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OV� An overview�

OV��� The scope of this overview�

This paper is part of a general program that was originally designed
to study the �Heat di�usion kernel on Lie groups�� The scope of this
introductory section is the following�

i� Explain in general terms and with emphasis on intuition� what
this program is about� and explain how this program 	ts in the general
context of Lie groups�

ii� Explain how the present paper 	ts in this program�

iii� This introductory section is addressed to non experts� The only
prerequisite that is needed is the de	nition of a Lie group and its Haar
measure� and the de	nition of the convolution of measure on such a
group� The de	nition of the Lie algebra and of a soluble Lie algebra
will be given in Section OV�
 below� I will not give the de	nition of
the Heat di�usion semigroup Tt � e�t� that appears in Section OV���
but the reader could either ignore this and concentrate on convolutions
of measures� or could refer to ��� for a formal de	nition� If any other
unknown words crop up the reader should disregard them and move on�

iv� The price that inevitably had to be paid for making this over�
view accessible to the �general public� is in the precision and even the

��
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accuracy of the presentation� In fact some of the assertions made in
this overview are� as such incorrect� But these inaccuracies can easily
be corrected� and this is done in the course of the paper�

v� At the end of Part � of this paper I shall give a �guide to the
reader� that is quite detailed� and where a serious e�ort is made to help
the reader who wishes to �grind� his way through the proofs�

OV��� The previous work in the area�

Let G be some locally compact group and let d��x� � ��x� dx be
some probability measure� where � � C��G� is continuous with compact
support� where dx is the left Haar measure and where d��x��� � d��x�
�i�e� the mapping x �� x�� stabilizes ��� We shall consider the
convolution powers of �

�OV��� d��n�x� � �n�x� dx � n � � �

We shall 	x g � G� say g � e � G� the neutral element� and consider

�OV��� ��n� � �n�g� � n � � �

It is a central issue to study the behaviour of ��n� as n ���� Indeed�
apart from its intrinsic interest� the behaviour of ��n� controls the
analysis and the geometry of G� The reader could think of the Heat or
the Poisson convolution semigroups on G � Rd

Ht�x� � c t�d�� exp
�
�
jxj�

� t

�
�

Pt�x� �
c t

�t� � jxj���d�����
�

and refer to the classical literature in Real Analysis �cf� ���� where
these semigroups are used systematically to prove geometric results�
such as the Sobolev inequalities and such like� The same analysis can
be made on a general Lie group G by considering the generalized Heat
di�usion semigroup Tt � e�t�� where � � ��X�

j is a generalized
Laplacian �cf� ����� Tt is then� as in the classical case� a convolution
semigroup� Tt� � Tt� � Tt��t� � From this the importance of ��n� in
�OV��� becomes amply apparent�
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Much progress on the above problem was made in the decade �����
��� and this was reported in the book ���� The main geometric invarient
used in that approach was the volume growth of the group

�OV�
� ��n� � Haar measure ��n� � n � � �

where e � � � ��� is some compact neighbourhood of the neutral
element e � G� What emerges is that� for unimodular locally compact
groups �i�e� for the groups where the left and the right Haar measures
coinside� e�g� discrete groups�� we have the following dichotomy�

D�� If ��n� � ecn for some c � �� i�e� if ��n� grows as fast as an
exponential� then

��n� � O �e�c�n
���

� �

for some c� � �� The above is sharp� and perhaps also� at 	rst sight�
surprising�

D�� If ��n� � nD� then

��n� � n�D�� �

as one would expect from the classical case G � R
d �

The unimodularity is essential for the above dichotomy� Indeed
every non unimodular group can immediately be seen to satisfy ��n� �
ecn� and yet the simplest non abelian Lie group of a�ne transformations
on R

x ��� a x� b � a � � � b � R �

satis	es ��n� � n���� �cf� ����� That group is of course not unimodu�
lar�

The scope of the above program can be described by saying that
we want to 	nd the analog of the above classi	cation for all Lie groups
and not just the unimodular ones�

OV��� The Lie algebra�

The dichotomy described in Section OV�� holds for all locally com�
pact groups and not only Lie groups� If G is a connected Lie group we
can go much further because we have at our disposal the very powerful
tool of the Lie algebra g of G� This is the 	nite dimension vector space
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�in ��� correspondence with Te�G� the tangent space at e� of all vector
	elds on G that are invariant by the left action of G� g then admits the
natural algebra structure that is induced by the bracket operation on
vector 	elds

X�Y � f � �X Y � Y X� f � f � C��G� � X� Y � g �

It is customary and convenient to de	ne then

ad �x� � g �� g � ad �x� � L�g� ��OV���

ad �x� y � x� y� the algebra multiplication�

One says that g is an R�algebra if all the eigenvalues of ad �x� �x � g� are
pure imaginary� One also says that g and G are soluble if it is possible
to 	nd a basis in the complexi	ed gc � g	RC � with respect to which all
the ad�mappings �OV��� become simultaneously upper triangular �cf�
��� ���

ad �x� �

�B�	��x� �
� � �

� 	k�x�

�CA � k � dimg � 	j � g�c �

For soluble algebras the following classi	cation is crucial� �cf� Section
���� ���� ����� Let L � �L�� � � � � Ls�� 	 
 g� the distinct non zero Re	j
�� � j � k� �if G is an R�group then the above set is empty��

C� We say that G is C if L �� � and if there exists 
j � � such
that

sX
j	�


j � � �
sX

j	�


jLj � � � � � j � s �

NC� We say that G is NC if it is not C�

OV��� The Algebraic�Geometric Dichotomy �	��
��

For a connected Lie group if we use the Lie algebra we can com�
plete the classi	cation of Section OV�� by the following Theorem of Y�
Guivarc�h ������

D�� ��n� � ecn if and only if g is not an R�algebra�



A geometric classification of Lie groups ��

D�� ��n� � nD if and only if g is an R�algebra�

If we restrict ourselves to unimodular connected Lie groups� it fol�
lows �cf� ���� that they can be classi	ed into two classes and that the
classi	cation is�

i� Geometric� By means of the growth of ��n��

ii� Algebraic� By means of the R�condition on the Lie algebra�

iii� Analytic� By means of the behaviour at in	nity of ��n� �cf�
OV����

OV��� The General Analytic classication�

The 	rst step towards the extension of the classi	cation of Section
OV�� to a general connected real Lie group was taken in ��� ���� We
classi	ed these any such Lie group G into two classes� the B�groups and
the NB�groups� and we proved�

B� If G is a B�group and � � P�G� is as in Section OV��� then
there exists 	 � 	��� � � �that depends on �� and Ci� ci � �� i � �� ��
such that the corresponding ��n� �cf� Section OV��� satis	es

C� e
��n�c�n

���

� ��n� � C� e
��n�c�n

���

� n � � �

NB� If G is a NB�group and � � P�G� is as in Section OV��� then
there exists 	 � 	��� � � and � � � �that both depend on �� and
Ci � �� i � �� �� such that

C� e
��n n�� � ��n� � C� e

��nn�� � n � � �

In both the B and NB case either for all � � P�G� we have 	��� � ��
and then we say that G is amenable� or 	��� � �� and then we say that
G is non amenable �cf� �
���

OV��� The Algebraic classication�

Let G be some connected Lie group� then we can 	nd R 
 G some
closed connected soluble subgroup and K some compact subgroup such
that G � RK� This statement is almost correct but not quite� It is
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essentially an abused form of the Borel decomposition �cf� ���� � Ignore
this di�culty but observe that unless G is amenable R cannot be chosen
to be a normal subgroup� We have�

B� If G is a B�group then every soluble subgroup R as above is a
C�group�

NB� If G is a NB�group then every subgroup R as above is NC�
This is the main result in ��� ���� cf� ����

Furthermore it is easy to see that the above classi	cation is purelly
algebraic� i�e� it only depends on g� the Lie algebra of G �cf� ����

OV��� Soluble groups and the Geometric classication�

The basic geometric information that is exploited in this paper is
that every soluble connected and simply connected Lie group is topolog�
ically homeomorphic to Rd �cf� ���� Furthermore we shall use the fact
that� an essentially unique� left invarient Riemannian structure can be
given on any Lie group� Indeed this amounts to assigning� in any way
whatsoever� some scalar product on Te�G�� The Main Theorem of this
paper in Section ��� states then�

B� If Q is a soluble simply connected group� then Q is a C�group
if and only if it does not have the �polynomial retract property� of
Section ����

NB� If Q is above� then it is an NC�group if and only if it does
have the �polynomial retract property� of Section ����

If we combine therefore the Main Theorem of this paper with what
was said in section OV��� OV��� we see that we have obtained the
required B�NB classi	cation of Lie groups in terms that are�

i� Geometric� The Main Theorem of the present paper�

ii� Algebraic� C�NC classi	cation of Lie algebras of sectins OV�
�
OV���

iii� Analytic� The behaviour of ��n� of Section OV���

This is therefore� for general �i�e� not necessarily unimodular� Lie
groups� the analogue of the Geometric�Algebraic�Analytic classi	cation
of Section OV���
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�� Introduction�

���� A Classication of Lie algebras�

Let q be some real soluble Lie algebra� we can then choose a ba�
sis of qc � q 	 C over C for which all the adx � qc �� qc �x � q�
are represented as upper triangular matrices �cf� ���� The diagonal
coe�cients of these matrices are called roots of q and can be iden�
ti	ed with 	�� � � � � 	k � HomRq� C � �k � dim q�� We consider then
�L�� � � � � Ls� � �Re	j � j � �� � � � � k� Re	j �� �� 
 HomRq�R� � q� the
set of the distinct non�zero real parts of these roots� We say that q is a
C�algebra if there exist 
j � � �j � �� � � � � k� such that

sX
j	�


jLj � � �
X


j � � �

Otherwise we say that q is an NC�algebra �Non�C��� If Q is some
Lie group whose algebra is C �respectively� NC�� we say that Q is C
�respectively� NC�� �cf� ��� 
��

Let now G be some simply connected Lie group� It is easy to prove
then �cf� ��� that there exists Q 
 G� some simply connected closed

soluble subgroup� and Z 
 G� some discrete central subgroup� such
that

 Q � Q  Z �� Q� Z 
 G

is closed and co�compact� �i�e� there exists C b G some compact subset
such that  Q C � C   Q � G� If G is amenable or algebraic we can even
take Z � f�g�� We then say that the group G� and the corresponding
Lie algebra g� is B� �respectively� NB��� ifQ is a C� �respectively� NC��
group� It is easy to show �cf� ��� that the algebra g cannot be simul�
taneously a B� and an NB� algebra� This last fact is also an easy
consequence of our main theorem below�

In my recent work on the area� I have shown that the above
B�NB classi	cation is crucial for the behaviour of the Heat kernel of
the group� In this paper I shall examine some further consequences in
the �global Geometry� of the group�
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���� Riemannian Manifolds�

The de	nitions that I shall recall below are variants of notions from
��� ���

Let �Mi� di� i � �� � be two metric spaces and let f � M� �� M�

be some mapping� We set �possibly ���

kfkLip � sup
nd��f�x�� f�y��

d��x� y�
� x� y �M� x �� y

o
�

This is a quasinorm �with kfk � � if and only if f � cont��� We say
that f � Lip �R� if and only if kfkLip � R� and we say that f � Lip if
and only if f � Lip �R� for some R � ��

We shall consider now M some Riemannian manifold that is topo�
logically homeomorphic with Rn � We shall also assume that M is ho�
mogeneous� i�e� admits some transitive group of isometrics� And 	x
some m� �M and denote by

B�R� � fm �M � d�m�m�� � Rg �

the corresponding balls� In our applications M will always be some
simply connected soluble real Lie group Q �thus topologically �� Rn �
cf� ��� and m� � e will be the neutral element� and we will assign Q
with some left invariant Riemannian structure� There are several such
structures� one for each scalar product on the Lie algebra� but they are
all quasi�isometric�

The lling constants� We shall consider f � Lip

����� f � � �� ��n ��M � f�O� � m� �

for the boundary and the distance induced on the unit cube �n �
�� ��n
Rn by Rn � and the Riemannian distance onM � �O���� �� � � � ��
�n�� We shall then de	ne

�n�R� � inf
f�F
fR�g �

where f � Lip �R� is as in ������ and F � �n �� M is such that
F j��n � f and F � Lip �R���
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The retract� Let us consider a retract

H �M � �� �� ��M �

H�m� �� � m� � H�m� �� � m� m �M �

and let

�R� � kHjB�R��
����kLip �

It is clear that �n�R� � Cn�R�R �R � ��� We say that M admits a
polynomial �respectively� exponential� retract� if there exist C� C� � �
and a retract as above� for which

����� �R� � C RC� � C � R � � �respectively� � C eC�R� �

It is an easy matter to show that every soluble Lie group Q as above
admits an exponential retract� We have

Main Theorem� Let Q be some simply connected soluble real Lie

group� Then �

C� If Q is a C�group there exists � � m � rankQ� � such that

sup
R��

�m�R�R�A � �� � A � � �

where rankQ � dimQ�N with N � the nilradical of Q�

NC� If Q is an NC�group then Q admits a polynomial retract�

The optimal degree of the retract in the NC�case �i�e� the inf C�

for C� as in ������ can� in fact� be explicitly computed�
By what has been said� the natural setting of the above theorem is

indeed the setting of real simply connected soluble groups� and there is
no essential restriction there� To be precise let us call two connected real
Lie groupsG�� G�� Quasiisometric� and denote G� �

q�i
G�� if there exists a

di�eomorphism between G� and G� that is a Riemannian quasiisometry
for the corresponding left invariant structures� Let now G be some
connected real Lie group that contains no normal compact torus ���
Ta � a � ��� then we have

U �K �
q�i
G �
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where U is soluble and simply connected� and K is compact� If G is
simply connected this follows from what was said in Section ���� The
proof in the general case is quite easy also �cf� �����

Denition� Let G be some connected Lie group and let T 
 G be its

maximal compact normal torus� We then say that G is a geometrically

C� �respectively � NC�� group� if we can �nd a quasiisometry as above�

such that

U �K �
q�i
G�T �

where U satis�es the condition C� �respectively � NC�� of the Main

Theorem�

It is then an elementary and easy exercise to deduce from the Main
Theorem the following�

Geometric Classication Theorem� Let G be some connected real

Lie group� then the Lie algebra of G is a B� �respectively � NB�� algebra
if and only if G is a geometrically C� �respectively � NC�� group�

One can also prove that a general connected Lie group G is NB if
and only if it has the following�

Homotopy Property� For all n � � there exists C � �� such that if

R � � and if F � Sn �� G is a map from the n�sphere Sn into G that

satis�es �

���
� � � F � � �n�G� � F � Lip �R� �

then there exists a homotopy H � �� ���Sn �� G such that H��� Sn� �
g� � G is a �xed point� H��� �jSn � F � and such that H � Lip �C RC �
C��

F � in ���
� denotes the homotopy class of F in the nth Homotopy
group of G� Indeed the Main Theorem and the 	bration G �� G�T �
U �K easily reduces the proof of the above assertion to the case where
G is compact �and as such an NB�group with an abelian ���G��� The
case G � Ta is obvious because the universal covering space Ra �� Ta

is very simple� The proof for the general case is quite involved and I
must confess that at this point I have not written the details down fully�
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This means that unpleasant surprises in a 	nal writting are not to be
excluded �especially since my knowledge of Topology is very limited��

The following easy corollary of the Main Theorem is also perhaps
worth noting �cf� �� for a special case��

Corollary� Let ! be a polycyclic group that is a uniform latice in some

connected soluble Lie group Q �this can be taken as the de�nition of

a polycyclic group� cf� ���� Let us assume that ! admits �polynomial

�lling� in dimensions �� 
� � � � � dimQ� �� �The reader should interpret

this �polynomial �lling� in terms of the de�nitions in ��� There is only
one possible such interpretation that is reasonable�� Then ! is virtually

nilpotent� �The converse is trivially correct��

���� The Homological classication�

Let G be an arbitrary connected real Lie group and let jgj � d�g� e�
�g � G� be the distance from the neutral element with respect to some
	xed left invariant Riemannian structure�

I shall denote by J�G� the space of currents �representable by in�
tegration� �cf� �
� ������� together with the boundary operator b �
�or ��� �cf� ���� �
��� For the reader not familiar with the formalism
of currents let me say that J�G� can be identi	ed to the space of dif�
ferential forms on G with coe�cients that are Radon measures� The
boundary operator is then identi	ed with the exterior di�erential taken
in the distribution sence� This is simply done by identifying such a form
to a linear functional on the space of compactly supported C��forms�

For all � � J�G� and for a 	xed left invarient Riemannian struc�
ture� if the coe�cients of � are L�

loc� we can de	ne j��x�j � L�
loc the

Riemannian norm at almost every x � G� and this can be identi	ed to
a Radon measure on G if we specify the reference measure to be the
left Haar measure on G� By passage to the limit �among other things�
j��  �j can be de	ned and is a positive Radon measure for all � � J�G��
We can also consider the seminorms

pm��� �

Z
G

�� � jxjm� dj��x�j � �� � � � J�G� � m � � �

Dually� let P �G� be the space of di�erential forms on G with continuous
coe�cients where the di�erential d� is taken in the distribution sense
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�i�e� Z
d� � � � �

Z
� � d� � � � P �G� �

and � an arbitrarily compactly supported smooth di�erential form��
Let us then consider the seminorms

qm��� � sup
x
j��x�j �� � jxj��m � �� � m � � � � � P �G� �

We have the following�

Theorem �The Homological classi	cation�� Let G be some real con�

nected Lie group assigned with some left invariant Riemannian struc�

ture� Then G is an NB�group if and only if one or both of the following

two equivalent conditions hold �

Homology� Let � � J�G� be such that �� � � and pj��� � �� �j � ���
Then there exists " � J�G� such that �

�"� � � J�G� � supp ��"� �� is compact � pj�"� � �� � j � � �

Cohomology� Let � � P �G� be such that d� � �� qC��� � �� for some

C � �� then there exists � � P �G� such that

qN ��� � �� � d� � � � E �

where N � � only depends on G and C� and where E 
 P �G� is a �nite

dimensional subspace that only depends on G and satis�es qn �	� � ��
�	 � E� for some n � n�G� � �� Furthermore we can chose E so that

it is spanned by a set of representatives of a basis of the cohomology

classes of G�

The current �"�� can even be assumed to be supported in some
maximal compact subgroup of G� In the critical case of simply con�
nected soluble groups E can be chosen to be the space of constant
functions� i�e� the space is then ��dimensional and so is the unreduced
cohomology over R�

The proof of the above Homological classi	cation is implicit in
the methods of this paper� it will nonetheless be postponed to a later
publication �cf� Remark at the end of Section ���
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���� The Quadratic lling and further results�

Some further results will be described in this 	nal subsection in
a �sketchy manner�� Precise statements and proofs will be given else�
where�

We shall say that the connected real Lie group admits quadratic
	lling if for every closed path � � ������ 
 G that is homotopic to
zero in G we can extend � to ��� with D � ������ so that Vol��D� �
O �j�j��� where j�j � Vol���� is the length of the path� �The volumes
have to be counted with multiplicity� cf� the remark at the end of
Section ��� below and �����

Easy examples of such groups� apart from the Euclidean spaces� are
supplied by the semisimple groups �because of the negative curvature
of the non compact symmetric spaces�� cf� �� for a number of examples
that do not admit quadratic 	lling� Using the standard methods of
Morse theory we can also prove that if G does not admit quadratic
	lling then we can 	nd a sequence �j 
 G �j � �� of periodic geodesics
such that diam��j� ����

The above notions generalize to discrete 	netely generated groups
�cf� ��� or use your imagination�� An interesting class of groups that
do not admit quadratic 	lling are the groups with unsolvable word
problem� We have also the following analogue of our geodesics on a Lie
group�

LetM be some compact connected Riemannian manifold such that
���M� does not admit quadratic 	lling� Then M contains �j 
 M
�j � �� periodic geodesics with prime periods j�jj � � �prime period
� the time it takes to go round the geodesic once��

So these notions seem to 	t in the subject of closed geodesics� cf�

���

���� A Guide to the reader and acknowledgements�

It is the part C� of the main theorem that is di�cult� It takes
sections ��� of this paper to do that� The proof of part NC� relies on
easy structure theorems from ��� �� and is given in Section � of this
paper�

In Section � we develop the necessary algebraic structure theorems
for Lie algebras� This part� I feel� presents an independent interest�

Section � is routine and reinterprets geometrically the algebraic
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theorems of Section � at the group level�

Section 
 was lengthy and tedious to write out� especially at the
notational level� and my own inexperience in presenting geometric ideas
did not help matters� But there is nothing either di�cult or deep in
this part� All we do is to exploit the algebraic structure theorems of
Section � �and their geometric consequences Section �� to embed some
special spheres in a C�group Q� And that these spheres are �twisted� in
such a way that they can not be �	lled in� with polynomial estimates�

The denouement lies in Section � where the impossibility of that
�polynomial 	lling� is brought into light�

This paper owes a lot to M� Gromov�s previous work in the area�
Indeed I learned about the problem in ��� In �� sections ��B� ��B�� one
	nds a qualitative description in some important examples� of the 	rst
geometric construction that I give in sections 
��� 
��� In �� sections
��B�� ��B�� one 	nds various proofs of special cases of our main theorem
C�� These examples were a great inspiration to me�

In fact I feel that one way for the reader to get in this paper� is
to pick up the above sections of M� Gromov�s �� and try to see how
they 	t in the present paper in sections 
��� 
�� and ���� The reader
will then see how to prove the C�part of the main theorem for the
simplest possible cases of the group semidirect products R� �� R and
�Heizenberg� �� R which are the cases contained in ���

The other point that the reader has to look for� if he wants to
capture the global geometric idea of the proof� is to discover the exact
role that the C�condition plays in the 	rst basic geometric construction�
This appears for the 	rst time towards the end of Section 
���
 �cf� also
the case R� �� R cf� Section 
����� Remark�� and is crucial and non�
trivial already in very simple cases like R� �� R� �

It is di�cult to read the proof of the C�part of our theorem from
beginning to end in a linear fashion� Here are some suggestions of an
alternative way to go about it�

�� Read Section 
���� and then ���� This will give the special
group D� � R� �� R with two real non zero roots of opposite sign�
This is Gromov�s special case and the original reference �� could also
be consulted�

�� Read Section 
��� where the generalization Dr � Rr �� Rr�� is
given� and then ���� It could be argued that the idea of the construction
in Dr is also implicit �at least at the topological level� in ��� We thus
have a proof for Dr�
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The problem now is to embed Dr �as a Riemannian submanifold�
but not necessarily as a subgroup� in any C�group so as to obtain a
general proof�


� Read Section �� There we perform the above embedding at the
Lie algebra level� This part may not be easy reading but it is just
linear algebra and a�ne geometry and� as such� at least� it is clean� It
becomes in particular apparent that the above embedding is not always
possible and that we have to consider in addition the groups of rank �
�cf� ����ii�� 
������ In Section ��� these groups can be treated exactly
as the group D�� �cf� also ���� The reader should check this point�

�� Read Section � and assume that the subspace V� � �� In a 	rst
reading assume also that we are in the split case� Under the above re�
strictions Section ��
 simpli	es considerably� Then read Section 
�����
The assumption that V� � � makes the second basic construction un�
necessary �at this point the Remark i� at the end of Section 
�
�� is
relevant�� Then use Section ��� to 	nish the proof when V� � � as
before�

�� At this point it might be a good idea to study Section � where
we present a systematic way of how to put things together with the
use of the metric properties of current� rather than Transverality and
Sard�s theorem �from Di�erential topology�� We see� in particular� how
the smoothing and the Whitney theorem can be avoided�

�� Read Section 
�
 to be able to deal with the general case V� �� ��
In doing so� in a 	rst reading� the reader should absolutely start with
the split case� which is simpler and yet already contains the main idea
of the construction� It is here that a good understanding of Section �
�	rst for the split case and then for the general case� is essential�

Convention� I use throughout the convention that� in a formula�
the letters C or c� possibly with su�xes� indicate� possibly di�erent�
positive constants that are independent of the important parameters of
the formula�
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�� Algebra and Combinatorics�

���� Combinatorial considerations�

������ Simplexes�

Let V be some 	nite dimensional real vector space and let E �
�e�� � � � � ek� 
 V be a 	nite subset where the ej �s are assumed to be
distinct� We shall denote

CH�E� � Convex Hull �E� �
n kX
j	�

	j ej � 	j � �
X

	j � �
o
�

If the topological dimension of CH�E� is k� � we shall say that E are
the vertices of a simplex and denote

� � E� � CH�E� � simplex spanned by E �

Int� �
n kX
j	�

	j ej � 	j � � �
X

	j � �
o
�

Int� is not to be confused with
�
� 
 � the topological interior of � 
 V �

We say that � is not degenerate if Int� �
�
�� i�e� if and only if k �

dimV � ��
Let � � x�� x�� � � � � xk� 
 Rk be some simplex and let A� be the

a�ne hyperplane containing the face x�� � � � � xk� 
 �� Let us assume
that

�������
� �� A� �

n kX
j	�

	j xj �
X

	j � �
o

� x� � Vec �xj � x�� � � j � k� �

If we assume � to be nondegenerate� the vectors xj�x� � V �� � j � k�
are linearly independent and dimV � k� ������� implies then that
x�� x�� � � � � xk is a basis of V �

Let us also recall the general fact that if x � CH�E� 
 V then we
can choose E� 
 E such that

������� x � CH�E�� � Card �E�� � dimV � � �



A geometric classification of Lie groups ��

Indeed we can assume without loss of generality that E are the extreme

points of some convex polyhedron P 
 V and that x �
�

P �
Let e� � E and let

y � �P � fa�ne line through e� and xg �

y then lies in some boundary convex polyhedron of lower dimension�
This by induction on dimV proves our assertion�

We shall adopt the standard notation of covering with a �#� any
symbol that we want to delete� We have then

Lemma� Let P � CH�p�� � � � � pn� 
 V � Rk be some convex polyhe�

dron with non�empty interior �
�

P �� �� Let us assume that P is not a

simplex and let

Pj � CH�p�� p�� � � � � #pj� � � � � pn� � j � �� � � � � n �

Then

P � �Pj $ j � ��    � n�
�

Pj �� �� �

Proof� Let ������ � � � be the 	nitely many convex polyhedra that we
obtain by

�J � CH�pj � j � J� � J 
 ��� � � � � n� � jJ j � k � � �

Let x � P � By ������� it follows that one of the above polyhedra� say
��� has positive Lebesgue density at x and therefore

x � �� �
�

�� �� � �

and� since by our hypothesis n � k � �� there exists � � j � n such
that Pj � ��� This proves the Lemma�

������ The abstract A�condition�

Let V be some 	nite dimensional vector space over R� and let us
decompose the class of all 	nite subsets E 
 V into two classes� A and
� A �i�e� A is some property that E may or may not have�� We shall
suppose that
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i� � �� A�

ii� E 
 V � E � A if and only if Enf�g � A�

iii� E� 
 E 
 V � E� � A implies E � A�

iv� E� 
 E 
 V � CC�E� � CC�E��� E � A implies E� � A�

where

CC�X� � Convex Cone �X� � CH�	X� 	 � �� � X 
 V �

ii� and iv� say that we can delete from some E � A any �positive� linear
combination of the remaining elements without spoiling the property
A�

It is clear that if A and A� are two such properties� the property
A � A� also satis	es the same conditions� In the following sections we
shall deal with the following special cases� V �� f�g and

E � A� if and only if E spans V �

E � A� if and only if � � CH�Enf�g� �

If and only if E � A� we say that E satis	es the C� condition� If and
only if E �� A� we say that it is NC�

������ Minimal A�sets�

We say that E 
 V is a minimal A�set if

E � A � Enfeg �� A � for all � �� e � E �

If A � A� then clearly E is a minimal A� set if Enf�g is a basis of
V � In this section we shall examine the minimal A sets with A � A��
A� � A��

By de	nition� E 
 V is a minimalA� set if and only if the following
two conditions hold

� �
X

e�Enf�g

	e e � 	e � � ��C�

� �
X

e�Enf�g

�e e � �e � � �
X

�e � �

implies �e � � � e � Enf�g �

�����
�
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Let us consider

�R�

� �
X

e�Enf�g

�e e � �e � R �

there exists e � Enf�g such that �e �� � �

Then by rescaling the ej �s �i�e� replacing ej by e�j � �j ej � �j � ��� by
giving an appropriate order to Enf�g� and by multiplying �R� and �C�
by scalars we can assume that

� � 	� � 	� �   

we can assume that there exists 	 � � such that

j�j j � �� 	 � j � �� �� � � �

and we can also assume that for the 	rst j � �� �� � � � for which �j �� �
we have �j � �	j �

But then the relation �R���C� is a positive relation on Enf�g of
length strictly less than jEnf�gj� This by �����
� implies that �R�� �
�C�� In other words� �C� is up to multiplicative constant the only linear
relation on Enf�g� It follows therefore that E 
 V is a minimal A� set
if and only if E are the vertices of some simplex of V and

� � Int E� �

Let now E 
 V and

X � Enf�g � �x�� � � � � xn� 
 V �

Let also Xj � Xnfxjg� Then by de	nition� E is a minimal A��A�

set if and only if�

a� Vec E � V �

b� There exists 
j � �� j � �� � � � � n� such that
Pn

j	� 
j � ��Pn
j	� 
j xj � ��

c� For k � �� �� � � � � n one of the conditions i� or ii� below �or both�
hold�

i� Xk is NC�

ii� VecXk �� V �
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We have�

Proposition� Let E 
 V be some minimal A� � A� set� Then � �
Enf�g� is a non�degenerate simplex and � � ��

Proof� By b�� by reordering if necessary the set X� we have�

������� �x� � � � CC �x�� � � � � xn� �

But this together with a� implies that

Vec �X�� � V �

which together with c� implies that X� 
 V is an NC�set� It follows
that if we slice � by some appropriate a�ne hyperplane � �� H 
 V
the convex polyhedron

P � H � � � CH�p�� � � � � pn� 
 H �

pj � 	xj � 	 � �� �H � j � �� � � � � n �

will satisfy � ��
�

P 
 H� Let

�k � CC�#x�� x�� � � � � #xk� � � � � xn� � Pk � �k �H 
 P 
 H �

Clearly� for each k � �� � � � � n� the relative interior of Pk is non empty

�� ��
�

P k 
 H� if and only if

������� Vec �Xnfx�� xkg� � V �

If for some k � �� � � � � n ������� holds� we must have

������� x� �� ��k �

Indeed� if not and x� � ��k� the set Xk satis	es the C�condition� but
this together with ������� contradicts c��

If we combine �������� ������� and �������� we see that

P �� �Pk $ k � �� � � � � n �
�

Pk �� �� �

It follows by the Lemma in ����� that P is a non degenerate simplex�And
from the choice of H and the remark at the beginning of Section �����
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it follows that x�� x�� � � � � xn is a basis of V � This together with �������
completes the proof of our proposition� To see how this is done� we can
assume without loss of generality that x�� � � � � xn are the coordinate
unit vectors Ij � ��� �� � � � � �� �� � � � � ��$ ������� simply says then that x�
lies in the negative quadrant� � � x� � Ij � j � �� � � � � n � �� is then
clearly a non degenerate simplex and � � ��

Remarks�

i� One should observe that we can reformulate the above proposi�
tion and say� E 
 V is a minimal A� � A� if and only if there exists
V � V� � V� a direct decomposition of the space such that

E � �E � V�� � �E � V�� � E� �E� � V� �� f�g �

and�

a� Either V� � f�g or E�nf�g is a basis of V��

b� � � E�nf�g� is a non�degenerate simplex in V� and � � Int��

ii� It is an interesting exercise �but of no use to us� to work out
the minimal A� sets where E � A� if and only if CH�Enf�g� � C 
 V

contains � in its interior � �
�

C� Such a set need not necessarily be a
simplex�

������ The minimal A�couple�

Let V be some 	nite dimensional vector space and let A 
 E 
 V
be two 	nite subsets� We shall say that A 
 E is a minimal A�couple
if

i� A � A�

ii� E 
 A � A �    � f
� � 
� �   � 
p$ 
j � A� j � �� � � � � p�
p � �g�

iii� � �� 
 � A implies Enf
g �� A�

It is clear that then A is a minimal A�set� Note also that because
of ii� we can replace i� by�

i�� E � A�
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Example� A � A�� It is then clear that A 
 E a minimal couple if
and only if Anf�g is a basis of V and

������� B � EnA 
 f�g � i�e� B � f�g�� �

Let now A 
 E be some minimal A� couple� then by ����
 the
points of A are the vertices of some simplex

� � A� � 
�� � � � � 
k� � � � Int� �

Let
�j � �� 
�� � � � � #
j� � � � � 
k� � j � �� �� � � � � k �

be the simplex that we obtain by replacing 
j by � �� � j � k��
It is clear that

�������
�
j

�j �
�
j

���j� 
 V � � Vec �
�� � � � � 
k� 
 V �

are neighbourhoods of � in V �� The condition iii� �and the de	nition of
the C�condition� implies on the other hand that if B �� �� then

������� ��j � CC�B� � f�g � j � �� �� � � � � k �

�������� ������� together imply that

V � � CC�B� � f�g �

Therefore ������� holds again� We have�

Proposition� Let A 
 E 
 V be some A� �A� minimal couple� Then

�������� B � EnA � �� f�g �

Furthermore there exists some direct decomposition V � V� � V� with

V� �� f�g such that

A � �A � V�� � �A � V�� � A� � A� ���������

either V� � f�g or A�nf�g is a basis of V� ���������

A�nf�g are the vertices of some

non�degenerate simplex in V� �
������
�
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and

�������� � � Int A�nf�g� �

Proof� Let

Anf�g � �
�� � � � � 
n� � � � CH�Anf�g� �

V i � Vec �
�� � � � � #
i� � � � � 
n� � �i � 
�� � � � � #
i� � � � � 
n� �

By the proposition in ����
 and the fact that A is a minimal A� � A�

set it follows that

� � � � � is a non�degenerate simplex 
 V �

This in turn implies that

�������� dimV i � dimVec �A�� � � dimV � � � i � �� �� � � � � n �

We can distinguish two cases�

Case i� � �
�
� � Int��

Case ii� There exists � � m � n such that

� � �j � � � j � m� � �� �j � m � j � n �

where we suppose that we have� if necessary� reordered the set �
�� � � � �

n��

In case i� our proposition follows by repeating verbatim the proof
of ������� for the previous case A � A�� We shall assume therefore that
we are in case ii�� We then claim that

�������� B 
 V i � i � �� �� � � � �m �

Indeed� if not� there exists

Vec �A� � � �� V i � for some� say i � �� � � i � m�

But then �������� implies that

Vec �Enf
�g� � V �
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On the other hand� since � � �� the set Anf�� 
�g and� a fortiori�
the set Enf
�g satis	es the C�condition and Enf
�g � A� � A� in
contradiction with iii�� This proves ���������

We shall set now

V� � Vec �
�� � � � � 
m� � V� � Vec �
m��� � � � � 
n� �

 � � 
m��� � � � � 
n� �

It follows by the conditions of case ii� that 
�� � � � � 
m is a basis of V�
and  � is a non�degenerate simplex of V� such that

� � Int  � �  � �
m�
j	�

�j �

Observe that if A � a�ne subspace spaned by 
�� � � � 
m� then e��A �
� and therefore � �� A� then use the argument of ��������

This proves the conditions ��������� ��������� ������
� and ��������
of the proposition and that V � V� � V�� It follows from �������� that
B 


Tm
i	� V

i � V�� The condition �������� follows because what we
have shown implies that

�A � V�� 
 �E � V�� 
 V�

is a minimal couple in V� that falls under our previous case i��
This completes the proof of the proposition�

������ Inner product spaces�

We shall now assume that the vector space V is assigned with an
inner product h� i� Let then E � �e�� � � � � en� 
 V be some NC set �cf�
������ such that ej �� �� � � j � n� By Hahn�Banach this is equivalent
to the fact that there exists u � V such that

�������� hu� eji � � � � � j � n �

We shall show that it is possible to choose the u in �������� to satisfy
in addition the condition

�������� u � CH�E� �
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Indeed let u � V be as in �������� and let

ej � hu� ejiu� e�j � hu� e�ji � � � j � �� � � � � n �

We can now distinguish a number of cases�

�� u � 	 ej for some 	 � �� � � j � n� Then �������� holds�

�� The set E� � �e��� � � � � e
�
n� is NC and e�j �� �� � � j � n� By

induction on the dimension of V there exist then

u� � �
j e
�
j � �
j � � � 
j � � � he�j� u

�i � � � � � j � n �

Then u� � �
j ej satis	es ��������� ���������


� There exist 
j � �� �
j � � such that �
j e
�
j � �� But then

u� � �
j ej � ��
j hu� eji�u

satis	es ��������� ���������
By a slight perturbation� we can even guarantee that the u � V

that satis	es �������� and �������� is of the form

u �
nX
j	�

	j ej � 	j � � � � � j � n �

���� Algebraic considerations�

In this section� we shall recall some standard facts and de	nitions
and also introduce some new notions� All the Lie algebras in this sec�
tion� unless otherwise stated� will be 	nite dimensional and de	ned over
R�

i� Subnormal subalgebras� Let g� 
 g be a Lie algebra and a
subalgebra� We say that g� is a subnormal subalgebra and denote
g�� � g if there exist subalgebras

g� 
 g� 
    
 gp � g � p � � �

such that gj � gj�� �i�e� gj is an ideal of gj��� for j � �� � � � � p� ��
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If g is assumed soluble it follows �without extra cost� that we can
assume that dim �gj���gj� � �� � � j � p��� It is clear that the above
relation is transitive� i�e�

g�� � g�� � g� implies g�� � g� �

Quite generally for any Lie algebra q� we shall denote by z�q� it center�
Observe also that if a 
 n is any subalgebra of the nilpotent algebra n�
then a is subnormal� To see that one has to distinguish the two cases

z�n� 
 a � z�n� �
 a

and use induction�

ii� Nilpotent g�algebras� Let n be some nilpotent Lie algebra and
let g 
 ��n� be some Lie subalgebra of the Lie algebra of derivations
of n �i�e� g acts on n by derivations�� We shall then denote by x� y� �
�y� x� � n� x � g� y � n the action of g on n and consider n� 
 n the g

subalgebras of n� i�e� the subalgebras for which g� n�� 
 n��

iii� Abstract root algebras� Let n be some nilpotent g algebra �g 

��n�� as above� Let V be some 	nite dimensional vector space which we
shall call the space of roots� Let E 
 V be a 	nite subset of elements
which will be called roots� For every e � E we shall consider ne 
 n

a subspace which we shall call the root space of e � E� We shall say
that n� g� V� E� ne �or simply n or n� g�� are an abstract root algebra if
the following conditions are veri	ed�

a� ne� g� 
 ne �� f�g� e � E�

b� For e�� e� � E

ne� � ne� � 


�
f�g � if e� � e� �� E �

ne��e� � if e� � e� � E �

c� For every g�subalgebra  n 
 n �and in particular for  n � n� we
have a direct sum decomposition

 n �
M
e�E

� n � ne� �

The trivial case n � f�g� E � � shall� for convenience� be admitted in
the above de	nition�
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It is clear that if �n� g� V� E� ne� is a root algebra and  V � V then
�n� g�  V �E� ne� is also a root algebra in a natural way� And if  n 
 n

is g�subalgebra of n then � n� g� V�  E�  ne � ne �  n� is also a root algebra
with

 E � fe � E �  n � ne �� f�gg �

If a propertyA has been assigned on the 	nite subsets of V as in Section
������ we shall say that the root algebra �n� g� V� E� ne� is an A�algebra
if E � A�

Examples�

iv� The Zassenhaus decomposition� Let n be some nilpotent com�
plex algebra and let us assume that g is also nilpotent� We can consider
then

n �
M
e

ne � e � E 
 HomRg� C � �

where e are the roots of the Zassenhaus root space decomposition of the
g action on the complex vector space n� We obtain thus a root algebra
�cf� ����

The nilpotency of g is essential for the above to work for otherwise
we do not have root space decomposition� Even in the case when n is
abelian� i�e� is just a complex vector space� and g is soluble� where we
can de	ne the roots of the action � by Lie�s theorem cf� �� �� we cannot
in general de	ne root spaces�

v� The real root space Zassenhaus decomposition� The following
modi	cation of the above example is a forerunner of things to come�
n is a real nilpotent algebra and g is nilpotent� We have then the
corresponding Zassenhaus decomposition

n	 C �
M
e

ne � e � E �

We can write then e � Re e�i Im e where Re e� Im e � g� � HomRg�R��
It is then very easy to see thatM

e�E
Re e	L

ne � nL �  nL 	 C � L � g� �
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where I use the notations of �� Section ����� and where  nL 
 n� When
 nL �� � we call this the real root space with real root L � g�� and we
have the corresponding �real root space decomposition�

n �
M
L��

 nL � % � fRe e� e � Eg 
 g� �

the elements of % will be called the �real roots�� This gives again an
abstract root algebra in the sense of iii��

vi� The basic example of a soluble Lie algebra� The set up will be
the same as in �� sections ������
� the notations there will be preserved�
q � n is a soluble real Lie algebra together with its nilradical� h will be
some nilpotent almost complement of n �e�g� a Cartan subalgebra � so
that �� �������� q � n� h�� We have then

������� n � n� � n� �    � nk �

the real root space decomposition of �� ���
���� where n� corresponds
to the real root �� and abusively n� could be n� � f�g� We shall set
g � n��h �equal to qR with the notations of the proposition of �� ��
��
which is now a soluble algebra �but not in general nilpotent��

The above set up gives us an abstract root algebra �n� g� where
the root space decomposition is given by �������� The set of the roots
E can be identi	ed to a subset of any one of the following spaces
q�� g�� �g�n��

� � �h�h � n��
� � �q�n�� by the obvious identi	cations�

Any of these spaces could thus be taken as the space of roots�

vii� Subalgebra of the abelian and Heizenberg type� In this
section n is a general root g�algebra�

vii�a Let a 
 n be an abelian g�subalgebra of n� We have then

������� a �
kM
i	�

ai � ai � ni � a � i � �� � � � � k �

where� for convenience� I use the notations of �������� If we erase the
zero components we obtain the corresponding root space decomposition
of that subalgebra�

vii�h We shall also consider subalgebras of n of Heizenberg type�
This is what we mean�
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We shall assume that

�����
� 
���
�� 
���
�� � � � � 
p��
p 
 E

are non�zero distinct roots among the roots of n� and we shall assume
that

������� f�g �� H�j 
 n�	j � j � �� �� � � � � p

are non�trivial g�subspaces such that among all the brackets�

x�� x�� � � � �� xk�� � � � � � xj � H� �
nX

Hi � i �� � � �p � i � p
o
�

where � � j � k� the only ones that may not be zero come from

Hi� H�i� � i � �� �� � � � � p �

It is clear then that

������� H � H� �H� � H� �

pX
i	�

Hi� H�i� �

is a g�subalgebra of n and that

������� H� 
 n� � z�H�

�z is the center�� The root space decomposition ofH is of course implicit
in ��������

One should observe that quite generally� if we are given

H�j � j � �� � � � � p �

arbitrary vector spaces such that Hj �� �� j �� � and

�j � Hj �H�j �� H� � j � �� � � � � p �

arbitrary bilinear mappings� we can construct a unique Lie algebra on
the direct sum by the conditions

������� H �

pX
j	�p

Hj � x� y� � �y� x� � �j�x� y� � H� �
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when x � Hj � y � H�j � j � �� �� � � � � p� and demand that all the other
brackets are �� We shall call such an algebra an algebra of Heizenberg
type� The algebra ������� is abelian if �j � �� j � �� �� � � � � p� The
integer p � �� which may not be uniquely determined� will be called
the order of H�

The following facts are easy to verify�
Let f�g ��  Hj 
 Hj � j � ��� � � � ��p�  H� � H� be as abovr� then

 H �
Pp

j	�p
 Hj � H is an ideal� If

pX
j	�

  Hj�  H�j � 
 H�
� 
 H� �

where H�
� is an arbitrary subspace� then

������� H� �

pX
j 		�

j	�p

 Hj �H�
�

is an ideal of  H because of ������� �but not necessarily an ideal of H��
If the spaces Hj � H�� � � � are g spaces as in �������� �������� then the
above algebras are of course g�root algebras� In the above de	nition
������� the algebra H� could be the sum of an abelian algebra with
an algebra of Heizenberg type of possibly lower order� It follows in
particular that in the Heizenberg algebra ������� we can either 	nd an
abelian Heizenberg subalgebra of order �

������� H	 �H�	 � H�	 �� � � H	� H�	� � � �

or a �purely non�abelian� subalgebra of Heizenberg type of order �

�������� H	 �H�	 �H� � H�	 �� � � H� � H	� H�	� �� � �

Furthermore� if H is as in �������� ������� then we have H�	 
 n�	�

viii� Eigenvectors of a soluble action� Let g be some soluble real
Lie algebra that acts on the real vector space V and therefore also on
the complexi	ed space Vc � V 	 C �I use the notation ad for that
action�� By Lie�s theorem we can then 	nd

�������� � �� � � � � i � � Vc � ad �x�� � 	�x� � � x � g �
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where �� � � V and 	 � HomRg� C �� If 	�x� � R then both �� � are
common eigenvectors of the g action� as long as they do not vanish�
In general VecR��� �� 
 V is a one or two dimensional g subspace and
the action of g on VecR��� �� is semisimple� Furthermore the action of
Exp �g� 
 GL�V � is given� in real terms� by the composition of a dilation
and a rotation �provided that the basis� and the the corresponding
Euclidean structure� on that� one or two dimensional� subspace has
been properly chosen�� The above two operations of course commute
with each other�

The 	nal conclusion is that in both cases we can 	nd in V a one

or two dimensional g�subspace on which the g action is as above� We
shall call such a subspace an eigenvalue subspace�

ix� The eigenvalue subalgebras� I shall specialize now the set up
vii� in the case where n 
 q and g � n� � h are as in vi� and I shall
apply the considerations of viii� to the g�action on the g subspaces of
n�

It follows in particular that in each non zero subspace ai � ni � a�
i � �� � � � � k of ������� we can 	nd a one or two dimensional eigenvalue
subspace  ai 
 ai� We shall call the corresponding abelian algebra

��������  a �
X

 ai 
 a

an eigenvalue abelian algebra�
Similarly if � �� H�	 
 n�	� as in �������� �������� we can 	nd

 H�	 
 H�	 two eingenvalue subspaces with dim  H�	 � �� �� We can
then consider

������
�  H	 �  H�	 �   H	�  H�	� �

where now � � dim  H	�  H�	� � �� We shall call that algebra an
eigenvalue algebra of Heizenberg type� This algebra could� of course�
be abelian� The dimension of the algebra in ������
� could be anything
between � and ��

Observe 	nally that the action of g on W �   H	�  H�	� is semisim�
ple� Indeed the complexi	ed space W 	 C is generated over C by com�
mon eigenvectors of g� The eigenvalues of these vectors with respect to
the action of G � Exp �g� 
 GL�W � are all unimodular� therefore the
action of G on W is bounded and thus semisimple� In fact W admits
a direct g�decomposition W � W� �    such on each W�� � � � the G
action is an orthogonal transformation�
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In both the above cases� the action of g on the corresponding
eigenvalue algebra is semisimple and abelian �i�e� it factors through
g ��� g�g� g��� Furthermore the action of g � n �which incidentally is
equal to n�� on the above eigenvalue algebra is both semisimple and
nilpotent� it is therefore trivial�

���� The Heart of the Matter� The algebraic reduction�

The set up here will be the set up of a general �n� g� abstract root
algebra

n �
M
e�E

ne � e � E �

������ Bracket reduced algebras�

We shall decompose the set of roots E � A �B by

A � fe � E � ne � n� n� � f�gg � B � fe � E � ne � n� n� �� f�gg �

and adopt throughout the notation

���
��� n � nA � nB �
M
	�A

n	 �
M

�B

n
 �

It is then clear that B � � if and only if n is abelian� If � � E we have

n	� n�� 
 n	 � n� n� � f�g � 
 � A �

nA� n�� � f�g ����
���

We shall say that n is a bracket reduced algebra if

n� n� � nB

�Alternatively� for all e � E� n� n�� ne is either zero or ne�� Let n be a
bracket reduced algebra then

nA�mod n� n�� � n�mod n� n��
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and this� by the nilpotency of n� implies that nA generates n� In par�
ticular

���
�
�

n� n� � nB �
X

nA� nA� � � � � nA�� � � � � �

B 

X
j
�

�A�A�   � A� �

where j under the summation indicates the length of the summation
A �    � A� By ���
��� and ���
�
� it follows that if � � E and n is
bracket reduced� then we have

���
��� n� 
 z�n� �

We also have�

Proposition� A bracket reduced algebra for which B � f�g is the

direct sum of an abelian algebra and an algebra of Heizenberg type �cf�
����vii���

Indeed by ���
��� and the hypothesis it follows that

���
��� n� n� 
 z�n� �

But this together with ���
�
� and the hypothesis implies that n �
n� n� and that

���
��� n� n� �
X
fn	� n�	� � 
��
 � Ag �

Clearly the proposition is but a reformulation of ���
���� ���
����

������ The bracket reduction�

Let n � nA � nB be an arbitrary root algebra as in ��
��� and let

n� � nA � n� n� �

which is an ideal in n and also a g�root algebra with the same root set
E� � E� i�e� in the process of passing from n to n�� n � n� we �have
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not lost any roots�� We clearly have for n� the analog of the ���
���
decomposition

n� � nA�
� nB�

�

and clearly

A 
 A� � B � B� � E � A �B � A� � B� � E� �

Furthermore� n � n� if and only if n is bracket reduced�
The operation n ��� n� can clearly be iterated n �� n� ��

�n��� � n� ��    until we stop n � n� �    � np � np�� � n�� We
obtain thus n� 
 n a subnormal bracket reduced subalgebra

n � �n� � nA� � nB� � A 
 A� � B � B� � A� �B� � E �

������ The A�reduction�

We shall now consider n � nA � nB �E � A � B� some bracket

reduced root algebra as in ���
��� that is assumed to be an A�algebra�
i�e� E � A where A is as in Section ������

We shall consider the couple of subsets

A 
 E 
 V

and we shall distinguish two mutually exclusive possibilities�

Case i� A 
 E is a minimal A�couple�

Case ii� There exists � �� 
 � A such that Enf
g � A�

The fact that E 
 A�A�    �cf� ���
�
� shows that n falls either
under case i� or case ii�� Let us assume that n is as in case ii� and that
Enf
g � A� We can consider then

n	 � n� n	 � nAnf	g � nB � n �

which is an ideal of n and also an A�algebra where the set of roots
is Enf
g� In general n	 is not bracket reduced� We shall consider
therefore the subalgebra

n� � �n	�� � � n �
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This is a bracket reduced A�algebra�
If n is as in case i� we set n� � n so that n � n� if and only if we

are in case i��
This operation n ��� n� �� �n��� � n� ��    can be iterated

until it becomes stationary� np � np�� � #n� We have thus proved the
following�

Proposition� Let n be some A root algebra� we can then �nd

#n � #n A � #n B � � n �

some subnormal bracket reduced A�subalgebra� such that #A 
 #A� #B � #E
is a minimal A�couple�

In the special case when A � A� �A� as in Section ����� we know
that there are exactly two possibilities�

i� #B � �� the subalgebra #n is then abelian�

ii� #B � f�g� the algebra #n contains a subalgebra �possibly abelian�
of Heizenberg type as in ������� or ���������

������ The eigenvalue subalgebra�

Let us specialize further and consider the case n 
 q and g � n��h

as in ����vi�� If by the above reduction �i�e� as in the proposition of
Section ��
�
� we are in case ����vii�a we can proceed as in ��������
and 	nd a possibly smaller subnormal subalgebra that is an eigenvalue

algebra and whose roots
##A 
 #A are the vertices of a simplex in �h�h�

n�� such that � � Int 
##A � �in particular none of the roots is ���

If by the above reduction we are in case ����vii�h we can proceed
as in ������
� and 	nd a possibly smaller eigenvalue subalgebra that is
of Heizenberg type�

The above eigenvalue subalgebras are of course not uniquely de�
termined� We shall 	x e 
 n� once and for all� one such algebra and
we shall denote by r the number of its distinct roots �i�e� with our

previous notations� r � card �
##A � in the abelian case� and r � � in the

Heizenberg case�� We shall also 	x some basis e�� � � � � eq of e where

q � m � dim n � n � dim q �
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That basis will be chosen and 	xed once and for all so as to have the
following additional properties�

i� If e is abelian as in ��������� For each � � i � r we can 	nd
� � j � q such that

���
��� ej or �ej � ej��� 
  ai �

depending on whether dim ai � � or �� and ej or �ej � ej��� is a basis of
that subspace�

ii� If e is a Heizenberg algebra as in ������
�� For each of the two
subspaces H	� H�	 we can 	nd � � j � q such that

���
��� ej or �ej � ej��� 
 H�	 �

and such that ej or �ej � ej��� is a basis of that subspace� This will dis�
pose of at most e�� e�� e�� e� and at last e�� e�� The remaining elements
of the basis lie in   H�	�  H	� and form a basis of that space�

When
dim ai � dimH�	 � � �

in ���
��� or ���
���� we shall further impose on the pair ej � ej�� the
condition that with respect to that basis the action of Exp g on  ai
or H�	 is a composition of a dilation and a euclidean rotation as in
����viii�� It is also possible to choose that basis so that the action of
Exp g on   H�	�  H	� can be split into a number of rotations� This last
point is however not vital for what follows�

The above notations of e of r� q�m� n and of the above basis will be
	xed for the rest of the paper�

�� Lie Group Considerations�

���� The Exponential basis�

Let q be some soluble real Lie algebra and let e�� � � � � en � q be
a basis of q such that the subspaces Ij � Vec e�� � � � � ej � satisfy the
condition

Ij��� Ij� 
 Ij � j � �� �� � � �

We shall call such a basis an exponential bases of q�
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Let now e 
 n� h 
 q be as in ����vi� and ��
��� We shall consider
in what follows special exponential basis and denote them

������� he�� � � � � em� u�� � � � � usi 
 q �

where with the notations of ��
�� we have�

i� e�� � � � � eq is a basis of e as in ��
���

ii� e�� � � � � em is an exponential basis of n and m � q�

iii� u�� � � � � us � h and m� s � n�

To guarantee iii�� recall that n � h � q and that h� h� 
 n and
therefore any set u�� � � � � us � h� s � n � m� such that e�� � � � � em�
u�� � � � � us is a basis of q will give an exponential basis�

A special choice of u��    � us will be made in what follows� To�
wards that let us consider the space V � h�h � n and identify V � V ��
once and for all� by some 	xed scalar product� We shall choose appro�
priately u�� � � � � us some basis of V and then lift it in anyway whatsoever
so as to form the basis �������� To do that� we consider L��    � Lk � V

�

the distinct non�zero real roots of the action of h on n and consider the
subset L�� � � � � Lr of these roots that was constructed in ��
�� and which
gives the distinct roots of the eigenvalue algebra e�

If e is abelian as in �������� we can assume that L�� � � � � Lr are the

vertices of a simplex �equal to 
##A � with the notations of ��
��� and

������� � � Int L�� � � � � Lr� �

If e is of Heizenberg type as in ������
� we can assume that r � ��
L� � �L� �� ��

With the identi	cation of V �V � we shall identify L�� � � � � Lr with
elements of V and we shall set

V� � Vec L�� � � � � Lr� � V� � V �
� � u � V � Lj�u� � � � � � j � r� �

V � V� � V� � � � dimV� � � � s �

s� � � dimV� � r � � if e is abelian as in �������� �

s� � � dimV� � � if e is of Heizenberg type as in ������
� �

In both cases we choose u�� � � � � u� to be a basis of V� and u���   us
to be a basis of V� � V �

� � The notations �� s for these two dimensions
will be mentioned throughout�
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A special case� Split algebras� We say that q is a split algebra if
it is possible to choose h as above to be an abelian algebra� This is for
instance the case when q is the Lie algebra of a real algebraic group�
In that case� the basis elements u��    � us chosen above� commute and
span an abelian subalgebra V 
 q that gives a semidirect product
decomposition�

q � n �� V �

Remark� The notation for semidirect product in �� is h and in �� it
is X��

The use of the above extraneous scalar products on V can be
avoided� cf� Section 
���
 for C�graphs�

���� The Exponential Coordinates�

If e�� e�� � � � � en � q are exponential coordinates of q as in Section
��� we can use them to identify Q� the simply connected soluble group
that corresponds to q� with Rn by the identi	cation �cf� ���

������� R
n � �t�� � � � � tn� �� Exp �t� e��   Exp �tn en� � Q �

If we use the special exponential basis constructed in Section ��� we
obtain a number of important identi	cations� Let N�H�NE 
 Q be
the subgroups that correspond to n� h� e 
 q� Let V� V�� V� 
 Q be the
submanifolds that correspond to V� V�� V� identi	ed to subspaces of Rn

by the identi	cation �������� We have

������� V�� V� 
 V 
 H � N  V � N  V�  V� � Q �

where �  � indicates group multiplication� When q is a split algebra we
have a semidirect product decomposition

Q � N �� V � �N �� V�� �� V� �

Q � NE �� V � �NE �� V�� �� V� � QE �

where in this special case V�� V� 
 V 
 Q are subgroups ��� to vector
spaces��

In the general case we have C��manifold identi	cations

�����
� Q �� N � V �� N � V� � V� � NE � V� � V� � QE �
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but of course in general QE cannot be identi	ed to a subgroup of Q�
Observe however� that in the case of the Heizenberg eigenvalue

algebra ������
�� dim V� � � and then V� 
 Q is a subgroup and so is
NE �� V��

Observe 	nally that the fact that h � n 
 n� in ����v� implies that
if we are in the abelian case �������� we have

NE �H � feg �

If we denote by Gp�V � 
 H the subgroup generated by V� this implies
that we have

NE �Gp�V � � feg

and that these two groups form a semidirect product in Q

������� NE �� Gp�V � 
 Q �

Observe also that by the 	nal remark of ����ix�� whether NE is abelian
or not� the action of Gp�V � on NE factors through Q �� Q�N � Also�
by the de	nition of V�� Ade�v��� v� � V�� lie in some compact subgroup
of GL�e��

���� Riemannian structures on Lie groups�

On every connected Lie group we can assign a unique� up to quasi�
isometry� left invariant Riemannian structure by assigning some 	xed
scalar product on the Lie algebra of G� I shall denote by d�� � � dG�� �
the corresponding distance and by jxj � d�x� e��

It is of course clear that if � � G� �� G� is a group homomorphism
then d� is bounded and if � identi	es G� to a closed subgroup of G�

then d� is quasiisometric� When G � G� �� G� is a semidirect product
�G � g � g�g��� by identifying G � G� � G�� we clearly have TG ��
TG��TG� canonically� That identi	cation induces an isometry on TG�

�but in general not on TG�� and TG��TG� in TG� The above hold�
of course� for an appropriate choice of the corresponding left invariant
Riemannian structures�

If G is soluble and simply connected� we can identify it to Rn as
in ������� and assign on G the corresponding Euclidean Riemannian
structure and the corresponding distance de�� �� It is an immediate
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consequence of the Baker�Campbell�Hausdor� formula �� that we have

A��dG�x� y� � de�x� y� � AdG�x� y� ����
���

A � C � jxjC � jyjC � x� y � G ����
���

provided that G is nilpotent and where C � � is independent of x� y�
If we identify V 
 G with Rs as in ������� we deduce from the fact

that V 
 H and the fact that G�N �� V �� Rs �this implies that for x �
V � jxj is equivalent to the Euclidean norm� that the analogous estimate
���
���� ���
��� holds for x� y � V � and that we can even take A � C
independent of x� y in the split case G � N �� V � A consequence of the
above is that the Euclidean Riemannian structure and the Riemannian
structure induced on V� V�� V� by the identi	cations �����
�

V �� n� V 
 G � n � N �

are �polynomially distorted� �uniformly in n � N � i�e� the ratio of the
two Riemannian norms on the tangent space at x � V can be bounded
by C jxjC � C� in general� and quasiisometric in the split case�

Let the notations be as in �������� �����
�� When V� 
 Q is a
subgroup� we can give on NE � V� �� NE �� V� two Riemannian scalar
products h� i� and h� iu�� u� � V� on the tangent space� h� i� is
the left invariant structure of the group NE �� V�� The de	nition of
h� iu� does not depend on the fact that V� 
 Q is a subgroup and is
the Riemannian structure induced by the embedding

���
�
� NE � V� � �n� u����
Iu�

�n� u�� u�� � NE � V� � V� 
 Q �

and by the left invariant Riemannian structure of Q� Even when V� is
not a subgroup we can still de	ne h� i� on NE � V� as follows� The
embedding of Rs �� V � Q�N 
 Q de	ned in ������� induces� by the
	nal remark of Section ���� an action of Q�N on NE � That action can
be used to de	ne a group NE �� �Q�N�� That group can� in turn�
be used to de	ne a left invariant Riemannian structure and therefore
the corresponding h� i� on T �NE � V � and T �NE � V��� Although
it is not essential for what follows� one can observe at this point that
the group structure NE �� �Q�N� does not depend on the particular
embedding ������� and that the above Riemannian structure on NE�V
is intrinsically de	ned� To see this it su�ces to use the 	nal remark of
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Section ��� �ix� and the fact that h� n acts on e nilpotently� These two
facts put together show that the h � n acts trivially on e�

We shall denote by j  j� and j  ju� the corresponding norms on
T �NE � V��� We have then

Lemma ������ At every point �n� u�� � NE�V� and for every u� � V��
we have

���
��� A�� j  ju� � j  j� � A j  ju� �

where

���
��� A � C ju�j
C � C �

where C � � is independent of n� u�� u�� Furthermore� in the split case

Q � N �� V we can take A � C�

Proof� With the notations ���
�
� and the identi	cations �����
� we
have

Iu��n� u�� � n  u�  u� � u�  n
u�  u� � Q �

where �  � denotes the group product and nu� � u��� nu� denotes the
inner action of u� on NE � It follows that

Iu�
�
� Left multiplication by u�� u

��
� � Iu� � �n ��� nu

�

� u
��

� �� Identity� �

We conclude therefore from the left invariance of the Riemannian struc�
tures on Q� that it su�ces to prove ���
��� with u� � � �cf� 	nal remark
of Section �����

When u� � �� I� identi	es NE � V� to a submanifold of NE ��
Gp�V�� �cf� ��������� This means that for both Riemannian structures
h� i� and h� i�� with the canonical identi	cations� we have

TNE�TV� �

By the de	nition of the action of V� on NE in the group NE �� V� which
is identical to the action of V� 
 Q on NE we see that

j�j� � j�j� � � � TNE �

The polynomial distortion in ���
��� in the Lemma is therefore a con�
sequence of ���
���� ���
��� and the few lines that follow�
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Let us denote by

& � X � �NE � V��� V� �� Q

�n� u��� u�� ��� n  u�  u� �group product� �

Let us assign NE � V� with the h� i� Riemannian structure� V� with
the Euclidean Riemannian structure� X with the product structure and
Q with the left invariant Riemannian structure� With these notations
we have proved the 	rst part �i�e� ���
����� of the following

Lemma ������ The di�erential of & satis�es at x � �n� u��� u�� � X

kd&jT �NE�V��k � C �ju�j
c � C� ����
���

kd&jTV�k � C �ju�j
c � ju�j

c � C� ����
���

where C � �� c � � are independent of x� Furthermore� when Q � N ��
V is a split group� we can take c � ��

The assertion ���
��� is once more a consequence of the few lines
that follow ���
���� ���
����

���� A special class of groups and explicit coordinates�

In this section we shall consider two important classes of groups

i� G � Rr �� V � Rr �� Rs where the action of V on Rr is given
by

AdRr�y� �

�B� exp�L��y�� �
� � �

� exp�Lr�y��

�CA � y � V �

where L�� � � � � Lr � V
�� This group� after the identi	cation with Rr�s

with the obvious exponential coordinates� gives a Riemannian structure
on Rr�s with an orthonormal basis at �x�� � � � � xr� y� � � � � ys�

�������
�
exp �L��y��

�

�x�
� � � � � exp �Lr�y��

�

�xr
$
�

�y�
� � � � �

�

�ys

�

 TG �
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The left invariant Riemannian structure h� i� induced on NE �� V�� as
we have considered in the previous section� is clearly of this kind when
NE is abelian �as in ���������� The imaginary part of the roots play
no role as far as the Riemannian structure is concerned �they just give
rise to orthogonal rotations in the ��dimensional root spaces if there are
any��

ii� It is a little less simple to write down the orthonormal basis of
G � NE �� V� 
 Q when NE is an eignevalue algebra of Heizenberg
type as in ������
�� We shall not need to do this� we shall only need
a simple geometric estimate� In fact� here we might as well consider a
group of the form N �� V � N �� R where N is an arbitrary simply
connected nilpotent group� and not just a group of Heizenberg type�
and dimV � � �such groups are called of �rank ���� We shall then 	x
e � n �the Lie algebra of N� and assume that

jAd�y� ejn � exp ��
 y� � y � � �

for some 
 � �� where R has been identi	ed with V � This will certainly
be the case for NE �� V� in Section ��� and e the basis vectors in H�	 of
���
��� �provided that in the identi	cation of V� with R we have chosen
the right orientation� These orientations are� of course� opposite for H	

and H�	��
Let us now consider the �path�

� � R � � �� �nExp ��e�� y� � N �� V � G �

for 	xed n � N � y � �� We then clearly have

���� � �n� y� Exp �� Ad�y� e� �

and therefore

������� j '����j �
			d�� �

��

�			 � exp ��
 y� �

for the Riemannian norm j  j on TG�
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�� Geometric Considerations�

���� Notations and Denitions�

I found it very di�cult to describe the Geometric and Topological
constructions that are presented in this part of the paper without hav�
ing to resort to informal language� and without constantly abusing the
notations that I had already established� The aim of this 	rst section is
to codify as far as possible� some of the notations and the notions that
will be needed and used in the rest of this paper�

I shall use the notation

�
����� �
r
d � �x�� � � � � xr� � R

r � jxj j � d� � � j � r� 
 R
r �

with r � �� �� � � � � for the d�cube� This d � ���� will be the free pa�
rameter in this paper and none of the constants C � � that will appear
will depend on d� I will also denote by �r

� the above cube for d � �����
�Which is the �unit� cube for you if you happen to be �  �� ���� me�
ters tall�� Together with the above cube I shall also consider anisotropic
cubes of the form

�
����� �
r
� � �A�A�t �

where A � C �log d�C � I shall denote by ��r
d for the topological bound�

ary of �
����� in Rr � with an analogous de	nition for �
������
Let now M be some Riemannian manifold and let

�
���
� & � �r
d ��M �

be some Lip�C�� mapping de	ned in some neighbourhood of �r
d in Rr �

where here and throughout� the subsets of Rr are assigned with the
Euclidean distance� One should think here of � � � as a free parameter
that may be allowed to ���� When we have �
���
� we shall say that
E� the image of �r

d by &� is

�
����� E � &��r
d� is a Lip�����r

d 
M �

The notation �
����� to describe �
���
� is already abusive but conve�
nient� We shall use an analogous de	nition for

�
����� &�X� is a Lip����X 
M �
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where X is as �
����� or X � ��r
d or X � � ��r

d � �A�A�t�� etc�
In this context we shall use the following obvious scaling property�

If

�
����� E is a Lip�����r
� � �A�A�t 
M �

then automatically

�
����� E is a Lip �� �A� �����r�t
� 
M �

The analogous property for any X as in �
����� holds�
I shall use throughout the notation LL�d� to indicate mappings

from one metric space to another that are Lip�C �log d�C� for some
C � ��

One of the basic de	nitions given in the introduction �Section ��
will be reformulated as follows� We shall say that the Riemannian
manifoldM has property Fr� r � � �we shall also denote F �

T
p
� Fp�

if for every

�
����� E � &���r
�� is a LL�d�� ��r

� 
M �

we can 	nd some #E

�
����� #E � #&��r
�� is a LL�d���

r
� 
M

that �	lls in� E� The meaning of �	lls in� is the following

�F�I�� #&j��r
�
� & �

we have in particular E 
 #E�
I shall not make systematic use of the notations from the Theory of

currents �cf� ���� �
��� because it is not necessary for our constructions
or for the proof of our theorem to introduce an orientation in Rr � But
if we do orient Rr then �
����� and �
����� de	ne currents E and #E in
M � and �F�I�� says among other things that

�
������ � #E � E �

for the ��operator �cf� �
�$ sometimes denoted by b�operator cf� ����
of the currents� provided of course that the orientations of E and #E are
compatible�



�� N� Th� Varopoulos

���� The One Dimensional Construction�

������ The abelian case�

This construction will be made in the group G � R� �� R of ����i�
�with r � �� s � �� where L� � 
L� �� �� �
 � R��

The issue is to give a speci	c embedding of ���
d in G that will

have a number of properties�

�� The four vertices ��d��d� � ���
d� will be mapped on the cor�

responding points ��d��d� �� � G� where the exponential coordinates
�x�� x�� y� of ����i� are used throughout for the group G�

�� The four sides fi� � � i � � �i�e� ��dimensional faces of ��
d�

will be mapped into four C� curves �i 
 G� �� � i � �� that join the
corresponding vertices� Say the side f� of �

�
d that joins �d� d� to ��d� d��

is mapped on �� 
 G that joins �d� d� ��� ��d� d� ��� The curve �i lies in
the a�ne hyperplane Ai that is parallel to the y�axis and which goes
through fi 
 R� 
 G �with the above identi	cation�� The above �� lies
in the a�ne hyperplane x� � d� � A� and joins �d� d� �� to ��d� d� ���

For each � � i � � the side fi is parallel to the axis xj�i� j�i� � �� �
�� � i � ��� which is one of the two x�axis� The f� just above� is
parallel to the x��axis� We shall demand that �i lies on the �side� of
the a�ne hyperplane determined by

Ai � Lj�i��y� � �� � A�
i �

In the case of �� we have thus

�� 
 x� � d� � L��y� � �� � A�
� �

We shall join the four pieces �� � �� � �� � �� � � and obtain thus the
required mapping of ��

d in G� This mapping is piecewise smooth�
Observe that the above mapping is not a priori ����� and � is

not necessarily an embedding� But that if 
 � �� i�e� if L�� L� have
opposite signs then the above construction gives a Lip�embedding �i�e�
an embedding by a bi�Lip mapping��

We shall further demand�

i� � is an LL�d����
� 
 G for the left invariant Riemannian struc�

ture of G�

ii� For each arc �i the set

����jyj � C� � �i � �Ci �
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where � � R� �� V �� V is the canonical projection� consists of exactly
two straight line segments parallel to the y�axis emmunating from the
two vertices� In the case of �� we have �C� � ��� � �

�
� where

��� � ��d� d� y� � � � L��y� � C

�not the same C � ���

Remark� For typographical reasons� I did not draw a picture� But a
nice picture can be drawn and the reader should do so for himself �cf�
�� Section ��B���

The only point that is not obvious in the construction is i�� This
will be veri	ed by an explicit parametrization for the curve ��� The
other pieces ��� ��� �� can be treated analogously� To do that we identify
A� with P�� the upper half plane y � �� in the obvious way� and we set

��t� � �x�t�  d� y�t�� � P� � �� � t � � �

�� � x�t� � � � � � y�t� � C log d ��
�����

x���� � �� � y���� � � �

where we impose the following additional conditions

�
����� x��t� � �� � jtj � �� � c�� �� �

i�e� x is constant near the end points of ��� ��� In between i�e� t �
���� c�� ��� c�� the function x�t� is C� and is close to being linear�
We shall also assume c� � ��

�
���
� y�t� � C log d � t � �� � c�� �� c�� �

for some large C and the same c� as in �
������ In the intervals ������
c�� � � � c�� ��� y�t� is C� and is monotone and almost linear� The
constancy of x near the end points guarantees that the condition ii� is
veri	ed� If the choice of C in �
���
� is large enough then the condition i�
will be veri	ed� This is the only point where we have to make a �trivial�
estimate� But this point is actually obvious and can be veri	ed with
the use of the orthonormal basis ������� of TG constructed in ����i��
The details will be left to the reader who is strongly advised to do this
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and to compare it with the higher dimensional analogue �
������ and
with the Lip property in Section 
���
�

Remark� When 
 � �� i�e� when the group G is a C�group �cf� Section
��� the above construction actually gives � � �� � �� � �� � �� which is
a C� embedded ��dimensional sphere S� which� near the four vertices
��d��d� �� � � reduces to the following four line segments� that are
perpendicular to the �x�� x� coordinate plane

� � �� dist ��� ��d��d� �� � C� � ��d��d� ������ �� y�� �C � y � C� �

������ A generalization� Groups of rank ��

Let Q � N �� V � where V �� R is the real line and N some simply
connected nilpotent group �cf� ����ii��� We shall assume that g� h � n

�the Lie algebra of N� are two vectors that satisfy

�
�����
jAd�y�gj � C exp ��
 y� � y � � �

jAd�y�hj � C exp ��� y� � y � � �

where

�
����� 
 � � � � � � �

i�e� we shall assume that Q is a C�group �cf� Section ��� and that the
action of V on N has two roots with real parts of opposite sign�

The nilpotency of N implies that a high enough group commutator

� � � � X�Y �� Y �� � � � � Y � � e � Neutral element of N � X� Y � N �

If we multiply out that commutator� we obtain �a �universal relation
in N��

�
����� Xp� Y q�Xp�   Xpr Y qr � e � X� Y � N �

where r � �� p�� p�� � � � � q�� q��    � Z are 	xed� This relation will allow
us to embed in N a polygonal �i�e� piecewise smooth� curve whose
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vertices will be

P� � e �

P� � Xp� �

P� � Xp�Y q� � � � ��
�����

P�j � Xp� Y q�   Xpj Y qj �

P�j�� � Xp� Y q�   Xpj�� � j � � �

The above pattern is clearly periodic no matter what X�Y � N is� We
shall set

X � Exp �dg� � Y � Exp �d h� � d � ���� �

with g� h � n as in �
������ and shall join the successive vertices with
pieces of one parameter subgroups�

� We join P�j with P�j�� with

P�jExp �pj�� g t� � � � t � d �

� We join P�j�� with P�j�� with

P�j��Exp �qj�� h t� � � � t � d �

One should observe that this construction is a direct generalization of
the construction of the standard square ��

d in R� � where the relation
�
����� is just the 	rst commutator

X Y X�� Y �� � � �

When N � H is the Heizenberg group �cf� ����viih�� an easy application
of the Baker�Campbell�Hausdor� formula �cf� ��� shows that we can
take

�
����� X Y �X Y ��X�� Y �� � e �

for a universal relation �cf� �� Section ��B����
We can now generalize the construction of 
���� with ��

d 
 R�

replaced by the above � r�sided polygon P �d� 
 N � Each side f of
P �d� will be replaced by some smooth curve �i 
 Q � N �� V exactly
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as in �
������ We start from the initial vertex of f and while keeping
the N �coordinates 	xed� we dip in to depth � C log d in V �i�e� the y�
coordinate�� and in the correct direction that is determined by �
������
�
������ Then we keep 	xed the V �coordinate and cover the distance
along f in the N �coordinates� We then 	nally come back to y � �� in
the V coordinate� and to the second vertex of f on N �

The estimate �������� �
������ �
����� allows us then to make sure
that the new polygon P ��d� 
 N �� V 
 Q is an LL�d� � ���

� 
 Q�
This is the analog of the condition 
�����i�� The �C��condition �
������
together with the way we made the construction allows us to guarantee
that the analog of the Remark 
���� holds for this polygonal curve�

The above P ��d� can be chosen� just as in Remark 
����� to be a
C��embedding of a ��dimensional sphere�

Observe that in certain cases the � r points of �
����� may not be
distinct� The above construction should then be made on a shorter
periodic subpatern of �
������ At any rate the only case where we shall
use the above construction is when N is a group of �Heizenberg type��
i�e� for the relation �
������ In that case the description of the above
construction simpli	es �cf� ����

���� The First Basic Construction�

������ Notations and denitions�

i� We shall consider here the group G � Rr �� V � Rr �� Rs of
����i� and we shall use the exponential coordinates �x��   xr$ y��   ys�
� Rr�s and the orthonormal basis ������� of TG de	ned in ����i��

It will be convenient to use these coordinates to identify G with
R
r�s � and to use ��� to indicate the Euclidean addition in R

r�s � Ob�
serve� however� that then

x� g � x  g � G � x � Rr � g � G �

where �  � indicates the multiplication in G� We shall denote by

�
����� �V � G �� V � �R � G �� R
r �

the canonical Euclidean projections induced by the identi	cation of
G � Rr � V � This identi	cation induces an identi	cation

TG � TRr � TV �
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where the sum is orthogonal for the left invariant Riemannian structure
on TG� Furthermore� on TV the Riemannian scalar product coincides
with the Euclidean one� On TRr the Riemannian and the Euclidean
norms

j�jG � j�jEuc � � � TRr 
 T�x�y�G �

can be negotiated with the help of the basis �������� In particular� it is
clear that if

�
����� � � Vec
� �

�xi�
� � � � �

�

�xia

�
lies in some coordinate subspace of Rr we have

�
���
� j�jG � C j�jEuc sup
��j�a

�exp ��Lij �y�� �

ii� Let

�
r
d � f�x�� � � � xr� � R

r � jxjj � d� j � �� � � � rg �

be as in Section 
��� Let I � �i�� � � � � is� 
 ��� � � � � r� be a subset and
let J � ��� � � � � r�nI� �jIj � s� jJ j � r � s�� Let further � � f�jg

r
j	� be

such that

�j � �d � j � J � �i � � � i � I �

We shall denote then

F � F �I$ �� � fx � Rr � jxij � d� i � I� xj � �j � j � Jg 
 �
r
d �

which is one of the �r�s s�dimensional faces of �r
d� If we de	ne the

slices of �r
d by

FI � fx � R
r � jxij � d� i � I� xj � �� j � Jg �

we clearly have with obvious notations

F � F �I$ �� � FI � � �

For F as above we shall denote by �F � F the center of that face�
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The ��dimensional faces are the vertices of �r
d� More generally� we

denote by �s�
r
d the union of all the above s�dimensional faces so that

���
r
d � ���

r
d �   �r���

r
d � ��r

d �

For every face F � F �I$ �� as above we shall denote as usual

�F � �F �J $ ���� J 
 I� I �� J� F �J $ ��� 
 F � �

The slice FI with jIj � s can be identi	ed with �s
d� the boundary �FI

is then the ��s
d that corresponds in that identi	cation�

iii� We shall assume that the L�� � � � � Lr � V
� that we used in the

de	nition of the group G � R
r �� V �cf� ����i�� are all non zero and

satisfy the following condition�
For every I 
 �� � � � � r�� jIj � r� � the set �Li� i � I� 
 V � is NC

�cf� Section �������
We shall identify� once and for all� V � V � by some 	xed scalar

product on V � We shall also 	x for each � �� I 
 �� � � � � r�� jIj � r � �
�cf� ������

�
����� �I �
X
i�I

	i Li � j�I jV � C log d � Li��I� � C log d �

and 	i � �� i � I� It is important to observe that with the above
de	nition� for any choice of I�� � � � � Ia �a � �� as in �
������ we have

�
�����
Lj��� � C log d � j �

a�
k	�

Ik �

� � Convex Hull �Ik � � � k � a� �

������ The Auxilliary Construction�

We shall consider now F � F �I$ ��� jIj � r � � some r � � dimen�
sional face of �r

d and we shall 	x a decreasing sequence of subfaces

F � Fr�� � Fr�� �    � F� �

such that dimFj � j � jIjj� where

I � Ir�� � Ir�� �   
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is the decreasing sequence of multiindices that correspond to these sub�
faces� We shall denote also �cf� Section 
�����

�j � �Fj � � � j � r � � � F� � f��g �

�j � �Ij � � � j � r � � �

We shall 	x

� � 
j � �j � � � � � j � r � � �

and we shall de	ne inductively

�
����� x� � �� � xj�� � ��� 
j��� �j�� � 
j�� xj � Fj�� �

where j � �� �� � � � � r � �� and

�
����� y� � � � yj�� � ��� �j��� �j�� � �j�� yj � V �

where j � �� �� � � � � r � �� We shall also de	ne

&j � �xj� yj� � Fj � V � �
r
d � V 
 R

r � V � G � j � �� � � � � r� � �

Let us now de	ne the following functions of � � � � �

�
�����


��� �


���
� � � � �� c� �

� � � � �� 
 c� �� �

C� � increasing� and almost linear in between �

���� �


���
� � � � �� �� � c� �

� � � � �� c� �� �

C� � and increasing in between �

The choice of � � c � � is irrelevant as long as it is small enough�
What counts in the above de	nition are the following facts

�
�����
jd
j � jd�j � C � and ���� �� � � � � �� �� �

implies 
���� � � � �� � � � c� � � c� �

In the inductive construction �
������ �
������ I shall then set


j � 
��j� � �j � ���j� � j � �� � � � � r � � �
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where � � ���� � � � � �r��� � �� ��r��� We obtain thus

�
������

&r�� � �� ��r�� �� G �

&r������ � � � � �r���

� �xr������ � � � � �r���� yr������ � � � � �r���� �

We clearly have �cf� �
������

dxr�� � d�R � d&r�� � T �� ��
r�� �� TRr ��
������

dyr�� � d�V � d&r�� � T �� ��r�� �� TV ��
������

If we norm TRr in �
������ with the Euclidean norm �cf� 
�����i�� we
obtain by the de	nition �
����� that

�
����
� kd�R � d&r��kEuc� � C d �

and we obtain also �cf� �
������

�
������ kd�V � d&r��k � C �log d� �

where on TV in �
������ we can assign either the Euclidean or the
Riemannian norm because these two norms coincide� Both �
����
�
�
������ can trivially be veri	ed by induction� In fact we can improve
upon �
����
�� Towards that we distinguish two cases�

Case �� � � �� ��r�� is such that �j��� �� �� j � �� � � � � r� �� By �
�����
it follows then that

�
������ dxr�� � � �

Case �� � � �� ��r�� is such that there exists some � � p � r � � such
that �p � �� From the de	nition �
����� it follows then that

�
������ yr�� � Convex Hull �r��� � � � � �p� �

We shall choose the largest possible p so that � � � and either

i� p � r � ��

ii� p � r � �� �p�� �� �� � � � � �r�� �� ��
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In both cases the de	nition �
����� together with ������� implies
that

dxr���T �� ��
r��� 


n �

�xi
� i � Ip

o
�

But this together with �
������ �
���
�� �
������ �
����
�� �
������ implies
that if the C in �
����� is large enough� the norm satis	es�

�
������ kdxr��kG � C d exp ��C log d� � C �

where k  kG means that we assign now TRr in �
������ with the left
invariant Riemannian norm of G� Putting together �
������� �
�������
�
������ and 
�����i�� We conclude� that for an appropriate choice of the
constants C � � in �
������ we have

�
������ &r�� � �� ��r�� �� G � kd&r��k � C log d �

where� of course� we put the Euclidean norms on T �� ��r�� and the left
invariant Riemannian norm on TG�

������ The Extension Operator and the Construction�

The notation FI � I 
 �� �� � � � � r� for the various slices of the cube
�r that were introduced in 
�����ii� will be preserved here� with the
additional convention that I shall use the same notation

FI 
 �
r
� � FI 
 �

r
d �

to indicate the corresponding slice� for some 	xed I �i�e� xj � �� j �� I�
for the unit cube and the d�cube�

I shall consider throughout in this section and in the next� map�
pings

�
������ & � �r
� �� �

r
d � V �

where Dom�&� 
 �r
� is some subset of �r

�� More precisely� we shall
consider

f � �FI �� FI � V 
 G ��
������

Ef � FI �� FI � V 
 G ��
������



��� N� Th� Varopoulos

whereG in �
������� �
������ is as in 
�����i�� �FI � FI in �
������� �
������
on the left hand side refer to the unit cube �r

� while on the right hand
side refer to the same slices in �r

d�
In this section I shall explain 	rst how� given a Lip�mapping as in

�
������ for some I� we can extend it to a Lip�mapping Ef as in �
������
by some speci	c extension operator E � EI � such that

Ef j�FI � f �

This is done as follows�
Let x � FI 
 �

r
�� I �� �� then we can write �essentially� uniquely

x � ��� �� �I � �y � � � � � � � y � �FI �

where �I � �Center of FI� � �� We shall then de	ne

Ef�x� � ����
I���� �I�
I��� fF �y� � ����I ���� �I��I��� fV �y�� �

where
f � �fF � fV � � FI � V �

are the two coordinate functions� and where

�
������

� � 
I��� � �I��� � � �


I��� � �I��� � � �


I��� � �I��� � � �

are nondecreasing functions that satisfy the additional properties
�
����� �and which in fact can be taken to be independent of I��
The �I � V will be chosen to be as in �
������

The inductive construction� We shall now construct Lip mappings
�I � I 
 �� �� � � � � r�� jIj � r� � and �s� s � �� �� � � � � r� � that have the
following properties�

i� �I � FI �� FI � V 
 G as in �
�������

ii� �� � e � G �the neutral element��

iii� �s � �s�
r
� � �s�

r
d�V 
 G� s � �� � � � � r��� with the notations

of 
�����ii� and �� is the identity mapping scaled by d�

iv� If I 
 �� �� � � � � r�� jIj � s� � � ���� � � � � �r�� �j � ���� and
�� FI � F �I$ �� as in 
�����ii� then� �s��� x� � �d� �I�x�� x � FI �
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The construction is done by induction as follows� ii�� iii� and iv�
determine �� inambiguously� Assume that for some � � s � r � �� �s
and �I � jIj � s have been de	ned and satisfy i��iv�� Let I 
 �� �� � � � � r�
be such that jIj � s�� � r� Then FI can be identi	ed to F 
 �s���

r
�

some face of �r
�� The choice of that F is in general not unique� This

identi	cation identi	es �FI to �F and de	nes

f � �� d� �sj�F � �FI �� FI � V �for the appropriate �� �

This de	nition is inambiguously because of the inductive hypothesis�
We shall de	ne then �I � EIf by applying the extension operator�
We shall then de	ne �s�� by demanding that iv� should hold� This is
clearly possible and �s��j�s�r � �s is an extension of �s�

The 	nal step of this construction is a mapping

�
����
� � � �r�� � ��r
� �� ��r

d � V 
 G �

Let

�
������ S � ����r� 
 R
r �� V 
 G �

We shall show that it is possible to make the above constructions in such
a way that � and S in �
����
�� �
������ have the following properties�

�Lip� Lipschitz property� In �
����
� we have � � LL�d� and S is
an LL�d�� ��r

� 
 G�

�Trans� Transversality properties�

Trans i�� There exists � � c� � such that for every vertex P � ��r
��

Bc�P �� the c�neighbourhood of P � is mapped into fPg � V 
 ��r
d �

V 
 G� where P is identi	ed to the corresponding vertex of ��r
d�

Furthermore� if F � F �I$ �� 
 ��r
� is some �r� ���dimensional face of

�r
� such that ���

r
� � P � F � then �jFBc�P � � �P�F satis	es

�
������ fPg � CI � Image ��P�F � � fPg � �CI � VC� �

for some C � �� where

VC � u � V � juj � C� � CI �
�X
i�I

	i Li � 	i � �� i � I
�
�



��� N� Th� Varopoulos

What the above says in words is simply this� The vertices of �r
� go

to the vertices of �r
d� and near each vertex P of �r

�� the various faces

F �I� �� that contain P � go �nicely� to the tips of the corresponding cones
CI that stick out of ��P ��

Trans ii�� For appropriate C� c � �� we have

�
������
� � ��r

� � j� � ����jV � C

implies that there exists P � ���
r
� such that � � Bc�P � �

where � � G �� V is the canonical projection� In words� Unless � is

near a vertex P � �o�
r
�� its image ���� in G lies far away from Rr �

With the �additive� notations of 
�����i� and the notations of
Trans�i� and� an abusive but clear meaning of �� we can summarize

��F �Bc�P �� � ��P � � �CI � VC� � P � ���
r
� ��
������

S � ���u � V � juj � C� 
 �����
r
�� � VC ��
������

At this point� we should observe that once P � ���
r
� has been 	xed�

for every I 
 �� �� � � � � r� with jIj � r � �� there is exactly one face
F � F �I� �� such that P � F � It follows that the above gives a nice
description of how the neighbourhood of every vertex in �r

� is mapped
into G�

The special case of the C�condition� Let us go back to 
�����iii�
and let us denote by V� � Vec �L�� � � � � Lr� 
 V � Let us also assume
that the vectors L�� � � � � Lr are the vertices of some simplex and � �
Int L�� � � � � Lr� � Int�� In this case just by looking at the simplex �
�around �� we see

�
������ CI 
 V� � I 
 �� �� � � � � r� � jIj � r � �� �

is a tacelation of V� �i�e�
�

CI �
�

CJ � �� I �� J � �CI � V��� From this�
and the Transversality conditions that S satis	es� we see that under
the C�condition we have

�
���
�� ����r
� � Bc�P �� � ��P � � u � V� � juj � C� � P � ���

r
� �

with the obvious use �or rather abuse� of the notations�
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In fact� under the above C�condition for the set L�� � � � � Lr � V ��
we can avoid altogether the use of the extraneous scalar product on V
which was essential in the above construction �cf� �
������� Indeed we
can consider then V� 
 V some �linear� direct complement of V� � fx �
Lj�x� � �� � � j � rg 
 V and 	x � � x�� � � � � xr� 
 V� some simplex
such that � � Int ��� and Li�xj� � � �i� j � �� � � � � n� i �� j�� Instead of
using ����� we can then de	ne the �I �s in �
����� by

�I � log d
�X
i��I

xi

�
�

The rest of the argument works as before� and the only di�erence is that
the simplex � � x�� � � � � xr� is not necessarily the simplex L�� � � � � Lr�
that we used in �
�������

It is of some interest to observe that in the above case we can even
make the set S of �
�
���� homeomorphic to an r�� sphere� Indeed the
only thing that stops the mapping � that de	nes S from being ������ is
the fact that the functions 
��� and ���� that were used have common
intervals of constancy �cf� �
������� This point can easily be recti	ed�
and yet preserve all the other properties of 
� � �especially �
�������
that are needed for the construction�

Proof of the Lipschitz properties� The proof of the property � �
LL�d� depends on a 	nite decomposition

�
���
��
A�

		�

�	 � ��r
� �

where �	 is a relative open set� The sets �	 are constructed as follows�
Let x � ��r

�� Then as long as x lies outside the union of 	nitely many
a�ne subspaces we can write uniquely

x � xr�� � ��� �r��� �Fr�� � �r�� xr�� �

Fr�� 
 �r���
r
� � � � �r�� � � � xr�� � �r���

r
� �

where Fr�� is an �r � ���dimensional face uniquely determined by x�
Furthermore� the mapping

xr�� �� ��r��� xr��� � �r�� � c �
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is LipC for any c � � and C � C�c�� This process can be iterated� and
if we assume that xr�� avoids a 	nite number of a�ne subspaces we
can write

xr�� � ��� �r��� �Fr�� � �r�� xr�� � Fr�� 
 �r���
r
� �

� � �r�� � � � xr�� � �r���
r
� �

and so on�
It follows that with the exception of E � an exceptional subset of

��r
� which is the union of 	nitely many a�ne pieces of dimension at

most r � �� we can determine uniquely for every x � ��r
� a sequence

�
���
�� F�x� � Fr�� � Fr�� �    � F�

of faces Fj of �r
�� dimFj � j and a vector

�
���

� ��x� � ��r���x�� � � � � ���x�� � �� ��r��

such that for every r � � � a � �� the mappings

�
���
�� x ��� �j�x� � r � � � j � a �

are Lip �C� as long as we stay away from �j � � �r � � � j � a � ���
The open subsets �	 �
���
�� are then determined by requiring that

x �� E � F�x� is 	xed �

By our constructions the mapping � of �
����
�� �
������ coincides on
each �	 with the mapping &r�� constructed in �
������� composed with
the mapping �
���

�� �
���
��� If we recall that both 
�� and ��� are
equal to � in some neighbourhood of �� we see that the Lip property of
� follows immediately from the above and �
������� Indeed� as in the
end of 
����� if for some x � �	 this is a 	rst �r�k �in the succesive
construction �r��� � � � � that is small enough� then xr�k lies in some
small neighbourhood of �Fr�k in �	�Fr�k which is mapped on the 	xed
point ��r�k� �r�k� of Section 
����� It follows that in the di�erential d�
at x only the coordinates �r��� � � � � �r�k�� � c are involved�

Proof of the transversality property� To prove the transversal�
ity properties of � it su�ces to prove that �j�s�r� � �s satis	es the
corresponding properties and in particular �
��������
������ for s �
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�� �� � � � � r � �� For s � � this is evident� The general case s � �
follows then immediately by induction and the fact that 
��� � ��
� � �� 
 c� �� while the ���� goes through the whole of its variation in
the interval � � 
 c� ��� In words� the above says that near the distin�
guished boundary �r���

r
�� and in particular near the vertices� � does

not start moving in the Rr direction before we are already quite deep
in the appropriate cone CI �and therefore already out of VC��

Additional smoothness properties� When the C condition is ver�
i	ed as in �
������ and �
���
�� we can guarantee that in the above
construction S � ����r� de	ned in �
������ is a C� embedded �r����
dimensional sphere Sr�� 
 G� This condition is not di�cult to build
in the above construction� The only di�culty lies in choosing the cor�
rect notations that tend to get out of hand� This was seen in the
��dimensional case in Section 
���� where we �negociate the corners� of
the square by the local constancy of 
 near � � �� Since no essential use
will be made of this smoothness property the details will be omitted�

It should be noted� however� that there is another way of guaran�
teeing that smoothness by an �a posteriori� argument� What one can
do� is start by the transversality conditions �Trans�� and use convolu�
tion to smooth out �� and yet preserve the transversality conditions�
Any pretence of global injectivity �i�e� the ����� property of �� is� of
course� lost with this operation� We can then use the Whitney pertur�
bation technique ���� as explained in Section ��� to obtain an S that
is a C� �r � ���dimensional sphere in G� and still has the properties
�Lip�� and �Trans�� described above�

������ The Embedding of S in the eigenvalue group�

Let NE 
 N be the eigenvalue group as in Section ��� that corre�
sponds to the eigenvalue algebra e as in Section ���� All the notations
and de	nitions of Section � will be preserved and we shall distinguish
two cases�

NE is abelian� We shall then assume that L�� � � � � Lr are the vertices
of a simplex as in �������� and we shall 	x the basis e�� � � � � eq in e� as
in ���
���� so that ei� � ei� � � � eir each lies in di�erent root space�

We shall now use the notation of sections ��� and � and consider the
Riemannian structure induced on NE � V� by h� i� as in Section ��
�
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This structure is a Riemannian structure of the kind de	ned in ����i��
The exponential coordinates of Section ��� can then be used �by the
subnormality of the generated subalgebra the vectors ei� � � � � � eir can be
taken to be the 	rst r vectors of the basis �������� to identify Rr�� with
V� and R

r � Vec �ei� � � � � � eir � with a submanifold of NE � This identi	es
Rr � Rr�� with a submanifold of NE � V�� Even in the split case �cf�
Section ���� whenNE�V� is a subgroup� the above submanifold is not in
general a subgroup �because of the �complex rotations� comming from
the imaginary part of the roots�� It is� however� clear from ����viii��
���
��� that this manifold with the induced Riemannian structure is
isometric to the Riemannian manifold de	ned in ����i��

From this it follows that the S � ����r
�� de	ned in �
������ can

be embedded and thus be identi	ed to a subset of NE � V�� S is in
particular an LL�d�� ��r

��

NE is of Heizenberg type� We then shall use the construction of
Section 
���� and the relation �
����� in the group generated by the
algebra ������
�� with e � H	� h � H�	 �with the notations of Section

���� and ������
��� The considerations of ����ii� apply then and we see
that the polygon P ��d� � S constructed in Section 
���� can be made
to have the analogous properties �Lip�� and �Trans�� here we already
are in the C�condition case�� The analog of �
���
�� therefore holds�
This now reads as follows�

Near each of the six vertices Pi �� � i � ��� S is identical to

Pi  u � V� � juj � C� �

where �  � indicates the group product in NE �� V� which is always a
group �cf� end of ����� We have thus embedded S 
 NE � V�� with
dimV� � �� The only di�erence with the previous abelian case is that
now� globally� S �lives� �spills out if you prefer� in all the coordinates
of NE �� V�� S is in particular an LL�d�� ��r

� where now r � ��

���� The Second Basic Construction�

������ Filling in a small cylinder�

We shall use throughout the identi	cation and the notations of
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Section ���� �������� �����
�

Q � N � V � V � V� � V� ��
�
���

S 
 NE � V� � NE � V� 
 �N � V��� V� � Q ��
�
���

where S is the LL�d����r
� 
 NE �� V� constructed in �
����
�� �
������

and Section 
����� NE �� V� is the group structure on NE � V� de	ned
in Section ��
� When Q is split all the manifold products in �
�
����
�
�
��� are just group skew products� I shall also suppose� as I may�
that the neutral element e � G lies on S�

In this section I shall assume throughout that Q admits the prop�
erty F �cf� Section 
��� or at least the properties Fp for the relevant
p � �� � � � � dimQ� ��

i� The ��dimensional cylinder� The split case� Let a� b � V�� and
� � a� b� the a�ne segment that joins these two points and let

�
�
�
� S � � 
 �NE �� V�� �� V� 
 Q �

S�� is the lateral boundary of a hollow cylinder �It looks like an empty
food can with top and bottom removed��

�� Filling the top and bottom� By the Lemma ��
�� we have

�
�
��� S � fag � S � fbg are LL�d�� ��r
� 
 Q �

By the property Fr we can �	ll these in� and 	nd

Ba� Bb two LL�d���
r
� 
 Q ��
�
���

�Ba � S � fag � �Bb � S � fbg ��
�
���

By Lemma ��
�� there exists

�
�
���

�
& � LL�d� �

& � ��r
� � a� b� �� Q � Im& � S � a� b� �

where we assign on ��r
� � a� b� 
 R

r�� its natural distance� It follows
that

�
�
��� Ba � Bb � �S � a� b�� is an LL�d�� ���r
� � a� b�� 
 Q �
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Therefore if we assume that

j�j � ja� bj � � �

we can rescale and

�
�
��� Ba � Bb � �S � a� b�� is an LL�d�� ��r��
� 
 Q �

�� Filling the can� By the property Fr�� we can 	nd

B an LL�d���r��
� 
 Q ��
�
����

�B � Ba �Bb � �S � a� b�� ��
�
����

It will be abusive but convenient to abbreviate the information con�
tained in �
�
�����
�
���� by writing

�
�
���� �B � Rim�S � a� b�� �

ii� The � dimensional cylinder� The general case� We shall adapt
here the previous construction in the general case� i�e� when Q is not
split� The notations of the previous section will be preserved� Clearly
it is only the use of the Lemma ��
�� and ��
�� that has to be modi	ed�
Observe 	rst of all that the fact that

�
�
��
� S is an LL�d�� ��r
� 
 NE �� V� �

and the fact that the canonical projection NE�V� �� V� is a group ho�
momorphism �for the group structure NE �� V��� and therefore Lip ����
implies that

�
�
���� S 
 NE � u � V� � jujV� � c �log d�c� 
 NE � V� �

It follows that Lemma ��
�� can be used �for the non split case�� and
�
�
�����
�
��� of the previous construction are not altered� �
�
����
�
�
��� on the other hand have to be �handled with care�� We shall
denote by

& � ��r
� �� S � & � LL�d� �
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for the distance on S induced by S 
 NE �� V�� and we shall assume
that

�
�
���� jb� aj � �jaj� jbj� ����C �

for some appropriate C � �� We shall also use the linear scaling�

�
�
���� ( � �� �� �� a� b� �

We can consider then the composition of maps

�
�
����

��r
� � �� �� ��

��Id
S � �� �� ��

Id��
S � a� b�

�
��
I

�NE �� V��� V�
�
��
�

Q �

where in �
�
���� we denote by NE �� V� the direct product NE � V�
with the Riemannian structure induced by the group NE �� V� as in
Section ��
� and on �NE �� V�� � V� we give the product distance and
product Riemannian structure� By the Lemma ��
�� and �
�
���� we
see that

�
�
����
kd"jT �NE�V��k � O ��log d�C� �

kd"jTV�k � O ��log d�C �jaj� jbj� ���C� �

Since on the other hand by �
�
��
�� �
�
����

&� Id � LL�d� � ( � Lip �jb� aj� � I � Lip ��� �

we conclude from �
�
����� �
�
���� that the composition of the maps
in �
�
���� is a map

�
�
���� ��r
� � �� �� �� Q in LL�d� �

with constants that are uniform in a and b� This controls the third
term in �
�
��� as before and we can thus 	ll in the �can� as before and
	nd B that satis	es �
�
����� �
�
����� �
�
�����

The ��dimensional cylinder� The split case� Let ai�j � V� i� j �
�� � be the four vertices of a parallelepiped

�
�
���� L � a���� a���� a���� a���� 
 V� �
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with sides parallel to the 	rst two axes of V�� Let

�
�
���� ai��� ai��� � ��i � a��i� a��i� � ��i �

where we shall assume that

�
�
���� j�ijj � � � i� j � �� � �

Just as in �
�
���� by Lemma ��
��� we have

�
�
��
� S � fai�jg is an LL�d�� ��r
� 
 Q � i� j � �� � �

These can therefore be 	lled in by

Br
i�j is an LL�d���r

� 
 Q ��
�
����

�Br
i�j � S � fai�jg � i� j � �� � ��
�
����

because of the property Fr of Q� We can then use the Lemma ��
��
and the property Fr�� to �	ll in� the four �hollow� sides of the square�
We have then �i� j � �� ��

Br��
i�� � Br��

��j are LL�d���r��
� 
 Q ��
�
����

�Br��
i�� � Br

i�� �B
r
i�� � �S � ��i � ��
�
����

�Br��
��j � Br

��j �B
r
��j � �S � ��j� ��
�
����

Let then

�
�
���� � �
�
i	���

�Br��
��i �B

r��
i�� � � �S � L� �

If we use the Lemma ��
�� to control the last term of �
�
���� and glue
the pieces together we deduce that

�
�
�
�� � is an LL�d�� ��r��
� 
 Q �

Hence by the property Fr��� � can be 	lled in by

Br�� is some LL�d���r��
� 
 Q ��
�
�
��

�Br�� � � ��
�
�
��
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The above information �
�
������
�
�
�� will be summarized� abusively�
by the single notation

�
�
�

� �Br�� � Rim�S � L� �

iv� The ��dimensional cylinder� The general case� The notations
are as in 
�
���iii� but we no longer assume that Q is split� We shall
assume as in �
�
���� that

�
�
�
�� j��i j� j�
�
i j � �sup jaij j� ����C �

for some appropriate C � �� We make the construction of Br
i�� and Br

��i

as in �
�
����� �
�
����� �
�
����� with the use of �
�
�
�� as before and
the same modi	cations for the proof as in 
�
���ii�� We obtain thus �
as in �
�
����� To prove �
�
�
�� we have to control the term S � L�
This is done by the Lemma ��
�� and the analog of the cascade of maps
�
�
����� Where now

( � �� ��� �� �� �� L

is the two dimensional scaling map� The property Fr�� completes the
construction of Br�� as in �
�
�
��� �
�
�
��� �
�
�

�� as before�

v� The general cube� The split case� Let

F � a�� b��� a�� b���    � at� bt� 
 V� �

jbi � aij � � � � � i � t �

be some parallelepiped of V� with sides parallel to the 	rst t�axes �� �
t � dimV�� and diameter � �� We shall then proceed exactly as in

�
���i��iii� and use property Fr to 	rst 	ll in the �t �corner cubes��
S � F�� F� being the vertices �i�e� ��faces of F �� Then we use the
previous construction and property Fr�� to 	ll in the Rim �S � F��
where F� are the ��dimensional faces of F � By �	ll in the Rim � � � � we
mean that we perform the construction that is summarized by �
�
�����
And so on� We obtain at the end

B some LL�d���r�t
� 
 Q ��
�
�
��

�B � Rim�S � F � ��
�
�
��
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where the same abusive notation for the term �Rim� is used to abbre�
viate the above construction� One thing that should be kept in mind is
that �
�
�
�� implies that

�
�
�
�� S � F 
 �B �

vi� The general construction� The way one eliminates the condition
that Q is a split group should now be quite clear� One simply uses the
full thrust of Lemma ��
��� Scaling maps are considered as before

( � �� �� �� a�� b��� � � � �( � �� ��t �� F �

with a�� b�� � � � � F as in 
�
���v�� and the condition

jbi � aij �
�
sup
i

�jaij� jbij� � ��
��C

� i � �� � � � � t �

is imposed on F � The details are as in 
�
���ii��iv� and will be left to
the reader�

The following comments on the constructions that we have made
up to now are in order�

Remarks�

i� The coordinates in V� and V� play di�erent roles� The V�
coordinates that admit non�trivial real roots� act on NE and form on
NE � V� a �hyperbolic structure�� i�e� we have r � � �Hyperbolic
sections�� It is this that allows us to �shrink� metrically ��r

d and
embed it appropriately onto S� which is some LL�d����r

� 
 NE �� V��
The V� coordinates that have trivial real roots �act as Euclidean

rotations� on the space NE �� V�� This fact is vital for the above
construction and comes out through the Lemmas ��
�����

We use then the property F of Q to 	ll in the �prisms� �or �Eu�
clidean� cylinders if you prefer � or �food cans�)� obtained by S and
right translations by the extra coordinates coming from V��

ii� Questions of uniformity� In the above constructions d was the
free parameter �at the end we will let d ����� All the constants C � �
introduced in the above constructions did not therefore depend on d� It
is important to note also that these constants C � �� in the construction
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in Section 
�
��� did not depend on a�� b�� a�� b�� � � � � ai�j� � � � or F of

�
���i��vi� either�

������ Filling in a Large Cylinder�

The construction of �	lling in small cylinders� in 
�
��� can be
carried out for a �large cylinder� also

�
�
�
�� S � �A�A�t 
 �NE � V��� V� �

The problem is the uniformity of Remark 
�
���ii�� To avoid having to
�drag in� the size� A  �� of the large cylinder in the Lip�constants�
we have to proceed di�erently�

i� The split case� Once more let us start with the case when Q �
N �� V is a split group� and let us subdivide �A�A�t into unit cubes
F�� F�� � � � � Fp �p � ��A�t$ Fj is a �t

�� � � j � p�� The idea is to �	ll
in� each S � Fj independently by

Bj is an LL�d���r�t
� 
 Q � j � �� � � � � p �

�Bj � Rim�S � Fj� �

and furthermore do so in such a way that these Bj�s 	t together like a
�honeycomb� and that their union �	lls� in the Rim �S � �A�A�t��

Here the notions and the notations from the theory of currents
can be used with pro	t �cf� Section 
��� ���� �
�� We have to as�
sume then that the appropriate orientations have been assigned to the
corresponding spaces�� With these notations we have

B �

pX
j	�

Bj � �B �

pX
j	�

�Bj ��
�
�
��

B is an LL�d���r
� � �A�A�t 
 Q ��
�
����

�B � Rim�S � �A�A�t� ��
�
����

where� without attempting to give a formal de	nition of �
�
���� we
insist on the following consequences implied by �
�
���� �cf� Remark
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�����

S � �A�A�t 
 �B ��
�
����

�B � ���u � V�� juj � C�

� �S � �A�A�t� � ���u � V�� juj � C� �
�
�
��
�

where � � Q � �NE �� V�� �� V� �� V� is the canonical projection� For
the validity of �
�
��
�� as we shall see� we shall need to have A  �
appropriately large�

To clarify matters we shall consider 	rst the two cases t � �� t � ��

The case t � �� We subdivide

�A�A� �
A���
j	�A

Ij � Ij � j� j � �� � �A � j � A �

and construct Br
left�j�� B

r
right�j�� i�e� B

r
a� B

r
b with a � j� b � j � � �as

in �
�
���� for the �small cylinder� S � Ij as in �
�
�����
�
���� We also
make the construction� as we may� so that

Br
right�j� � Br

left�j � �� � �A � j � A� � �

We then construct

Br��
j is an LL�d���r��

� 
 Q ��
�
����

�Br��
j � Br

left�j� � B
r
right�j� � �S � Ij� ��
�
����

we take then
Br�� � �Br��

j �
X

Br��
j �

where the
P

refers to the notations from the theory of currents �cf�
Section 
��� ���� �
��� It is then clear that

Br�� is an LL�d�� ��r � �A�A�� ��
�
����

�Br�� � Br
left��A� � B

r
right�A� �� � �S � �A�A�� ��
�
����

which is exactly what is meant by �
�
����� The basic fact �
�
��
� is
here clearly ensured by �
�
����� �
�
����� provided that

A � C �log d�C �
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for some appropriate C � �� Indeed this implies that the �left� and the
�right� of the �can� �
�
���� do not reach the central region because
the canonical projection � � Q �� V� is Lip ���� The uniformity in A
of the construction in �
�
���� plays a crucial role here �cf� Remark

�����ii���

The case t � �� We subdivide

�A�A�� �A�A� �
A���

i�j	�A

i� i� ��� j� j � �� �

and start by 	lling in each of the four vertices C	�i� j�� � � 
 � �� of
Ii�j � i� i� ��� j� j � ��

�Br
	�i� j� � S � C	�i� j� � 
 � �� �� 
� � �

This is done in a consistent way� i�e� if two neighbouring squares have a
common vertex� we choose the same 	lling �e�g� Br

��i� j� � Br
��i� �� j�

with obvious notation��
Having done that� we then 	ll in the hollow sides of each S � Ii�j

�as in �
�
������
�
����� using the already constructed Br
	�i� j�� This is

again done in a consistent way� i�e� two S � Ii�j that are side by side
�or one on top of the other� must have their common side 	lled in an
identical way� The 	nal step is to construct Br���i� j� such that

�
�
����
Br���i� j� is an LL�d���r��

� 
 Q �

�Br���i� j� � Rim�S � Ii�j� � i� j � �A� � � � � A� � �

Then� using again the notations from the theory of currents� we set

�
�
���� B �
X
i�j

Br���i� j� �

which is
B is an LL�d���r

� � �A�A�� 
 Q �

The boundary �B consists of exactly two parts

��B�� � S � �A�A�� � ��B�� � �Bn��B�� �

and clearly if x � ��B��� then x � �Br���i� j� where either i or j �or
both� are equal to �A� or A� �� This� together with �
�
���� and the
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uniformity in A of the constants in �
�
����� implies for the same reason
as in the case t � �� that �
�
��
� holds if

A � C �log d�C �

for some appropriate C�
The way one generalizes the above constructions to any t � ��

by 	lling in the unit subcubes S � �A�A�t in such a way that their
successive �r� �r��� � � � boundaries coincide� should be clear� We obtain
thus the required B that satis	es �
�
������
�
��
��

ii� The general case� When Q is not necessarily split we have to
modify the construction of the previous section at only one point�

Instead of subdividing �A�A�t in �
�
�
�� into unit cubes we sub�
divide it into ��A�	�t cubes a�� b��� a�� b���    of size

	 � jbj � aj j � �A� ����C � j � �� � � � � t �

Each of these cubes is then 	lled in as in 
�
���vi�� and this is done
with consistent �r�k�boundaries as before� Taking the union� or more
accurately� summing the corresponding currents� we obtain as before

B �

A����X
i�����	�A��

B�i�� � � � � it� ��
�
����

B is an LL�d���r
� �

h�A
	
�
A

	

i�t
��
�
����

�B � Rim�S � �A�A�t� ��
�
����

�B � ����u � V�� juj � C�

� �S � �A�A�t� � ����u � V�� juj � C� �
�
�
��
�

where again � � Q �� Q�N �� V� is the canonical projection� The
size �A�	�A�	� of the cube in �
�
���� has been multiplied by ��	
because of the summation from �A�	 to A�	� � in �
�
�����

The key fact �
�
��
� is again guaranteed by a large enough choice
of A

A � C �log d�C �

and the fact that �� being a group homomorphism� is Lip ����
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The 	nal point of this construction is that the parameters are cho�
sen so that

�
�
���� A � C �log d�C � 	 � C �log d��C �

By the rescaling �
������ �
������ it follows therefore that B in �
�
����
is an LL�d���r�t

� �

�� Proof of the Main Theorem �C��

In this section I shall give the proof of the C�part of the main The�
orem� This is the di�cult part of the theorem and it uses the algebraic
and geometric constructions that we have developed in this paper� I
shall give three di�erent ways of making this last step� Basically all
three stem from the same idea and it is only a matter of using a di�er�
ent language and di�erent tools to put things together� That language
and tools can be summarized as follows�

i� Transversality and Sard�s theorem from Di�erential Topology�
This is what we do in Section ����

ii� Slicing from the theory of currents� This is what we do in Section
��
�

iii� We can globalize and avoid the explicit use of either of the
above� We then only use the very simplest de	nitions from the theory
of currents� but the price that we have to pay is that we have to keep
track of the orientations and the signs of the currents involved� This is
what is done in Section ����

���� Currents in Riemannian manifolds�

Let M be some Riemannian manifold� we shall recall some of the
standard de	nitions and properties of currents on M � I shall deliber�
ately� but abusively� ignore the questions of orientation� Some of the
statements below are therefore as such� incomplete� The reader will
have to 	ll in the details concerning the orientations on his own �cf�
�����

i� We denote by %�M� the space of C� compactly supported forms
on M and by %��M� the dual space of currents on M � We denote
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k�k � supm j��m�j� for the Riemannian norm j  j� induced on %T �M �
Let T � %��M�� we say that T is an integration current of 	nite mass
if M�T � � kTk � sup fjhT� �ij� � � %� k�k � �g � ��� �M�T � is the
notation used in �
���

ii� Every � � �r
� ��M that is Lip �A� induces a unique integration

current

T � ���r
��� � hT� �i �

Z
�r
�

����� � � � %�M� �

of mass kTk � �� � A�r� This is evident if � is C� and de	ned in
some neighbourhood of �r

�� The extension to an arbitrary � as above
is routine�

iii� Let � 
M be some open subset� Then the injections � ��M �
%��� � %�M� de	nes canonically a restriction operator %��M� ��
%����� We shall use the notation T � T j� for that operator and we
have

�dT �j� � d�T j�� �

Furthermore� if T is an integration current� then T j� is also an integra�
tion current and

kT j�k � k��Tk � kTk �

where �
�
is the characteristic function of ��

���� The current interpretation of the Geometric construc�
tions�

For the proof of our main Theorem� we shall consider currents
on the Riemannian manifold Q � M � where Q is a soluble simply
connected group assigned with its left invariant Riemannian structure�
Let � � Q �� Q�N � V be the canonical projection� where N is the
nilradical� and let

� � ����y � V� jyjV � �� 
M �

We shall then consider the restriction on � of the currents of M as
in ����iii�� We shall also consider the restriction of the Riemannian
structure of Q on � which gives a Riemannian structure that is quasi�
isometric with the product Riemannian structure

������� N � Bs � N � fy � Rs � jyj � �g �
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In ������� we assign the nilradical N with its left invariant structure
and the Euclidean unit ball Bs with the Euclidean structure� Let now
B be the current de	ned in �
�
�
����
�
��
�� �
�
������
�
��
� of Sec�
tion 
�
��� and where once more we choose to ignore all questions of
orientation and of signs� As we shall see presently� the signs and the
orientation are not essential for the proof of the main Theorem� If�
however� we are prepared to go through the details and work out the
correct signs at every point of the construction in Section 
�
��� the
proof in Section ��
� becomes �cleaner� and simpli	es�

We shall consider the integration current B� that is de	ned as in
����ii� by & � �r

� � �A�	�A�	�� �� Q� Here r is as in Section 
����
if NE is abelian� and r � � if NE is of Heizenberg type� in both cases
� � dimV�� One must recall that the construction of B in 
�
�� was
done under the assumption that Q satis	ed Fr�Fr��� � � � �Fr�� and the
choice of A� 	 was such that A�	 � C �log d�C �cf� �
�
������ It follows
therefore� that

kB�k � C �log d�C �

and therefore also that

������� kB�j�k � C �log d�C �

We shall consider T � ��B�j��� By �
�
��
�� �
�
��
�� �
��������
���
���
����iii� it follows that if we suppose that Q satis	es the F condition and
is also a C�group �these two actions on Q will presently be shown to be
incompatible)� then

supp T 
 �S � �A�A��� � ���u � V� juj � �� �
�
�	��

C���� � � � � �r� �

where� with the identi	cation of � with ������� and with the identi	ca�
tion of N with Rm �induced by the exponential coordinates of sections
���� ���� we set

C���� � � � � �r� � x � ��� d� � � � � �r d� �� � � � � �� � u � V � juj � C� �

where ��� � � � � �r � �� �cf� sections 
���
� 
������ In the above notations
we have assumed that NE is abelian� The changes that have to be made
in the notations to deal with the case when NE is of Heizenberg type
will be left to the reader�
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If in Section 
�
�� we are prepared to go through the signs and the
orientations involved in the �	lling currents� of �
�
�
�� and �
�
�����
we can show that

�����
� T � �B�j� �
X
�	��

�C���� � � � � �r�� �

where   � indicates the integration on the s�dimensional chain that is
Lip embedded in �� We can give explicitely the ��s on �����
� but this
is irrelevant� these signes do not depend on d�

At this point we shall stop to point out that without �bothering�
to go through the orientations and signs involved� what we have �for
sure� is

������� T � �B�j� �
X

f��������r C���� � � � � �r�� �

where for each 	xed ���� � � � � �r� we have

������� jf��������r�y�j � � � y � Bs �

Indeed the function f��������r�� which �a priori� may depend on d is
what gives the correct sign on the subcubes of size 	 in �
�
����� In
particular� in the split case �
�
�
����
�
��
� when 	 � �� we already
have �����
� without worrying about the orientations�

���� The proof of the main theorem C using and keeping track
of the signs of the currents�

From ������� and �����
� �or ��������� we shall be able to draw a
contradiction when d �� �� This will prove the incompatibility of
the C�condition and

Tr��
j	r Fj and will complete the proof of the main

Theorem �C� because r � � � rankQ � � and r � �� To describe
things in general terms� what will be proved is� that under the condition
�C� for Q we cannot have a polynomial upper bound for �n�R� �n �
r� r � �� � � � � r � �� in the main Theorem �C��

The fact that �������� �����
� �as d ���� are contradictory is easy
to see� Indeed let

� � f�x�� � � � � xm� g�y�� � � � � ys� dy� �    � dys �
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for some f � C�� �N�� g � C�� �Bs�� then

h�� T i � C
�Z

g dy
�X

�f���d� �� d� � � � � �r d� �� � � � � �� ����
���

jh�� T ij � jhd�� B�j�ij

� kd�k kB�j�k

� C �log d�C sup
�
jdf j �

���
���

where jdf j stands for the Riemannian norm in �� Observe now that the
mutual distances in N of the points ��� d� � � � � �r d� �� � � � � �� is greater
or equal Cd	 for some 
 � � �by the polynomial distortion between the
distances in N and the corresponding Euclidean distance induced by
the exponential coordinates�� It follows therefore that we can choose f
and g so that the right hand side of ���
��� is greater or equal than �
�no matter what the choice of the ��s is� and yet

���
�
� sup
�
jdf j � Cd�	 �

From this and ���
���� by letting d �� �� we obtain the required
contradiction� This completes the proof of our theorem�

The above proof can easily be modi	ed so as to make ������� �and
not �����
�� the starting point� The only di�erence is that now

� � f�x�� � � � � xm� y�� � � � � ys� dy� �    � dys �

where the dependence of the coe�cient f � C���� on y � V is designed
to compensate for the sign of f��������r in �������� We can again choose
f so that in ���
��� we have

jhT� �ij � �

and yet

���
��� sup
�
jd�j � Cd�	 �

Observe that now ���
��� is not obtained though the control ���
�
� of
df � What allows us to assert ���
��� is the fact that d� only involves
the partial derivatives ���xj of f �
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���� The proof of the main Theorem �C� using the slicing�

This is but a variant of the previous proof of the main Theorem of
Section ��
� It relies on the non trivial notion of the slicing of currents
�cf� �
� Section ��
��� This slicing operation allows us to de	ne for
almost every x � Bs in �������� a current hB�� �� xi on N � which is the
�slice� of B� with ����x� 
 Q� Here we shall identify ����x� with N
and use the notations of �
� Section ��
� and the fact that B� � %�� �
�i�e� as a current it acts on ��forms� where � � r � � � dimB �with
the notations of Section 
�
��� cf� �
�
������ The construction and the
formalism of this slicing depends on the fact that the dimension of the
current �equal to r � �� is greater or equal than the dimension of the
target space of �� cf� Section ���� This formalime is non�trivial and I
shall refer the reader to �
� Section ��
� for the details�

At any rate� if we are prepared to use this notion of slicing� we
can obtain a contradiction between the conditions �F� and �C� on the
group Q� starting this time from the weaker �������� The advantage of
this approach lies therefore in the fact that we do not have to �chase
around� orientations and signs of currents�

The contradiction is obtained by a very similar argument as the
one used in Section ��
� but which is now localized to each individual
N �	ber of �������� Indeed the polynomial distance distortion in N �
together with the automatic control of �hB�� �� xi that we have from
�������� will give the following lower bound of the total mass

������� M hB�� �� xi�� Cd	 � almost all x � Bs �

The contradiction now is obtained between �������� ������� and �
�
Theorem ��
���

The idea of the above variant of the proof is� of course� very simple�
Instead of restricting B� to the cylinder ����juj � �� we restrict it to
the 	ber ����u� �fixedu � V � juj � ��� This allows us to ignore the
possible variations of sign of f��������r �y� � �� in �������� The price
we have to pay is that now we have to integrate with respect to u in
�juj � ��� �
� Theorem ��
��� allows us to perform the integration and
obtain the contradiction�
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���� The smooth llings and an alternative proof of the main
Theorem �C�� An outline�

We have already pointed out at the end of Section 
���
 how in the
	rst basic construction of S 
 Rr �� Rr�� � which is an LL�d�� ��r

� 

Rr �� V � we can make S to be a C� embedded �r � ���dimensional
sphere� Once this construction was made smoothly� we can proceed
and do all the �	llings� of Section 
�
 in a smooth fashion�

To 	x ideas� if we assume that the group Q satis	es the condition
Fr� we can modify the 	lling of S and construct

F � Br �� Q � F � LL�d� � C� �

F ��Br� � S � F �Br� � B 
 Q �

where Br is the unit r�ball and where F induces an embedding of Br�
This can be done by the usual Whitney perturbation technique �that
can easily be adapted to leave the boundary 	xed� cf� ���� provided
that

������� dimQ � � r � � �

The condition ������� is not� of course� a priori veri	ed and the 	rst
thing that has to be done is to replace Q by the direct product group
Q� RA � QA �for some appropriate A � ��� By spilling out of Q into
QA as little as we like� we can then make sure that F is an embedding�
Observe that the extra factor of QA goes in the nilradical�

Let us also assume for simplicity that in Section 
�
 �with the no�
tations that we used in Section ���� V� � �� so that in the constructions
of Section 
�
� after we 	ll in S� we stop� And we do not have to worry
about the Rim �S � �A�A��� �i�e� � � ��� We can then 	nish the
proof of our main theorem with an obvious use of Transversality in a
few lines�

Indeed� if we denote by � � QA �� V the canonical projection�
where with our previous notations V � V� � Q�N � by Sard�s theorem�
for almost all y � V � ����y� � B is a ��dimensional ��manifold and
������y� � B� � S � ����y� �cf� ����� The set S � ����y�� when
jyj � �� is completely determined by the construction of S and the
mutual distance of its �r �r � �� � � � � points in the Riemannian manifold
����y� �i�e� for the induced Riemannian structure in ����y� 
 QA� is
at least Cd	� This holds for the same reasons as in sections ��
 and ����
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cf� �������� The conclusion for the ��dimensional Hausdor� measure
induced by the Riemannian structure of QA is

������� Vol��
���y� � B� � Cd	 �

From this a lower estimate

�����
� Volr�B� � Cd	 �

follows at once �cf� �
� Section 
���� In fact� using elementary di�er�
ential calculus� we can easily see how ������� implies �����
� directly��
This clearly contradicts ������� and� once more� gives a proof to our
Main Theorem�

Observe also� that in the above case� dimQ � � r � �� so it is
probably possible to use the �di�cult� Whitney immersion theorem
��� and avoid the use of QA�

The above proof is very analogous to the proof given in Section
���� We can indeed say that here the notion of the slicing is picked up
by Sard�s theorem and Transversality� and what replaces �
� ��
��� is
the fact that ������� implies �����
��

This approach� through elementary di�erential topology� can be
generalized in the general case� i�e� when V� is not necessarily zero�
One then has to carry out the 	lling constructions of Section 
�
 and
make sure that the integration currents that we use for the 	llings are
��manifolds� This again is achieved by the Whitney approximation
technique� applied to the manifold QA �A  ��� but is more involved�
I will not give the details� The reader who wishes to carry these details
out for himself should observe the following point�

Already in 
�
�i� the current in �
�
��� is not the boundary of a
smooth manifold� even though Ba� Bb have been chosen to be generic

C� �� manifolds� The current in �
�
��� is the boundary of a manifold
with corners in the sense of ���� This means that either we have to
make the constructions in Section 
�
 using manifolds with corners�
or do something at every step of the construction of Section 
�
 to
�smooth� out these corners� Both these aproaches work� But I do not
have the stomach to write the details down here�

Remark� There is a varient of the Main Theorem that can be formu�
lated as follows�

Let us say that a Riemannian manifold as in Section ��� has the
property �Gp� �cf� Section 
���� if there exists C � �� such that for all
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R � �� and all & � ��p
� ��M �&�Lip� and such that Volp���&���

p
���

� R there exists #& � �p
� ��M �#& � Lip� such that

#&j��p
�
� & � Volp #&��

p
�� � RC � R � �� �

For a mapping & that is not ���� the above de	nition of Volr has to
be done with multiplicity �e�g� ��� p� ����� The proof that we gave
in this paper can be adapted to prove that the C�condition on the
soluble simply connected Lie group Q and the conditions Gp �� � p �
rankQ� �� are not compatible�

In the above adaptations no new ideas are involved but the details
are tedious and long� These details remain to be written out�

The di�culty in adapting the above proof lies in the Second Basic
Construction of Section 
�
 and especially in the argument that was
needed to supply a proof of �
�
��
�� This variant of the Main Theorem
is related to the Homological classi	cation of Section ��
�

�� The Proof of the NC�Theorem�

���� Homotopy retracts on Lie groups�

Let Q be some simply connected soluble Lie group assigned with its
left invariant Riemannian structure� In this section we shall construct
H�g� t� � Q �� � t � �� g � Q� appropriately smooth �C� or at least
Lip� homotopy retracts

H�g� �� � e � H�g� �� � g � g � Q �

that have one of the following additional properties �or both�

jdHj � C exp �C jgj� � g � Q ��Exp��

jdHj � C �jgj� C�C � g � Q ��Pol��

where jgj � d�e� g� is the Riemannian distance in Q and where �� ���Q
is assigned with the product Riemannian structure� We shall prove�

Theorem� Let Q be as above� then a homotopy retract that satis�es

�Exp�� always exists� A homotopy retract that satis�es �Pol�� exists on

Q if and only if Q is an NC�group�
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Only the �if� part will be proved in this section� The �only if�
part is a consequence of Section ��

���� Exponential coordinates�

Let N be some simply connected nilpotent group� We can de	ne
then the bijective mapping Exp� Exp� � n �� N that gives on N the
exponential coordinates of the 	rst kind �cf� ����

Exp �x�X��   �xnXn� � N � �x�� � � � � xn� � R
n � n � dimN �

where n is the Lie algebra of N � When Q is a simply connected soluble
group this mapping is not in general globally bijective and therefore it is
not well suited to give coordinates on the group� We can use then Exp�
the exponential coordinates of the second kind �cf� �� Section 
������

Using the above bijections� we can transport the radial homotopy
retract of Rn �F �x� t� � t  x� � � t � �� x � Rn� to a homotopy retract

������� Ri � Expi � F � Exp
��
i � i � �� � �

�this notation is slightly abusive but clear enough� on N or Q as above�
It is also very easy and standard to prove that when N is nilpotent
both R�� R� satisfy �Pol�� More generally� when all the roots 	�� 	�� � � �
of Q are pure imaginary �i�e� there are no non�zero real roots and
�L�� L�� � � � � � � in �� Section ����� then R� satis	es �Pol��� This fact
is less standard but is very easy to verify because only the sin � and
the cos � of the corresponding coordinates � � Q�N � crop up in the
multiplication cf� ����

The construction of a homotopy retract that satis	es �Exp�� for a
general simply connected soluble Lie group Q is also very easy� Indeed�
if the exponential coordinates are chosen as in sections ���� ��� so that
e�� � � � � em � n� u�� � � � � us � h� the fact that both n and h are nilpotent�
allow us to estimate polynomially both

d�Exp ��� u��   Exp ��s us�� � d�Exp �t� e��   Exp �tm em�� �

We also have �cf� ����

t � jt�j�   � jtmj � C �expC jgj� C� �

� � j��j�   � j�sj � C �jgj� C� �

g � Q � g � �t�� � � � � tm� ��� � � � � �s� �



A geometric classification of Lie groups ���

This� if we take into account that the action of Ad �g� on TN has a
norm that is at most C �t���C exp �C ��� easily completes the proof of
�Exp��� The details will be left as an exercise to the reader�

One should observe� that if M is some C� manifold� and if �i �
M �� Q �i � �� �� are two mappings� then their group product satis	es

d���  ��� � dL�� � d�� � dR�� � d�� �

where L and R denote left and right translations on the group� If we
identify TgQ with TeQ � q by left translation� this says that �cf� ����

d���  ��� � d�� � dR�� � dL
��
��
� d�� � d�� �Ad�� � d�� �

���� The semidirect product�

Let now Q � Q� �� Q� be a semidirect product� where both Q�� Q�

are simply connected soluble groups� and let Hi be a homotopy retract
of Qi �i � �� ��� Let

g � q�  q� � qi � Qi � i � �� � �

so that

q� � ���g� � q� � g  ����g��
�� � ���g� �

jd��j � � � jd���g�j � C exp �C jgj� �

jq�jQ�
� C exp �C jgj� �

On the other hand� if we denote by

H�g� t� � H��q�� t� H��q�� t� � � � t � � �

and by
Id � �� � �� � TQ �� TQ� � TQ� �

the orthogonal decomposition of TQ induced by a basis of q � q� �� q�
that consists of a basis of q� and a basis of q� �cf� sections ��
 and ���
we have

�� � dH � Adq��H�� � dH� � d�� ����
���

�� � dH � dH� � d�� ����
���



��� N� Th� Varopoulos

with the obvious indenti	cations and obvious notations� It follows� in
particular� that if H� satis	es the condition �Pol�� of Section ��� then

���
�
� j�� � dHj � C jgjC � C �

Similarly� if H� satis	es �Pol�� of Section ���� and if H� has been con�
structed to satisfy the additional condition

���
��� jH��g� t�jQ�
� C jgjQ�

� C � g � Q� � � � t � � �

then ���
��� implies that

j�� � dHj � C exp �C jgj� �

If Q� � N is nilpotent it is easy to see ���
���� This is because we
can use exponential coordinates of the second kind �x�� � � � � xn� such
that the ball of radius r in N is equivalent �in the obvious sense� to
fjxjj � raj � � � j � ng where aj � � �� � j � n� are integers� It
follows that the retract R� of ������� satis	es ���
���� The same type of
argument works if Q� has polynomial volume growth �cf� ����� but this
is less easy to see� �Alternatively� there exists T �� Tm and a semidirect
product G � Q� �� T such that there exists N 
 G that is a closed
nilpotent� simply connected normal subgroup and such that G � NT
N � T � feg� cf� ���� This allows us to transfer the problem from Q�

to N��
The above facts are not essential and the details will be left as an

exercise to the reader�

���� NC�groups�

Let Q be some simply connected NC�group and let

Q � NR �� QR � Q� �� Q� �

be the semidirect decomposition induced by the corresponding algebra
decomposition q � nR �� qR �cf� �� Section ��
��� We shall 	rst
construct the corresponding H � H� H� that satis	es ���
���� ���
����

Let us now 	x Y � qR such that

������� Lj�Y � � �C� � j � �� �� � � � � k �
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for the real roots L�� � � � � Lk �I use here the notation of �� Section ��
���
and let us de	ne

��t� � ��g� t� � Exp �t �jgjC� � ��Y � � Q ��������

Hp�g� t� � H�g� ��t��  ���t�� � � � t � � � g � Q �

where �  � indicates group multiplication in Q and where ��  �
C���� ��� satisfy the following conditions�

�t� �


���
� � t � �� � �

� � t � c� �� c� �

C� � and monotone in between �

��t� �


���
� � t � �� � c� �

� � t � �� � c� �� �

C� � and increasing �almost linearly� in between �

From the above de	nition it is evident that

jdHpj � C �jgjC � C� � t � �� � c� � �� � c� �� �

It also follows from Section ��
 that

jdHpj � jAdqR���j �C jgj
C � C� � jAdnR�H�  ��j exp �C jgj� C� �

It follows therefore that if C� � � in ������� and C� in ������� �in fact if
you believe ���
���� you can take C� � �� are chosen appropriately then
the above retract Hp satis	es �Pol�� because

jAdnR���j � C exp ��C jgjC�� � � c � t � �� � c

�cf� �� Section ���� and ����� This completes the proof of our Theorem�

Remarks�

i� The reader who wants to make things even easier could consider
a variant of the above construction which consists in setting

��t� � Exp �t RC
� Y �
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with R�  � and Y � qR as before� One can then de	ne

Hp�g� t� � H�g� ��t��  ���t��

�� � t � �� g � Q� jgj � R�� which is a retract of B�R��� the ball of
radius R� in Q� This is weaker than our original construction but is
good enough for most of our purposes�

ii� In the opposite direction� the proof of the C�part of the main
theorem� if analyzed carefully� shows that the �exponential distortion�
is optimal for the retracts of the R�balls B�R�� More precisely� if G is
a C�group� then there exists c � � such that if

HR � B�R�� �� �� �� B�R� � R � � �

are retracts� then

sup
��R�R�

kHRkLip � exp �cR�� � R� � � �

iii� If we use the fact that NR is of �strict exponential distortion�
in Q �cf� ����� we can easily construct the above homotopy Hp so that
it satis	es the additional condition

jHp�g� t�jQ � C jgjQ � C � g � Q � � � t � � �

References�

��� Varadarajan V� S� Lie groups� Lie algebras and their representations�

Prentice Hall ��
��

��� Varopoulos N� Th� Analysis on Lie groups� Revista Mat� Iberoameri�

cana �� ������ 	�����	�

��� Varopoulos N� Th� Mustapha S� Forth coming book� Cambridge Uni�

versity Press�

��� Hochschild G� The structure of Lie groups� Holden�Day �����

��� Gromov M� Geometric group theory� G� Niblo M� Roller� LMS Lecture

notes series ���� Cambridge University Press �����

��� Gromov M� Filling Riemannian manifolds� J� Di�erential Geom� ��

���
�� ����	�

�	� Raghunathan M� S� Discrete subgroups of Lie groups� Springer Ergeb�

nisse �� ��	��



A geometric classification of Lie groups ���

�
� Gersten S� Combinatorial and Geometric Group Theory �Editors� Dun�

can Gilbert � Howie� L�M�S� Lecture Notes Series ��� C�U�P� �����

��� Jacobson N� Lie algebras� Interscience �����

���� Alexopoulos G� An application of homogenization theory to harmonic

analysis� Harnack inequalities and Riesz transforms on Lie groups of

polynomial growth� Canad� J� Math� �� ������ ����	�	�

���� Varopoulos N� Th� Distance distortion on Lie groups� Institute Mittag�

Le�er Report �� ������� and Symposia Math� XXXIX ������ ����

��
�

���� de Rham G� Vari�et�es di��erentiables� Hermann �����

���� Federer H� Geometric Measure Theory� Springer Verlag �����

���� Whitney H� The Self�intersection of a smooth n�manifold in �n�space�

Ann� of Math� �� ������ ��������

���� Douady A� H�erault L� Arrondissement des vari�et�es �a coin� �Appendice

to a Borel�Sene paper�� Comm� Math� Helv� �� ���	�� �
������

���� Hirsch M� W� Di�erential Topology� Springer�Verlag ��	��

��	� Varopoulos N� Th� Salo��Coste L� Coulhon T� Analysis and Geom�

etry on Groups� Cambridge University Press �����

��
� Varopoulos N� Th� Di�usion on Lie groups I II III� Canad� J� of Math�

�� ������ ��
���
 ��	������ �� �����	��

���� Stein E� M� Singular Integrals and Di�erentiability Properties of Func�

tions� Princeton Univ� Press ��	��

���� Bougerol Ph� Example de th�eor�emes locaux sur les groupes resolubles�

Ann� Inst� H� Poincar�e XIX ���
�� ��������

���� Varopoulos N� Th� The local thorem for symmetric di�usion on Lie

groups� An overview� C�M�S� Conference Proceedings �� ����	� ����

����

���� Guivarc�h Y� Croissance polynomiale et p�eriodes des fonctions har�

moniques� Bull� Soc� Math� France ��� ���	�� �����	��

���� Reiter H� Classical harmonic analysis and locally compact groups� Ox�

ford Math� Monograph ���
�

���� Humphreys J� Linear Algebraic Groups� Springer�Verlag ��
	�

���� Montgomery D� Zippin L� Topological Transformation Groups� Inter�

science Tracts in Pure and Applied Math� No� � �����

���� Varopoulos N� Th� Geometric and Potential theoretic results on Lie

groups� To appear in Canad� J� of Math�

��	� Auslander L� Green L� W� G�induced �ows� Amer� J� Math� ��

������ ������

��
� Varopoulos N� Th� Analysis in Lie groups �II�� To appear�



��� N� Th� Varopoulos

���� Lawson H� B� Jr� Lectures on minimal submanifolds� Publish or Perish

Inc� ��
��

���� Klingenberg W� Lectures on Closed Geodesics� Springer�Verlag ��	
�

Recibido� �� de agosto de �����

Nick Th� Varopoulos
I�U�F� and

Departement de Math*ematiques
Universit*e de Paris VI
����� Paris� FRANCE


