and G are soluble if it is possible
to find a basis in the complexified g. = g®r C, with respect to which all
the ad-mappings (OV.4) become simultaneously upper triangular (cf.

[1], [9])
)\1(33) *
ad (z) = , k=dimg, \; €g.
For soluble algebras the following classification is crucial: (¢f. Section

0.1, [18], [21]). Let £L = (L1,...,Ls), A C g* the distinct non zero Re A;
(1 <j<k)(if G is an R-group then the above set is empty).

C) We say that G is C if £ # @ and if there exists o; > 0 such
that

s s
Zajzl, Zaij:O’ 1§j§8
j=1 j=1

NC) We say that G is NC if it is not C.

OV.4. The Algebraic-Geometric Dichotomy ([22]).

For a connected Lie group if we use the Lie algebra we can com-
plete the classification of Section OV.2 by the following Theorem of Y.
Guivarc’h ([22]).

D;) v(n) > e if and only if g is not an R-algebra.
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D3) v(n) ~ nP if and only if g is an R-algebra.

If we restrict ourselves to unimodular connected Lie groups, it fol-
lows (cf. [17]) that they can be classified into two classes and that the
classification is:

i) Geometric: By means of the growth of v(n).
ii) Algebraic: By means of the R-condition on the Lie algebra.

iii) Analytic: By means of the behaviour at infinity of ¢(n) (cf.
OV.2).

OV.5. The General Analytic classification.

The first step towards the extension of the classification of Section
OV .4 to a general connected real Lie group was taken in [2], [21]. We
classified these any such Lie group G into two classes, the B-groups and
the NB-groups, and we proved:

B) If G is a B-group and p € P(G) is as in Section OV.1, then
there exists A = A(u) > 0 (that depends on p) and Cj, ¢; > 0,7 = 1,2,
such that the corresponding ¢(n) (cf. Section OV.2) satisfies

1/3 /3

02 e—An—czn S ¢(n) S Cl e—An—clnl 7 n Z 1.

NB) If G is a NB-group and p € P(G) is as in Section OV.1, then
there exists A = A(p) > 0 and v > 0 (that both depend on p) and
C; >0,1=1,2, such that

Coe Mp™v < d(n) < Cy e ATV, n>1.
In both the B and NB case either for all p € P(G) we have A(u) = 0,
and then we say that G is amenable, or A\(p1) > 0, and then we say that
G is non amenable (cf. [23]).
OV.6. The Algebraic classification.
Let G be some connected Lie group, then we can find R C G some

closed connected soluble subgroup and K some compact subgroup such
that G = R K: This statement is almost correct but not quite. It is
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essentially an abused form of the Borel decomposition (cf. [24]) — Ignore
this difficulty but observe that unless G is amenable R cannot be chosen
to be a normal subgroup. We have:

B) If G is a B-group then every soluble subgroup R as above is a
C-group.

NB) If G is a NB-group then every subgroup R as above is NC.
This is the main result in [2], [18], ¢f. [21].

Furthermore it is easy to see that the above classification is purelly
algebraic, i.e. it only depends on g, the Lie algebra of G (cf. [2]).

OV.7. Soluble groups and the Geometric classification.

The basic geometric information that is exploited in this paper is
that every soluble connected and simply connected Lie group is topolog-
ically homeomorphic to R (¢f. [1]). Furthermore we shall use the fact
that, an essentially unique, left invarient Riemannian structure can be
given on any Lie group. Indeed this amounts to assigning, in any way
whatsoever, some scalar product on T, (G). The Main Theorem of this
paper in Section 0.2 states then:

B) If @ is a soluble simply connected group, then @) is a C-group
if and only if it does not have the “polynomial retract property” of
Section 0.2.

NB) If @ is above, then it is an NC-group if and only if it does
have the “polynomial retract property” of Section 0.2.

If we combine therefore the Main Theorem of this paper with what
was said in section OV.5, OV.6, we see that we have obtained the
required B-NB classification of Lie groups in terms that are:

i) Geometric: The Main Theorem of the present paper.

ii) Algebraic: C-NC classification of Lie algebras of sectins OV.3,
OV.6.

iii) Analytic: The behaviour of ¢(n) of Section OV.5.

This is therefore, for general (i.e. not necessarily unimodular) Lie
groups, the analogue of the Geometric-Algebraic-Analytic classification
of Section OV .4.
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0. Introduction.
0.1. A Classification of Lie algebras.

Let q be some real soluble Lie algebra, we can then choose a ba-
sis of g = q ® C over C for which all the adz : q. — q. (z € q)
are represented as upper triangular matrices (¢f. [1]). The diagonal
coefficients of these matrices are called roots of q and can be iden-
tified with A1,..., Ay € Homg[q,C] (kK = dimq). We consider then
(L1,...,Ls) = (ReXj, j=1,...,k, ReX; # 0) C Homg[q,R] = q* the
set of the distinct non-zero real parts of these roots. We say that q is a
C-algebra if there exist a; > 0 (j = 1,...,k) such that

iaijZO, Zajzl.
Jj=1

Otherwise we say that q is an NC-algebra (Non-C-). If @ is some
Lie group whose algebra is C' (respectively: NC'), we say that @Q is C
(respectively: NC). (cf. [2], [3])

Let now G be some simply connected Lie group. It is easy to prove
then (cf. [4]) that there exists () C G, some simply connected closed
soluble subgroup, and Z C G, some discrete central subgroup, such
that

Q=Q-Z2=2Qx7ZCqG

is closed and co-compact, (i.e. there exists C' @ G some compact subset
such that Q-C = C-Q = G. If G is amenable or algebraic we can even
take Z = {0}). We then say that the group G, and the corresponding
Lie algebra g, is B- (respectively: N B-), if () is a C- (respectively: NC-)
group. It is easy to show (cf. [2]) that the algebra g cannot be simul-
taneously a B- and an N B- algebra. This last fact is also an easy
consequence of our main theorem below.

In my recent work on the area, I have shown that the above
B-N B classification is crucial for the behaviour of the Heat kernel of
the group. In this paper I shall examine some further consequences in
the “global Geometry” of the group.
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0.2. Riemannian Manifolds.

The definitions that I shall recall below are variants of notions from

[5], [6].
Let (M;,d;) i = 1,2 be two metric spaces and let f : M7 — Mo
be some mapping. We set (possibly +00)

dy(f (@), f(y))
dl ('Tv y)

£ llip = sup { LayeM aty}.

This is a quasinorm (with || f|| = 0 if and only if f = cont.). We say
that f € Lip (R) if and only if || f||Lip < R, and we say that f € Lip if
and only if f € Lip (R) for some R > 0.

We shall consider now M some Riemannian manifold that is topo-
logically homeomorphic with R®. We shall also assume that M is ho-
mogeneous, i.e. admits some transitive group of isometrics. And fix
some mg € M and denote by

B(R)={m e M : d(m,my) < R},

the corresponding balls. In our applications M will always be some
simply connected soluble real Lie group @) (thus topologically & R",
cf. [1]) and mo = e will be the neutral element, and we will assign @
with some left invariant Riemannian structure. There are several such
structures, one for each scalar product on the Lie algebra, but they are
all quasi-isometric.

The filling constants. We shall consider f € Lip
(01) f:a[ovl]n—>M7 f(O):m07
for the boundary and the distance induced on the unit cube " =

[0,1]" CR™ by R", and the Riemannian distance on M. (O=(0,0,...)€
[0™). We shall then define

6u(R) = inf ('},

where f € Lip(R) is as in (0.1), and F' : O" — M is such that
Flso» = f and F € Lip (R').
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The retract. Let us consider a retract

H:Mx[0,1 — M,

H(m,0) =myg, H(m,1)=m, me M,

and let
Y(R) = || H|p(r)x[0,1l|Lip -

It is clear that ¢, (R) < Cp,¢(R) R (R > 1). We say that M admits a
polynomial (respectively: exponential) retract, if there exist C, Cy > 0
and a retract as above, for which

(0.2)  #(R)< CR% +C, R > 1 (respectively: < Ce“0f).

It is an easy matter to show that every soluble Lie group @) as above
admits an exponential retract. We have

Main Theorem. Let () be some simply connected soluble real Lie
group. Then:

C) If Q is a C-group there exists 2 < m < rank Q + 1 such that

sup ¢m(R) R4 = 400, A>1,
R>1

where rank QQ = dim Q/N with N = the nilradical of Q).

NC) If Q is an NC-group then Q admits a polynomial retract.

The optimal degree of the retract in the NC-case (i.e. the inf Cy
for Cy as in (0.2)) can, in fact, be explicitly computed.

By what has been said, the natural setting of the above theorem is
indeed the setting of real simply connected soluble groups, and there is
no essential restriction there. To be precise let us call two connected real
Lie groupsG1, G2, Quasiisometric, and denote G ~ (s, if there exists a

q.

diffeomorphism between (G; and GG that is a Riemannian quasiisometry
for the corresponding left invariant structures. Let now G be some
connected real Lie group that contains no normal compact torus (=
T%,a > 1), then we have

Ux K~G,
q.i
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where U is soluble and simply connected, and K is compact. If G is
simply connected this follows from what was said in Section 0.1. The
proof in the general case is quite easy also (cf. [28]).

Definition. Let G be some connected Lie group and let T C G be its
mazximal compact normal torus. We then say that G is a geometrically
C'- (respectively: NC-) group, if we can find a quasiisometry as above,
such that

UxK~G/T,
q.t

where U satisfies the condition C) (respectively: NC)) of the Main
Theorem.

It is then an elementary and easy exercise to deduce from the Main
Theorem the following;:

Geometric Classification Theorem. Let G be some connected real
Lie group, then the Lie algebra of G is a B- (respectively: N B-) algebra
if and only if G is a geometrically C- (respectively: NC-) group.

One can also prove that a general connected Lie group G is NB if
and only if it has the following:

Homotopy Property. For all n > 1 there exists C' > 1, such that if
R >0 and if F: S™ — G is a map from the n-sphere S™ into G that
satisfies:

(0.3) 0=[F]en,(G), FeLip(R),

then there exists a homotopy H = [0,1]xS™ — G such that H(0,S™) =
go € G is a fived point, H(1,-)|s» = F, and such that H € Lip (C R +
).

[F] in (0.3) denotes the homotopy class of F' in the n*"* Homotopy
group of G. Indeed the Main Theorem and the fibration G — G /T ~
U x K easily reduces the proof of the above assertion to the case where
G is compact (and as such an N B-group with an abelian m1(G)). The
case G = T is obvious because the universal covering space R* — T
is very simple. The proof for the general case is quite involved and I
must confess that at this point I have not written the details down fully.
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This means that unpleasant surprises in a final writting are not to be
excluded (especially since my knowledge of Topology is very limited).

The following easy corollary of the Main Theorem is also perhaps
worth noting (cf. [8] for a special case).

Corollary. Let I' be a polycyclic group that is a uniform latice in some
connected soluble Lie group @Q (this can be taken as the definition of
a polycyclic group, cf. [7]). Let us assume that I' admits “polynomial
filling” in dimensions 2,3,...,dim@Q — 1. (The reader should interpret
this “polynomial filling” in terms of the definitions in [5]. There is only
one possible such interpretation that is reasonable). Then T is virtually
nilpotent. (The converse is trivially correct).

0.3. The Homological classification.

Let G be an arbitrary connected real Lie group and let |g| = d(g, e)
(9 € G) be the distance from the neutral element with respect to some
fixed left invariant Riemannian structure.

I shall denote by J(G) the space of currents “representable by in-
tegration” (c¢f. [13, 4.1.7]) together with the boundary operator b —
(or 0—) (cf. [12], [13]). For the reader not familiar with the formalism
of currents let me say that J(G) can be identified to the space of dif-
ferential forms on G with coefficients that are Radon measures. The
boundary operator is then identified with the exterior differential taken
in the distribution sence. This is simply done by identifying such a form
to a linear functional on the space of compactly supported C'°°-forms.

For all Q € J(G) and for a fixed left invarient Riemannian struc-
ture, if the coefficients of Q are Li _, we can define [Q(z)| € L], the
Riemannian norm at almost every = € (G, and this can be identified to
a Radon measure on G if we specify the reference measure to be the
left Haar measure on G. By passage to the limit (among other things)
|€2( - )| can be defined and is a positive Radon measure for all Q@ € J(G).
We can also consider the seminorms

pm(Q):L(1+|$|m)d|Q($)| < 400, QeJG), m>0.

Dually, let P(G) be the space of differential forms on G with continuous
coeflficients where the differential d— is taken in the distribution sense
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(i.e.

/dw/\@z:l:/w/\d@, w € P(G),

and 0 an arbitrarily compactly supported smooth differential form).
Let us then consider the seminorms

gm(w) =sup |w(@)| (1+ |z])™™ < +o0, m>0, we P(G).

We have the following:

Theorem (The Homological classification). Let G be some real con-
nected Lie group assigned with some left invariant Riemannian struc-
ture. Then G is an NB-group if and only if one or both of the following
two equivalent conditions hold:

Homology. Let Q2 € J(G) be such that 02 = 0 and p;(2) < 400 (j > 0).
Then there exists © € J(G) such that:

00 —Q e J(G), supp (00 — Q) is compact, p;(©) <400, j>0.

Cohomology. Let w € P(G) be such that dw = 0, qc(w) < 400 for some
C >0, then there ezists 6 € P(G) such that

gn(0) < 400, df —w e FE,

where N > 0 only depends on G and C, and where E C P(G) is a finite
dimensional subspace that only depends on G and satisfies ¢, (A) < +00
(A € E) for some n =n(G) > 0. Furthermore we can chose E so that
it 1s spanned by a set of representatives of a basis of the cohomology
classes of G'.

The current 00 — €2 can even be assumed to be supported in some
maximal compact subgroup of G. In the critical case of simply con-
nected soluble groups E can be chosen to be the space of constant
functions, i.e. the space is then 1-dimensional and so is the unreduced
cohomology over R.

The proof of the above Homological classification is implicit in
the methods of this paper, it will nonetheless be postponed to a later
publication (c¢f. Remark at the end of Section 4).



A GEOMETRIC CLASSIFICATION OF LIE GrOUPS 61

0.4. The Quadratic filling and further results.

Some further results will be described in this final subsection in
a “sketchy manner”. Precise statements and proofs will be given else-
where.

We shall say that the connected real Lie group admits quadratic
filling if for every closed path v = ¢(00%) C G that is homotopic to
zero in G we can extend ¢ to %, with D = ¢([J%), so that Volz(D) =
O (|v|?), where |y| = Vol () is the length of the path. (The volumes
have to be counted with multiplicity, ¢f. the remark at the end of
Section 4.5 below and [29].)

Easy examples of such groups, apart from the Euclidean spaces, are
supplied by the semisimple groups (because of the negative curvature
of the non compact symmetric spaces), cf. [5] for a number of examples
that do not admit quadratic filling. Using the standard methods of
Morse theory we can also prove that if G does mot admit quadratic
filling then we can find a sequence v; C G (j > 1) of periodic geodesics
such that diam (y;) — oo.

The above notions generalize to discrete finetely generated groups
(¢f. [5], or use your imagination). An interesting class of groups that
do not admit quadratic filling are the groups with unsolvable word
problem. We have also the following analogue of our geodesics on a Lie
group:

Let M be some compact connected Riemannian manifold such that
m1(M) does not admit quadratic filling. Then M contains v; C M
(7 > 1) periodic geodesics with prime periods |y;| — oo (prime period
= the time it takes to go round the geodesic once).

So these notions seem to fit in the subject of closed geodesics, cf.
[30].

0.5. A Guide to the reader and acknowledgements.

It is the part C) of the main theorem that is difficult. It takes
sections 1-4 of this paper to do that. The proof of part NC) relies on
easy structure theorems from [1], [2] and is given in Section 5 of this
paper.

In Section 1 we develop the necessary algebraic structure theorems
for Lie algebras. This part, I feel, presents an independent interest.

Section 2 is routine and reinterprets geometrically the algebraic
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theorems of Section 1 at the group level.

Section 3 was lengthy and tedious to write out, especially at the
notational level, and my own inexperience in presenting geometric ideas
did not help matters. But there is nothing either difficult or deep in
this part. All we do is to exploit the algebraic structure theorems of
Section 1 (and their geometric consequences Section 2) to embed some
special spheres in a C-group Q. And that these spheres are “twisted” in
such a way that they can not be “filled in” with polynomial estimates.

The denouement lies in Section 4 where the impossibility of that
“polynomial filling” is brought into light.

This paper owes a lot to M. Gromov’s previous work in the area.
Indeed I learned about the problem in [5]. In [5, sections 2.B, 5.B3] one
finds a qualitative description in some important examples, of the first
geometric construction that I give in sections 3.1, 3.2. In [5, sections
5.B1, 5.B3] one finds various proofs of special cases of our main theorem
C). These examples were a great inspiration to me.

In fact I feel that one way for the reader to get in this paper, is
to pick up the above sections of M. Gromov’s [5] and try to see how
they fit in the present paper in sections 3.1, 3.2 and 4.5. The reader
will then see how to prove the C-part of the main theorem for the
simplest possible cases of the group semidirect products R? <t R and
(Heizenberg) < R which are the cases contained in [5].

The other point that the reader has to look for, if he wants to
capture the global geometric idea of the proof, is to discover the exact
role that the C'-condition plays in the first basic geometric construction.
This appears for the first time towards the end of Section 3.2.3 (¢f. also
the case R?2 1 R ¢f. Section 3.1.1, Remark), and is crucial and non-
trivial already in very simple cases like R? p1 R?.

It is difficult to read the proof of the C-part of our theorem from
beginning to end in a linear fashion. Here are some suggestions of an
alternative way to go about it.

1) Read Section 3.1.1 and then 4.5. This will give the special
group Dy = R? pq R with two real non zero roots of opposite sign.
This is Gromov’s special case and the original reference [5] could also
be consulted.

2) Read Section 3.2, where the generalization D, = R" >q R" 1 is
given, and then 4.5. It could be argued that the idea of the construction
in D, is also implicit (at least at the topological level) in [5]. We thus
have a proof for D,..
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The problem now is to embed D, (as a Riemannian submanifold,
but not necessarily as a subgroup) in any C-group so as to obtain a
general proof.

3) Read Section 1. There we perform the above embedding at the
Lie algebra level. This part may not be easy reading but it is just
linear algebra and affine geometry and, as such, at least, it is clean. It
becomes in particular apparent that the above embedding is not always
possible and that we have to consider in addition the groups of rank 1
(c¢f. 2.4.i), 3.1.2). In Section 4.5 these groups can be treated exactly
as the group Da. (cf. also [5]). The reader should check this point.

4) Read Section 2 and assume that the subspace V3 = 0. In a first
reading assume also that we are in the split case. Under the above re-
strictions Section 2.3 simplifies considerably. Then read Section 3.2.4.
The assumption that V3 = 0 makes the second basic construction un-
necessary (at this point the Remark i) at the end of Section 3.3.1 is
relevant). Then use Section 4.5 to finish the proof when V; = 0 as
before.

5) At this point it might be a good idea to study Section 4 where
we present a systematic way of how to put things together with the
use of the metric properties of current, rather than Transverality and
Sard’s theorem (from Differential topology). We see, in particular, how
the smoothing and the Whitney theorem can be avoided.

6) Read Section 3.3 to be able to deal with the general case Vi # 0.
In doing so, in a first reading, the reader should absolutely start with
the split case, which is simpler and yet already contains the main idea
of the construction. It is here that a good understanding of Section 2
(first for the split case and then for the general case) is essential.

CONVENTION. [ use throughout the convention that, in a formula,
the letters C' or ¢, possibly with suffixes, indicate, possibly different,
positive constants that are independent of the important parameters of
the formula.
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1. Algebra and Combinatorics.
1.1. Combinatorial considerations.
1.1.1. Simplexes.

Let V' be some finite dimensional real vector space and let £ =
(é1,...,ex) C V be a finite subset where the e;’s are assumed to be
distinct. We shall denote

k
CH(E) = Convex Hull (E) = {ZAj e A =0 Y A= 1} .
j=1

If the topological dimension of CH(F) is k — 1 we shall say that E are
the vertices of a simplex and denote

o = [F]| = CH(FE) = simplex spanned by F,
k
Into = {Z)\jej DA >0, Z)\j = 1}.
j=1

Int o is not to be confused with & C o the topological interior of ¢ C V.
We say that o is not degenerate if Into = 3, i.e. if and only if £ =
dimV + 1.

Let 0 = [wg,21,...,2x] C R* be some simplex and let Ay be the
affine hyperplane containing the face [z1,...,2,] C 0. Let us assume
that

(1.1.1)

0¢A0:{iAjIj: >ox =1}

=x1+ Vec (z; — 21,1 <5< k).

If we assume o to be nondegenerate, the vectors z;—xz, € V (2<j<k)
are linearly independent and dimV = k. (1.1.1) implies then that
T1,%o,...,Tk 1S a basis of V.

Let us also recall the general fact that if x € CH(E) C V then we
can choose E’ C E such that

(1.1.2) reCH(E'), Card (E') <dimV + 1.



A GEOMETRIC CLASSIFICATION OF LIE GROUPS 65

Indeed we can assume without loss of generality that E are the extreme

points of some convex polyhedron P C V and that « € P.
Let e; € E and let
y = 0P N {affine line through e; and z}.

y then lies in some boundary convex polyhedron of lower dimension.
This by induction on dim V' proves our assertion.

We shall adopt the standard notation of covering with a “*” any
symbol that we want to delete. We have then

Lemma. Let P = CH(py,...,p,) CV = RE be some convex polyhe-

dron with non-empty interior: P # &. Let us assume that P is not a
stmplex and let

Pj:CH(plap%"'aﬁja"'vpn)a .7:]-77’”’

Then

o

P:U[Pj; ]:17 , 1, PJ#Q]
PROOF. Let ¥1,X9,... be the finitely many convex polyhedra that we
obtain by
EJ:CH(pj,jGJ), JC(l,...,n), |J|:k+1.

Let z € P. By (1.1.2) it follows that one of the above polyhedra, say
Y1, has positive Lebesgue density at x and therefore

37621, El%ga

and, since by our hypothesis n > k + 1, there exists 1 < 7 < n such
that P; D X;. This proves the Lemma.

1.1.2. The abstract .A-condition.

Let V' be some finite dimensional vector space over R, and let us
decompose the class of all finite subsets £ C V into two classes, A and
~ A (i.e. A is some property that £ may or may not have). We shall
suppose that
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i) o ¢ A,

i) ECV, EeAif and only if E\{0} € A,

iii) By C ECV, E; € Aimplies F € A,

iv) By CECV,CC(E)=CC(E,), E € Aimplies E; € A,

where
CC(X) = Convex Cone (X) =CH(AX, A >0), Xcv,

ii) and iv) say that we can delete from some E € A any “positive” linear
combination of the remaining elements without spoiling the property
A.

It is clear that if A and A’ are two such properties, the property
AN A" also satisfies the same conditions. In the following sections we
shall deal with the following special cases: V' # {0} and

E € A, if and only if E spans V',
E € A, if and only if 0 € CH(E\{0}).

If and only if F € A we say that F satisfies the C- condition. If and
only if £ ¢ Ay we say that it is NC.

1.1.3. Minimal A-sets.

We say that £ C V is a minimal A-set if
EcA, E\{e} ¢ A, forall0 #ec E.

If A = A; then clearly F is a minimal A4; set if F\{0} is a basis of
V. In this section we shall examine the minimal A sets with A = A,
AN As.

By definition, £ C V is a minimal A5 set if and only if the following
two conditions hold

(C) 0= > Ace, A >0,
e€E\{0}
0= Z He €, pe 2 0, Z,U/ezl
(1.1.3) e€E\{0}

implies pe > 0, e € E\{0}.
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Let us consider
0= Z vee, ve €R,
(R) e€E\{0}
there exists e € E\{0} such that v, #0.
Then by rescaling the e;’s (i.e. replacing e; by e; = ¢;ej, €5 > 0), by

giving an appropriate order to E\{0}, and by multiplying (R) and (C)
by scalars we can assume that

I=X <A<
we can assume that there exists A > 0 such that
|Vj|:0,)\, j=1,2,...

and we can also assume that for the first j = 1,2,... for which v; #0
we have v; = —\;.

But then the relation (R)+(C) is a positive relation on E\{0} of
length strictly less than |E\{0}|. This by (1.1.3) implies that (R)= —
(C). In other words, (C) is up to multiplicative constant the only linear
relation on E\{0}. It follows therefore that £ C V is a minimal Ay set
if and only if F are the vertices of some simplex of V' and

0 € Int [E].
Let now £ C V and
X =FE\{0} = (21,-..,2o) C V.

Let also X; = X\{z;}. Then by definition, £ is a minimal A; N.Ay
set if and only if:

a) Vec E =V.

b) There exists a; > 0, j = 1,...,n, such that Z?zl a;j = 1,
> i1 agag =0

c) For k =1,2,...,n one of the conditions i) or ii) below (or both)
hold:

i) X is NC.
ii) Vec Xy, # V.
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We hayve:

Proposition. Let E C V be some minimal A1 N Ay set. Then o =
[E\{0}] is a non-degenerate simplex and 0 € o.

PROOF. By b), by reordering if necessary the set X, we have:
(1.1.4) —x1 € Q=CC(x2,...,2,).
But this together with a) implies that

Vec (X)) =V,

which together with ¢) implies that X; C V is an NC-set. It follows
that if we slice Q by some appropriate affine hyperplane 0 ¢ H C V
the convex polyhedron

P=HnNQ=CH(ps,...,pn) C H,

pj=Az;j, A>0NH, j=2,...,n,

will satisfy @ # P C H. Let
Qp = CC(Z1, 22,y oy By e ooy Ty) P,=QyN"nHCPCH.

Clearly, for each k = 2,...,n, the relative interior of Py is non empty
(@ # Py, C H) if and only if

(1.1.5) Vec (X \{z1,2x}) =V .
If for some k =2,...,n (1.1.5) holds, we must have
(1.1.6) Ty & —Q .

Indeed, if not and x; € —€2, the set Xy satisfies the C-condition, but
this together with (1.1.5) contradicts c).
If we combine (1.1.4), (1.1.5) and (1.1.6), we see that

P#U[Pk; k=2,...,n, ﬁk%g].

It follows by the Lemmain 1.1.1 that P is a non degenerate simplex. And
from the choice of H and the remark at the beginning of Section 1.1.1
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it follows that x3,xs,...,z, is a basis of V. This together with (1.1.4)
completes the proof of our proposition. To see how this is done, we can

assume without loss of generality that zs,...,x, are the coordinate
unit vectors I; = (0,0,...,1,0,...,0); (1.1.4) simply says then that z;
lies in the negative quadrant. o = [z, I;, j =1,...,n — 1] is then

clearly a non degenerate simplex and 0 € o.

REMARKS.

i) One should observe that we can reformulate the above proposi-
tion and say: E C V is a minimal A4; N Ay if and only if there exists
V =V @& Vs a direct decomposition of the space such that

E=(EnWV)U(ENV,) =FE UE,;, Vo # {0},

and:
a) Either V3 = {0} or E1\{0} is a basis of V;.
b) o = [E2\{0}] is a non-degenerate simplex in V5 and 0 € Into.

ii) It is an interesting exercise (but of no use to us) to work out
the minimal A3 sets where E € Az if and only if CH(E\{0})=C CV

contains 0 in its interior 0 € C. Such a set need not necessarily be a
simplex.

1.1.4. The minimal A-couple.

Let V be some finite dimensional vector space and let AC E CV
be two finite subsets. We shall say that A C E is a minimal .A-couple
if

i) Ae A

11)ECA+A+:{CY1+CY2++CY1), OszA,jZI,...,p,
p> 1}
iii) 0 # a € A implies E\{a} ¢ A.

It is clear that then A is a minimal A4-set. Note also that because
of ii) we can replace i) by:

iy E e A.
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ExampPLE. A = A;. It is then clear that A C E a minimal couple if
and only if A\{0} is a basis of V" and

(1.1.7) B=E\AC {0}, e B=1{0},9.

Let now A C E be some minimal As couple, then by 1.1.3 the
points of A are the vertices of some simplex

o=[A] =[ag,..., ], 0€lnto.

Let
oj=[0,a1,...,4;,...,ar], §i=1,2,...,k,

be the simplex that we obtain by replacing a; by 0 (1 < j < k).
It is clear that

(1.1.8) Uaj , U (—oj) C V' =Vec(ay,...,ar) CV,
J J

are neighbourhoods of 0 in V’. The condition iii) (and the definition of
the C-condition) implies on the other hand that if B # @, then

(1.1.9) —0;NCC(B)={0}, =12 k.
(1.1.8), (1.1.9) together imply that
V' NnCC(B) = {0}.
Therefore (1.1.7) holds again. We have:
Proposition. Let AC E C V be some A1 N Ay minimal couple. Then
(1.1.10) B=FE\A=g,{0}.

Furthermore there exists some direct decomposition V- = Vi & Vy with
Vo # {0} such that

(1.1.11) A=(ANWV)UANVy) =A1UAy,
(1.1.12) either Vi = {0} or A1\{0} is a basis of V1 ,

A2\{0} are the vertices of some

(1.1.13) , ,
non-degenerate simplex in Vs |
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and

(1.1.14) 0 € Int [A4\{0}].

PROOF. Let
A\{0} = (a1, ..., ), o=CH(A\{0}),
Vi:Vec(al,...,di,...,an), o; = [al,...,di,...,an].

By the proposition in 1.1.3 and the fact that A is a minimal A; N A,
set it follows that

0€o, o is a non-degenerate simplex C V.
This in turn implies that
(1.1.15) dimV* > dim Vec (A) — 1 =dimV — 1, i=1,2,...,n.

We can distinguish two cases:

Casei) 0 € ¢ =Into.

Case ii) There exists 1 < m < n such that
Oeoj, 1<j<m, 0doj, m<j<m,

where we suppose that we have, if necessary, reordered the set («q, ...,
Qp).

In case i) our proposition follows by repeating verbatim the proof
of (1.1.7) for the previous case A = A;. We shall assume therefore that
we are in case ii). We then claim that

(1.1.16) BcCV", i=1,2,...,m.
Indeed, if not, there exists

Vec(A) > 3¢ V', for some,sayi=1, 1 <i<m.
But then (1.1.15) implies that

Vec (E\{a1}) =V
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On the other hand, since 0 € o; the set A\{0,;} and, a fortiori,
the set E\{a;} satisfies the C-condition and E\{a1} € A1 N Az in
contradiction with iii). This proves (1.1.16).

We shall set now

Vi = Vec(ag,...,qn), Vo = Vec (ama1y---Qp)
o= [Oém+1,...,Ozn].
It follows by the conditions of case ii) that aq, ..., a,, is a basis of V;

and o is a non-degenerate simplex of V5, such that
m
0Oente, &=[)oy.
j=1

Observe that if A = affine subspace spaned by ay, ..., then cNA =
@ and therefore 0 ¢ A, then use the argument of (1.1.1).

This proves the conditions (1.1.11), (1.1.12), (1.1.13) and (1.1.14)
of the proposition and that V' = V; @ V,. It follows from (1.1.16) that
B C NX,V* = V,. The condition (1.1.10) follows because what we
have shown implies that

(ANVy) C(ENVy) C VW,

is a minimal couple in V5 that falls under our previous case i).
This completes the proof of the proposition.

1.1.5. Inner product spaces.

We shall now assume that the vector space V' is assigned with an
inner product (-,-). Let then E = (eq,...,e,) C V be some NC set (cf.
1.1.2) such that e; # 0, 1 < j < n. By Hahn-Banach this is equivalent
to the fact that there exists u € V such that

(1.1.17) (u,e5) >0, 1<j<n.

We shall show that it is possible to choose the w in (1.1.17) to satisfy
in addition the condition

(1.1.18) ue CH(E).
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Indeed let uw € V be as in (1.1.17) and let

€j:<u,6]‘>u+6‘/j, <u76‘/j>:07 ]:1,,n

We can now distinguish a number of cases:
1) u = Aej for some A >0, 1 < j <n. Then (1.1.18) holds.
2) The set E' = (e},...,e,) is NC and e} # 0, 1 < j < n. By

n
induction on the dimension of V there exist then

W =Yaje;, Ya; =1, aj >0,(ej,u') >0, 1<j<n.

Then u; = X o e; satisfies (1.1.17), (1.1.18).
3) There exist a; > 0, ¥ a; = 1 such that X aje; = 0. But then

up =Xoaje; = (Baj (u,ej))u
satisfies (1.1.17), (1.1.18).

By a slight perturbation, we can even guarantee that the u € V
that satisfies (1.1.17) and (1.1.18) is of the form

n
u=>Y Aej, A>0,1<j<n.
7j=1

1.2. Algebraic considerations.

In this section, we shall recall some standard facts and definitions
and also introduce some new notions. All the Lie algebras in this sec-

tion, unless otherwise stated, will be finite dimensional and defined over
R.

i) Subnormal subalgebras. Let g; C g be a Lie algebra and a

subalgebra. We say that g; is a subnormal subalgebra and denote
g1<<g if there exist subalgebras

g1 CgC---Cgp=g9, p=>1,

such that g; <gj+1 (i.e. g; is an ideal of gj4q) for j=1,...,p— 1.
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If g is assumed soluble it follows (without extra cost) that we can
assume that dim (gj4+1/g;) = 1,1 <j < p—1. It is clear that the above
relation is transitive, i.e.

g14<4g2<d<gs3 implies g1<d<4g3 .

Quite generally for any Lie algebra g, we shall denote by 3(q) it center.
Observe also that if a C n is any subalgebra of the nilpotent algebra n,
then a is subnormal. To see that one has to distinguish the two cases

3(m)Ca,  3n)Za

and use induction.

ii) Nilpotent g-algebras. Let n be some nilpotent Lie algebra and
let g C O(n) be some Lie subalgebra of the Lie algebra of derivations
of n (i.e. g acts on n by derivations). We shall then denote by [z,y]| =
—[y,x] € n, x € g,y € n the action of g on n and consider n; C n the g
subalgebras of n, i.e. the subalgebras for which [g,n;] C ny.

iii) Abstract root algebras. Let n be some nilpotent g algebra (g C
d(n)) as above. Let V be some finite dimensional vector space which we
shall call the space of roots. Let EE C V be a finite subset of elements
which will be called roots. For every e € E we shall consider n, C n
a subspace which we shall call the root space of e € E. We shall say
that n, g, V, E,n. (or simply n or n,g), are an abstract root algebra if
the following conditions are verified:

a) [ne,g] Cne # {0}, ec E.
b) For e1,es € E

[ ]C {0}, if€1+62¢E,
n617n€2
Neytey s ifei+ey € F.

c¢) For every g-subalgebra n C n (and in particular for n = n) we
have a direct sum decomposition

i=E@EnNn).

The trivial case n = {0}, £ = & shall, for convenience, be admitted in
the above definition.
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It is clear that if (n,g,V, E,n.) is a root algebra and V O V then
(n,g,V,E,n.) is also a root algebra in a natural way. And if i C n
is g-subalgebra of n then (fi, g, V, E,#, = n. N ) is also a root algebra
with

E={ecFE, ann,# {0}}.

If a property A has been assigned on the finite subsets of V' as in Section
1.1.2, we shall say that the root algebra (n,g,V, E,n.) is an A-algebra
it e A.

EXAMPLES.

iv) The Zassenhaus decomposition. Let n be some nilpotent com-
plex algebra and let us assume that g is also nilpotent. We can consider
then

n:@ne, e € E C Homg[g, C],

where e are the roots of the Zassenhaus root space decomposition of the
g action on the complex vector space n. We obtain thus a root algebra
(cf. [9]).

The nilpotency of g is essential for the above to work for otherwise
we do not have root space decomposition. Even in the case when n is
abelian, i.e. is just a complex vector space, and g is soluble, where we
can define the roots of the action — by Lie’s theorem cf. [9] —, we cannot
in general define root spaces.

v) The real root space Zassenhaus decomposition. The following
modification of the above example is a forerunner of things to come.
n is a real nilpotent algebra and g is nilpotent. We have then the
corresponding Zassenhaus decomposition

n®C:@ne, ec k.

We can write then e = Ree+iIme where Ree, Ime € g* = Homg[g, R].
It is then very easy to see that

P ne=n,=0,0C, Leg,

ec
Ree=L
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where I use the notations of [2, Section 1.2], and where n;, C n. When
nz # 0 we call this the real root space with real root L € g*, and we
have the corresponding “real root space decomposition”

n:@ﬁL, A ={Ree,ec E} C g*,
LeA

the elements of A will be called the “real roots”. This gives again an
abstract root algebra in the sense of iii).

vi) The basic example of a soluble Lie algebra. The set up will be
the same as in [2, sections 1.1-1.3] the notations there will be preserved:
g D nis a soluble real Lie algebra together with its nilradical, § will be
some nilpotent almost complement of n (e.g. a Cartan subalgebra — so
that [2, (1.1.9)] ¢ = n+h). We have then

(1.2.1) n=ng®n O Dny,

the real root space decomposition of [2, (1.3.4)] where ng corresponds
to the real root 0, and abusively ng could be nyp = {0}. We shall set
g = np+bh (equal to qr with the notations of the proposition of [2, 1.3])
which is now a soluble algebra (but not in general nilpotent).

The above set up gives us an abstract root algebra (n,g) where
the root space decomposition is given by (1.2.1). The set of the roots
E can be identified to a subset of any one of the following spaces
q*, 9% (g/n0)* = (h/bNng)* = (q/n)* by the obvious identifications.
Any of these spaces could thus be taken as the space of roots.

vii) Subalgebra of the abelian and Heizenberg type. In this
section n is a general root g-algebra.

vii), Let a C n be an abelian g-subalgebra of n. We have then
k
(1.2.2) a:@ai, a=n;Na, 1=0,...,k,
i=0

where, for convenience, I use the notations of (1.2.1). If we erase the
zero components we obtain the corresponding root space decomposition
of that subalgebra.

vii), We shall also consider subalgebras of n of Heizenberg type.
This is what we mean:
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We shall assume that
(1.2.3) a1, —Q1, 0, —Q, ..., 0, —0y, CE

are non-zero distinct roots among the roots of n, and we shall assume
that

(1.2.4) {0} # Hyj Cnyy,, jg=12,...,p
are non-trivial g-subspaces such that among all the brackets,
(1, [x2y ... ], 2k], -+ ], r; € Hy = {ZHz NENIN —pgigp},
where 1 < j < k, the only ones that may not be zero come from
[H;, H_;], 1=1,2,...,p.

It is clear then that

P
(1.2.5) H=Hy®Hy=H:® Y [H,H i,
i=1
is a g-subalgebra of n and that
(126) H, C noﬂj(H)
(3 is the center). The root space decomposition of H is of course implicit

in (1.2.5).
One should observe that quite generally, if we are given

H:i:ja jzov"'apa
arbitrary vector spaces such that H; # 0, j # 0 and
ﬁjIHjXH_j—>H0, j:1,...,p,

arbitrary bilinear mappings, we can construct a unique Lie algebra on
the direct sum by the conditions

(1'2'7) H = Z Hj ) ['Tay] = _[yvx] = Bj(xvy) € HO )

Jj=-p
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whenx € Hj, ye H_;, j =1,2,...,p, and demand that all the other
brackets are 0. We shall call such an algebra an algebra of Heizenberg
type. The algebra (1.2.7) is abelian if 8; = 0, j = 1,2,...,p. The
integer p > 1, which may not be uniquely determined, will be called
the order of H.
The following facts are easy to verify:
Let {0} # I;Tj C Hj, j ==1,...,%p, Hy = Hj be as abovr, then
H= >, H; < H is an ideal. If
p ~ ~
> [Hj, H j) C Hj C Hy,
j=1

where H{j is an arbitrary subspace, then

p
(1.2.8) H*= Y H;+H;
j#0
Jj=-p

is an ideal of H because of (1.2.6) (but not necessarily an ideal of H).
If the spaces Hj, Hy,... are g spaces as in (1.2.4), (1.2.5), then the
above algebras are of course g-root algebras. In the above definition
(1.2.8) the algebra H* could be the sum of an abelian algebra with
an algebra of Heizenberg type of possibly lower order. It follows in
particular that in the Heizenberg algebra (1.2.8) we can either find an
abelian Heizenberg subalgebra of order 1

(1.2.9) H,¢H_,, Hy,#0, [Hy,H_,]=0,

or a “purely non-abelian” subalgebra of Heizenberg type of order 1
(1.2.10) H,® H_, ® Hy , Hy,#0, Hy=[H,,H ,]#0.
Furthermore, if H is as in (1.2.4), (1.2.5) then we have Hy, C ny,.
viii) Eigenvectors of a soluble action. Let g be some soluble real
Lie algebra that acts on the real vector space V and therefore also on
the complexified space V. = V ® C (I use the notation ad for that

action). By Lie’s theorem we can then find

(12.11)  0£&=C+ineV., ad@i=Ax)¢, wcg,
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where (,n € V and A € Homg|g,C]. If A(z) € R then both (,n are
common eigenvectors of the g action, as long as they do not vanish.
In general Vecg(¢,n) C V is a one or two dimensional g subspace and
the action of g on Vecg((,n) is semisimple. Furthermore the action of
Exp (g) C GL(V) is given, in real terms, by the composition of a dilation
and a rotation (provided that the basis, and the the corresponding
Euclidean structure, on that, one or two dimensional, subspace has
been properly chosen). The above two operations of course commute
with each other.

The final conclusion is that in both cases we can find in V a one
or two dimensional g-subspace on which the g action is as above. We
shall call such a subspace an eigenvalue subspace.

ix) The eigenvalue subalgebras. I shall specialize now the set up
vii) in the case where n C q and g = ng + b are as in vi) and I shall
apply the considerations of viii) to the g-action on the g subspaces of
n.

It follows in particular that in each non zero subspace a; = n; Na,
i=0,...,k of (1.2.2) we can find a one or two dimensional eigenvalue
subspace a; C a;. We shall call the corresponding abelian algebra

(1.2.12) i=>» & Ca

an eigenvalue abelian algebra.
Similarly if 0 # Hiq C Niq, as in (1.2.9), (1.2.10) we can find

Hy, C Hy, two eingenvalue subspaces with dim Hy, = 1,2. We can
then consider

(1.2.13) Hy®H_o®[Hy, H_o],

where now 0 < dim[ﬁa,ﬁ_a] < 4. We shall call that algebra an
eigenvalue algebra of Heizenberg type. This algebra could, of course,
be abelian. The dimension of the algebra in (1.2.13) could be anything
between 2 and 8.

Observe finally that the action of g on W = [Hy, H_,] is semisim-
ple. Indeed the complexified space W ® C is generated over C by com-
mon eigenvectors of g. The eigenvalues of these vectors with respect to
the action of G = Exp (g) C GL(W) are all unimodular, therefore the
action of G on W is bounded and thus semisimple. In fact W admits
a direct g-decomposition W = Wy @ --- such on each W1y,... the G
action is an orthogonal transformation.
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In both the above cases, the action of g on the corresponding
eigenvalue algebra is semisimple and abelian (i.e. it factors through
g — g/[g, g]). Furthermore the action of g N n (which incidentally is
equal to ng) on the above eigenvalue algebra is both semisimple and
nilpotent, it is therefore trivial.

1.3. The Heart of the Matter: The algebraic reduction.

The set up here will be the set up of a general (n, g) abstract root

algebra
n= @ne, ec k.
eckE

1.3.1. Bracket reduced algebras.
We shall decompose the set of roots £ = AU B by
A={ec E: n.Nnn]={0}}, B={ecE: n.Nnn]#{0}},

and adopt throughout the notation

(1.3.1) n:nA+nB:@naEB@ng.

acA BEB

It is then clear that B = @ if and only if n is abelian. If 0 € E we have
g, o] C ngNn,n] = {0}, acA,
(1.3.2) [na,no] = {0}.
We shall say that n is a bracket reduced algebra if
h,n] =np

(Alternatively: for all e € E, [n,n] Nn, is either zero or n.). Let n be a
bracket reduced algebra then

n4(mod [n,n]) = n(mod [n, n])
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and this, by the nilpotency of n, implies that ny generates n. In par-
ticular

[n,n]:nB:Z[nA,[nA,[...,nA],...],
BCY (A+A+---+4),

J22

(1.3.3)

where 7 under the summation indicates the length of the summation
A+---4+ A. By (1.3.2) and (1.3.3) it follows that if 0 € £ and n is
bracket reduced, then we have
(1.3.4) ng C 3(n).
We also have:
Proposition. A bracket reduced algebra for which B = {0} is the
direct sum of an abelian algebra and an algebra of Heizenberg type (cf.
1.2.vii)).

Indeed by (1.3.4) and the hypothesis it follows that
(1.3.5) [n,n] C 3(n).

But this together with (1.3.3) and the hypothesis implies that n =
[n,n] and that

(1.3.6) [mn] = {[ha,n_a], o, —a € A}.

Clearly the proposition is but a reformulation of (1.3.5), (1.3.6).

1.3.2. The bracket reduction.
Let n =n4 + np be an arbitrary root algebra as in 1.3.1, and let
np =nyg+ [nvn]v

which is an ideal in n and also a g-root algebra with the same root set
E, = FE, i.e. in the process of passing from n to ny, n — n; we “have
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not lost any roots”. We clearly have for n; the analog of the (1.3.1)
decomposition
N =ny, Gnp,

and clearly
ACAl, B DB, EFE=AuB=A,UB;y=FE;.

Furthermore, n = n; if and only if n is bracket reduced.

The operation n —— n; can clearly be iterated n — n; —
(n1)1 = ng — --- until we stop n>ny>--->n, =y = n*. We
obtain thus n* C n a subnormal bracket reduced subalgebra

neon® =ng. + g, AC A", B D> B*, A*UB*=FE.

1.3.3. The A-reduction.

We shall now consider n = ng + ng (F = AU B) some bracket
reduced root algebra as in (1.3.1) that is assumed to be an .A-algebra,
i.e. £ € A where A is as in Section 1.1.2.

We shall consider the couple of subsets

ACECYV

and we shall distinguish two mutually exclusive possibilities.
Case i) A C E is a minimal A-couple.
Case ii) There exists 0 # o € A such that E\{a} € A.

The fact that E C A+ A+--- (¢f. (1.3.3) shows that n falls either
under case i) or case ii). Let us assume that n is as in case ii) and that
E\{a} € A. We can consider then

n* =noOn, =Ny\(q} + <IN,
which is an ideal of n and also an .A-algebra where the set of roots

is E\{a}. In general n® is not bracket reduced. We shall consider
therefore the subalgebra
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This is a bracket reduced A-algebra.

If n is as in case i) we set n! = n so that n = n! if and only if we
are in case i).

This operation n — n! — (n!)l = n2 — ... can be iterated
until it becomes stationary: n? = n?*! = 4. We have thus proved the
following.

2

Proposition. Let n be some A root algebra, we can then find

n= ﬁA + ﬁ];, <4d4dn,
some subnormal bracket reduced A-subalgebra, such that ACcAUB=F
is a minimal A-couple.

In the special case when A = A; N As as in Section 1.1.4 we know
that there are exactly two possibilities:

i) B = @: the subalgebra f is then abelian.

ii) B = {0}: the algebra fi contains a subalgebra (possibly abelian)
of Heizenberg type as in (1.2.9) or (1.2.10).

1.3.4. The eigenvalue subalgebra.

Let us specialize further and consider the case n C q and g = ng+5H
as in 1.2.vi). If by the above reduction (i.e. as in the proposition of
Section 1.3.3) we are in case 1.2.vii), we can proceed as in (1.2.12)
and find a possibly smalle}" subnormal subalgebra that is an eigenvalue

algebra and whose roots A C A are the vertices of a simplex in (h/hN

n)* such that 0 € Int [A | (in particular none of the roots is 0).

If by the above reduction we are in case 1.2.vii);, we can proceed
as in (1.2.13) and find a possibly smaller eigenvalue subalgebra that is
of Heizenberg type.

The above eigenvalue subalgebras are of course not uniquely de-
termined. We shall fix ¢ C n, once and for all, one such algebra and
we shall denote by 7 the number of its distinct roots (i.e. with our

~

previous notations, r = card (A) in the abelian case, and r = 2 in the
Heizenberg case). We shall also fix some basis ey, ..., e, of ¢ where

g<m=dmn<n=dimgq.
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That basis will be chosen and fixed once and for all so as to have the
following additional properties:

i) If e is abelian as in (1.2.12): For each 1 < i < r we can find
1 < j < q such that

(1.3.7) e;j or (€j7€j+1) ca,

depending on whether dima; =1 or 2, and e; or (ej,e;j4+1) is a basis of
that subspace.

ii) If e is a Heizenberg algebra as in (1.2.13): For each of the two
subspaces H,, H_,, we can find 1 < j < ¢ such that

(1.3.8) ej or (ej,€j41) C Hya ,

and such that e; or (ej,ej41) is a basis of that subspace. This will dis-
pose of at most e, eg, e3,e4 and at last e;, es. The remaining elements
of the basis lie in [H_,, Hy] and form a basis of that space.
When
dima; , dimHy, =2,

in (1.3.7) or (1.3.8), we shall further impose on the pair e;,ej41 the
condition that with respect to that basis the action of Expg on a;
or Hi, is a composition of a dilation and a euclidean rotation as in
1.2.viii). It is also possible to choose that basis so that the action of
Expg on [fNI_a, fNIa] can be split into a number of rotations. This last
point is however not vital for what follows.

The above notations of ¢ of r, ¢, m, n and of the above basis will be
fixed for the rest of the paper.

2. Lie Group Considerations.
2.1. The Exponential basis.

Let g be some soluble real Lie algebra and let e1,...,e, € q be
a basis of q such that the subspaces I; = Vecleq,...,e;] satisfy the
condition
[Ij+1,[j]CIj, jJ=12...

We shall call such a basis an exponential bases of q.
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Let now ¢ C n,h C q be as in 1.2.vi) and 1.3.4. We shall consider
in what follows special exponential basis and denote them

(2.1.1) (1,00 ey CmyUl,y ... us) C 0,

where with the notations of 1.3.4 we have:

i) e1,...,eq is a basis of ¢ as in 1.3.4.
ii) e1,..., e, is an exponential basis of n and m > q.
i) uy,...,us € h and m+ s = n.

To guarantee iii), recall that n + h = q and that [h,h] C n and

therefore any set wy,...,us € h, s = n —m, such that eq,..., ey,
U1, ..., Us is a basis of q will give an exponential basis.
A special choice of uy,---,us will be made in what follows. To-

wards that let us consider the space V' = h/h N n and identify V = V*,
once and for all, by some fixed scalar product. We shall choose appro-
priately uq, ..., us some basis of V and then lift it in anyway whatsoever
so as to form the basis (2.1.1). To do that, we consider Lq,---, L € V*
the distinct non-zero real roots of the action of h on n and consider the
subset L1, ..., L, of these roots that was constructed in 1.3.4 and which
gives the distinct roots of the eigenvalue algebra e.

If ¢ is abelian as in (1.2.12) we can assume that Ly, ..., L, are the

~

vertices of a simplex (equal to [A] with the notations of 1.3.4) and
(2.1.2) 0€Int[Ly,...,L,].

If ¢ is of Heizenberg type as in (1.2.13) we can assume that r = 2,
Li=—Ly #0.

With the identification of V =V* we shall identify L4, ..., L, with
elements of V' and we shall set

Vo=Vec[Ly,...,L], Vi=Vst =ueV, Li(u) =0, 1 <j <],
V=VieV,, 0<dimV;=0<s,
s—o=dimVy =r —1if e is abelian as in (1.2.12),

s —o =dimV, =1 if ¢ is of Heizenberg type as in (1.2.13).

In both cases we choose uq,...,u, to be a basis of Vi and uy41 - - - us
to be a basis of Vo = Vi-. The notations o, s for these two dimensions
will be mentioned throughout.
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A special case: Split algebras. We say that q is a split algebra if
it is possible to choose b as above to be an abelian algebra. This is for
instance the case when q is the Lie algebra of a real algebraic group.
In that case, the basis elements uq,--- ,us chosen above, commute and
span an abelian subalgebra V' C q that gives a semidirect product
decomposition:

g=nxV.

REMARK. The notation for semidirect product in [2] is X and in [1] it
is X,.

The use of the above extraneous scalar products on V can be
avoided. cf. Section 3.2.3 for C-graphs.

2.2. The Exponential Coordinates.

If e1,es,...,e, € q are exponential coordinates of q as in Section
2.1 we can use them to identify (), the simply connected soluble group
that corresponds to g, with R™ by the identification (cf. [1])

(2.2.1) R® 3 (t1,...,t,) — Exp(t1e1) - Exp(tne,) € Q.

If we use the special exponential basis constructed in Section 2.1 we
obtain a number of important identifications. Let N, H, Ng C () be
the subgroups that correspond to n,h,e C q. Let V, V1, Ve C @ be the
submanifolds that correspond to V| Vi, V5 identified to subspaces of R"
by the identification (2.2.1). We have

(2.2.2) Vi,VaCV CH, N-V=N-Vi-Va=Q,

w,»

where indicates group multiplication. When q is a split algebra we
have a semidirect product decomposition

Q=NxxV=(NxVp)paVy,
QDNENV:(NENV]_)D(]%:QE,

where in this special case V;,V, C V' C @Q are subgroups (= to vector
spaces).
In the general case we have C'*°-manifold identifications

(2.2.3) QENXVENXxVIxVoaDNgx Vi xVo=QEg,
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but of course in general (g cannot be identified to a subgroup of Q).
Observe however, that in the case of the Heizenberg eigenvalue
algebra (1.2.13), dim V5 = 1 and then V5 C @ is a subgroup and so is
NE > Vz.
Observe finally that the fact that hin C ng in 2.2.v) implies that
if we are in the abelian case (1.2.12) we have

NEﬂH:{e}.

If we denote by G, (V) C H the subgroup generated by V, this implies
that we have

NenGp(V) = {e}

and that these two groups form a semidirect product in @
(2.2.4) Ng=xGp(V) CQ.

Observe also that by the final remark of 1.2.ix), whether N is abelian
or not, the action of Gp(V') on Ng factors through Q — Q/N. Also,

by the definition of V7, Ad.(v1), v1 € Vi, lie in some compact subgroup
of GL(e).

2.3. Riemannian structures on Lie groups.

On every connected Lie group we can assign a unique, up to quasi-
isometry, left invariant Riemannian structure by assigning some fixed
scalar product on the Lie algebra of G. Ishall denote by d(-,-) = dg (-, -)
the corresponding distance and by |z| = d(z, e).

It is of course clear that if ¢ : G — G2 is a group homomorphism
then dy is bounded and if ¢ identifies G to a closed subgroup of Gs
then dyp is quasiisometric. When G = G; > G5 is a semidirect product
(G 3 g = g192), by identifying G = G x Ga, we clearly have TG =
TG xT G4 canonically. That identification induces an isometry on TG4
(but in general not on T'G1) and TG, LTGs in TG. The above hold,
of course, for an appropriate choice of the corresponding left invariant
Riemannian structures.

If G is soluble and simply connected, we can identify it to R" as
in (2.2.1) and assign on G the corresponding Euclidean Riemannian
structure and the corresponding distance dc(-,-). It is an immediate
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consequence of the Baker-Campbell-Hausdorff formula [1] that we have

(2.3.1) A g (z,y) < do(z,y) < Adg(z,y),

(2.3.2) A=C+ |zl + |y|°, r,y € G,

provided that G is nilpotent and where C' > 0 is independent of z,y.

If we identify V' C G with R® as in (2.2.2) we deduce from the fact
that V' C H and the fact that G/N = V =2 R® (this implies that for x €
V, |z| is equivalent to the Euclidean norm) that the analogous estimate
(2.3.1), (2.3.2) holds for z,y € V, and that we can even take A = C
independent of x, y in the split case G = N 1 V. A consequence of the
above is that the Euclidean Riemannian structure and the Riemannian
structure induced on V, Vi,V by the identifications (2.2.3)

V—>nxVCca, neNnN,

are “polynomially distorted” (uniformly in n € N, i.e. the ratio of the
two Riemannian norms on the tangent space at x € V can be bounded
by C|z|¢ + C) in general, and quasiisometric in the split case.

Let the notations be as in (2.2.2), (2.2.3). When V, C Q is a
subgroup, we can give on Ng X Vo =2 Ng >V, two Riemannian scalar
products (-, -)pq and (-, )y,, u; € Vi on the tangent space. (-, )nq iS
the left invariant structure of the group Ng < V5. The definition of
(-,)u, does not depend on the fact that Vo C @ is a subgroup and is
the Riemannian structure induced by the embedding

(2.3.3) NEXV29(n,u2)1—>(n,u1,uz)ENEXV1><V2CQ,

w1

and by the left invariant Riemannian structure of ). Even when V5 is
not a subgroup we can still define (-, -),q on Ng x Vs as follows. The
embedding of R® =2 V = Q/N C @ defined in (2.2.2) induces, by the
final remark of Section 2.2, an action of @/N on Ng. That action can
be used to define a group Ng < (QQ/N). That group can, in turn,
be used to define a left invariant Riemannian structure and therefore
the corresponding (-,-)q on T'(Ng x V) and T'(Ng x V3). Although
it is not essential for what follows, one can observe at this point that
the group structure Ng <1 (Q/N) does not depend on the particular
embedding (2.2.2) and that the above Riemannian structure on Ng x V
is intrinsically defined. To see this it suffices to use the final remark of
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Section 1.2 (ix) and the fact that h N n acts on e nilpotently. These two
facts put together show that the h N n acts trivially on e.

We shall denote by | | and | - |,, the corresponding norms on
T(Ng x V2). We have then

Lemma 2.3.1. At every point (n,us) € Ng x V and for every u; € Vi,
we have

(2.3.4) A_1|'|u1§|'|l><§f4|'|u17
where
(2.3.5) A=Clug| +C,

where C' > 0 is independent of n,uy, us. Furthermore, in the split case
Q =NV we can take A = C.

ProoF. With the notations (2.3.3) and the identifications (2.2.3) we
have
I, (nyug) =n-uy-ug =uy-n" -uz € Q,

where “-” denotes the group product and n"' = ul_l nuy denotes the
inner action of u; on Ng . It follows that

I, = Left multiplication by u} urt oIy, of(n+— n “1_1) x Identity] .

We conclude therefore from the left invariance of the Riemannian struc-
tures on (@, that it suffices to prove (2.3.4) with u; = 0 (¢f. final remark
of Section 2.2).

When uw; = 0, Iy identifies Ng x V5 to a submanifold of Ng <
Gp(Vz2) (c¢f. (2.2.4)). This means that for both Riemannian structures
(-, -)sq and (-, -)o, with the canonical identifications, we have

TNglTVs.

By the definition of the action of V5 on Ng in the group Ng <t Vo which
is identical to the action of Vo C Q on Ng we see that

€l =1¢lo,  §€TNgp.

The polynomial distortion in (2.3.5) in the Lemma is therefore a con-
sequence of (2.3.1), (2.3.2) and the few lines that follow.
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Let us denote by

@ZX:(NEX‘/Q)le—)Q

[(n,u2),u1] —> n - uy -uy (group product).

Let us assign Ng x Vo with the (-, -)sq Riemannian structure, V7 with
the Euclidean Riemannian structure, X with the product structure and
() with the left invariant Riemannian structure. With these notations
we have proved the first part (i.e. (2.3.6)), of the following

Lemma 2.3.2. The differential of ® satisfies at © = [(n,us),u1] € X

(2.3.7) [d®| v, || < C (Jua]® + |uz|® + C),

where C > 0, ¢ > 0 are independent of x. Furthermore, when QQ = N
V is a split group, we can take ¢ = 0.

The assertion (2.3.7) is once more a consequence of the few lines
that follow (2.3.1), (2.3.2).

2.4. A special class of groups and explicit coordinates.

In this section we shall consider two important classes of groups

i) G =R >V =R paR® where the action of V on R" is given
by

exp(L1(y)) 0
Adg-(y) = ; yeV,

0 exp(Ly(y))

where Lq,...,L, € V*. This group, after the identification with R"*$
with the obvious exponential coordinates, gives a Riemannian structure

on R"** with an orthonormal basis at (z1,...,Zr,Y1---,Ys)

0 o 0 0
2.4.1 Li(y)) —, ... L) — 2 ... ) cTG.
(241) (xp (Law)) g+ 05D (Lo (1) i gomr- ) ©
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The left invariant Riemannian structure (-, -)5q induced on Ng > V3, as
we have considered in the previous section, is clearly of this kind when
Ng is abelian (as in (1.2.12)). The imaginary part of the roots play
no role as far as the Riemannian structure is concerned (they just give
rise to orthogonal rotations in the 2-dimensional root spaces if there are
any).

ii) It is a little less simple to write down the orthonormal basis of
G = Ng >V, C (Q when Ng is an eignevalue algebra of Heizenberg
type as in (1.2.13). We shall not need to do this, we shall only need
a simple geometric estimate. In fact, here we might as well consider a
group of the form N >V = N > R where N is an arbitrary simply
connected nilpotent group, and not just a group of Heizenberg type,
and dim V' =1 (such groups are called of “rank 1”7). We shall then fix
e € n (the Lie algebra of N) and assume that

|Ad(y) eln < exp(—ay), y=>0,
for some a > 0, where R has been identified with V. This will certainly
be the case for Ng > V5 in Section 2.2 and e the basis vectors in H4, of
(1.3.8) (provided that in the identification of V5 with R we have chosen
the right orientation. These orientations are, of course, opposite for H,,
and H_,).
Let us now consider the “path”
p:R37— (nExp(re),y) e NV =G,
for fixed n € N, y > 0. We then clearly have
o(1) = (n,y) Exp (T Ad(y) e) ,

and therefore

(242) 6r)] = | (55| < exp (~ap)

for the Riemannian norm |- | on T'G.
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3. Geometric Considerations.
3.0. Notations and Definitions.

I found it very difficult to describe the Geometric and Topological
constructions that are presented in this part of the paper without hav-
ing to resort to informal language, and without constantly abusing the
notations that I had already established. The aim of this first section is
to codify as far as possible, some of the notations and the notions that
will be needed and used in the rest of this paper.

I shall use the notation

(3.0.1) 07 =[(z1,...,2,) €R", || <d, 1 <j<r]CR",

with r = 1,2,..., for the d-cube. This d > 10'° will be the free pa-
rameter in this paper and none of the constants C' > 0 that will appear
will depend on d. I will also denote by [J} the above cube for d = 101°.
(Which is the “unit” cube for you if you happen to be 1 -8 x 101Y me-
ters tall.) Together with the above cube I shall also consider anisotropic
cubes of the form

(3.0.2) 0% x [—A, A]Y,

where A < C (logd)®. 1shall denote by d (1% for the topological bound-
ary of (3.0.1) in R", with an analogous definition for (3.0.2).
Let now M be some Riemannian manifold and let

(3.0.3) .0, — M,

be some Lip(C¥) mapping defined in some neighbourhood of [0 in R",
where here and throughout, the subsets of R are assigned with the
Euclidean distance. One should think here of £ > 1 as a free parameter
that may be allowed to — co. When we have (3.0.3) we shall say that
E, the image of [07, by ®, is

(3.0.4) E=&()) isaLip(t) -0y C M.

The notation (3.0.4) to describe (3.0.3) is already abusive but conve-
nient. We shall use an analogous definition for

(3.0.5) ®(X)isalLip(f)— X C M,
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where X is as (3.0.2) or X = 0005 or X =9 (007 x [—A, A]"), etc.
In this context we shall use the following obvious scaling property:
If

(3.0.6) EisaLip(f) - 07 x [-A,A]* ¢ M,
then automatically
(3.0.7) EisaLip(l(A+1)-0OcM.

The analogous property for any X as in (3.0.5) holds.

I shall use throughout the notation LL(d) to indicate mappings
from one metric space to another that are Lip(C (logd)®) for some
C > 0.

One of the basic definitions given in the introduction (Section 0)
will be reformulated as follows. We shall say that the Riemannian
manifold M has property ., 7 > 2 (we shall also denote F = ., Fp)
if for every

(3.0.8) E=9o(00)) isa LL(d)— 007 C M,

we can find some E

(3.0.9) E=90&()isa LL(d) -0, c M

that “fills in” E. The meaning of “fills in” is the following

(FI) (i)|3|jf - (1)7

we have in particular £ C E.

I shall not make systematic use of the notations from the Theory of
currents (cf. [12], [13]), because it is not necessary for our constructions
or for the proof of our theorem to introduce an orientation in R". But
if we do orient R” then (3.0.8) and (3.0.9) define currents E and E in
M, and (F.I.) says among other things that

(3.0.10) Ok =E,

for the 0-operator (cf. [13]; sometimes denoted by b-operator cf. [12])
of the currents, provided of course that the orientations of £ and E are
compatible.
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3.1. The One Dimensional Construction.
3.1.1. The abelian case.

This construction will be made in the group G = R? > R of 2.4.i)
(with r =2, s = 1) where L; = aLy # 0, (« € R).

The issue is to give a specific embedding of 92 in G that will
have a number of properties.

1) The four vertices (+d, +d) € 9[J2) will be mapped on the cor-
responding points (+d, +d,0) € G, where the exponential coordinates
(1, x2,y) of 2.4.1) are used throughout for the group G.

2) The four sides f;, 1 < i < 4 (i.e. 1-dimensional faces of [J2)
will be mapped into four C*° curves v; C G, (1 < i < 4) that join the
corresponding vertices. Say the side f1 of (J2 that joins (d, d) to (—d, d),
is mapped on v, C G that joins (d,d,0), (—d,d,0). The curve ~; lies in
the affine hyperplane A; that is parallel to the y-axis and which goes
through f; C R? C G (with the above identification). The above v; lies
in the affine hyperplane [z9 = d] = A; and joins (d,d,0) to (—d,d,0).

For each 1 < < 4 the side f; is parallel to the axis z;(;) j(i) = 1,2
(1 < i < 4), which is one of the two z-axis. The f; just above, is
parallel to the z;-axis. We shall demand that ~; lies on the “side” of
the affine hyperplane determined by

AN [Ljy(y) > 0] = A
In the case of 71 we have thus
M C [z2=d]N[Li(y) = 0] = AT .

We shall join the four pieces v; U y2 U y3 U v4 = v and obtain thus the
required mapping of (2 in G. This mapping is piecewise smooth.
Observe that the above mapping is not a priori (1-1) and « is
not necessarily an embedding. But that if a < 0, i.e. if L1, Ly have
opposite signs then the above construction gives a Lip-embedding (i.e.
an embedding by a bi-Lip mapping).
We shall further demand:

i) v is an LL(d) — 0% C G for the left invariant Riemannian struc-
ture of G.

ii) For each arc 7; the set

Myl <O)nvy =7,
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where 7 : R? 1V — V is the canonical projection, consists of exactly
two straight line segments parallel to the y-axis emmunating from the
two vertices. In the case of y; we have v¢ = v{" U~ where

1= (Eddy),  0<Li(y) <C
(not the same C' > 0).

REMARK. For typographical reasons, I did not draw a picture. But a
nice picture can be drawn and the reader should do so for himself (cf.
[5, Section 2.B]).

The only point that is not obvious in the construction is i). This
will be verified by an explicit parametrization for the curve ;. The
other pieces 72, Y3, 74 can be treated analogously. To do that we identify
Ay with P, the upper half plane y > 0, in the obvious way, and we set

y(t) = (z(t)-d,y(t)) € PT,  —1<t<1,
(3.1.1) —-1<z(t) <1, 0 <y(t) < Clogd,

z(£1) = £1, y(£1) =0,
where we impose the following additional conditions
(3.1.2) x(£t) = +1, lt| € [1 —2c¢o,1],

i.e. x is constant near the end points of [—1,1]. In between i.e. t €
[—142c¢p, 1 —2cp] the function z(t) is C°° and is close to being linear.
We shall also assume ¢y < 1.

(3.1.3) y(t) =Clogd, te[—1+co,1—co],

for some large C' and the same ¢g as in (3.1.2). In the intervals [-1, —1+
co] U1 — co, 1], y(t) is C*° and is monotone and almost linear. The
constancy of z near the end points guarantees that the condition ii) is
verified. If the choice of C in (3.1.3) is large enough then the condition i)
will be verified. This is the only point where we have to make a (trivial)
estimate. But this point is actually obvious and can be verified with
the use of the orthonormal basis (2.4.1) of T'G constructed in 2.4.i).
The details will be left to the reader who is strongly advised to do this
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and to compare it with the higher dimensional analogue (3.2.18) and
with the Lip property in Section 3.2.3.

REMARK. When « < 0, i.e. when the group G is a C-group (c¢f. Section
0), the above construction actually gives v = 1 U2 U3 U~y4 which is
a C* embedded 1-dimensional sphere S! which, near the four vertices
(+d,+d,0) € ~ reduces to the following four line segments, that are
perpendicular to the 0xq, z2 coordinate plane

[5 €, dist (57 (j:dv j:dv 0) < C] = (j:dv j:dv 0)+[(07 07 y)7 -C Sy < C] :

3.1.2. A generalization: Groups of rank 1.

Let Q@ = N >V, where V 2 R is the real line and N some simply
connected nilpotent group (cf. 2.4.ii)). We shall assume that g,h € n
(the Lie algebra of N) are two vectors that satisfy

(3.1.4) |Ad(y)g| < Cexp (—ay), y>0,
|Ad(y) k| < Cexp (—By), y <0,

where

(3.1.5) a>0, <0,

i.e. we shall assume that @ is a C-group (cf. Section 0), and that the
action of V on N has two roots with real parts of opposite sign.
The nilpotency of N implies that a high enough group commutator
[...,[X,Y],Y],...,Y] = e = Neutral element of N, X, YeN.

If we multiply out that commutator, we obtain (a “universal relation
in N”)

(3.1.6) XPrynxr:...Xpryt =e, X, YEN,

where r > 1, p1,p2,-..,q1,q2,- - - € Z are fixed. This relation will allow
us to embed in N a polygonal (i.e. piecewise smooth) curve whose
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vertices will be

Py=e,
P =X
(3.1.7) Py = XY ®, ...
ng = XPry®...XPiYd
sz_H:Xplyql...XPJ‘+17 j>1.

The above pattern is clearly periodic no matter what X,Y € N is. We
shall set

X = Exp (dg), Y = Exp(dh), d> 101,

with g,h € n as in (3.1.4), and shall join the successive vertices with
pieces of one parameter subgroups:

e We join P»; with Py;1q with
Py Exp (pj+191), 0<t<d.
e We join P41 with Pyj o with
Py 1Exp (gj1 ht), 0<t<d.

One should observe that this construction is a direct generalization of
the construction of the standard square 02 in R?, where the relation
(3.1.6) is just the first commutator

XYXxXltylt=o.

When N = H is the Heizenberg group (cf. 1.2.viiy)) an easy application
of the Baker-Campbell-Hausdorff formula (c¢f. [1]) shows that we can
take

(3.1.8) XY?Xylx—2y-l=e,

for a universal relation (c¢f. [5, Section 5.B3)).

We can now generalize the construction of 3.1.1 with 003 C R?
replaced by the above 2r-sided polygon P(d) C N. Each side f of
P(d) will be replaced by some smooth curve y; C Q = N x V exactly
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as in (3.1.1). We start from the initial vertex of f and while keeping
the N-coordinates fixed, we dip in to depth - C'logd in V' (i.e. the y-
coordinate), and in the correct direction that is determined by (3.1.4),
(3.1.5). Then we keep fixed the V-coordinate and cover the distance
along f in the N-coordinates. We then finally come back to y = 0, in
the V' coordinate, and to the second vertex of f on N.

The estimate (2.4.2), (3.1.4), (3.1.5) allows us then to make sure
that the new polygon P*(d) C N1V C Q is an LL(d) — 9002 C Q.
This is the analog of the condition 3.1.1.i). The (C)-condition (3.1.5),
together with the way we made the construction allows us to guarantee
that the analog of the Remark 3.1.1 holds for this polygonal curve.

The above P*(d) can be chosen, just as in Remark 3.1.1, to be a
C*°-embedding of a 1-dimensional sphere.

Observe that in certain cases the 27 points of (3.1.7) may not be
distinct. The above construction should then be made on a shorter
periodic subpatern of (3.1.7). At any rate the only case where we shall
use the above construction is when N is a group of “Heizenberg type”,
i.e. for the relation (3.1.8). In that case the description of the above
construction simplifies (cf. [5]).

3.2. The First Basic Construction.
3.2.1. Notations and definitions.

i) We shall consider here the group G = R" > V = R” > R® of
2.4.1) and we shall use the exponential coordinates (1, - Zp; Y1, - Ys)
€ R"** and the orthonormal basis (2.4.1) of T'G defined in 2.4.1).

It will be convenient to use these coordinates to identify G with
R"%, and to use “+” to indicate the Euclidean addition in R"*%. Ob-
serve, however, that then

r+g=x-9g€C, reR, ged,
where “-7 indicates the multiplication in G. We shall denote by
(3.2.1) v :G—V, mr:G— R,

the canonical Euclidean projections induced by the identification of
G = R" x V. This identification induces an identification

TG =TR &1V,
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where the sum is orthogonal for the left invariant Riemannian structure
on T'G. Furthermore, on TV the Riemannian scalar product coincides
with the Euclidean one. On TR" the Riemannian and the Euclidean
norms

Ela s [€lBuc,  E € TR C T yyG,

can be negotiated with the help of the basis (2.4.1). In particular, it is
clear that if

(3.2.2) fEV%( 0 0 )

0xs, " O,

lies in some coordinate subspace of R" we have

(3.2.3) €l < Clé|guc sup (exp (—Ls; (y)) -
1<j<a
ii) Let
0% ={(z1,...2,) €R": |25 <d, j=1,...7},
be as in Section 3.0. Let I = (i1,...,%5) C (1,...,7) be a subset and
let J=(1,....,7)\I, (|{| = s, [J| =7 —s). Let further e = {g;};_; be
such that
Ej::i:d, jedJ, ei =20, 1el.
We shall denote then
F=FLie)={zeR : || <d, iel, vj=¢;, jeJ}Cly,

which is one of the 2"7% s-dimensional faces of [};. If we define the
slices of [}, by

Fr={zeR": |23/ <d, iel, z; =0, je J},
we clearly have with obvious notations
F=F(I;e)=F;+¢.

For F' as above we shall denote by £g € F' the center of that face.
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The 0-dimensional faces are the vertices of [I7,. More generally, we
denote by 001}, the union of all the above s-dimensional faces so that

9oy C 0y, C -+ - 01005 = 90, .
For every face F' = F(I;¢) as above we shall denote as usual
OF = U[F(J;€'), JC I, I #J, F(J;€') C F].

The slice Fr with |I| = s can be identified with 009, the boundary 0F7
is then the 0[5 that corresponds in that identification.

iii) We shall assume that the Ly,..., L, € V* that we used in the
definition of the group G = R" > V (¢f. 2.4.i)) are all non zero and
satisfy the following condition:

For every I C [1,...,r], |[I| <7 —1 the set (L;, i € I) C V* is NC
(cf. Section 1.1.2).

We shall identify, once and for all, V ~ V* by some fixed scalar
product on V. We shall also fix for each @ AT C [1,...,r], |[I[|<r—1
(cf. 1.1.5)

(3.2.4) Cr=> XLi, |¢lv <Clogd, Li(¢r) > Clogd,
el

and A\; > 0, ¢« € I. It is important to observe that with the above
definition, for any choice of Iy,...,I, (a > 1) as in (3.2.4), we have

L;j(¢) > Clogd, je (I,
k=1

¢ € Convex Hull [(1,, 1 <k <a].

(3.2.5)

3.2.2. The Auxilliary Construction.

We shall consider now F' = F([;¢), |I| =7 — 1 some r — 1 dimen-
sional face of [, and we shall fix a decreasing sequence of subfaces

F=F._12F_, 22F07
such that dim F; = j = |I;|, where

I:Ir_lDIr_gD"'
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is the decreasing sequence of multiindices that correspond to these sub-
faces. We shall denote also (cf. Section 3.2.1)

§i =&F; 0<j<r—1, Fo = {&},
G =Gy 1<j<r-1.
We shall fix
0<aj, B; <1, 1<j<r-—1,

and we shall define inductively

(326)  wo=¢&, witx1=1— 1) Gt oy € Fipa,
where 7 =0,1,...,7 — 2, and

(3.2.7) Yo =0, Yi+1 = (1= Bj+1) G41 + Bj+1y; €V,

where 7 =0,1,...,7 — 2. We shall also define
@j:(a;j,yj)EijVQDSxVC]R’"xV:G, 3=0,...,r—1.
Let us now define the following functions of 0 < 0 <1

(0, 0 €l0,],

af) =4 1, 0el—3cl1],

\ ', increasing, and almost linear in between .
(3.2.8)
(0, 0el0,1-2¢,
pO)=< 1, 0ell—cl],

{ C'°°, and increasing in between .

The choice of 0 < ¢ < 1 is irrelevant as long as it is small enough.
What counts in the above definition are the following facts

|da|, |dB| < C', and B(0) #0, 6 €[0,1],

(3.2.9) o /
implies a(f') =1, 6" € [0 — ¢,0+ ¢].

In the inductive construction (3.2.6), (3.2.7), I shall then set
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where 0 = (0y,...,0,_1) € [0,1]""1. We obtain thus

®,_1:[0,1]"' — G,
(3.2.10) ®,_1(01,. ... 0r—1)
= (%—1(91, <y 91"—1)7 yr—1(917 sy 9r—1)) .

We clearly have (cf. (3.2.1))
(3.2.11) dz,_1 = drgod®,_ 1 :T[0,1]""' — TR",
(3.2.12) dy,_1 = dmy o d®,_, : T[0,1]"" — TV .

If we norm TR" in (3.2.11) with the Euclidean norm (c¢f. 3.2.1.i)) we
obtain by the definition (3.2.6) that

(3.2.13) |dmRr 0 d®,_1||gue. < Cd,

and we obtain also (cf. (3.2.4))

(3.2.14) ldmy 0 d®,_1|| < C (logd),

where on TV in (3.2.14) we can assign either the Euclidean or the
Riemannian norm because these two norms coincide. Both (3.2.13)
(3.2.14) can trivially be verified by induction. In fact we can improve

upon (3.2.13). Towards that we distinguish two cases:

Case 1. 0 € [0,1]"! is such that 3;(0) # 0,5 =1,...,7r—1. By (3.2.9)
it follows then that

(3.2.15) dap_1 =0.

Case 2. 0 € [0,1]"~! is such that there exists some 1 < p <7 — 1 such
that $, = 0. From the definition (3.2.7) it follows then that

(3.2.16) yr—1 € Convex Hull [(;—1,...,(p]-

We shall choose the largest possible p so that = 0 and either
Hp=r—1
ii)p<r_17/6p+1 %07"'7/67"—1%0'
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In both cases the definition (3.2.6) together with (2.2.9) implies
that

o
dz,_1(T]0,1]"Y) € {8% e Ip}.

But this together with (3.2.2), (3.2.3), (3.2.5), (3.2.13), (3.2.16) implies
that if the C' in (3.2.4) is large enough, the norm satisfies:

(3.2.17) |dzy_1||¢ < Cdexp(—Clogd) < C,

where || - [[¢ means that we assign now TR" in (3.2.11) with the left
invariant Riemannian norm of G. Putting together (3.2.15), (3.2.17),
(3.2.14) and 3.2.1.1). We conclude, that for an appropriate choice of the
constants C' > 0 in (3.2.4), we have

(3.2.18) @, 1:[0,1]""' — G, |d®,_1]| < Clogd,

where, of course, we put the Euclidean norms on 7'[0,1]"~! and the left
invariant Riemannian norm on T'G.

3.2.3. The Extension Operator and the Construction.

The notation Fy, I C [1,2,...,r] for the various slices of the cube
0" that were introduced in 3.2.1.ii) will be preserved here, with the
additional convention that I shall use the same notation

F[CD?, F[CDZ,

to indicate the corresponding slice, for some fixed I (i.e. ; =0, 5 ¢ I)
for the unit cube and the d-cube.
I shall consider throughout in this section and in the next, map-

pings
(3.2.19) o0 — 0O, xV,

where Dom(®) C O is some subset of (0. More precisely, we shall
consider

(3.2.20) f:8F1—>FI><VCG,

(3.2.21) Ef :Fr—FrxVCGqG,
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where G in (3.2.20), (3.2.21) is as in 3.2.1.1). 0Fy, Fyin (3.2.20), (3.2.21)
on the left hand side refer to the unit cube [J] while on the right hand
side refer to the same slices in [I};.

In this section I shall explain first how, given a Lip-mapping as in
(3.2.20) for some I, we can extend it to a Lip-mapping E f as in (3.2.21)
by some specific extension operator £ = E7, such that

Eflor, = f.

This is done as follows:
Let © € Fr c O, I # @, then we can write (essentially) uniquely

$:(1_9)5I+93/7 OSQSI, yeaFfv
where £ = (Center of F;) = 0. We shall then define

Ef(z) = ((1-ar(0) &+ar() frly),  (1=p61(0)) Cr+B1(0) fv(v)),
where
f=(r fv)eFrxV,

are the two coordinate functions, and where

0<ar), #1(0) <1,
(3.2.22) ar(0) =61(0) =0,
ar(l)=0;1)=1,
are nondecreasing functions that satisfy the additional properties

(3.2.8) (and which in fact can be taken to be independent of I).
The &7 € V will be chosen to be as in (3.2.4).

The inductive construction. We shall now construct Lip mappings
er, I C[1,2,...,7], || <r—1and ¢, s =0,1,...,r—1 that have the
following properties:

l) pr: Fr— Fr xV C G as in (3219)

ii) oz = e € G (the neutral element).

iii) ¢, : 0,07 = 0,0, xV C G,s=0,...,r—1, with the notations
of 3.2.1.ii) and ¢y is the identity mapping scaled by d.

iv) If I C [1,2,...,r], [I| = s, € = (e1,...,¢&r), €5 = 0,%1 and
e+ Fr = F(I;e) as in 3.2.1.ii) then, ¢s(c + x) = ed + ¢r(x), © € F7.
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The construction is done by induction as follows: ii), iii) and iv)
determine ¢o inambiguously. Assume that for some 0 < s < r — 1, @,
and @r, |I| < s have been defined and satisfy i)-iv). Let I C [1,2,...,7]
be such that [I| = s+ 1 < r. Then F; can be identified to F' C 054100}
some face of 1Jj. The choice of that F' is in general not unique. This
identification identifies 0F7 to OF and defines

f=—ed+ ps|lop : OF — F; x V (for the appropriate ¢) .

This definition is inambiguously because of the inductive hypothesis.
We shall define then ¢; = Ejf by applying the extension operator.
We shall then define 541 by demanding that iv) should hold. This is
clearly possible and @s11|9,0r = ps is an extension of g;.

The final step of this construction is a mapping

(3.2.23) p=p,—1:00] —00; xV CQGq.
Let
(3.2.24) S=p@0) CR =V CG.

We shall show that it is possible to make the above constructions in such
a way that ¢ and S in (3.2.23), (3.2.24) have the following properties:

(Lip) Lipschitz property. In (3.2.23) we have ¢ € LL(d) and S is
an LL(d) — 007 C G.

(Trans) Transversality properties.

Trans i). There exists 0 < ¢ < 1 such that for every vertex P € 07,
B.(P), the c-neighbourhood of P, is mapped into {P} x V C 0007 x
V C G, where P is identified to the corresponding vertex of 0LI}.
Furthermore, if F' = F(I;e) C 007 is some (r — 1)-dimensional face of
7 such that ] > P € F, then ¢|pnp, (p) = ¢p,r satisfies

(3.2.25) {P} x Cr D Image ((ppyF) D) {P} X (CI N Vc),

for some C' > 0, where

Ve=lueV, jul<Cl.  Cr=(X AL Az0iel).
Ay
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What the above says in words is simply this: The vertices of LJ] go
to the vertices of LI, and near each vertex P of U7, the various faces
F(1,¢) that contain P, go “nicely’ to the tips of the corresponding cones
C that stick out of o(P).

Trans ii). For appropriate C, ¢ > 0, we have

§eolly, |mop(§)ly <C

(3.2.26)
implies that there exists P € 0ylJ7 such that { € B.(P),

where m = G — V is the canonical projection. In words: Unless & is

near a verter P € 9,007, its image ¢(§) in G lies far away from R".
With the “additive” notations of 3.2.1.i) and the notations of

Trans.i) and, an abusive but clear meaning of ~, we can summarize

(3.2.27) @(FNB.(P))~p(P)+ (CrnVg), P e o],
(3.2.28) Sna tueV: |jul <O C @)+ Ve .

At this point, we should observe that once P € 0y[J] has been fixed,
for every I C [1,2,...,7] with [I| = r — 1, there is ezactly one face
F = F(I,e) such that P € F. It follows that the above gives a nice
description of how the neighbourhood of every vertex in [J] is mapped
into G.

The special case of the C-condition. Let us go back to 3.2.1.iii)
and let us denote by Vo = Vec(Lq,...,L,) C V. Let us also assume
that the vectors Lq,..., L, are the vertices of some simplex and 0 €
Int[Ly,...,L,] = Into. In this case just by looking at the simplex o
“around 0”7 we see

(3.2.29) [CrcVa: TC[1,2,...,r]: [I|=r—1],

o o
is a tacelation of V3 (i.e. CrNCy =@, 1 # J, UCr = V3). From this,
and the Transversality conditions that S satisfies, we see that under
the C-condition we have

(3.2.30) @O NBAP)) = p(P)+[uecVy: |ul <C], Pe o,

with the obvious use (or rather abuse) of the notations.
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In fact, under the above C-condition for the set Lq,..., L, € V*,
we can avoid altogether the use of the extraneous scalar product on V'
which was essential in the above construction (c¢f. (3.2.4)). Indeed we
can consider then Vo C V some (linear) direct complement of V; = {x :
Li(z)=0,1<j<r}CV andfix o =[z1,...,2,] C Vs some simplex
such that 0 € Int (o) and L;(z;) > 0 (4,5 =1,...,n, ¢ # j). Instead of
using 1.1.5 we can then define the (;’s in (3.2.4) by

Cr zlogd(Zx,) .

i¢I

The rest of the argument works as before, and the only difference is that
the simplex o = [z1,...,x,]| is not necessarily the simplex [Lq,..., L,]
that we used in (3.2.29).

It is of some interest to observe that in the above case we can even
make the set S of (3.3.24) homeomorphic to an 7 — 1 sphere. Indeed the
only thing that stops the mapping ¢ that defines S from being (1-1), is
the fact that the functions «(f) and () that were used have common
intervals of constancy (cf. (3.2.8)). This point can easily be rectified,
and yet preserve all the other properties of «, 3 (especially (3.2.18))
that are needed for the construction.

Proof of the Lipschitz properties. The proof of the property ¢ €
LL(d) depends on a finite decomposition

A
(3.2.31) U Q=000 ,
a=1

where €, is a relative open set. The sets {2, are constructed as follows.
Let x € 0007. Then as long as z lies outside the union of finitely many
affine subspaces we can write uniquely

=21 =1—=0,1)¢F_, +0r_12,_2,
F._, C 8r_1|j§ , 0<b,_1< 1, Tp_9 € 8r_2D§ ,

where F,._; is an (r — 1)-dimensional face uniquely determined by .
Furthermore, the mapping

LTp_1 — (91"—17371"—2)7 97’—1 2 ¢,
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is Lip C for any ¢ > 0 and C' = C(c). This process can be iterated, and
if we assume that z,_s avoids a finite number of affine subspaces we
can write

Tpr_2 = (1 - 97’—2) gFr,z + 97’—2 Lr—3, F. s C ar—2|jq ’
0<6,_5<1, Tp_3 € Op_s]
and so on.

It follows that with the exception of £, an exceptional subset of
oU] which is the union of finitely many affine pieces of dimension at
most r — 2, we can determine uniquely for every x € 0] a sequence

(3.2.32) F(x): Fry D F_9D---D Fy

of faces F; of [J7, dim F; = j and a vector

(3.2.33) 0(x) = (0p_1(x),...,0:(x)) € [0,1]F
such that for every r — 1 > a > 1, the mappings
(3.2.34) z—0(x), r—1>j>a,

are Lip (C) as long as we stay away from 0; =0 (r—1>j > a+1).
The open subsets €2, (3.2.31) are then determined by requiring that

r¢&, F(x) is fixed.

By our constructions the mapping ¢ of (3.2.23), (3.2.24) coincides on
each Q, with the mapping @, _; constructed in (3.2.10), composed with
the mapping (3.2.33), (3.2.34). If we recall that both «(-) and 3(-) are
equal to 0 in some neighbourhood of 0, we see that the Lip property of
¢ follows immediately from the above and (3.2.18). Indeed, as in the
end of 3.2.2, if for some = € Q, this is a first 6,_j (in the succesive
construction 6, _1,...) that is small enough, then x,_j lies in some
small neighbourhood of £, in 2,NF,_j which is mapped on the fixed
point (§r—k, (r—k) of Section 3.2.2. It follows that in the differential dep
at x only the coordinates 6,_1,...,0,_g4+1 > c are involved.

Proof of the transversality property. To prove the transversal-
ity properties of ¢ it suffices to prove that <,0|65D; = (p, satisfies the
corresponding properties and in particular (3.2.25)-(3.2.28) for s =
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0,1,...,7 — 1. For s = 0 this is evident. The general case s > 0
follows then immediately by induction and the fact that «(f) = 1,
0 € [1 — 3¢, 1] while the 5(#) goes through the whole of its variation in
the interval [1 — 3¢, 1]. In words, the above says that near the distin-
guished boundary 0,_»[J], and in particular near the vertices, ¢ does
not start moving in the R” direction before we are already quite deep
in the appropriate cone Cj (and therefore already out of V).

Additional smoothness properties. When the C' condition is ver-
ified as in (3.2.29) and (3.2.30) we can guarantee that in the above
construction S = ¢(0 ") defined in (3.2.24) is a C*° embedded (r—1)-
dimensional sphere S™~! C G. This condition is not difficult to build
in the above construction. The only difficulty lies in choosing the cor-
rect notations that tend to get out of hand. This was seen in the
1-dimensional case in Section 3.1.1 where we “negociate the corners” of
the square by the local constancy of a near # ~ 1. Since no essential use
will be made of this smoothness property the details will be omitted.

It should be noted, however, that there is another way of guaran-
teeing that smoothness by an “a posteriori” argument. What one can
do, is start by the transversality conditions (Trans.) and use convolu-
tion to smooth out ¢, and yet preserve the transversality conditions.
Any pretence of global injectivity (i.e. the (1-1) property of ¢) is, of
course, lost with this operation. We can then use the Whitney pertur-
bation technique [14], as explained in Section 4.5 to obtain an S that
is a C°° (r — 1)-dimensional sphere in G, and still has the properties
(Lip.) and (Trans.) described above.

3.2.4. The Embedding of S in the eigenvalue group.

Let Ng C N be the eigenvalue group as in Section 2.2 that corre-
sponds to the eigenvalue algebra e as in Section 2.1. All the notations
and definitions of Section 2 will be preserved and we shall distinguish
two cases:

Ng is abelian. We shall then assume that Lq,..., L, are the vertices
of a simplex as in (2.1.2), and we shall fix the basis e1,...,e4 in ¢, as
in (1.3.7), so that e;,, e;, . ..e;, each lies in different root space.

We shall now use the notation of sections 2.1 and 2 and consider the
Riemannian structure induced on Ng x Vi by (-, -)sq as in Section 2.3.
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This structure is a Riemannian structure of the kind defined in 2.4.i).
The exponential coordinates of Section 2.1 can then be used (by the
subnormality of the generated subalgebra the vectorse;, ,...,e; can be
taken to be the first r vectors of the basis (2.1.1)) to identify R"~! with
Vo and R" = Vec (e;,, . . ., e;,) with a submanifold of Ng. This identifies
R" x R"~! with a submanifold of Ng x V5. Even in the split case (cf.
Section 2.2) when Ng x V5 is a subgroup, the above submanifold is not in
general a subgroup (because of the “complex rotations” comming from
the imaginary part of the roots). It is, however, clear from 1.2.viii),
(1.3.4) that this manifold with the induced Riemannian structure is
isometric to the Riemannian manifold defined in 2.4.1).

From this it follows that the S = ¢(007]) defined in (3.2.24) can
be embedded and thus be identified to a subset of Ng x V5. S is in
particular an LL(d) — 0.

Ng is of Heizenberg type. We then shall use the construction of
Section 3.1.2 and the relation (3.1.8) in the group generated by the
algebra (1.2.13), with e € H,, h € H_,, (with the notations of Section
3.1.2 and (1.2.13)). The considerations of 2.4.ii) apply then and we see
that the polygon P*(d) = S constructed in Section 3.1.2 can be made
to have the analogous properties (Lip.) and (Trans.: here we already
are in the C-condition case). The analog of (3.2.30) therefore holds.
This now reads as follows:

Near each of the six vertices P; (1 < i <6), S is identical to

P -lueVy: Jul <],

“om

where indicates the group product in Ng < Vo which is always a
group (cf. end of 2.2). We have thus embedded S C Ng x Vs, with
dim Vo = 1. The only difference with the previous abelian case is that
now, globally, S “lives” (spills out if you prefer) in all the coordinates
of Ng < V,. S is in particular an LL(d) — 0O} where now r = 2.

3.3. The Second Basic Construction.
3.3.1. Filling in a small cylinder.

We shall use throughout the identification and the notations of
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Section 2.2, (2.2.2), (2.2.3)

(3.3.1) Q=NxV, V=V xV,
(3.3.2) SCNgxV,, Ng x Vo C (N xVa)xVi=Q,

where S'is the LL(d)—0 0] C Ng >V, constructed in (3.2.23), (3.2.24)
and Section 3.2.4. Ng <1 V5 is the group structure on Ng x V5 defined
in Section 2.3. When @ is split all the manifold products in (3.3.1),
(3.3.2) are just group skew products. I shall also suppose, as I may,
that the neutral element e € G lies on S.

In this section I shall assume throughout that  admits the prop-
erty F (cf. Section 3.0) or at least the properties F, for the relevant
p=2,...,dimQ@ — 1.

i) The 1-dimensional cylinder. The split case. Let a,b € V7, and
¢ = [a, b] the affine segment that joins these two points and let

(333) SXEC(NEDQVQ)DQ‘GCQ.

S x £ is the lateral boundary of a hollow cylinder (It looks like an empty
food can with top and bottom removed).

1) Filling the top and bottom. By the Lemma 2.3.1 we have
(3.3.4) S x {a}, S x {b} are LL(d) — 00} C Q.

By the property F, we can “fill these in” and find

(3.3.5) B,, By two LL(d) — O] C @,

(3.3.6) 0B, =S x {a}, 0B, =S x {b}.

By Lemma 2.3.2 there exists

{@eLu®,

(3.3.7)
®:007 X [a,b]| — Q, Im® =S5 X]a,b],

where we assign on 0} X [a,b] C Rt its natural distance. It follows
that

(3.3.8) B, UB,U (S X [a,b]) is an LL(d) — 0(0] X [a,b]) C Q.
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Therefore if we assume that

f=la—bl <1,
we can rescale and

(3.3.9) B, UByU (S x [a,b])is an LL(d) — 007 C Q.

2) Filling the can. By the property F,.; we can find

(3.3.10) Ban LL(d) - O c @,

(3.3.11) 0B = B, U B, U (S x [a,b]).

It will be abusive but convenient to abbreviate the information con-
tained in (3.3.4)-(3.3.11) by writing

(3.3.12) OB = Rim (S x [a,b]) .

ii) The 1 dimensional cylinder. The general case. We shall adapt
here the previous construction in the general case, i.e. when () is not
split. The notations of the previous section will be preserved. Clearly
it is only the use of the Lemma 2.3.1 and 2.3.2 that has to be modified.
Observe first of all that the fact that

(3.3.13) Sis an LL(d) — 0, C Ng 1 Vy |

and the fact that the canonical projection Ng x Vo — V5 is a group ho-
momorphism (for the group structure Ng > V3), and therefore Lip (1),
implies that

(3.3.14) S C Ng x [’LLGVQ, |’LL|V2 SC(IOgd)C]CNEXVYz.

It follows that Lemma 2.3.1 can be used (for the non split case), and
(3.3.4)-(3.3.6) of the previous construction are not altered. (3.3.7)-
(3.3.9) on the other hand have to be “handled with care”. We shall
denote by

.00, — S, ®eLL(d),
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for the distance on S induced by S C Ng > Vs, and we shall assume
that

(3.3.15) b —a| < (Ja| + [b] +10)79,

for some appropriate C' > 0. We shall also use the linear scaling;:
(3.3.16) U :[0,1] — [a,b].

We can consider then the composition of maps

o007 x[0,1] — S x [0,1] — S X [a, b]
Px1d Idx ¥
(3.3.17)

— (NpaVa) x Vi -2 Q,

where in (3.3.17) we denote by Ng > V5 the direct product Ng x Vs
with the Riemannian structure induced by the group Ng < V5 as in
Section 2.3, and on (Ng < V) x V7 we give the product distance and
product Riemannian structure. By the Lemma 2.3.2 and (3.3.14) we
see that

||d@|T(NE><V2)|| =0 ((1Ogd)c) )

(3.3.18) o .
1dO®[zv, || = O ((log d)™ (la| + [b] 4-10)™)..
Since on the other hand by (3.3.13), (3.3.16)
®xIde LL(d), WelLip(b—al), I€Lip(l),

we conclude from (3.3.15), (3.3.18) that the composition of the maps
in (3.3.17) is a map

(3.3.19) o0 x [0,1] — Q in LL(d)

with constants that are uniform in @ and b. This controls the third
term in (3.3.9) as before and we can thus fill in the “can” as before and
find B that satisfies (3.3.10), (3.3.11), (3.3.12).

The 2-dimensional cylinder. The split case. Let a;; € V1 1,j =
1,2 be the four vertices of a parallelepiped

(3.3.20) L = [a1,1, ai,2, 2.2, 02,1] c Vi,
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with sides parallel to the first two axes of V;. Let

(3.3.21) [ai1,a;2) =L}, (a1, a2 =47,

where we shall assume that

(3.3.22) 1< 1, i,j=1,2.

Just as in (3.3.4), by Lemma 2.3.1, we have

(3.3.23) S x{a;;}isan LL(d) —007] C @, ihj=1,2.
These can therefore be filled in by

(3.3.24) B} ;s an LL(d) —Uj C Q,

(3.3.25) 0B; ; = S x {a;;}, i,j=1,2,

because of the property F, of (). We can then use the Lemma 2.3.2
and the property F, 41 to “fill in” the four “hollow” sides of the square.
We have then (i, = 1,2)

(3.3.26) BT, BT are LL(d) - 07 C Q,

(3.3.27) OB T = B UB[,U (S x (),

(3.3.28) OB Tt =Bi;UB;;U(Sx£3).

Let then

(3.3.29) A= (BIFPuBTHU(SxL).
i=1,2

If we use the Lemma 2.3.2 to control the last term of (3.3.29) and glue
the pieces together we deduce that

(3.3.30) Aisan LL(d) —00™ C Q.
Hence by the property F, 12, A can be filled in by
(3.3.31) B2 is some LL(d) — 071 C Q,

(3.3.32) OB = A.
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The above information (3.3.24)-(3.3.32) will be summarized, abusively,
by the single notation

(3.3.33) OB"™"? = Rim (S x L).

iv) The 2-dimensional cylinder: The general case. The notations
are as in 3.3.1.iii) but we no longer assume that @ is split. We shall
assume as in (3.3.15) that

(3.3.34) 163, 62| < (sup |ai| + 10)77,

for some appropriate C¢' > 0. We make the construction of B; . and B”;
as in (3.3.26), (3.3.27), (3.3.28), with the use of (3.3.34) as before and
the same modifications for the proof as in 3.3.1.ii). We obtain thus A
as in (3.3.29). To prove (3.3.30) we have to control the term S x L.
This is done by the Lemma 2.3.2 and the analog of the cascade of maps
(3.3.17). Where now

V(0,1 % [0,1] — L

is the two dimensional scaling map. The property F, o completes the
construction of B2 as in (3.3.31), (3.3.32), (3.3.33), as before.

v) The general cube: The split case. Let

F = [al,bl] X [ag,bg] X X [at,bt] CVl,
b; —a;] <1, 1< <t,

be some parallelepiped of V; with sides parallel to the first ¢t-axes (1 <
t < dimV;) and diameter < 1. We shall then proceed exactly as in
3.3.1.i)-iii) and use property F, to first fill in the 2¢ “corner cubes”:
S x Fy, Fy being the vertices (i.e. 0-faces of F'). Then we use the
previous construction and property F,ii to fill in the Rim (S x Fy)
where I are the 1-dimensional faces of F'. By “fill in the Rim...” we
mean that we perform the construction that is summarized by (3.3.12).
And so on. We obtain at the end

(3.3.35) B some LL(d) — O c Q,
(3.3.36) OB = Rim (S x F),
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where the same abusive notation for the term “Rim” is used to abbre-
viate the above construction. One thing that should be kept in mind is
that (3.3.36) implies that

(3.3.37) SxF COB.

vi) The general construction. The way one eliminates the condition
that @ is a split group should now be quite clear. One simply uses the
full thrust of Lemma 2.3.2. Scaling maps are considered as before

U:[0,1] — [a1,b],...,9:[0,1]) — F,
with a1,bq,...,F as in 3.3.1.v), and the condition

—-C .
bi — ai| < (sup (lail, [6:]) +10) 7,  i=1,....¢t,
7

is imposed on F. The details are as in 3.3.1.ii)-iv) and will be left to
the reader.

The following comments on the constructions that we have made
up to now are in order:

REMARKS.

i) The coordinates in V; and V, play different roles. The V;
coordinates that admit non-trivial real roots, act on Ng and form on
Ng x Vo a “hyperbolic structure”, <.e. we have r — 1 “Hyperbolic
sections”. It is this that allows us to “shrink” metrically 01}, and
embed it appropriately onto S, which is some LL(d)—0 0] C Ng < V5.

The Vi coordinates that have trivial real roots “act as Euclidean
rotations” on the space Ng <1 V,. This fact is vital for the above
construction and comes out through the Lemmas 2.3.1-2.

We use then the property F of @ to fill in the “prisms” (or “Eu-
clidean” cylinders if you prefer — or “food cans”!) obtained by S and
right translations by the extra coordinates coming from Vj.

ii) Questions of uniformity. In the above constructions d was the
free parameter (at the end we will let d — 00). All the constants C' > 0
introduced in the above constructions did not therefore depend on d. It
is important to note also that these constants C' > 0, in the construction
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in Section 3.3.1, did not depend on ag, by, az,bs,...,a;;,... or F of
3.3.1.1)-vi) either.

3.3.2. Filling in a Large Cylinder.

The construction of “filling in small cylinders” in 3.3.1, can be
carried out for a “large cylinder” also

(3.3.38) S x[-A, A" € (Ng x Vo) x V; .

The problem is the uniformity of Remark 3.3.1.ii). To avoid having to
“drag in” the size, A > 1, of the large cylinder in the Lip-constants,
we have to proceed differently.

i) The split case. Once more let us start with the case when @ =
N 1V is a split group, and let us subdivide [—A, A]* into unit cubes
F,F,,...,F, (p = (24)"; Fjis a 0}, 1 < j < p). The idea is to “fill
in” each S x Fj; independently by

Bjis an LL(d) — O/t C Q, j=1,...,p,

dB; = Rim (S x F;),

and furthermore do so in such a way that these B;’s fit together like a
“honeycomb” and that their union “fills” in the Rim (S x [—A, A]*).

Here the notions and the notations from the theory of currents
can be used with profit (¢f. Section 3.0, [12], [13]. We have to as-
sume then that the appropriate orientations have been assigned to the
corresponding spaces). With these notations we have

p
(3.3.39) B=) Bj, 0B=) 0B;,
j=1 7j=1
(3.3.40) Bisan LL(d) —O; x [-A, A’ € Q,
(3.3.41) OB = Rim (S x [~ 4, A]"),

where, without attempting to give a formal definition of (3.3.41) we
insist on the following consequences implied by (3.3.41) (¢f. Remark
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3.1.1)

(3.3.42) Sx[-A, A" CoB,
OBN 7 Hu e Vy, |u| < C)

(3.3.43)

— (Sx [-A AN N ue W, [u <],

where 7 : Q) = (Ng < V3) 1 Vi3 — V; is the canonical projection. For
the validity of (3.3.43), as we shall see, we shall need to have A > 1
appropriately large.

To clarify matters we shall consider first the two casest =1, ¢t = 2.

The case t = 1. We subdivide
A1
A A= | L, L=[j+1], -A<j<A,
j=—A

and construct B (7), Blign(4), @-e. By, By witha =j, b= j+1 (as
in (3.3.5)) for the “small cylinder” S x I; as in (3.3.4)-(3.3.6). We also
make the construction, as we may, so that

Blignt(J) = Blegs (1 + 1) —A<j<A-1.
We then construct
(3.3.44) Bj™is an LL(d) — 07 € Q,
(3.3.45) OB = Bl () U Bligni (1) U (S x 1),

we take then
r+1 _ r+1 __ r+1
B = UBj = E Bj )

where the ) refers to the notations from the theory of currents (cf.
Section 3.0, [12], [13]). It is then clear that

(3.3.46) B™tlis an LL(d) — (O" x [~ A4, A)),
(3.3.47) 9B = Bl (—A) U Bl (A —1) U (S x [—4, A]),

which is exactly what is meant by (3.3.41). The basic fact (3.3.43) is
here clearly ensured by (3.3.44), (3.3.45), provided that

A>C(logd)®,
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for some appropriate C' > 0. Indeed this implies that the “left” and the
“right” of the “can” (3.3.47) do not reach the central region because
the canonical projection m : Q — V3 is Lip (1). The uniformity in A
of the construction in (3.3.44) plays a crucial role here (c¢f. Remark
3.2.1.ii)).

The case t = 2. We subdivide

A-1
A A x [-A A= | Gi+10x[Gg+1],
i,j=—A

and start by filling in each of the four vertices Cy(i,7), 1 < a < 4, of
Ii,j = [7’72_*_ 1] X [.77.7 + 1]
0B (i,7) =S x Cyu(i,7), a=1,2,3,4.

This is done in a consistent way, i.e. if two neighbouring squares have a
common vertex, we choose the same filling (e.g. B} (i,7) = B5(i —1,7)
with obvious notation).

Having done that, we then fill in the hollow sides of each S x I; ;
(as in (3.3.26)-(3.3.29)) using the already constructed B (4, 7). This is
again done in a consistent way, i.e. two S x I; ; that are side by side

(or one on top of the other) must have their common side filled in an
identical way. The final step is to construct B"*2(i, ) such that

B™*2(i,j) is an LL(d) — 07" C Q,
(3.3.48) (&.9) (@) -5
OB™2(i,j) = Rim (S x Ij),  i,j=—A,...,A=1.

Then, using again the notations from the theory of currents, we set

(3.3.49) B=)Y B"(i,j),
i,J
which is
Bisan LL(d) — 07 x [-A, A C Q.
The boundary 0B consists of exactly two parts
(0B)1 = S x [-4, A]?, (0B)2 = 0B\(9B)1 ,

and clearly if z € (OB)a, then x € 0B"t2(i, j) where either i or j (or
both) are equal to —A, or A — 1. This, together with (3.3.48) and the
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uniformity in A of the constants in (3.3.48), implies for the same reason
as in the case t = 1, that (3.3.43) holds if

A > C(logd)“,

for some appropriate C.

The way one generalizes the above constructions to any ¢ > 1,
by filling in the unit subcubes S x [—A, A]* in such a way that their
successive Oy, Op41, ... boundaries coincide, should be clear. We obtain
thus the required B that satisfies (3.3.40)-(3.3.43).

ii) The general case. When () is not necessarily split we have to
modify the construction of the previous section at only one point:

Instead of subdividing [— A, A]* in (3.3.38) into unit cubes we sub-
divide it into (2 A/A)? cubes [a1, b1] X [ag, ba] X -+ - of size

A=bj—aj| < (A+10)7Y,  j=1,...,¢t.
Each of these cubes is then filled in as in 3.3.1.vi), and this is done

with consistent 0,;r-boundaries as before. Taking the union, or more
accurately, summing the corresponding currents, we obtain as before

A/A—1
(3.3.50) B= Y B(ir,...,it),
i1, =— A/
_ A Ayt
(3.3.51) Bis an LL(d) — O0; x [T X] ,
(3.3.52) 9B = Rim (S x [-A4, A]"),

OBN7 Y(ueVy, |ul <C)

(3.3.53)
= (Sx[-A A N7 HueVy, |ul<0),

where again 7 : ) — Q/N — V; is the canonical projection. The
size [—A/A, A/A] of the cube in (3.3.51) has been multiplied by 1/A
because of the summation from —A/\ to A/A —1 in (3.3.50).

The key fact (3.3.53) is again guaranteed by a large enough choice
of A

A > C(logd)“,

and the fact that 7, being a group homomorphism, is Lip (1).
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The final point of this construction is that the parameters are cho-
sen so that

(3.3.54) A~C(logd)®, X~ C(logd)~©.

By the rescaling (3.0.6), (3.0.7), it follows therefore that B in (3.3.51)
is an LL(d) — O]

4. Proof of the Main Theorem (C).

In this section I shall give the proof of the C-part of the main The-
orem. This is the difficult part of the theorem and it uses the algebraic
and geometric constructions that we have developed in this paper. 1
shall give three different ways of making this last step. Basically all
three stem from the same idea and it is only a matter of using a differ-
ent language and different tools to put things together. That language
and tools can be summarized as follows.

i) Transversality and Sard’s theorem from Differential Topology.
This is what we do in Section 4.5.

ii) Slicing from the theory of currents. This is what we do in Section
4.3.

iii) We can globalize and avoid the explicit use of either of the
above. We then only use the very simplest definitions from the theory
of currents, but the price that we have to pay is that we have to keep
track of the orientations and the signs of the currents involved. This is
what is done in Section 4.2.

4.1. Currents in Riemannian manifolds.

Let M be some Riemannian manifold, we shall recall some of the
standard definitions and properties of currents on M. I shall deliber-
ately, but abusively, ignore the questions of orientation. Some of the
statements below are therefore as such, incomplete. The reader will
have to fill in the details concerning the orientations on his own (cf.

[12]).

i) We denote by A(M) the space of C*° compactly supported forms
on M and by A*(M) the dual space of currents on M. We denote
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||w|| = sup,,, |w(m)|a for the Riemannian norm |- |, induced on AT*M.
Let T € A*(M), we say that T is an integration current of finite mass
if M(T) = ||T]| = sup{|(T\ w)|, w € A, [lw|| <1} < 400, (M(T) is the
notation used in [13]).

ii) Every ¢ : 07 — M that is Lip (A) induces a unique integration
current

T- @), (T = [ ). weAn),
of mass ||T']| < (1 + A)". This is evident if ¢ is C° and defined in
some neighbourhood of [J]. The extension to an arbitrary ¢ as above
is routine.

iii) Let £ C M be some open subset. Then the injections Q@ — M,
A(©2) € A(M) defines canonically a restriction operator A*(M) —
A*(€2). We shall use the notation T — T'|q for that operator and we
have

(@T)]o = d(T}o).

Furthermore, if 7' is an integration current, then T, is also an integra-

tion current and
1Tl = [Ix, Tl < T,

where x,, is the characteristic function of (2.

4.2. The current interpretation of the Geometric construc-
tions.

For the proof of our main Theorem, we shall consider currents
on the Riemannian manifold Q = M, where Q) is a soluble simply
connected group assigned with its left invariant Riemannian structure.
Let 7 : Q@ — Q/N =V be the canonical projection, where N is the
nilradical, and let

Q=r"tyeV,|lyy<l)CcM.

We shall then consider the restriction on €2 of the currents of M as
in 4.1.iii). We shall also consider the restriction of the Riemannian
structure of () on 2 which gives a Riemannian structure that is quasi-
isometric with the product Riemannian structure

(4.2.1) N xB*=Nx{yeR, |yl <1}.
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In (4.2.1) we assign the nilradical N with its left invariant structure
and the Euclidean unit ball B® with the Euclidean structure. Let now
B be the current defined in (3.3.39)-(3.3.43), (3.3.50)-(3.3.53) of Sec-
tion 3.3.2, and where once more we choose to ignore all questions of
orientation and of signs. As we shall see presently, the signs and the
orientation are not essential for the proof of the main Theorem. If,
however, we are prepared to go through the details and work out the
correct signs at every point of the construction in Section 3.3.2, the
proof in Section 4.3, becomes “cleaner” and simplifies.

We shall consider the integration current [B] that is defined as in
4.1.ii) by ® : O] x [-A/\, A/A]” — Q. Here r is as in Section 3.2.4
if Ng is abelian, and » = 2 if Ng is of Heizenberg type, in both cases
o = dimV;. One must recall that the construction of B in 3.3.2 was
done under the assumption that @) satisfied F,., F,4+1,...,Fr4, and the
choice of A, A was such that A/X ~ C (logd)® (cf. (3.3.54)). It follows
therefore, that

I[B]|| < C (logd)°

and therefore also that
(4.2.2) I[Blall < C (logd)° .

We shall consider T' = 9([B]|a). By (3.3.43), (3.3.53), (3.2.27)-(3.2.30),
4.1.iii) it follows that if we suppose that () satisfies the F condition and
is also a C-group (these two actions on @ will presently be shown to be
incompatible!) then

suppT C (S x [-A, A]) N7 u eV, jul <1] = U C(ery..yer),
e==%1

where, with the identification of 2 with (4.2.1) and with the identifica-
tion of N with R™ (induced by the exponential coordinates of sections
2.1, 2.2) we set

Clety...,ep) =[x =(e1d,...,6,d,0,...,0), ueV, |u| <C],

where €1, ...,&. = £1 (¢f. sections 3.2.3, 3.2.4). In the above notations
we have assumed that Ng is abelian. The changes that have to be made
in the notations to deal with the case when Ng is of Heizenberg type
will be left to the reader.
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If in Section 3.3.2 we are prepared to go through the signs and the
orientations involved in the “filling currents” of (3.3.39) and (3.3.50),
we can show that

(4.2.3) T =0[Bllo= Y +[C(e1,...,&)],
e==+1

where [-] indicates the integration on the s-dimensional chain that is
Lip embedded in ©. We can give explicitely the +’s on (4.2.3) but this
is irrelevant, these signes do not depend on d.

At this point we shall stop to point out that without “bothering”
to go through the orientations and signs involved, what we have “for
sure” is

(4.2.4) T=0Blla=> fe,.clCler,....e0)],
where for each fixed (e1,...,e,) we have
(4.2.5) fer,en W) =1,  ye€B*.

Indeed the function f., . ., (-) which “a priori” may depend on d is
what gives the correct sign on the subcubes of size A in (3.3.50). In
particular, in the split case (3.3.39)-(3.3.43) when A = 1, we already
have (4.2.3) without worrying about the orientations.

4.3. The proof of the main theorem C using and keeping track
of the signs of the currents.

From (4.2.2) and (4.2.3) (or (4.2.4)), we shall be able to draw a
contradiction when d — oo. This will prove the incompatibility of
the C-condition and ﬂ;:: F; and will complete the proof of the main
Theorem (C') because r + 0 = rank@ + 1 and r > 2. To describe
things in general terms, what will be proved is, that under the condition
(C) for @@ we cannot have a polynomial upper bound for ¢, (R) (n =
r,r+1,...,7+ o) in the main Theorem (C).

The fact that (4.2.2), (4.2.3) (as d — o0) are contradictory is easy
to see. Indeed let

w:f(xlv"'7$m)g(y17"'7ys)dyl/\"'/\dys7
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for some f € C§°(N), g € C§°(B?), then

(4.3.1) <w,T>:C(/gdy>Z:tf(sld,szd,...,erd,O,...,O),

|{w, T)| = [{dw, [B]|o)]
(4.3.2) < [|dw]l I[B]lel
< C(logd)CSgp |df |,

where |df | stands for the Riemannian norm in 2. Observe now that the
mutual distances in N of the points (e1d,...,e,d,0,...,0) is greater
or equal C'd* for some o > 0 (by the polynomial distortion between the
distances in N and the corresponding Euclidean distance induced by
the exponential coordinates). It follows therefore that we can choose f
and g so that the right hand side of (4.3.1) is greater or equal than 1
(no matter what the choice of the +’s is) and yet

(4.3.3) sup |df| < Cd™“.
Q

From this and (4.3.2), by letting d — o0, we obtain the required
contradiction. This completes the proof of our theorem.

The above proof can easily be modified so as to make (4.2.4) (and
not (4.2.3)) the starting point. The only difference is that now

w=f(z1, .- T, Y1, Ys)dyr A=+ Ndys

where the dependence of the coefficient f € Cy(2) on y € V is designed
to compensate for the sign of f., ., in (4.2.4). We can again choose
f so that in (4.3.1) we have

I

(T, w)| > 1
and yet

(4.3.4) sup |dw| < Cd™“.
Q

Observe that now (4.3.4) is not obtained though the control (4.3.3) of
df. What allows us to assert (4.3.4) is the fact that dw only involves
the partial derivatives 0/0x; of f.
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4.4. The proof of the main Theorem (C) using the slicing.

This is but a variant of the previous proof of the main Theorem of
Section 4.3. It relies on the non trivial notion of the slicing of currents
(¢f. [13, Section 4.3]). This slicing operation allows us to define for
almost every x € B® in (4.2.1), a current ([B], 7, z) on N, which is the
“slice” of [B] with #=1(x) C Q. Here we shall identify 7! (x) with N
and use the notations of [13, Section 4.3] and the fact that [B] € A},
(i.e. as a current it acts on d-forms) where 6 = r + 0 = dim B (with
the notations of Section 3.3.2, c¢f. (3.3.51)). The construction and the
formalism of this slicing depends on the fact that the dimension of the
current (equal to r + o) is greater or equal than the dimension of the
target space of m, cf. Section 2.1. This formalime is non-trivial and I
shall refer the reader to [13, Section 4.3] for the details.

At any rate, if we are prepared to use this notion of slicing, we
can obtain a contradiction between the conditions (F) and (C) on the
group @, starting this time from the weaker (4.2.4). The advantage of
this approach lies therefore in the fact that we do not have to “chase
around” orientations and signs of currents.

The contradiction is obtained by a very similar argument as the
one used in Section 4.3, but which is now localized to each individual
N-fiber of (4.2.1). Indeed the polynomial distance distortion in NV,
together with the automatic control of d(|B], 7, z) that we have from
(4.2.4), will give the following lower bound of the total mass

(4.4.1) M[([B], m,x)] > Cd*, almost all x € B¥.

The contradiction now is obtained between (4.4.1), (4.2.2) and [13]
Theorem 4.3.2.

The idea of the above variant of the proof is, of course, very simple:
Instead of restricting [B] to the cylinder 7—!(|u| < 1) we restrict it to
the fiber 7=1(u) (fizedu € V, Ju| < 1). This allows us to ignore the
possible variations of sign of f., . (y) = %1 in (4.2.5). The price
we have to pay is that now we have to integrate with respect to u in
(Ju| <1). [13, Theorem 4.3.2] allows us to perform the integration and
obtain the contradiction.
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4.5. The smooth fillings and an alternative proof of the main
Theorem (C). An outline.

We have already pointed out at the end of Section 3.2.3 how in the
first basic construction of S C R” >t R"~1, which is an LL(d) — 007} C
R" 1 V, we can make S to be a C* embedded (r — 1)-dimensional
sphere. Once this construction was made smoothly, we can proceed
and do all the “fillings” of Section 3.3 in a smooth fashion.

To fix ideas, if we assume that the group @) satisfies the condition
F, we can modify the filling of S and construct

F:B"—(Q, FeLLdnC™,
F@OB")=S, F(B)=BcCQ,

where B" is the unit r-ball and where F' induces an embedding of B".
This can be done by the usual Whitney perturbation technique (that
can easily be adapted to leave the boundary fixed, ¢f. [14]) provided
that

(4.5.1) dimQ > 2r+1.

The condition (4.5.1) is not, of course, a priori verified and the first
thing that has to be done is to replace ) by the direct product group
Q x RA = Q4 (for some appropriate A > 0). By spilling out of @ into
Q 4 as little as we like, we can then make sure that F'is an embedding.
Observe that the extra factor of () 4 goes in the nilradical.

Let us also assume for simplicity that in Section 3.3 (with the no-
tations that we used in Section 2.2) V7 = 0, so that in the constructions
of Section 3.3, after we fill in S, we stop. And we do not have to worry
about the Rim (S x [—A, A]?) (i.e. 0 = 0). We can then finish the
proof of our main theorem with an obvious use of Transversality in a
few lines.

Indeed, if we denote by m : Q4 — V the canonical projection,
where with our previous notations V' = V5 = Q/N, by Sard’s theorem,
for almost all y € V, n=1(y) N B is a 1-dimensional d-manifold and
O(r~Yy) N B) = SNna~Yy) (¢f [16]). The set SN 7~1(y), when
ly] < 1, is completely determined by the construction of S and the
mutual distance of its 2" (r = 2,...) points in the Riemannian manifold
7~ (y) (i-e. for the induced Riemannian structure in 7=1(y) C Q4) is
at least C'd*. This holds for the same reasons as in sections 4.3 and 4.4,
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cf. (4.4.1). The conclusion for the 1-dimensional Hausdorff measure
induced by the Riemannian structure of ) 4 is

(4.5.2) Voly [~ (y) N B] > Cd*.
From this a lower estimate
(4.5.3) Vol,.(B) > Cd*,

follows at once (cf. [13, Section 3.2]. In fact, using elementary differ-
ential calculus, we can easily see how (4.5.2) implies (4.5.3) directly).
This clearly contradicts (4.2.2) and, once more, gives a proof to our
Main Theorem.

Observe also, that in the above case, dim@) > 2r — 1, so it is
probably possible to use the “difficult” Whitney immersion theorem
[14] and avoid the use of @ 4.

The above proof is very analogous to the proof given in Section
4.4. We can indeed say that here the notion of the slicing is picked up
by Sard’s theorem and Transversality, and what replaces [13, 4.3.2] is
the fact that (4.5.2) implies (4.5.3).

This approach, through elementary differential topology, can be
generalized in the general case, i.e. when V; is not necessarily zero.
One then has to carry out the filling constructions of Section 3.3 and
make sure that the integration currents that we use for the fillings are
O-manifolds. This again is achieved by the Whitney approximation
technique, applied to the manifold Q4 (A > 1), but is more involved.
I will not give the details. The reader who wishes to carry these details
out for himself should observe the following point:

Already in 3.3.i) the current in (3.3.8) is not the boundary of a
smooth manifold, even though B,, By have been chosen to be generic
C*° 0- manifolds. The current in (3.3.8) is the boundary of a manifold
with corners in the sense of [15]. This means that either we have to
make the constructions in Section 3.3 using manifolds with corners,
or do something at every step of the construction of Section 3.3 to
“smooth” out these corners. Both these aproaches work. But I do not
have the stomach to write the details down here.

REMARK. There is a varient of the Main Theorem that can be formu-
lated as follows:

Let us say that a Riemannian manifold as in Section 0.2 has the
property (G,) (cf. Section 3.0), if there exists C' > 0, such that for all
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R >10and all ® : 900Y — M (® €Lip) and such that Vol,_;(®(0))
< R there exists ¢ : Y — M (® € Lip) such that

Ologp =@, Vol,&(0F) <RY,  R>10.

For a mapping ® that is not 1-1, the above definition of Vol, has to
be done with multiplicity (e.g. [29, p. 58]). The proof that we gave
in this paper can be adapted to prove that the C-condition on the
soluble simply connected Lie group () and the conditions G, (2 < p <
rank () + 1) are not compatible.

In the above adaptations no new ideas are involved but the details
are tedious and long. These details remain to be written out.

The difficulty in adapting the above proof lies in the Second Basic
Construction of Section 3.3 and especially in the argument that was
needed to supply a proof of (3.3.43). This variant of the Main Theorem
is related to the Homological classification of Section 0.3.

5. The Proof of the NC-Theorem.
5.1. Homotopy retracts on Lie groups.

Let @ be some simply connected soluble Lie group assigned with its
left invariant Riemannian structure. In this section we shall construct
H(g,t) € Q (0 <t <1, g€ Q) appropriately smooth (C*° or at least
Lip) homotopy retracts

H(g,0)=e, H(g,1)=gy, geQ,

that have one of the following additional properties (or both)

(Exp.) |dH| < Cexp (Cg|), gEQ,

(Pol.) [dH] < C(lgl+C),  geQ,

where |g| = d(e, g) is the Riemannian distance in () and where [0, 1] X Q)
is assigned with the product Riemannian structure. We shall prove:

Theorem. Let () be as above, then a homotopy retract that satisfies
(Exp.) always exists. A homotopy retract that satisfies (Pol.) exists on
Q if and only if Q is an NC-group.
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Only the “if” part will be proved in this section. The “only if”
part is a consequence of Section 4.

5.2. Exponential coordinates.

Let N be some simply connected nilpotent group. We can define
then the bijective mapping Exp= Exp; : n — N that gives on N the
exponential coordinates of the first kind (¢f. [1]),

Exp (z1 X1+ -+ 2,X,) € N, (1,y...,2,) €R", n=dimN,

where n is the Lie algebra of N. When () is a simply connected soluble
group this mapping is not in general globally bijective and therefore it is
not well suited to give coordinates on the group. We can use then Exp»
the exponential coordinates of the second kind (cf. [1, Section 3.18]).
Using the above bijections, we can transport the radial homotopy
retract of R* (F(z,t) =t-x,0 <t <1,z € R") to a homotopy retract

(5.2.1) R; = Exp; o F o Exp; ', i=1,2,

(this notation is slightly abusive but clear enough) on N or ) as above.
It is also very easy and standard to prove that when N is nilpotent
both Ry, Ry satisfy (Pol.) More generally, when all the roots A1, Ag, . ..
of ) are pure imaginary (i.e. there are no non-zero real roots and
(L1, Ls,...) = @ in [2, Section 1.2]) then Ry satisfies (Pol.). This fact
is less standard but is very easy to verify because only the sinf and
the cos@ of the corresponding coordinates 8 € /N, crop up in the
multiplication cf. [10].

The construction of a homotopy retract that satisfies (Exp.) for a
general simply connected soluble Lie group @ is also very easy. Indeed,
if the exponential coordinates are chosen as in sections 2.1, 2.2 so that

€1ly.vsCm €N, UL, ..., Uus € b, the fact that both n and b are nilpotent,
allow us to estimate polynomially both
d(Exp (11 u1) - - - Exp (75 us)) , d(Exp (t1e1)---Exp (tm em)) -

We also have (cf. [11])
t=tr]+ -+ |tm| < C(expClg| + C),
=+ -+l <C(gl+0),

gEQ? g:(tlv"'vtmlev"'st)-
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This, if we take into account that the action of Ad(g) on T'N has a
norm that is at most C (¢ +1)¢ exp (C 7), easily completes the proof of
(Exp.). The details will be left as an exercise to the reader.

One should observe, that if M is some C°° manifold, and if ¢; :
M — Q (i = 1,2) are two mappings, then their group product satisfies

d(¢1 - ¢2) = dLg, o dps + dRg, o dey ,

where L and R denote left and right translations on the group. If we
identify TyQ with T.Q = q by left translation, this says that (cf. [26])

d(p1 - p2) = ddy + dRy, 0 dLy | o dpy = dpy + Ad ¢ 0 dep .

5.3. The semidirect product.

Let now () = Q1 <1 (2 be a semidirect product, where both ()1, Q2
are simply connected soluble groups, and let H; be a homotopy retract
of Q; (i=1,2). Let

g =4dq1 g2, QiEQia 7::1727
so that
a2 =p2(9), @ =g (p209)"" =1(g9),
ldps| <1, |dp1(g)] < Cexp (Clgl),

[q1lQ, < Cexp (Clgl).
On the other hand, if we denote by
H(g,t) = Hi(q1,t) - Ha(gq2,1), 0<t<1,

and by
Idzﬂl@WQZTQ—)TQ1®TQ27

the orthogonal decomposition of T'Q) induced by a basis of q = q1 < g2
that consists of a basis of q; and a basis of qa (c¢f. sections 2.3 and 4),
we have

(5.3.1) i odH = Adg, (Hz) o dH; o dyy

(5.3.2) my0dH = dHy o dps ,
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with the obvious indentifications and obvious notations. It follows, in
particular, that if Hy satisfies the condition (Pol.) of Section 5.1 then

(5.3.3) im0 dH| < C'lg|® + C.

Similarly, if H; satisfies (Pol.) of Section 5.1, and if Hy has been con-
structed to satisfy the additional condition

(5.34)  [Hz(g:t)]|g. <Clgle. +C, g€Qz, 0<t<1,
then (5.3.1) implies that
ImodH| < Cexp(Clgl).

If Q2 = N is nilpotent it is easy to see (5.3.4). This is because we
can use exponential coordinates of the second kind (zq,...,2,) such
that the ball of radius r in N is equivalent (in the obvious sense) to
{lej| < 7%, 1 < j < n} where a; > 1 (1 < j < n) are integers. It
follows that the retract Ry of (5.2.1) satisfies (5.3.4). The same type of
argument works if Q2 has polynomial volume growth (cf. [10]), but this
is less easy to see. (Alternatively, there exists 7' 2 T™ and a semidirect
product G = Q2 < T such that there exists N C G that is a closed
nilpotent, simply connected normal subgroup and such that G = NT
NNT ={e}, ¢f. [27]. This allows us to transfer the problem from Q-
to N).

The above facts are not essential and the details will be left as an
exercise to the reader.

5.4. NC-groups.

Let @ be some simply connected NC-group and let

Q=Nrp>xXQr=0Q1>xQ2,

be the semidirect decomposition induced by the corresponding algebra

decomposition q = ng > qr (¢f [2, Section 1.3]). We shall first

construct the corresponding H = H; - Hy that satisfies (5.3.1), (5.3.2).
Let us now fix Y € qg such that

(5.4.1) L;(Y)<—Co, j=12..k,
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for the real roots Ly, ..., Ly (I use here the notation of [2, Section 1.3)),
and let us define

(5.4.2) o(t)=o(g,t) =Exp (t(lg/* +1)Y) € Q,

Hy(g,t) = H(g,p(t)) - o((t)), 0<t<1, ge@Q,

“,»

where indicates group multiplication in @ and where @, €
C ([0, 1]) satisfy the following conditions:

0, t=20,1,
P(t)y=14 1, tele,1—¢,
C*°, and monotone in between ,
0, tef0,2¢],
e(t)=4¢ 1, te[l—2¢1],

C*°, and increasing “almost linearly” in between .

From the above definition it is evident that
dH,| < C(|g|°+C), te0,2¢U[l—2¢1].
It also follows from Section 5.3 that
|[dH,| < |Adg,, (0)[(Cg]® +C) + |Adu, (Hs - o) exp (Clg| + C) -
It follows therefore that if Cp > 0 in (5.4.1) and C4 in (5.4.2) (in fact if
you believe (5.3.4), you can take C; = 1) are chosen appropriately then
the above retract H), satisfies (Pol.) because
|Ad,,, (0)] < Cexp(—C|g|°"), 2e<t<1-2c¢

(¢f. [2, Section 1.5] and [26]). This completes the proof of our Theorem.

REMARKS.

i) The reader who wants to make things even easier could consider
a variant of the above construction which consists in setting

o(t) =Exp (t R§Y)
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with Rp > 1 and Y € qg as before. One can then define

Hy(g,t) = H(g, (1)) - o(4(1))

(0<t<1,9e€Q,lg] <Ry which is a retract of B(Ry), the ball of
radius Ry in ). This is weaker than our original construction but is
good enough for most of our purposes.

ii) In the opposite direction, the proof of the C-part of the main
theorem, if analyzed carefully, shows that the “exponential distortion”
is optimal for the retracts of the R-balls B(R). More precisely, if G is
a C-group, then there exists ¢ > 0 such that if

Hp : B(R) x [0,1] — B(R), R>1,
are retracts, then

sup ||Hrg||lLip > exp (¢ Ro), Ry>1.
1<R<Ryp

iii) If we use the fact that Ng is of “strict exponential distortion”
in @ (cf. [26]), we can easily construct the above homotopy H,, so that
it satisfies the additional condition

|Hy(9,t)o < Clglog +C, geEQ,0<t<1.
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