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1. Introduction.

The main motivation for this work comes from the century-old
Painlevé problem: try to characterize geometrically removable sets for
bounded analytic functions in C. A compact set F C C is removable
for bounded analytic functions if whenever U is an open set containing
E and f: U\ E — C is bounded and analytic, then f has an analytic
extension to U. For other formulations and relations to analytic capac-
ity, see, e.g., [G], [C1] or [M]. Painlevé proved that if H'(E) = 0 then
E is removable. Here H! is the one-dimensional Hausdorff (length)
measure.

The present paper is the first of a series of two, but the second
paper [D3] already appeared, thanks to a very fast publication process
by the Revista, while the present paper was delayed by an attempt with
some other journal. The authors are very grateful to the Revista for its
very efficient handling of both papers. The main result in [D3] is the
following.

Theorem 1.1. If E C C is compact and H'(E) < oo, then E is
removable for bounded analytic functions if and only of E is purely un-
rectifiable, that is, H*(E NT) = 0 for every rectifiable curve I'.

Although this result does not give a complete characterization,
it only leaves out sets of infinite length and Hausdorff dimension 1,
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138 G. DAvID AND P. MATTILA

because sets of Hausdorff dimension bigger than 1 are not removable,
see, e.g., [G].

The proof of Theorem 1.1 relies on the results and techniques of
the present paper, plus a suitable generalization of the T(b)-Theorem
to spaces with a measure that is not necessarily doubling. At the time
this paper was written, we did not know how to prove such a theorem,
and so we were only able to establish the analogue of Theorem 1.1 for
Lipschitz harmonic functons.

A compact set £ C C is removable for Lipschitz harmonic functions
if whenever U is an open set containing F and u : U — R is a Lipschitz
function which is harmonic in U \ E, then u is harmonic in U. Every
FE which is removable for bounded analytic functions is also removable
for Lipschitz harmonic functions (use the fact that if w is Lipschitz
harmonic, then d,u is bounded analytic). But it is not known if these
two classes are the same. Again sets of Hausdorff dimension bigger than
1 are not removable.

In this paper we shall prove:

Theorem 1.2. Let E C C be compact with H'(E) < co. Then E is
removable for Lipschitz harmonic functions if and only if E is purely
unrectifiable.

For both theorems, only one direction needs to be proven because of
the result due to Calderén and others, see, e.g., [C1]: if E is a compact
subset of a rectifiable curve with H(E) > 0, then E is not removable
(for either class). Hence the removable sets are purely unrectifiable.

Theorem 1.1, and hence also Theorem 1.2, were proven in [MMV]

for compact sets E which are regular in the sense that there is a constant
C such that

§H1(EHB(x,r))§Cr, forzel, 0<r<1.

Ql=

Here B(z,r) is the closed disc with centre  and radius r. Our proof of
Theorem 1.2 will rely on some of the main ingredients of the method
of [IMMV], so we discuss it briefly here.

The proof in [MMYV] was based on a relation between the Cauchy
kernel 1/z and the Menger curvature c(z1, 22, 23) of a triple z, 2z,
z3 € C. By definition, ¢(z1, 22, 23) is the reciprocal of the radius of the
circle passing through z;, zo and z3. A formula, found by Melnikov in



REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS IN THE PLANE 139

[Me], says that

1
C(Z]_,ZQ,Z,?,)z - ’
; (Zo(l) - 20(3)) (Za(z) - 20(3))

where the summation is over all permutations of {1,2,3}. From this
it is not difficult to show, see [MV] or [MMV], that if v is a (positive)
Borel measure on C with compact support such that

(1.3) v(B(z,r)) <r, for v € Cand r > 0,
then
d 2
(1.4) sup/ ‘ / v(y) dv(z) < oo
e>0 C\B(z,e) * — Y

if and only if

(1.5) / / / c(w,y, 2)? dv(z) dv(y) dv(z) < oo.

On the other hand, it follows from a result of David and Léger, see
[L], that if v satisfies (1.5) and there is a Borel set F' C E such that
HY(FNB) <v(B) < CHYFnNB) < oofor BCF, then there are
rectifiable curves I'y, I's, ... such that

(1.6) V(F\UD) = 0.

The proof of Theorem 1.2 will be finished if we can use the non-
removability of E to find v satisfying (1.3) and (1.4) and F' as above
such that v(F) > 0. Remember that we only have to show that if E is
not removable, then H'(E NT) > 0 for some rectifiable curve I'. But
(1.6) and v(F') > 0 give that v(F NT;) > 0 for some ¢ while (1.3) gives
that v(B) < H'(B) for all B C F.

To find such a v we proceed as follows. Suppose F is not remov-
able for Lipschitz harmonic functions. Then there is a non-constant
Lipschitz function v : C — R which is harmonic in C\ E such that
(Au, 1) # 0 and Vu(oco) = 0, see [MP, Proposition 2.2]. Such a function
u has a representation, see, for example, [MP, Lemma 5.3],

u(x):/log|x—y|da(y), forx e C\ F,
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where o is a signed Borel measure with support in E. Hence

Vu(z) = ﬁda(y), forz € C\ E.

Moreover, one can show, see [MP, Lemma 5.3], that o is absolutely con-
tinuous with respect to H! with bounded Radon-Nikodym derivative
f. Since wu is Lipschitz, Vu is bounded. Thus

S fy) dH (y)
E |$ y|

is bounded in C\ E. This is the same as to say that the Cauchy
transform

1f(@)= [ ) a)
EX Y
is bounded in C\ E.

Moreover, fEde-Il = ¢(Au,1) # 0, and we may assume that
fE fdH' > 0. Almost all of the paper then consists of a modification
of the measure fdH'|E to a desired measure v. The construction of v
will be given in Section 4 and the proof of (1.4) will be completed in
Section 5. The modification uses stopping time arguments somewhat
similar to those in [C2]. For that we need a system of dyadic cubes in
E with some good properties. They will be constructed in Section 3.
Earlier similar systems were built in [D1], see also [D2], on regular sub-
sets of R™ and in [C2] on spaces of homogeneous type, that is, when
the measure is doubling. But now we do not have any doubling prop-
erty which causes considerable complications in our applications to the
Cauchy transform. The construction of the cubes will be done for an
arbitrary locally finite Borel measure in R".

In our modification result, which is stated in Section 2, we shall
consider complex valued functions f. Then we do not get a positive
measure, but we get a complex measure g dv where v is as above and
g is bounded and accretive in the sense that Reg > ¢ > 0. This
does not require much more work and turns out to be quite useful for
Theorem 1.1.

The main obstacle for extending Theorem 1.2 to higher dimensions
is the lack of the curvature method. The associated kernel in R™ is
|z|~™xz. We can still form the sum of permutations as above using
inner products, but when n > 3 the resulting function in R* x R* x R"
takes both positive and negative values which seems to make it useless.
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Some results and examples on this question in R” can be found

in [Ul], [U2] and [MP]. See also [F| for a negative result concerning
curvature in R™.

Let us also mention that at the time this introduction is revised,
there is another, very nice proof of Theorems 1.1 and 1.2, see [NTV].

2. Statement of the main technical proposition.
We are given a compact set £ C C such that

(2.1) 0< HYE) < +o0,

and a bounded H!'-measurable complex valued function f on E, with
the following property. Denote by p the restriction of H! to E (i.e., the
measure on C defined by pu(A) = HY (AN E) for all Borel sets A C C).
We assume that

(2.2) Ifle <1 and /fdu=a>o,
E

and that the Cauchy integral of f du, defined on C'\ E by

23) 7( (o) — [ LU

is bounded. Our main technical result is as follows.

Theorem 2.4. Let E, p and f be as above. Then there exist a positive
Borel measure v and a bounded Borel function g such that

(2.5) v(B(z,r)) < Cr, forallz € C andr >0,

(2.6) |g(=)|<C and  Reg(z) >C™', for all x € C,

(2.7) [oav= [ ran=a,

{ there is a Borel set F' C E such that

2.8
(28) C_lpguguonFandu(F)Z%,
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and
(2.9) /T*(g )2 dv < 400,

where T* is the maximal Cauchy operator defined by

(2.10) T*(gdv)(z —sup‘/ 9(y) dvly) .
e>01Jo\B(z,e) T Y

In this statement, the constant C' in (2.5) may depend on many
things, including the rate at which the densities r~!u(B(x,r)) stop
being too large when 7 gets small. If we know already that u(B(z,7)) <
M r for some M and all x € C, r > 0, and if we normalized our
statement by assuming that diam £ = 1, the proof will give a constant
in (2.5) which is less than C1 M, with C; an absolute constant. See the
comment to this effect a little above Lemma 4.56.

The constant C' in (2.6) and (2.8) can be taken to be at most
Cira ' u(E), where Cy is an absolute constant. See the remark near
the end of Section 4.2.

Our estimate for (2.9), just like (2.5), can depend somewhat wildly
on E, but again if we assume that p(B(z,r)) < Mr as above, our
proof will give an estimate on [ 7*(gdv)? dv that depends only on M,
diam E, ™ p(E), and ||T(f dp)]|co-

If we start with a function f which is real-valued, then we get a
function g which is real-valued as well, and the accretivity condition
(2.6) simply says that

(2.11) Ct<ylr)<C.

This is the case that we need for our application to Lipschitz harmonic
functions, but the statement for complex valued functions f is not much
harder to get, and may be interesting as well.

Note that Theorem 1.2 follows from Theorem 2.4 and the discussion
in Chapter 1. Because of (2.11), the measure g dv satisfies (1.3) because
of (2.5) and (1.4) by (2.9), while the condition on F' (for a multiple of
g dv) comes from (2.8).

It is possible that our proof will give slightly more precise, BMO-
like, properties, of T*(gdv) than (2.9), but it is not too clear how to
formulate this in a useful way.

The rest of this paper is a proof of Theorem 2.4.
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3. Dyadic cubes with small boundaries associated to a measure
in R”.

In this chapter we want to construct partitions of the support of
a given measure g into analogues of the dyadic cubes in R*. We shall
do the construction with very little information on the measure, even
if some extra information on g will be useful when we try to use our
cubes.

Let pu be a locally finite (positive Borel) measure on R™, and let E
denote its support.

Let Cy and A be two large constants. For the construction and the
statement of the theorem, we shall only require that

(3.1) Co>1 and A > 5000 Co R

say, but our small boundary condition will only become useful if A is
larger than some high power of Cy. In our application to Theorem 2.4,
we shall take A ~ C} and Cy very large, for instance.

Theorem 3.2. Let pu, E, Cy and A be as above. Then there exists
a sequence of partitions of E into Borel subsets ), ) € Ay, with the
following properties.

For each integer k > 0,

(3.3) E is the disjoint union of the “cubes” Q, Q € Ay ,

and

ifk <l, Q€ Ar and R € Ay,

(3.4) .
then either QN R =& or else R C Q).

The general position of the cubes QQ can be described as follows. For
each k > 0 and each cube () € Ay, there is a ball

(3.5) B(Q) = B(z(Q),r(Q))
such that

(3.6) z(Q) € E,

(3.7) AR <r(Q) < CoATF,

(3.8) ENB(Q)CQc EN28B(Q) = En B(z(Q),281(Q)),
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and
(3.9) the balls 5B(Q), Q € Ay, are disjoint.

Also, the cubes QQ € Ay have “small boundaries’. For each cube QQ € A
and each integer l > 0, set

(3.10) NEY Q) ={z e E\Q: dist(z,Q) < A7F1},
(3.11) N Q) ={re@: dist(z, E\Q) < A7F 1},

and

(3.12) N(Q) = NP (Q) UN™(Q).

Then

(3.13) p(Ni(Q)) < (CTHC 1 A) T u(90B(Q)) -

Finally let Gy, denote the set of good cubes ) € Ay for which

(3.14) 1(100B(Q)) < Co u(B(Q)) ,
and set By, = Ay \ G, We have that
(3.15) r(Q)=A"", when Q) € By,

and also

! i+ or a
(3.16) {“(1003(@) < Cy'p(1001 B(Q)) for all

[ > 1 such that 100" < Cy when Q € By, .

This completes the statement of our theorem. The constant C' in
(3.13) may depend on n, but nothing else. Of course the constants 28,
90, 100 and 3n + 1 are not optimal.

The last condition (3.16) will be useful. When @ € B, it is not so
easy to use (3.13), and we cannot really prevent situations where @ is
a cube with very small mass, very close to other cubes with very large
masses. In these situations it is hard to get estimates on IN;(Q)) that
depend on u(Q) alone, and we shall fight this back by saying that p(Q)
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was actually very tiny. (The constant Cjy ! where 100" ~ Cj, is much
smaller than any given negative power of Cy when Cj is large.)

Now we can start the construction of cubes. The rest of this chapter
will not interfere with the other parts of the paper.

Let pu, E, A, and Cy be given, as in the statement. We start
our construction with an approximation to Ag (i.e., we shall first work
at scale 1). A somewhat similar construction of “cubes of one gen-
eration” has been given by O’Neil in [O]. We first associate a ball
B(z) = B(z,r(x)) to each z € E, as follows.

Denote by G the good set of points « € E such that we can find a
radius r(x) such that

(3.17) 1<r(z)<Cy
and
(3.18) p(B(2,1007r(x))) < Co p(B(x,r(x))) .

For each = € G, choose r(z) as in (3.17), (3.18), and set B(z) =
B(z,r(x)). Set B= E \ G, and simply take

(3.19) r(z)=1 and B(x) = B(x,1), for z € B.
By the definition of G, we have that

u(100'B(x)) < Gyt w(100+1 B(x)),

(3.20)
for all [ > 0 such that 100" < Cj ,

when x € B.
Next we want to choose, for each = € E, two auxiliary radii r1(x)
and r9(x) such that

(3.21) %’r(a:) <ri(z) < %’r(a:) ,
(3.22) 257 (z) < ra(z) <267 (z),

and that we have the first “small boundary conditions”

(3.23) u({z€R": ||z — 2| - m(z)] < 7r(x)}) < Cw(E B(z)) ,
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for 0 < 7 < 1/10, and
(3.24) pH{zeR": ||z—z|—r(z)| <7r(z)}) < CTu(27B(x)).

for0 <7< 1.

The existence of r1(x) and r9(x) is easy to derive from the standard
weak-L! estimate for the maximal function of the measure on R which
is the image under the radial projection z — |z — 2| of 1)(13/10) B(x)
OT ft27B(x)- Here the constant C' does not even depend on n.

Choose (), i = 1,2, as above, and set B;(x) = B(z,r;(z)). Next
we use the standard “Vitali-type” covering lemma (as in [M, Theo-
rem 2.1] or see the proof on [S, p. 9]) to select a (discrete) subset I of
E such that

(3.25) the balls 5B(z), « € I, are disjoint
and
(3.26) Ec | J25B(x)

el

(so that the By(z), € I, also cover E).

For each x € I, denote by J(x) the set of points y € I \ {z} such
that By (y) meets Ba(x). Because (3.17) holds for all y € I, (3.25) yields
that

(3.27) J(x) has less than CCjy elements .

Set

(3:28) Bs(w) = Bo@)\ ( U Buw) =B\ (U Buw).-
yel\{z} yeJ(z)

Let us check that
13
(3.29) 10 B(y) C 90B(z), for all y € J(z).

If y € J(z), then (13/10) B(y) meets 26B(x) because it meets Ba(x),
and so |z —y| < 267(z) + (13/10) r(y). If (3.29) did not hold for
y, we would also have that |z —y| > 90r(z) — (13/10) r(y), and so
(26/10) r(y) > 64 r(x). In particular, r(y) > 20r(z), |z —y| < 26 r(x)+
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(13/10) r(y) < 37(y), « lies on 5B(y), and this contradicts (3.25). This
proves (3.29).

Hence we may apply (3.24) to x and (3.23) to each y € J(x) to get
that

(3.30) p({z € R* : dist (2,0B3(x)) < 7}) < CCy 7 u(90B(x))

for all z € I and 0 < 7 < 1/10. (Of course this uses (3.27), and the
fact that you cannot be close to 0Bs(x) without being close to 0Bz (z)
or some 0B1(y), y € J(x).)

Next put an order on I such that

(3.31) y < z in I whenever u(90B(y)) < u(90B(x)) .

(When p(90B(x)) = p1(90B(y)), we can decide whether < y or not at
random.) We define new sets By(x), € I, by

(3.32) Bi(w) = Ba() \ (| Baw).

Here again, the union looks infinite, but we are only interested in the
y € I such that Bs(y) meets Bs(z), and there are at most CC§ of
those.

Lemma 3.33. The sets By(z), x € I, are disjoint and cover E.

This is easy. The By(z), « € I, are disjoint because of the formula
(3.32) alone. To prove the rest, first observe that

(3.34) 5B(z) C Bs(z), forallz e I.

This is because 5B(z) C Ba(x) by the definition of rq(x), and 5B(z)
does not meet any of the Bi(y), y # x, because it does not even meet
the larger balls 5B(y) (by (3.25)).

Because of (3.34),

(3.35) the sets Bs(x), z € I, cover E.
Indeed, if z € E, then z € 25B(z) for some x € I (by (3.26)), and if it

does not lie in the corresponding Bs(z), it must be in B;(y) for some
y € J(z); (3.34) then says that z € Bs(y).
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The rest of Lemma 3.33 follows easily from (3.35) and the formula
(3.32).

Once again, the set J'(z) of all y € I such that y < x and Bs(y)
meets Bz (x) has at most CCY elements. We may apply (3.30) to z and
each y € J'(z), and we get that

(3.36)  p({z € R": dist (z,0B4(z)) < 1}) < CCE™ 7 (90B(x)),

for all z € I and 0 < 7 < 1/10. (We are also using the definition of <
on I.)

Notice that for each x € I, B1(z) C Bs(x) (for instance by (3.34)),
and since By (z) does not meet any of the B3(y), y # = (by the definition
(3.28) of Bs(y)), it is also contained in By(z). Thus

(3.37) % B(x) C By() C Ba(x) C 26B(x)
(because of (3.21) and (3.22).

The sets E N By(x), € I, are our first approximations to the
cubes @, Q € Ay. Now we want to do a similar construction at each
scale A7%, k > 0, and then modify our sets so that the nesting property
(3.4) holds.

Let us first apply the preceding construction at each scale A7F.
For each £ > 0, we get a set I, C E of centers and, for each = € I, a
ball B(z) = B¥(z) (if we want to be explicit) and a set By(z) = B¥(z)
with the following properties:

B(x) is centered on x, and has a radius

3.38

(3.38) r(z) € [A7F CoA™F],

(3.39) the balls 5B(z), z € I, are disjoint,
11

(3.40) 10 B(z) C Ba(z) C 26B(x),

(3.41) the sets By(x), € Ij, cover E and are disjoint ,

n({z € R™ : dist (z,0B4(x)) < TATF})

(3.42)
< CCF"Tu(90B(x))

for all K > 0, all x € Iy, and 0 < 7 < 1/10.
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Moreover, if x € Iy, then either
(3.43) p(100B(x)) < Co u(B(x))
or else r(z) = A™* and
(3.44) 1(100'B(x)) < Cyt (10041 B(x)) ,

for all [ > 0 such that 100" < C,.

Next we want to replace each set By(z) = BY¥(z), v € I, by
finer versions obtained by taking unions of sets By(y) from smaller
generations. We have to do this in a coherent way.

For each k > 1 and y € I, let h(y) denote the point z € I_; such
that y € B¥!(x). There is nothing very special about this choice; any
 such that ENBY 1 (z)N B (y) # @, for instance, would work as well.
It will be just as convenient to choose h(y) so that

(3.45) y € By (h(y)),

though.
Also set h'(y) = ho---oh(y) (I times) when k > [. Thus h!(y) €
I;;—i. Define, for each = € I, new sets DF(z), | > 0, by

(3.46) Dix)= |J Bi*'(y).
Y€l 4y
h (y)=x

(In particular, use the convention that DF(x) = By(z).) Our intention
is to take the limits of the DF(x), with k and z fixed and | — +o0, as
our almost final version of Ay.

For k and [ fixed, the sets h=!(z), z € I, form a partition of I},
and hence

(3.47) the sets DF(z), © € Iy, are disjoint and cover E

because of the corresponding properties (3.41) of the sets Bff“(y), Yy €
Ik—l—l-

Lemma 3.48. We have that

(3.49) dist (z, EN D (x)) < 26 CpA™F171
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for all z € le_H(x) (and all choices of k > 0, x € Iy, and [ > 0).

Indeed, let z € Df,,(x) be given. By definitions, there is an y €
Ijy141 such that R'*Tl(y) = x and 2z € B¥'Tl(y). Then |z — y| <
267(y) < 26CoA~F1=1 by (3.40) and (3.38). On the other hand,
y € BiT (h(y)) by the definition of & (see (3.45)), and so y € DF(x)
because h!(h(y)) = z. This proves the lemma.

Since A > 10, say, by (3.1), we can iterate the estimate from
Lemma 3.48 and get that

(3.50) dist (z, E N Dy (z)) < 50 CoA™F~lo=1,

for all z € 5, Df(x) and all Iy > 0. (Connect z to Df (x) by a
sequence of points in the DX (z), lp < m < [, and sum a geometric
series.)

Let us now prove an estimate in the other direction. We claim that

(3.51) dist(z, EN Dﬁl(x)) < 26 CoA™Ft for all z € le(a:) .

Remember that DF(z) is the union of the B¥(y), y € h=!(x).
Thus, by (3.38) and (3.40), it will be enough to show that each y €
h~(x) lies on D, (x). Let u € Iyyiq1 be such that y € B (y),
It is enough to show that h!*!(u) = x, or even that h(u) = y (because
we already know that h'(y) = x). Since y € B¥ ! (u), we know that
ly — u| < 26CoA~F=1=1 Since by (3.1) A > 26 C, this implies that
u € B(y) (by (3.38)), and then that u € By(y) (by (3.40)) and h(u) =y
(by the definition of h(u), see (3.45)). This proves our claim (3.51).

From Lemma 3.48 and (3.51) we deduce that the Hausdorff dis-
tance between the sets D} (x) and Df, | (x) is at most 26 CoA~*!. Thus
the closures of these sets converge (for the Hausdorff metric on compact
sets) to a set

(3.52) D(z) = D*(z) = lim Df(x).

[—+o0
The sets D(z), x € Ij, are almost our cubes @, Q@ € Ag, but we may
have lost the property that they are disjoint, and so we want to fix that.

Before, let us collect a few of the properties of the D¥(z)’s. Let us first
check that

(3.53) D¥(z) c EN28B(z), forallz €I} .
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Indeed, let z € D¥(z) be given. Then z = lim;_, o, 2 for some se-
quence {z} such that z; € DF(x). Because of Lemma 3.48 (or (3.51)),
dist (27, F) < 26 CoA=*~! and so z € E. From (3.40), the fact that
D(x) = B¥(x) and (3.50) (with Iy = 0), we deduce that |z — 2| <
26 7(x) + 50 CoA~F=1 for all [; (3.53) follows because A > 50 Cj.

Next we check that

(3.54) E= | D¥).

We already know that D¥(z) C E. If 2 € E, then for each [ there is
an x; € Ij, such that 2 € DF(x;) (because of (3.47)). Moreover, there is
only a finite set of points = € I} for which 28 B(z) contains z (because
the 5B(z) are disjoint and have comparable diameters). Since (3.53)
tells us that all the z;’s must be picked in this finite set, we see that

there is an x € Ij, such that z € DF(z) for infinitely many values of [.
Then z € D¥(z), and (3.54) holds.

Lemma 3.55. For ecach x € I}, ENB(x) C D¥(x), and EN B(z) does
not meet any of the D¥(2'), o’ € I \ {z}.

Because we already know that the D* ('), ' € I}, cover E, it is
enough to prove the second half of the statement. Let z € EN B(x) be
given, and suppose that z € D¥(z') for some 2’ € I,. Then we can find
a point z; such that z; € DF(z') for some [ > 1 and |z — 2| < r(z)/100,
say. From (3.50) (with Iy = 0) we deduce that dist (z;, E N Bf(2')) <
50CoA~*=1. Since A > 5000C, by (3.1), we get that dist(z, E N
B%(z')) < r(x)/50. Then E N B¥(z') meets (11/10) B(x), and since
(3.40) and (3.41) tell us that B¥ (') is disjoint from (11/10) B(z) when
' # x, we get that 2’ = x. This proves the lemma.

Lemma 3.56. For each x € I, and each > 0,

D)= (J D*'(y).
yelp
! (y)=a
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Indeed for each m > 0, by (3.46),

Dy = |J B2
z€R—™—l(z)

(3.57) - U (U Be)

yeh~!(z) zch=™(y)

= J D).

yeh—l(z)

The lemma follows by taking closures in (3.57), and then passing to the
limit.

Now we want to modify our sets D¥(z) to make them disjoint. We
need to be a little careful because we want some coherence between
the different values of k£, but nothing too interesting will be happening
here. Our future estimates will show that the various intersections of
the D¥(x), x € I, have measure 0, so we do not really need to worry
about the effect of our choices now on singular integrals, for instance.

First put any order on Ip. This does not need to be the same one
as in the definition of Bs(xz), but we really do not care. Then put orders
on I1, then I, then I3, etc., with the only constraint that

(3.58) y1 < y2 on Iy1 whenever h(y1) < h(yz) on Iy .

In other words, when we define the order on [j41, we decompose I

into the classes h=!(x), z € I, and make sure that they come out in the

same order on [ as the x € I. The order in each class is irrelevant.
For each k > 0 and each x € I, set

(3.59) Qw) = Q=) = D*)\ (U P*)

y€Ely
y<z

These are the cubes we wanted. To get back to the notations of Theo-
rem 3.1, we set A = {QF(z),x € I},}. We should now start verifying
the various conclusions of Theorem 3.2.

The fact that for each k& > 0, E is the disjoint union of the Q*(x),
x € I, is an easy consequence of (3.54) and (3.59). This takes care of
(3.3).
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Let us check now that if ¢ € I, and y € T4 is such that h(y) = z,
then Q(y) C Q(z). We already know from Lemma 3.56 that Q(y) C
D**1(y) C D*(x), so it is enough to check that Q(y) does not meet
any of the D¥(2'), 2/ < z (the sets that were removed from D¥(x) to
get QF(x)). If it did, then Q(y) would also meet D¥*+1(y’) for some
y" € Ixy1 such that h(y') = 2’ (because of Lemma 3.56). This is
not possible, because 3y’ < y (since z' < z). Thus Q(y) C Q(x), as
promised.

Now if y € Ij41 is such that h(y) # x, then Q(y) C Q(h(y)), and so
Q(y) does not meet Q(z) (by (3.3)). This implies the nesting property
(3.4). We even have that Q**!(y) C Q*(z) if and ounly if h!(y) = =.

The properties (3.5), (3.6) and (3.7) are just the same as (3.38)
(if we set B(Q(z)) = B(x) for x € I), while (3.8) follows from (3.53)
and Lemma 3.55. The balls 5B(Q), Q@ € Ay are indeed disjoint (as
needed for (3.9)) by (3.39). The small boundary property (3.10-13) will
be more interesting.

Fix z € I, let @ = Q(x) and let N;(Q) be as in (3.10-12). Also
denote by A4;(Q) the set of the cubes R € Ay such that N;(Q)NR # @.
We first consider the case [ = 1.

Lemma 3.60.

> w90B(S)) < CCF AT (90B(Q)) -
SeA;(Q)

First we want to check that
(3.61) dist (z,0B4(x)) <51Co A7F=1 ) forall z € N1(Q).

Let z € N1(Q) be given. Then there are points z; and z3, with z; €
Q(z) and z3 € E\ Q(z), such that z = 21 or 25 and |21 — 25| < A7FL,
Let o € Ij, be such that zo € Q(z2).

Since z1 € Q(x) C D*(z), we can find points of | J;5, DF(x) that
are as close as we want to z;. Because of (3.50), applied with Iy = 0,
those points are all within 50 Cy A=*~! of E N DE(x) = E N By(z). So
dist (21, Ba(z)) < 50 Cyp A==, The same estimate with 2z, gives that
dist (22, Ba(z2)) < 50 Cy A=%~1 and since By(xs) does not meet By(x)
(by (3.41)), we get (3.61).

Now we can prove Lemma 3.60. Each 90B(S), S € A;(Q), meets
N1(Q) by (3.8). Therefore their union lies entirely within 300 Cy A=F—1
of 0B4(x) by (3.61). By (3.42) this union has a measure at most
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CC% (CoA™Y) u(90B(z)). (Here we have applied (3.42) with 7 =
300Cy A™1; we have that 7 < 1/10 because of (3.1).) Also, a given
point of the union cannot lie in more than CC{' balls 90B(S), because
all these balls have centers at distances greater than A=*~1 from each
other, and at the same time at most 90 Cy A=*~! from the given point.
The lemma follows from all this. This proves also (3.13) for [ = 1.

Now we want to estimate pu(N;(Q)) for I > 1. (When [ =0, (3.13)
follows immediately from the fact that Ny C 90B(Q), by (3.8).) We
shall prove the estimate

(3.62) > w(90B(8)) < (CCF* AT 1(90B(Q))
SeA(Q)

which clearly is stronger than (3.13).

Let S € A;(Q) and choose z € SNN;(Q). Then there are z; and 29
such that z = 27 or 29, 21 € Q, 25 € Q' for some Q' € Ay, Q' # Q, and
|21 — 23] < A7F=L Clearly, 21, 22 € Ni(Q). Let R be the cube of Ag;_1
which contains z. Then R € A;_1(Q), as z € N;(Q) C N;—1(Q), and
S C R. Since |z; — 22| < A7*=! both z; and z» belong to Ny (R) and
so S € A;(R). This shows that

Ac | Am®).
ReA;_1(Q)

Because of this we can deduce from Lemma 3.60 that

> op(90B(S) < Y > u(90B(S))

SeA(Q) REA;_1(Q) SEAL(R)

<CCyttATY YT u(90B(R)).
ReA;_1(Q)

Iterating this we get (3.62).
Finally (3.14-3.16) is the same as (3.43-3.44). This completes the
proof of Theorem 3.1.

4. Construction of gdv.

Let E, u, and f be given, as in the statement of Theorem 2.4. In
this chapter we construct a measure g dv, and check that it satisfies the
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requirements (2.5)-(2.8) of the theorem (i.e., all the requirements that
do not concern the Cauchy integral). The construction itself will only
use the hypotheses (2.1) and (2.2). It is only when we are finished with
the construction that we shall start thinking about Cauchy kernels,
except for the detail that we shall keep the right to choose the constant
Cy large enough for the arguments of Chapter 5 to work.

4.1. The construction itself.

The first thing we do is to apply the construction of Chapter 3
to find collections of cubes @), Q € Ay, as in Theorem 3.2. As was
explained before, we want to keep the right to choose Cj enormous
later (just after (5.29) and before (5.148)); on the other hand we can
already decide to take

(4.1) A=CCj",  with C asin (3.13).

Without loss of generality, we can assume that diam £ = 1, and then
our construction gives that Ay is composed of just one cube Q°. We
shall often use the following conventions about cubes. The generation
of a cube @ is the integer k(Q) such that @ € Ayg). Note that we
shall always consider () as a subset of E, plus the information of its
generation. Thus it could be that cubes from different generations
correspond to the same set of F, but we shall still think of them as

different cubes. R
If k(Q) > 1, the parent of @ is the cube @ of Ayg)—1 such that

Q C @ The brothers of @ are the other cubes of Ay that are

contained in @ The children of @) are the cubes of Ay )41 that are
contained in @. (This does not require k£(Q) > 1.)
For each Q € A = > Ak, set

(12) @ =0(;B@).

where B(Q) is the ball associated to @) in the statement of Theorem 3.2.
This circle has the advantage that

(4.3) dist (C(Q), E\ Q) > % AH@)

by (3.7) and (3.8).
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Our first concern will be to get rid of the places where the density
of u is too large. For each x € E, set

(4.4) M, (x) = EEIO) r i u(B(z, 1)) = Eg}g r'HYEN B(z,r)).

Let M be a large constant, to be chosen soon, and set
(4.5) OM)={zecE: M,(x)>M}.

Because H'(E) < co, M, (z) < +oo for p-almost every z € E and so
we can choose M so large that

(4.6) pO(M)) <

where « is as in (2.2). With this choice of M done, let us start to
describe a few categories of cubes which we want to use in a stopping-
time construction.

Denote by HD (high density) the set of maximal cubes € A that
are contained in O(M). (When two cubes correspond to the same set
of E, the “largest one” is by definition the one from the earliest (i.e.,
lowest) generation.)

Let 0 < ap < a1 < a be two small constants, to be chosen later
(around (4.68)). Denote by MI (medium-sized integral) the set of max-
imal cubes () with the property that

(4.7) a0 1(Q) < Re /Q Fdp < a1 p(Q).

Next denote by LI (low integral) the set of maximal cubes ) with the
properties that

(4.8) () is not strictly contained in any cube of HD U MI,
and
(4.9) Re/ fdp <app(Q).

Q

(If @ = Q' as sets but £(Q') < k(Q), we still say that @ is strictly
contained in @Q'.)
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Note that if @) € LI, then k(Q) (the generation of Q) is greater or
equal to 1, since the top cube Q° = E does not satisfy (4.9).
Denote by PLI the set of parents of cubes in LI. We have that

(4.10) Re/ fdp > a1 p(Q), when ) € PLI,
Q

since we know that @ is not contained in any cube of MI (because
some child of @ satisfies (4.8)), and also that @) does not satisfy (4.9)
(because it satisfies (4.8)). We shall essentially want to replace all cubes
of HD UMI U LI by circles C(Q), but we want to get organized first.

Let I; denote the set of maximal cubes of HD U MI that are not
contained in any cube of LI. Thus

(4.11) the cubes of I U LI are all disjoint from each other.

(The cubes of LI are disjoint by maximality and are never strictly con-
tained in cubes of I;, by (4.8), and the cubes of I; are disjoint from
each other by maximality and are never contained in cubes of LI, by
definition.)

REMARK 4.12. If @ is any cube such that Q@ C O(M) or Re [, fdp <
a1 (@), then @ is contained in some cube of I; U LL.

Indeed, if ) is contained in some cube of HD UMI, then it is either
contained in a cube of I; or else the maximal cube of HD U MI that
contains it has been removed because it was contained in some cube
of LI. In both cases () is contained in a cube of I; U LI. If @) satisfies
one of the properties of the remark but is not contained in any cube
of HD U MI, then it satisfies (4.9) because it does not satisfy (4.7). It
is contained in a maximal cube R that satisfies (4.9); R satisfies (4.8)
as well because () already does. In this case R lies in LI, and we are
happy.

By our choice of M, recall (4.6), F is not contained in O(M). Then
the top cube Q° is not in I; U LI. We shall use later the fact that

(4.13) 1(100B(Q)) < CA™*@ for all the cubes of I; U LI and
. all the cubes that are not contained in any cube of I; ULI,

which follows from the fact that if @ is as in (4.13), then either @) =
Q" or else the parent of ) cannot be contained in a cube of HD, by
Remark 4.12.
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Next set I = I; UPLI. Note that the cubes of I are not necessarily
disjoint now: cubes of PLI can contain other cubes of I. For each cube
Q) € I, define the “operating generation kg” by

ko = k(Q), ifQel,
ko =k(Q)+1, if Qe PLI.

We put an order on I such that @) comes before Q' if kg < k¢, and
also, when kg = k¢, Q comes before Q' if Q@ € PLI and Q' € I. (A
cube cannot be in PLI and I; at the same time, by (4.11).) Now denote
by Qn, n > 1, the n*® cube of I for this order. Also set k, = kq., -
Thus k,,+1 > ky,, and if k,,41 = k,, we cannot have that @),, € I; and
Qn+1 € PLL In what follows, we shall always act as if I was infinite. If
this is not the case, simply truncate the construction described below.

We want to define a sequence of measures F;,,. We shall do this by
induction on n. Each F;, will be of the form

(4.15) F,=p, fdu+ Z O, AV,

m<mn

(4.14)

where the a,,’s will be complex numbers, each v, will be a positive
constant multiple of the arclength measure on some circle C,,, and p,,
will be a Borel function on F such that

(4.16) 0<pn<1.

Moreover, the function p, will be constant on each of the cubes Q,,,
m > n.

Now let us construct the measures F,, for good. We start with
Fy = fdup (i.e., no measure vy and pp = 1). Now suppose that we
already know Fj,_1, and that it has the form described above, and let
us construct F,.

The first case is when ),, € I;. In this case we simply want to
replace @, with C,, = C(Q,). We want to do this without changing
[ F,,, though. Denote by p} the constant value of p,_q1 on @Q,. We
take

. Q)

4.17 dvy, = pf —L qHYC,, ,
( ) v Pn Hl(Cn) |
(418) Pn = Pn-1 1E\Qn )
(4-19) Qp = PJ(Qn)_l fdu,

Qn
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and define F,, by the formula (4.15). Thus
(4.20) F,=F,1—1q, pn-1fdp+ oy dvy, .

It is easy to see that Fj, is of the type described above. In particular,
if m > n, then p,,_; was constant on @), by induction hypothesis, and
so it is enough to check that (),, does not meet @Q,,. If Q,, € I, this
follows from the disjointness of the cubes of I; (by (4.11)). Otherwise
Q.. € PLI, and hence k,, > k, by definition of our order. Now if
Qm NQy, # I, then Q,, C @, and this is not possible because @,
contains some cubes of LI, which are disjoint from @,, by (4.11).
Let us collect a few easy facts for future reference

(4.21) vl = pp 1(@Qn) < p(Qn) ,

(4.22) / / -

(compare (4.17), (4.19) and (4.20));
(4.23) lay,] <1
(by (2.2)). Let us also check that

(4.24) Rea,, > ap .

If Q,, € MI, this follows from (4.7). Otherwise, we are not worried
either; we can use the fact that @,, € I, and hence is not contained
in any cube of LI. Since @, is not strictly contained in any cube of
HD U MI (it is a maximal cube of HD U MI), it cannot satisfy (4.9)
because otherwise it would be in LI. This proves (4.24).

Now let us define F,, when (),, € PLI. Some amount of notation
will be useful. Denote by A,, the set of the children of @),, that lie in
LI. These are the cubes @ such that k(Q) = ky, Q@ C Q,, and @ € LL
Also let Ay denote the set of the children of (), that are not in LI. Set

(4.25) H,=J @ ad G.= ] @.

QEA, QEA?

Thus @, is the disjoint union of H,, and G,,. We want to remove H,,
and keep G,,.
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Choose any cube Q}, € A,,, and take C,, = C(Q}). Also choose

(4.26) dv,, = p, Hl(C ) dH"|C,, ,

where p} still denotes the constant value of p,_1 on @, (which exists
by induction hypothesis). We want to define p,, by

pn—1(x), when z € E\ Qy ,
(4.27) pn(z) =< 0, when © € H,,,

(1-06,)pn_1(z), whenze€ G, ,

with a number 6,, such that
(4.28) 0., Re/ fdp=aop(H Re/ fdu.

Let us check that Re, c. fdp # 0, and at the same time derive some
estimates on 6,,. First observe that H,, is a disjoint union of cubes of
LI, and so (4.9) tells us that

(4.29) Re /H Fdp < ag p(H,) .
Also
(4.30) Re/ fdp > a1 p(Qn)

n

by (4.10). Then

Re/ fdp=Re fdu—Re/ fdu
Gn Hn

Qn
(4.31) > a1 (Qn) — Re fdu
H,
> a1 ((Qn) — ao p(Hy)
> (al - 0’0) /'I’(Qn) .

From this we deduce that (4.28) defines a unique #,,, and also that 6,
has the same sign as ag u(Hy,) — Re fH fdu, i.e., is nonnegative by
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(4.29). From the second line of (4.31) we deduce that Re [, fdu is
larger than the right-hand side of (4.28). Thus

(4.32) 0<6,<1.

We also have the brutal estimate that
oo a(Hn) ~Re [ fdu< (a0-+ 1) plH,)
Hn

(since || f|loo < 1), from which we deduce that

ap+ 1 p(H,)
(4.33) o= a1 —ag p(Qn)

with the help of (4.31).
We may now return to the definition of F;, when @,, € PLI. We
already defined v,, and p,,. Now take

(4.34) Rea,, =ag ,

(4.35) Imao, = ;J,(Hn)_1<1m/H

fdu+9n1m/ 7 dp)
mn GTL

and define F;, by
(436) Fn —l'pn—-1— ]-Hn Pn—1 fd/l' - gn ]-Gn Pn—1 fd/l' + an dl/n .

Then (4.15) follows from the definition (4.27) of p,, and our induction
hypothesis.

Now we should check that Fj, has the form described above. First,
0 < pp < 1because 0 < 0,, < 1. Let us check that p,, is constant on each
cube Qp,, m > n. If k(Q,,) > ky, then this follows from the induction
hypothesis, and the fact that the cubes that compose H,, and G,, are of
generation k,. Otherwise, @, € PLI and k,, = k,,, because our order
on [ is such that k,, > k,. In this case Q,, and Q,, are disjoint because
they are of the same generation, and p, = p,—1 or Q,,. Thus F), has
the form required for the continuation of the induction.

This completes our definition of the sequence F;,. If I is finite,
we simply stop when there is no @), left and adapt the rest of this
proof in the obvious way. Let us also collect a few estimates from the
construction of F,, when @,, € PLI. Obviously (4.26) gives

(4.37) lvnll = Ph n(Hn) < p(Hy),
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we deduce from (4.34), (4.35), (4.33) and the boundedness of f that
(4.38) lan| < C'.

Let us check that

(4.39) /Fn:/Fn_1

also when @, € PLI. Replace p,_1 by its value p} on @, in (4.36),
and also recall that ||v,|| = p p(H,) by (4.37); we see that (4.39) is
the same as

(4.40) n py, 1(Hyp) = 02/ fdp+py, On/G fdp.
Hn n

Now (4.40) holds because of (4.34) and (4.28) for the real part, and
(4.35) for the imaginary part.

Now we wish to define our function g and measure v. Of course
g dv will be the limit of the measures F,,, but it will be better to spend
some time and define g and v quietly.

First observe that the functions p, are a decreasing sequence of
nonnegative functions on E. Denote by p., the limit of this sequence.
Obviously, 0 < poo < 1 on E. Also set dpioo = poo dpr. This is the first
half of dv. The second half is the sum of the measures dv,,. In other
words, we take

(4.41) dv = dps + Z dv, = poo dp + Z dv,, .
Set
(4.42) Ex={z€E: ps(x)#0}.

Our intention is to take g(z) = f(z) on Fo and g(z) = a, on Cy,
but this will be more pleasant to do once we know that those sets are
disjoint. It will also be useful to know that they are reasonably far from
each other.

Lemma 4.43. We have that

1
(4.44) dist (Cn, Foo) > 5 A Fn
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and
(4.45) dist (C, Cp) > i max {A~Fn | A=kn )

for all n and m # n.

First suppose that @, € I;. Then C, = 90(B(Q,)/2) and k, =
k(Qy). In this case,

(4.46) dist (Co, E\ Q) > %A‘k"

by (4.3), and (4.44) follows from this (recall that p(x) = 0 on Q,, by
(4.18)).

When @,, € PLI, C,, = C(Q},) for some child Q) of @y, and k,, =
k(Q) by (4.14). Since H,, contains @} because @} € LI, (4.3) implies
that

1
(4.47) dist (C,, E \ Hy) > 5A—kn,

(4.44) follows from this because p(z) = 0 on H,,, by (4.27). Thus (4.44)
holds in all cases.

Clearly it is enough to prove (4.45) when n < m. By definition of
the order on I, k,, > k, and the maximum in (4.45) is A=F». Let Q
and Q" be the cubes such that C,, = C(Q) and C,, = C(Q’). Thus Q
is @, itself, or a child @} if @,, € PLI, and similarly for Q'. A first
case is when k,,, = ky,, i.e., Q and @' are of the same generation k,.
Then () and Q' are disjoint (the only “dangerous” case would be when
Q, € PLI and Q" C Q,, but then Q" € I; and @Q € LI so they are
disjoint). In this case we may use the fact that 5B(Q) and 5B((Q)’) are
disjoint (by (3.9)), and (4.45) follows from the lower bound (3.7) on the
radii of B(Q) and B(Q').

When ky, > ky,, Q' is still disjoint from () (because they are both
cubes of I; U LI, and they are different because they are from different
generations). Then dist (Q’,C,,) > A7% /2 by (4.3), and since the cen-
ter of Cp, belongs to Q' and diamC,, < Cy A= Fn < A=Fn /4 by (3.7),
we get (4.45). This completes the proof of Lemma 4.43.

An easy consequence of this lemma is that the circles C,, are disjoint
from each other and from F.,. This allows us to define g on F,, U

(Un Cn) by

(4.48) { g(z)=a,, onC,,

g(x) = f(z), on Ee .
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Next we want to check that g and v satisfy the properties required for
Theorem 2.4, except for the last one which is related to the Cauchy
kernel.

4.2. The easy properties of gdv.

We shall start with the upper-regularity condition (2.5). From now
on throughout the rest of the paper C' will denote constants which may
change from line to line and which may depend only on Cy, A, M, a,
ap, a1, u(E) and My, defined in (4.87). (But recall that we can fix Cj
and A as large absolute constants and ag and a; will depend only on

a1u(E).
Lemma 4.49. There is a constant C > 0 such that

(4.50) foo(B(z,7)) < Cr, forallz € C andr > 0.

Since F is compact (and even has diameter at most 1 by our earlier
normalization), it is enough to prove (4.50) when r < 1. Cover E N
B(x,7) by cubes @ € Ay, where k is chosen so that A=% ~ r. You need
less than C' cubes @, because all the balls 5B(Q) are disjoint and have
radii greater or equal to 5A™", while the balls 28 B(Q) all meet B(z,r)
(when @ meets it) and have radii at most 28 Co A=%. We have that
w(@Q) < CA=F < Cr for all the cubes of our collection that are not
contained in any cube of I; U LI, by Remark 4.12. (If u(Q) > C A=F
with C' large enough, then @ is contained in O(M).) So the total mass
of these cubes is at most C'r. On the other hand, if @) is contained in
some cube of I; U LI then po = 0 on @ (because poo(z) = 0 on all
cubes of Iy ULI, by (4.18) and (4.27)). Hence the total mass of these
cubes for p is zero. This proves the lemma.

Now we want to control the measures v,,. We start with estimates
on the position of the cubes @),,. We claim that

(4.51) Y, u@<cor,

QeI ULI
Q meets B(z,r)
AR D <p

for all z € C and r > 0.
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Since diam E' < 1 by our earlier normalization, we can safely sup-
pose that » < 1. If Q € I; U LI, then its parent Q) is not contained
in O(M); this follows from Remark 4.12 and the disjointness property
(4.11). If Q meets B(z,r) and A=%®@) < r then Q C B(z,Cr) if C is
large enough, and then B(x, C'r) is not contained in O(M) either. Thus
either the sum in (4.51) is empty, or else u(B(z,r)) < p(B(z,Cr)) <
M C'r, and (4.51) follows from the disjointness property (4.11).

Let us also record that

(4.52) > wHy)<Cr,

Qn€PLI
Qn CB(.T,T‘)

for all x € C and r > 0. This is an easy consequence of the proof of
(4.51), because the cubes @,, are not contained in O(M) and the sets
H,, are obtained from the cubes of LI by regrouping brothers.

We are now ready to prove that v satisfies (2.5). Recall from (4.41)
that v = poo + Y, Vn- Because of Lemma 4.49, it is enough to show
that

(4.53) Zyn(B(x,'r)) <Cr, for all z € C and r > 0.

Since by construction all the circles C,, lie in a fixed ball of radius C' (and
even with C' = 1), it is enough to prove (4.53) when r < 1. Let B(z, )
be given, and start with the set A7 of integers n for which @, € I, C,
meets B(z,r), and A=*(@) <, Then

(51 Y wmBE)) < Y Il < Y wQu) <Cr

neN; neN neN;

by (4.21) and (4.51). Similarly, if A is the set of integers n for which
Qn € PLI and Q,, C B(z,2r), then

(455) Y wB@) < Y vl £ S alHa) <O,

neNs, neN> neNs

by (4.37) and (4.52).

Thus we are left with the set N3 of integers n for which C,, meets
B(xz,r) and either Q,, € I; and A=*@») > r or @, € PLI and is not
contained in B(z,27). In this last case we also have that A=F» > r/C,
and (4.45) tells us that N3 has at most C' elements. Thus it is enough to
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prove that v, (B(z,r)) < Cr for each single C,,. This is an immediate
consequence of the fact that the densities

. 1(Qn) . B(Hy)
pn Hl(Cn) and pn Hl(Cn)

in (4.17) and (4.26) are less than C', which follows from (4.13) applied
to @Qy,.

Thus v satisfies the upper regularity condition (2.5).

The constant that we obtain in (2.5) may depend wildly on E,
because it depends on our initial choice of M, as in (4.6). On the other
hand, if we start from a measure p that already satisfies (2.5) with a
constant C7, then we can take M < CC; and v satisfies (2.5) with a
constant at most C’ C7, where C' and C’ are absolute constants. This
follows from the proof above, together with the fact that the constants
that come from the construction of dyadic cubes can be taken to be
absolute constants.

Next we want to prove the accretivity condition (2.6). When x €
Cn, 9(x) = ay, and so |a,| < C (by (4.23) or (4.38)) and Rea,, > ag
(by (4.24) or (4.34)). When z € E, g(z) = f(z) and so |g(x)| < 1 by
(2.2). We shall not be able to prove that Re f(x) > a¢ everywhere on
E,, but only p-almost everywhere. Of course this is enough, because
modifying g on a subset of y-measure zero of E, will not alter the other
properties required for the theorem. We shall use a simple variant of
the Lebesgue density theorem.

Lemma 4.56. For each € E and each k > 0, denote by Q(x, k) the
cube of Ay that contains x. Then

k— +o00

(4.57) fla)= tim (n(Q.k) ™" /Q 7).

for p-almost every v € E.

Let us first say why (2.6) follows from this lemma. Let 2 € E be
such that (4.57) holds. If Re f(z) < ag, we can find a small cube @) that
contains x and for which Re fQ fdp < app(Q). Then Remark 4.12 says
that @ is contained in a cube of I; ULI. Since p(x) = 0 or all cubes of
I; ULI (by the definition of p,, on Q,,), x cannot lie in E.,. This proves
that Re f(x) > ao (and hence Reg(z) > ag) p-almost everywhere on
E. This completes the proof of (2.6), modulo the lemma.
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The proof of Lemma 4.56 is standard. We certainly have (4.57)
everywhere for all continuous functions f. Because of the standard
approximation argument, it is enough to prove a weak-L' estimate for
the associated maximal function. Let us make this more precise.

For each L!-function h on F, define the maximal function Mh by

(458)  Mhla) = sup (@ ) ! /Q L )

for all z € E, and where Q(z, k) is as in the statement of Lemma 4.56.

For each A > 0, set U(A) = {x € E: Mh(z) > A}, and denote by
A(A) the set of maximal cubes of A = J,, Ay such fQ |h| dp > A p(Q).
Each cube of A(\) is clearly contained in U(A), and conversely every
point of U(A) lies in a @ € A(X). Thus U()) is the disjoint union of
the cubes of A(\), and

ReA(N)

(4.59) <At ) /Q|h|du

QeA(N)

< )\_1/ \h|d .
E

This is the weak-L! estimate that we needed to deduce (4.57) for all
f € L' from the case of continuous functions. This completes our proof
of (2.6).

The next property (2.7) follows from (2.2), (4.22) and (4.39) by
taking limits. The reader should not worry about convergence: it is
easy to see that ) ||F,+1 — F}|| converges by (4.15), the fact that p is
finite and the sequence {p,} is decreasing, and because |a,,| < C and

Sl € 30 w@+ D alHy) < +oo

Qel Qnr€ePLI

by (4.21), (4.37), (4.51) and (4.52) (or directly (4.11).)
Next we want to prove (2.8). Set

(4.60) F={v€Fbx: pol(z) 27},
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where 7 = a/(4 u(E)). Note that dv = p dp on F' because F' C Fo,
and the circles C,, live away from E,. Clearly 7dy < dv < dp on F,
and so it is enough to prove that v(F) > a/2.

We know from (2.7) that [gdv = a. Also v(F) > [ Re fdv =
[ Regdv because |f| < 1 and f = g on Ey. Thus it is enough to
prove that

N

(4.61) Re/gdl/—Re/ gdv <
F

Recall that dv = poo dp + >, dv, and that g(z) = f(z) on Ey and
g(x) = a,, on C,,. Then (4.61) is equivalent to

(4.62) Re /E .

o0

IN

a
OOd n R n .
fr u+;llv IRean < 3

Note that peo () < 7 on Es \ F, by the definition of F'. Hence

(4.63) Re /E f poe s < | floa ™ (B) < §

oo

When @Q,, € PLI, Rew,, = ap by (4.34) and ||v,|| < p(H,) by (4.37).
Then

(4.64) \lvn|| Re ap, < ao u(Hy) , when @, € PLI.

When Q,, € I, ||v.]| = p n(Qr) by (4.21), where p} is the constant
value of p,_1 on Q,,, and «,, = p(Q,)"?! an fdp by (4.19). So

(4.65) vl Reap = o Re/ fdu,  when Q, €.
Qn

If furthermore @),, € MI, then it satisfies (4.7) and so ||v,||Rea, <
prar i(Qrn) < ay p(Qy). Otherwise we can only say that ||v,||Rea,, <
(@) (because |f| < 1), but we have the advantage of knowing that
Q@ € HD. Altogether,

Z [vnl| Re an < ag Z p(Hn) + a1 Z 1(Qn)

Q. €PLI Qnel;NMI

+ Y Q).

QneliNHD

(4.66)
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Recall from (4.11) that the cubes of I; ULI are disjoint. Also,

S uH) = Y w@Q).

Qr€EPLI QELI

because the sets H, are obtained from the set of cubes of LI by re-
grouping brothers. Hence

(467)  ag S0 p(Hn)ter Y Q) < arp(E),

Qn€ePLI Qnel,

and we can make this at most a/8 by taking a; small enough. We can
choose a1 = a/(8 u(FE)), for instance.

The last sum is taken care of by noticing that the cubes of I; "HD
are disjoint and contained in O(M). Then

(4.68) > w@Qn) < pOMn) < ¢
QnelL,NHD
by (4.6).

The desired estimate (4.62) follows from (4.67), (4.68), our choice
of a1, (4.66) and (4.63). This completes our proof of (2.8).

We did not choose ag yet. In fact, any value of ag in (0, a;) will
work, but for the sake of definiteness let us choose ap = a1/2.

We are now finished with the verification of the “easy properties”
of g and v. Note that the constant C' in (2.6) and (2.8) can be taken
to be < (]} a_l,u(E) for some absolute constant C4, as we announced
after the statement of Theorem 2.4. The remaining property, i.e., the
L?-estimate for the maximal Cauchy integral of g dv, will keep us busy
for the rest of the paper.

4.3. L?-estimates: reduction to positive functions.

Our proof that T*(gdv) € L?(dv) will be in the same spirit as the
estimates in [C2], even if we pay a rather high price for the fact that
we are not working with a space of homogeneous type.

In this section we reduce the proof of (2.9) to the study of certain
positive functions. The L2-estimates for these functions will be derived
in the last chapter, using the small boundary properties of our cubes
(which we did not use so far).
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We start with a few notations. First, it will be convenient to define
H,, even when @),, € I. In this case we simply set H,, = @),,. Also set
G, = @ when Q,, € I;. With this convention,

(4.69) the sets H,,, n € I, are disjoint ,

because the sets H,,, Q),, € PLI, were obtained from the cubes ) € LI
by regrouping brothers, and by (4.11). Also

(4.70) > uH,)<Cr,
Qn.CB(z,r)
A"k <y

for all z € C and r > 0, by (4.51) and (4.52). Set
(471) $n = Fn - Fn—l )
for n > 1. With our unified notations, (4.20) and (4.36) reduce to

(4.72) on =—1g, pp_1 fdp—0,1q, pn—1 fdp + oy, dv,, .

We do not have to define 6,, when @,, € I, since G, is then empty. We
shall often use the estimates

(4.73) lan| < C and |l < p(Hy),

which follow from (4.21), (4.23), (4.37) and (4.38).

Denote by BLI (brothers of LI) the union of all the sets A%, where
Qn € PLL. (The definition of A} is given just before (4.25).) This
is the set of the children of the cubes of PLI that are not in LI. We
should be a little more careful with the cubes of BLI, because they are
not necessarily disjoint. Set

74 { 0(Q)=1, when QeI ULI,

6(Q)=0,, when @ € A and @),, € PLI.

There is a potential conflict here, because a given cube @ could be in
BLI and in I; at the same time. In this case 6(Q) will be defined twice.
This will not be a problem; it will always be clear from the context
which 6(Q) we need to take, and the worse thing that may happen is
that a given cube will appear twice in a same sum, once with 6(Q) =1
and once with 6(Q) = 6,,.
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Note that for each @, € PLI,

(4'75) Z Q(Q) /'I’(Q) =0n /’L(Gn) < Cu(Hn)

QREA]

by (4.33). Then

(4.76) > Qu@<Cr,

QEBLI
QCB(z,r)
AR@) <y

when z € C and r > 0, because the left-hand side of (4.76) is less than

YD Q) @),

Q.ePLI QEA;
QnCB(z,Cr)

which is less than C'r by (4.75) and (4.52).

We are now ready to define the positive functions that will control
T*(gdv). For each cube QQ € A, define a normalized inverse distance
function pg by

(4.77) po(z) = (1 4+ A¥@dist (x,Q)) ™1,

and then set

. du(y)
478 == )
(478) ) = nalw) [ 1)
for all x € C. Also set
(4.79) 2Q ={yc E: dist(y,Q) < A~*@)}
and

. du(y)

4.80 he () = .
(4.80) 5 (@) /QQ\Q o

The next proposition gives the control on T*(gdv) that we want on
E.
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Proposition 4.81. If x € FE,, then

T (gd)(@) <C+C Y 0Q) lmgla)eh(x)

Q€I ULIUBLI

+C ) 0(Q) 1g(w) hy(x).

QEBLI

(4.82)

We shall also have to estimate T*(g dv) on the circles C,,, and so we
need a variant of Proposition 4.81 for x € C,,. For each @ € I;ULIUBLI,
let J(Q) denote the set of integers m > 1 such that @), does not meet
Q, or else Q,, € PLI and Q C GG,,,. Then set

(4.83) fole)= Y 1, (v)eh(a),
neJ(Q)

and also

(4.84) ho(r)= Y 1c,(z)hi(z),
n:Q,CQ

when () € BLL

Proposition 4.85. If z € |J,,Cy,, then

T*(gdv)(z) <C+C > 0(Q)eg()

Q€I ULIUBLI

+C ) 0(Q) hg(w).

QEBLI

(4.86)

In this section we shall prove the two propositions; the functions
e and he will be estimated in Part 5.

First we want to use the boundedness of T'(f du) to get estimates
on truncated integrals. Our assumption from Chapter 2 says that

(4.87) My =sup {|T(fdu)(z)|: x € C\ E} < +o0,

where T'(f dp) is as in (2.3).
For each finite complex measure ¢ on C and all € > 0, set

de(y)
\B(z,e) * —Y ’

(4.88) T p(z) = /(C
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for all x € C.
Lemma 4.89. We have that

(4.90) T°(f dp) ()] < Mo + Cilig (r=t u(B(z,r))),

for all x € C.

To prove this, let  and € be given, and set

B fy) dp(y)
W) = /(C\B(m,s) z-y

for z € B(x,e/2). Then

< dsup (r~ u(B(z,)))

(4.91)

by the usual computation. (Cut the domain of integration into annuli
Ap: {y:2ke <]z —y| < 2FFle}, k=0,1,..., note that

|z — x|

<2 2k -1
|z —y| |z — y|

on Ay and p(Ag) <28 e sup,o. (r~tu(B(z,r))), and sum a geomet-
ric series.) Also, if z € B(z,¢/2) \ E,

(4.92) [T d)e A= ‘»/B(:n &) AT ‘ = /B(m,s) |i“—(yy)| '

The mean value on B(z,e/2)\E of this last integral is (with | B| denoting
the Lebesgue measure of B)

! dp(y)
‘B(x’ %)‘ /B(w,e/z)\E (/B(m,s) |Zu—yy|> o

d
(4.93) <472 / ( / —= ) dpy)
B(z,e) “J B(z,e/2) |z =yl

< Cetu(B(ze)).
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Thus we may choose z € B(z,e/2) \ E so that |T'(fdp)(z) — h(z)| <
Ce tu(B(z,€)). Since we already know that T'(fdu)(z) < My, (4.90)
follows from this and (4.91).

Recall from (4.18) and (4.27) that p(x) = 0 on all cubes of I; ULL
Thus

(4.94) E does not meet any cube of I; ULI,

and Remark 4.12 says that E., does not even meet any cube Q) such
that Q@ C O(M). (See the definitions (4.4) and (4.5).) From this we
deduce that

(4.95) M, (z) = Eli%) (r~'uw(B(=z,1))) < C, for z € E

Indeed, we can take C' = 2M because if u(B(z,r)) > 2Mr, then
w(B(y,2r)) > M 2r for y € B(x,r), whence B(x,r) C O(M) and all
sufficiently small cubes containing x would also be contained in O(M).

When z € C,, for some n, we may use the fact that the parent @n
of @y, is not contained in I; U LI, plus Remark 4.12, to find that @, is
not contained in O(M). Because of this

(4.96) p(B(xz,r)) < Cr, when z € C, and r > A=k

(See near (4.14) for the definition of k,,.)
From (4.95), (4.96) and Lemma 4.89 we deduce that

(4.97) T*(fdu)(z) < C, for x € E
and
A~ kn
(4.98) |T¢(f du)(z)| < C, for z € C,, and € > =
say.
Now we want to estimate 1¢¢p,, with ¢, = F,, — F,,_1, when

x € By or x € C,, for some m # n. In both cases Lemma 4.43 says
that dist (z,C,,) > A% /4. Let us first use (4.72) and estimate brutally

dp(y) / dp(y) C u(Hy)
T, (x §/ + 0, + —
Tron@ls | g T ), ol T @t

SC/ du(y) +9n/ du(y) 7
o, T =Yl G, T —y|

(4.99)
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by (4.73), and then the fact that 1/|z —y| > C~1dist (z,C,,) ! for all
y € H,, because dist (z,C,,) > A~% /4 and diam (H,, UC,,) < CA™ %=,

We do not want to use (4.99) in all cases. In particular, when x is
far from @),,, we wish to “integrate by parts” and get an estimate with a
better decay. Let us assume that dist (z,Q,) > A7F*12 say, and that
e < dist (z,Q, UCy). In this case

T¢pn(z) = / donly)

r—y

i-€., there is no truncation. Pick any point yy € C,; then

dn
/ only) _
T —Yo
because [ dp, =0, by (4.22) or (4.39). Hence

B y yo deon(y)
Qpn |

) (z — yo)
< ||cpn||diam (Qn U Cy) dist (2, Q, UC,) 2
< Cu(Hy,) A~ dist (x, Q) 2

(4.100)

by (4.72), (4.73), and the end of (4.75) when @,, € PLL
When dist (z,Q,,) > A=**+2 but

(4.101) dist(z,Q, UCy) < e < dist (z,Q, UCy,) + diam (Q, UCy,)

we may have a problem of truncation. In this case we shall prefer to
use (4.99) which takes the simpler form

(4.102) T, (z)| < Cu(H,) dist (z,Q,) !
(we still use (4.75) here when @,, € PLI). Set

T(n,e) ={z € C: dist (z,Q,) > A FnT2

(4.103)
and (4.101) holds} .

Our last case is when ¢ > dist (z, @y, U Cy,) + diam (@, UC,). In this
case T, () = 0 and we need not worry.
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Let us summarize this estimate. It will be convenient to set A,, =
{Qn} and A* = @ when Q,, € I;. We claim that

Tpu(x)] <C Y 0(Q)eh(x)
(4.104) QEA, VA

+ O Lp(n ey () p(Hy) dist (z, Q) ™"

when x € E, or x € C,, for some m # n.

When dist (z,Q,) < A~**+2_ this follows from (4.99) because
po(z) > C~t for all Q € A, U A%. When dist (z,Q,) > A kT2
and x € T'(n,¢), (4.104) follows from (4.102). Otherwise we may use
(4.100) (or else T¢¢p,, () = 0). This completes the proof of (4.104).

There are situations where we do not want to use (4.104), because
some of the ey, (z) are loo large. This is typically the case when @, €
PLI and x € @ for one of the cubes () that compose G,,. We want to
prove an alternate estimate for such cases.

For each m > 1, denote by @)}, the cube such that

Con = a(% B(Q;‘n)) .

Thus Q, = Qu if Qn, € Iy, and Q7, is one of the cubes of A, when
Qm € PLL

Lemma 4.105. Let Q € BLI, and suppose that x € E,, N Q or that

1
(4.106) z€Cnp, Q, CQ, ande > E A~k
Then
(4.107) IT° (1 J dy)(x)] < C + iy (a).

Set a = T¢(1g fdu)(x). If e > A7F@)*1 then a = 0. So let us
assume that ¢ < A=F@)+1 Write 1g =1 — 1p\g to get that

(4.108) o = T*(f dp)(z) — /(E\Q)\B( )%d“y(y) .

Because of (4.97) and (4.98), we have that

(4.109) T°(f dp)(x)| < C
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and
y) dply
f(y) duly)
(4.110) (E\Q\B(z,A-k@+1) L =Y
—k(Q)+1
= |74 (fdp)(@)] < C.

For (4.109) we are also using (4.106) when x € C,,. Since ¢ < A~F(@)+1
we deduce from (4.108), (4.109) and (4.110) that

o] < C+ / dp(y)
(E\Q)NB(z,A—k(@+1) |z — y

d
§C+h*Q(x)+/ 160,
(E\2Q)NB(z,A—F(Q@)+1) |z —y|

(4.111)

(by (4.80)). Observe that dist (z, E\ 2Q) > A~¥%) /2. When z € Q,
this comes from the definition (4.79) of 2 Q; if z € C,,, and Q}, = @, then
we even have that dist (z, £\ Q) > A~*®@) /2 by (3.8); if x € C,,, and
Qr, is strictly smaller than @Q, then dist (z, Q) < Cy A™Fm < A=F(Q) /2
and dist (z, E\2 Q) > A~*(®@) /2 as well. Now the last integral in (4.111)
is less than C AF@) (B (x, A=F(@)*1)) which is less than C by (4.95)
or (4.96). This proves the lemma.

We are now ready to prove Proposition 4.81. Let x € E,, and
€ > 0 be given. Obviously,

(4.112) | T(g dv) ()| < [T°(f du)(@)| + Y 1T pn(@)].

The first term |T°(f dp)(x)| is less than C, by (4.97). Next let us take
care of the set N of integers n such that = ¢ Q,,. We apply (4.104) to
each n € N7, sum, and get that

Yo ITpu(@)|<C Y 0(Q) ;o) ef()

neN; Q€I ULIUBLI

+C Z lT(n,e)(aj) p(Hy,) dist (, Qn)_l
neN;

(4.113)

because the sets A,, UA” are all disjoint and contained in /; ULIUBLI.
The first sum is less than the right-hand side of (4.82); the second one
is controlled as follows.
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Lemma 4.114. For each xz € C,

> 1p(ne(@) p(Hy) dist (z,Q,) ™" < C.

n>1

If + € T(n,e), then dist (z,Q,) > A~* 2 which is much larger
than diam (@, UC,). (See (4.103) for the definition of T'(n,e).) Then
(4.101) implies that dist (x,@,,) > ¢/2 and Q),, C B(x,2¢). The lemma
follows from (4.70).

So we control the set N7. Now let Ay be the set of integers such
that = € Q. Since & € E, the only possibility is that @, € PLI and
x € Gy,. Let Q denote the cube of A% that contains x. Let us use (4.72)
to estimate T¢ ¢y, (x). First,

(4.115) T (L, pr1 fdp) (@) < C Y 1mg(x) e ()
QEA,

by definition (4.78) of ef, and the fact that pg(x) > C~F for Q € A,.
Similarly,

(4.116)  |T°(On1g \G Pt Fdp)(z) < C D 0(Q) 1po(x) eh(x) .
QEA;,
Q#Q

Next observe that p,,_; is constant on @; thus we may apply Lemma
4.105 to () and get that

T (0 15 pu-1 f dp) (@)

(4.117) ~
< Oy par(@) + CHQ) 1(e) h5(a)
Finally
1T (v, du) ()| < Cp(Hy,) dist (z,Cp) ™t
(4.118) <C Y 1pmgle) eh(a)

QEA,

by (4.73) and the fact that |z — y| < Cdist (z,C,) for all y € H,, by
Lemma 4.43.
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We get an estimate for |T¢¢, ()| by summming (4.115), (4.116),
(4.117) and (4.118). When we sum this over all n € N2, we get
terms that are obviously controlled by the right-hand side of (4.82),
plus C) 0y, pn—1(x), which comes from (4.117). Now (4.27) says
that pp(z) = (1 — 0,) pn—1(x) because x € Gy,. Thus 0, pp_1(x) =
pr—1(x) — pn(z), and Y 0, pp_1(x) < 1. This completes our proof of
Proposition 4.81.

We may now turn to the proof of Proposition 4.85. Let = € C,,
and € > 0 be given. Let us first observe that we can reduce to the case
when ¢ > g = A7F /4. Indeed, if € < &,

T (g dv)(x) — T (g dv) ()]

4.119
(4.119) _‘/ s W) _ ¢
B(z,e0)\B(z,e) r—Yy

because Lemma 4.43 tells us that on the range ¢ < |z — y| < g9, gdv
is reduced to ay, dvy,; the last inequality in (4.119) then follows from
the good boundedness properties of the Cauchy integral on a circle C,,,
plus the fact that the density o, u(H,,) HY(C,n)~t of au, dv, against
Hausdorff measure is at most C' by (4.73) and (4.13).

So let us assume that € > g from now on. Then |T¢(f dp)(z)| < C
by (4.98), and

(4.120) T(gdv)(z)| < C+ > [T pn(x)|.

n>1

Let N7 be the set of integers n such that m € J(Q) for all Q € A, UA.
(See just after Proposition 4.81 for the definition of J(@).) The cubes
Qn, n € N1, can be treated as before: we use (4.104) for each n € N7,
and when we sum we get

YT () <C Y Y 0(Q)eh(w)

neN neN1 QeA,UAx

+C ) (e (@) p(Hy) dist (z,Qn) ™

neN

(4.121)

The first term is controlled by the right-hand side of (4.86) because
eq(z) = e () for all the cubes @ that show up (by the definition of
N1). The second sum is less than C, by Lemma 4.114.
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Thus we are left with the set Ny of integers n for which m ¢ J(Q)
for some @ € A, U Ay,

Lemma 4.122. If n € Ny, then either m = n or else Q,, € PLI and
Qm C Gn.

PROOF. Let n € Ny. Since m ¢ J(Q) for some Q € A, U A%, Q,, and
QQ,, must meet. Suppose m # n. Then either @), is strictly contained
in @, or @y, is strictly contained in (),,. Since the cubes in I; ULI are
disjoint by (4.11), the first case implies that @, € PLI and @Q,, C G,.
But then m € J(Q) for all @ € A, U A, which is not possible since
n € N,. Similarly, the second case implies that @,, € PLI and Q,, C
G, which is what we want.

Now let n € N, n # m, be given, and denote by @ the cube
of A* that contains Q),,,. We want to use (4.72) and proceed as in
(4.115-118) to estimate T%¢,(x). First let ¢ = —1g, pp—1 fdp —
0, lGn\Q Prn—1 fdp. Then a brutal estimate gives that

(4.123) Tp(z)|<C Y 0(Q)ey()
QeA,UAT
Q#Q

because pg(z) > C~1 for Q € A, U A} Notice that if Q € A,, U A%\
{Q}, Q does not meet Q,, and hence m € J(Q) and ep(z) = eq(x).

Denote by p} the constant value of p,_; on é Lemma 4.105
(applied to @) gives that

(4.124) T°(0n 15 pr—1 [ dp)(2)| < C 0y pr, + CH(Q) h’é(a:) :
Notice also that h% (x) = %@ (z), because Qm C Q. The last piece from
(4.72) is treated as before

(4.125)  |T(n dvy)(2)] < Cpu(H,) dist (2,Cn) " < C Y ef(x)
QEA,

because dist (x,C,) > dist (Cpp, Cp) > A7Fn /4 > C7L |z — y| for all
y € Hy,, by (4.45). When we sum (4.123), (4.124) and (4.125) over
all n € N2\ {m}, we get terms that are less than the right-hand side
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of (4.86), plus C')_ 0, p;, that comes from (4.124). Pick any point
2o € Q- Then pf = p,_1(xo) for all n € N3\ {m}, and

Zgn P, = Zen Pn—1(T0) = Z(Pn—l(ajO) — pn(w0)) <1,

by the same argument using (4.27) as before.

The proof of Proposition 4.85 will be complete as soon as we es-
timate T¢p,,(x). The good properties of the Cauchy integral on C,,,
plus the fact that the density |cuy|||vm|| H(Cm) ™! is less than C by
(4.73) and (4.13), yield

(4.126) Tt dvn ) (z)] < C.

Next let @7, denote the cube such that C,, = 9(B(Q},)/2). (Thus
Qr, = Qu if Qn, € I and Q, € A, otherwise.) Let us check that

(4.127) (1, f dn)()| < C.

Indeed, T¢(1q: fdu)(z) = 0 if ¢ > diam (C,, U @7,), and so we are
reduced to the case when A=Fn /4 < e < A=Fm+1 gay. (Recall that we
supposed that ¢ > A=%» /4 using (4.119). A simple computation gives
that |T¢(1gs fdp)(z)| < CAF 1(Qr,) < C, by (4.13).

If Qn € I, we can sum (4.126) and (4.127) (multiplied by the
constant value of p,,,—1 on Q,,) to get that |T¢p,,(z)| < C. Otherwise,
we also have to add

T (L, \@x, Pm—1 fdp+0m 1, pm—1 fdp)(x)|

(4.128)
< Cp(Qm) dist (z,Qm \ QF,) "' < C

by (4.13) and the fact that dist (x,Qn, \ QF,) > dist (Cp, B\ Q) >
A~km /4, This completes our proof of Proposition 4.85.

REMARK 4.129. In Propositions 4.81 and 4.85 we stated estimates
for T*(g dv)(z), but our proof also gives estimates for the pieces that
compose it. For each set J C N* of indices, set

(1130) Tj(e) =T°(f dp) (@) + sup ( 3 [Tpn(@)]) , for s € B,
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where ¢, = F,, — F,,_1 is as above. If we follow the proof of Propo-
sition 4.81, but forget the estimates for T°¢,, () when n ¢ J, we get
that

Ti@)<C+CY Y Q) 1me(e)eh(x)

nc€J QEA,UAY

+C ) ) Q) 1g(x) h(x),
neJ QEA}
Qn€PLI

(4.131)

forall z € F.

There is a similar estimate when = € |J,,Cm, but we have to
be slightly careful because we do not have any good estimate for
T¢(f dp)(x) when o € C,,, and € < A™F7 . So we set

75 (@) = sup {|T°(f du)(a) € > £ A~}
(4.132)

1
+ sup { >l e 2 ¢ A‘km} ,
neJ

when z € C,,. Then our proof of Proposition 4.85 also gives that

Tix)<C+CY Y 0(Q)eg)

ncJ QEA,UAY

4133 =
(4.133) 0 Y Y 0@ hel),
neJ QGAZ
Q. €PLI
for z € J,,, Con.

5. The L2-estimates.

Set R = I; ULI U BLI, and define four functions by

(5.1) Wi= Y 0(Q)1gne. hi
QEBLI
(5.2) Wi= > 0(Q)hq,
QEBLI
(5.3) Wo = Z 0(Q) 1p.\q €0 »
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and

(54) Wo= > 0(@Q)%

QER

In this part we show that Wy, Wl, Wy and Wz lie in L?(dv); of course
Theorem 2.4 will follow from this and Propositions 4.81 and 4.85.

The estimates that follow are a little unpleasant at times. It is
probably a good idea to keep in mind that when p is a nice doubling
measure, we know how to prove the desired estimates. Here we shall
try to keep the same general organization. A typical thing that we
like to do is try to estimate scalar products in terms of the measures
p(Q) themselves, rather than quantities like (100 B(Q)), because the
p(Q)’s are easier to sum since the cubes are often disjoint. This is why
we often do not want to get “bad cubes”, i.e., cubes that do not satisfy
(3.14). It will often be useful to decompose bad cubes into smaller good
cubes, as in the next section.

5.1. The functions W; and Wl.

First we introduce a few definitions that will make it possible to
estimate the functions Wy and Wy in a unified way and save some time.
Let M; be a large constant, to be chosen soon, and define a function r
on E by

{ r(z) =0, if M, () <M,
(5.5)
r(z) =sup{r >0: p(B(z,r)) > M;r}, otherwise.

We choose M so large, compared with the constants from (4.95) and
(4.96), that

(5.6) r(z) =0, when = € Fo, ,
and

(5.7) r(z) < A7k when = € @,
Next set



184 G. DaAvID AND P. MATTILA

for each @ € A. A rapid comparison with the definition (4.80) of hg) ()
shows that hq(x) = 1 (2) hi)(z) for © € Ew. Set

(5.9) Ws= 3 0(Q)ho.

QeBLI

Lemma 5.10. We have that

(5.11) W1+ Willz2(aw) < C IWallL2 (d) -

It is clear that

W1l 22y = [E W poo dpp = [WallZ2 gy < 1WallZ2a) -

because dv = po, dp on Eo,. So it will be enough to control Wl. We
write that

(5.12) Wy = D> D 0(@Q) Q) (hg,hg)w

QeBLI Q'eBLI

with

(5.13)  (hg, hg), :/hQ hgdv=" ) / h hiy dvy,
n:QnCQNQ’ ¥ Cn

Fix n such that QQ,, C Q@ NQ’. We claim that

(5.14)  hg(w) < Cho(T), for each = € C,, and each z € H,, .
Indeed, if x € C,,, 7 € H, and y € 2Q \ @,

(5.15) r(z)+ | —y| < A +[F—y| < CA™™ 4]z —y| < Clz—yl,

by (5.7) and because |z —y| > dist (Cp,, E\ Q) > dist (Cp,, B\ Q) >
A=Fkn /2. (We used the fact that @, C Q and (4.46).) Also, 7 € Q
because H,, C @, C @, and (5.14) follows from (5.15) by taking inverses
and integrating on y € 2Q \ Q. Of course the analogue of (5.14) for @)’
holds as well, and so

610 [ W) by @) () < C [ ho(@) her(®) du(@)

Cn Hy
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because ||v,|| < C u(H,), by (4.73). Now we use the fact that the sets
H,, are disjoint subsets of @) (by (4.69)) to sum and get that

(5.17) (hg,hg)y < C(hg,hg),

where

(5.18) <hQ, hQ/> = / hQ hQI d,u .
RNQ’

Lemma 5.10 follows at once from this and (5.12) because

(5.19) WslZom = Y. >, 0(Q)0(Q) (hg,hq).

QEBLI Q'eBLI

Next we want to estimate the functions hg. Let us first check that

d
(5.20) / _dmly) 0(1 +log ""_2) ,
B(z,rs)\B(a,r1) (@) + |2 =y T

for all z € E and r9 > r1 > 0. This is easy to prove. First observe that

) p(Bla.r()
(5.21) /B(w,m<x)+|x—y|§ o) = ©

by the definition of r(z). So we may as well assume that r; > r(z). Set
Ay ={yc E: 28r < |z —y| <2F 11},

for all k > 0. Then u(Ax) < C2Fr; because r(z) < r1, and hence

dp(y)
/Ak r@ ey =

for all k. Our claim (5.20) follows from this, because the domain of
integration in (5.20) can be covered by less than C (1 + log (r2/r1))
domains Ay.

Lemma 5.22. For each Q € A and A > 0,

(5.23) p({z € Q: holz) 2 A}) < Ce™ u(90 B(Q)),
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where c is some small positive constant.

For each x € @, set d(x) = dist (z, £\ Q). Then d(z) < |z —y| <
100 Cy A=F(@)  say, for all y € 2Q \ Q. Thus (5.20) tells us that

(5.24) ho(z) < C (1 +log (1 + d(x)tAK@)),

The lemma will not be difficult to deduce from this and the small bound-
ary property of our cubes. Set

N(Q) ={z € E\Q: dist (z,Q) < AH@}

(5.25)
Uf{zeQ: dist(z,E\ Q) < A7k@-1},

This is the same set as in (3.10-12); (3.13) and our choice of A = CC§"°
in (4.1) give that

(5.26) u(NH(Q)) < C3 ™ u(90 B(Q))

for all Q € A and [ > 0. Of course the power 93 will not be needed
precisely here; this is just what we get by being too cautious.

Now let A > 0 be reasonably large (otherwise, there is nothing
to prove). From (5.24) we deduce that if hg(x) > A, then d(z) <
CAH@) e~ and hence 2 € Ny(Q) for some [ > A\/C’. The lemma
follows from this and (5.26).

We shall find Lemma 5.22 more pleasant to use when () is a good
cube, i.e., when

(5.27) (100 B(Q)) < Co u(B(Q)) < Co n(Q)

(the second inequality is automatic, since @) always contains £NB(Q)).
Otherwise, we shall find it useful to cut ) into a bunch of maximal good
cubes, and then apply Lemma 5.22 to each of them separately.

For each Q € A, we denote by S(Q) the set of maximal good cubes
contained in (). Thus, if @) already satisfies (5.27), then S(Q) is just
composed of @ itself. Obviously the cubes of S(Q) are disjoint. What
is more interesting is that they almost cover Q.

Lemma 5.28. For each ) € A,

pl@\ U R)=0.

ReS(Q)
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To prove the lemma we intend to use the property (3.16) of our cubes:
if @ is a bad cube (i.e., if (5.27) does not hold), then u(100 B(Q))
< €5 (1004t B(Q)) for all integers I such that 100' < Cy. We want
to apply this with [ = [y, where [y is the largest integer such that
1004t < Cy. We get that

(5.29) u(100 B(Q)) < Cy'* u(Cy B(Q)), when @ is a bad cube.

Recall that we decided to take A = CC§, where C is an absolute
constant, and that we still have the right to choose Cj as large as we
want. Since Cy lo- Jecreases faster than any given power of Cy, we can
choose C so large that Co_lo < A719 say. Then (5.29) implies that

(5:30)  p(100B(Q)) < A u(Co B(Q)) < A7 u(100 B(Q)) ,

whenever () is a bad cube, and where @ still denotes the parent of Q).
Let us derive a consequence of (5.30) and then return to Lemma 5.28.

Lemma 5.31. Let Q € A, and let R C @ be a cube such that all the
intermediate cubes S, R G S & Q, are bad. Then

(5.32) (100 B(R)) < A~10RE)=k@)=1) ;100 B(Q)).

When R = @ and when R is a child of @, (5.32) is trivially true.
Otherwise, we even have that

(5.33) w(100 B(R)) < p(100 B(R)) < A7HER=F@=1 1,100 B(Q))
by repeated applications of (5.30). This proves Lemma 5.31.

Return to Lemma 5.28. Let () € A be given and, for each k > k(Q),
denote by Zj the set of cubes R C @ of generation £ which are not
contained in any cube of §(Q). Also let Uy be the union of the cubes
of Zy. Thus

(5.34) Q\ |J RCU, forallk>k(Q).
ReS(Q)

Note that Lemma 5.31 applies to each cube of Zj, and so

(5.35) p(R) < ATHEH@=1 (100 B(Q))
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for all R € Z..

On the other hand, the balls B(R), R € Zj, are disjoint by (3.9),
have radii greater or equal than A=%, and are all contained in a ball of
radius 100 Cy, say. Thus Z has at most C' A%* elements. Then (5.35)
implies that u(Uy) < C APE@F1) A=8k and hence that u(Uy) tends
to zero when £ — +o0. Lemma 5.28 follows from this and (5.34).

Lemma 5.36. If () € BLI and R € §(Q),
(537) hQ(.r) < hR(.r) +C,
for all x € R.

Let @ € BLI, R € §(Q) and = € R be given. For each integer k
such that k(Q) < k < k(R), let Ry, denote the cube of Ay that contains
R. Also set Dy, =2 Ry, \ 2 Riy1 for k(Q) < k < k(R). Then

dp(y)
ho(z) < hp(x +/ _ R
e@) Shr(e)+ | @+ e ]
(5.38) k(R) 1
< hR Z /
Keh(Q) ? D +|x—y|

(compare with the definition (5.8)). Now
(5:39)  p(Di) < p(100 B(Ry)) < A~PE—KQ-1) (100 B(Q))

by Lemma 5.31, and |z —y| > A7*~! on Dy, because z € Ry41 and by
definition (4.79) of 2 Riy1. Then

d

(5.40) / _AY) g mo-kQ) 4@ 1(100 B(Q))
p, T(@) +|x =y

and (5.37) follows from (5.38) together with our assumption that Q) €

BLI and the density estimate (4.13) (applied to @) This proves the
lemma.

We are now ready to estimate scalar products. Fix a cube Q¢ €
BLI, and first consider cubes in the set

B1(Qo) ={Q € BLL: Q C Qo and @ is not strictly

(5.41) o
contained in any cube R € S(Qo)} -
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Note that if ) € B1(Qo) and R € §(Q), then R € §(Qo) as well. Then
(hq, hqo) = /QhQ hqo dp

(5.42) = > hohau
RES(Q)

< ) /R(hR+0)2d#

ReS(Q)

by the definition (5.18) of the scalar product, Lemma 5.28, and Lemma
5.36 applied to @@ and to (Qp. Next,

643 [ (et ©Pdn< CuGOBR) < Cu(R),

for each R € §(Q), by Lemma 5.22 and because R is a good cube. Thus
(5.42) yields

(5.44) (hg.ho) <C Y wR) =Cw@Q),  forall Q € Bi(Qo).
ReS(Q)

Now suppose that @ € Ba(Qo), where

B2(Qo) = {Q € BLI: @Q C Qo and there is

(5.45)
a cube R € S(Qo) such that Q@ & R} .

Denote by R = R(Q, Qo) the cube of §(Qp) that contains (). Let us
first apply Lemma 5.36 to (Qy and R to get that

(5.46) (h@,hqo) < /QhQ (hr +C)dp.

Denote by (@) the largest integer [ > 0 such that @ C N;(R), where
N;(R) is as in (5.25). When @ is not even contained in No(R), still
take [(Q) = 0.

Lemma 5.47. We have that

(5.48) hr(z) < hg(z) +C(1+1(Q)), on Q.
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By definitions,

(5.49) hela) < (o) + [ W

with D =2R\ (2Q U R). We claim that
(5.50) C7TAFEBIUD) < |p—y| < CAFB) | forz e Qandy e D.

The second inequality is easy, because x and y both lie in 2 R. We also
have that |z —y| > A7*@) because € Q and y € E'\ 2Q. This proves
the first inequality when A=F(R)—-HQ@)=2 < A=k(Q) say. So let us assume
that A—F(R)-H@)=2 5 4~k(@) Since () is not contained in Ny@y+1(R),
we can find zo € Q such that dist (zg, £\ R) > A~FE)-UQ)=1 Then
|z —y| > dist (z, E\ R) > A~FER)=U@)=1 _dijam Q > A~-KER)-UQ)-1 /2
because we are in the case when A=F(@) < A=k(R)-UQ)=2  This proves
our claim (5.50).
The lemma follows at once from (5.50), (5.49), and (5.20).

From (5.46) and Lemma 5.47 we deduce that

(hqs hqq) S/ hq (hg +C + CU(Q)) du
(5.51) N
SC(I+l(Q))/hQ(hQ+1)du.
Q

Next we use Lemina 5.28 to decompose () into maximal good cubes S,
S € §(Q), and then Lemma 5.36 to replace hg with hg+ C. This gives

/QhQ(hQH)du: > /ShQ(hQH)du

Ses(Q)

< > /S(herC)de,

Ses(Q)

(5.52) <C > p90B(S))

Ses(Q)

<C > us)

SeS(Q)

=Cpu(Q)
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by Lemma 5.22, the goodness of the cubes S, and their disjointness.
Because of (5.51), this yields

(5.53)  (hQ hQ,) SCA+UQ)) Q)  forall Qe By(Qo).

Now we want to sum our estimates from (5.44) and (5.53). Let us first
check that

(5.54) Y. 0(Q) (hg,hg,) < C u(Qo)-
QEB1(Qo)

Of course the contribution of Q) itself is at most Cu(Qo), by (5.44). All
the other cubes Q) € B1(Qo) lie in A2, for some n such that @),, € PLI
and @), C (Qp. For each such @,

(5.55) > 0(Q) (hqshg,) < C0n 1(Gy) < Cu(H,)
QeA;,

by (5.44) and (4.33). Now we can use the fact that the sets H,, are
disjoint (by (4.69)) and contained in (¢ to sum over n and get (5.54).

We want to prove a similar estimate for By(Qp). Decompose
B2(Qo) into the subsets B(R) = {Q € BLL: Q & R}, R € S(Qo).
For each [ > 0, let B(R,[) denote the set of the cubes in B(R) such that
(Q) =1. If I > 2, each cube @ € B(R,l) is contained in N;(R) (by
the definition of {(Q))). In particular the centre of B(Q), which indeed
lies in @, lies at distance less than A=*()~! from E\ Q (compare with
(5.25)). Since it also lies at distance greater or equal to A7*(@) from
E\ Q (because EN B(Q) C Q), we get that A=F(@) < A=FE)~1 and
then @ C N;—2(R). Moreover, by the definition of B(R), @ is a cube
of BLI and its parent is a cube ),, € PLI. We may now regroup cubes
with a given parent (),, and get that for [ > 2,

> 0(Q) (hg,hgo) SC L+ Y 0(Q) (@)

QeB(R,I) QeB(R,I)

SO+ Y 6ap(Ga)

Qn€PLI
QnCNl72 (R)

SC@+1) Y. u(Hy)
Q. €PLI
anNl—Q(R)

(1+1) (Ni—2(R))
(1+1) G5 (90 B(R))

(5.56)

<C
C

IN
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by (5.53), (4.33), the disjointness of the sets H,, and (5.26). When
[ <2, we simply repeat the argument for (5.54) or replace N;_2(R) by
R in (5.56), and get less than C u(R) < C p(90 B(R)).

We may now sum over [ and then R € §(Qp) to get that

Y. 0@ (hgihg) < Y Y C(1+1)Cy' u(90 B(R))

QEB2(Qo) ReS(Qo) 1>0
(5.57) <C Y u(90B(R))
ReS(Qo)
<C Y uR) <O Qo)
ReS(Qo)

because the cubes R € S(Qp) are good, disjoint, and contained in Q.
From this and (5.54) we deduce that

(5.58) D 0(Q) (hg, hg,) < C Qo) -
Q€eBLI
QCQo

Let us observe, also for future reference, that

(5.59) > 0(Q) u(Q) < Cu(E).

QeER

This follows by the same argument which was used to prove (4.51) and
(4.76). Hence

IWs1 20 = > D 0(Q0) 0(Q) (hq, hg,)
Qo Q

<23 3 0(Q0) 0(Q) (hos hay)

(5.60) Qo QCQo

<C Z 0(Qo) 11(Qo)

Qo
< CuE)

by (5.9), the fact that (h¢g, hg,) = 0 when @) does not meet Qo, (5.58)
and (5.59). Because of Lemma 5.10, this also implies that

(5.61) W1+ Will2e a0y < C(E),
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and completes our study of Wy and Wl.

5.2. The functions e, the faraway piece.

We would like to estimate the functions Wy and Wz in a unified
way, and to this effect we introduce a variant of the functions eg, and
eg that will be easier to deal with. For each cube Q € A, define a
function e on E by

(5.62) (o) = Lovola) pole) [ T
QT Y|
Set
(5.63) W(z)= > 0(Q)eq,
QeER

with R = I, ULIU BLI. Let us first check that W dominates W5 and
Ws. First Wa(z) = W(z) for x € Es (compare (5.62) with (5.3) and
(4.78)). Then

(5.64) IWall72gany < W72 an) -

because dv = poo dpp on Eo,. Next set

(565) ('éQ,'éQ,)l, = /gQ é’Q, dv
and
(5.66) (cqreq) = [ cqeqrdu,

for all Q, Q" € R. We claim that
(5.67) <5Q,€Q/>V <C <6Q,6Q/> , for all @, Q/ ER.

To prove this claim, first observe that

(5.68) (€g,eqQ)y = Z /c eg egr Wn

neJ(Q)NJ(Q")
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where J(Q) and J(Q') are defined just after Proposition 4.81.

Let n € J(Q) be given. First observe that H,, C E \ @ by defini-
tions. (Recall that H,, = Q,, when Q,, € I, and H,, = Q,, \ G,, when
Qn € PLL) Then dist (Cp, Q) > dist (Cn, E \ H,,) > A% /2 by (4.47).
Thus for all choices of x € H,,, x € C,, and y € (), we have that

(5.69) Z—y| <CA™Fn 4|z —y|<Clz—yl.

If we integrate over y and observe that H,, C E \ @), we get that
(5.70) eg(r) < Ceq(T), for z € C,, and = € H,, .

Of course a similar estimate for @' holds if n € J(Q') as well, and

(5.71) / eg g dvn < C/ eqgeq du,

n n

because ||vy, || < u(H,) by (4.73). We may now use the fact that the sets
H,, are disjoint (by (4.69)) to sum (5.71) and prove our claim (5.67).

Of course a brutal expansion of ||W2H%2(d,,) and ||[W||7.,,, from
their definitions (5.4) and (5.63) now yields

(5.72) IW2llZ2 () < CUW L2 () -

Thus it will be enough to control the function W.
We start with the “faraway piece”

(5.73) W =" 0(Q) 1p2qeq
QER

which we even split further as follows. For each integer m > 0, set
(5.74) eo = 1p,.(Q) €q

where

(5.75) Dm(Q) ={z € E: ATHOT™ < dist (z,Q) < A7M@Fm+1}

It is clear that £\ 2Q = |J,,>Pm(Q) (compare with (4.79)), and
hence -

oo

(5.76) we =3 ( Y 0(Q) eg) .

m=0 Q€eR
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A brutal estimate using the definitions (5.62) and (4.77) gives that
(5.77) ety (z) < CAMD=2m Q) 15, (q) -
We also have that
(5.78) D (Q)) < CATH@Fm,

because € I; ULI U BLI and by (4.13) (applied to @ or one of its
ancestors).

Next let Q and @’ be two cubes of R, and assume for definiteness
that £(Q") > k(Q). Then

(el ey < CAF@FTRQI=4m () 1(Q') u(Drm(Q))
< CAM@=3m Q) (@)

by (5.77) and (5.78).

Denote by R, (Q) the set of cubes Q" € R such that (ef},ef) #
0. If Q" € Rn(Q), then D, (Q") meets D,,(Q), and hence Q' C
B(zg, CA=F@+m) where x¢ is for instance the centre of B(Q). Then
(4.51) and (4.76) tell us that

(5.79)

(5.80) > Q) mQ) < CATMY ™,
Now
2
H 62;29(62) eQ‘ L2(ap)

<2 ) Q) 0Q) (eh,ed)
QER Q'ER
k(Q)>k(Q)

<CY ) 0Q)0Q)AMIT (@) Q")
QER Q'ERR(Q)

<C D Q) AT u(Q)

QeER

< CA™™ u(E)

(5.81)
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by (5.79), (5.80), and (5.59). Of course (5.81) and the definition (5.76)
yield

(5.82) IW2|Z2 gy < C m(E) .-

5.3. Estimates for the semi-local part of eg.

Now we wish to study the remaining part of the functions eg, i.e.,
the functions eg — 1m\2¢ €@ = 129\ €@- Here again it will be helpful
to use the almost decomposition of the domain () into maximal good
cubes R, R € §(Q). Thus we set

dp(y)
5.83 gr\T) = y
(5.83) () i r—
for x € E'\ R, and then observe that
(5.84) Lag\@eq = Z Lag\@ 9r -
ReS(Q)

We further decompose each 10\¢ gr into its very local part

(5.85) eg.r = lar\Q R

and its less local part

(5.86) eQ,r = lag\(2rUQ) IR -

Set

(5.87) Wi=> Y 0@Qeqr
QER RES(Q)

and

(5.88) W= > 0Qer-
QER RES(Q)

From the discussion above it is clear that

(5.89) W—=W>=>"0(Q) lag\geq < Wa+ Ws .
QER
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In this section we want to estimate the semi-local part Wjy.
Let Q, Q" € R and R € §(Q), R' € S(Q') be given. We want to
estimate the scalar product

(5.90) (eq,r,€Q' r') = / 9gr 9r' dp,
D(R,R')
where
(5.91) DR,R)=(2QNn2Q")\(2RU2R' UQUQ").

Obviously ggr(z) < dist (z, R)~! u(R), and similarly for R’. Thus
(5.92) (eq,r,eq r) < p(R) u(R) a(R, R,

where

(5.93)  a(R R)= / dist (z, R)~L dist (z, B') ! du(z) .
D(R,R')

Next we continue and cut each a(R, R') into pieces ay, ;, as follows. For
each £ > 0 and [ > 0, set

(5.94) Up={rec2Q: AMI7F < dist (v, R) < A} @k}
(5.95) Vi ={ze2Q : ATF@)7! < dist (z, R') < ATH@)-1Y
and

(5.96) Dy =D(R,R)NUNV;.

Clearly, 2Q \ @ is covered by the Uyg’s and the set {z € E\ Q :
dist (z, Q) = 0} which has p measure zero by (3.13). Using a simi-
lar fact for 2Q" \ @' and the V;’s we see that D(R, R) is the union of
the Dy, ;’s and a set of p measure zero. Thus

(5.97) a(R,R') = Z Z kg
k>0 >0

where

ap| = / dist (x, R) ™ dist (z, R') "' du(x)
(5.98) Dy

< ARFL AR(@) Ak(Q')u(DkJ).
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If Dy is not empty, then Uy, meets E \ 2 R. Since dist (z, R) > A~k(R)
on F'\ 2 R, this forces A7F(E) < A1=F(@)=k Of course there is a similar

condition on [, and so
0<Ek<ER)—k(Q)+1, and

(5.99) (R) — k(Q)
Oélék(R/)—k(Ql)—f—l, when Dk,l * .

For 0 < k < k(R) — k(Q) + 1, let Ry denote the cube of generation
k(Q) + k — 1 that contains R, and for k = 0 let Ry = Q). Since R is a
maximal good subcube of (), we can apply Lemma 5.31 to Ry. Also,
Ui C 100 B(Ry,) by definitions and so

(5.100) pu(Uk) < u(100 B(Ry)) < CA™%u(100 B(Q)) .

Because Q € R = I; ULTUBLI, we may apply (4.13) to @ or its parent
and get that 1(100 B(Q)) < CA=*@) So

(5.101) p(Uy) < CATYOR A=RQ) - for 0 < k < E(R) — k(Q) + 1.
Of course the same argument applies to V; and gives that
(5.102) u(V)) < CA™ (100 B(Q')) < CA™10 A=R(@)

for 0 <1l <k(R')—-k(Q)+1.
We want to distinguish two cases, depending on the size of

(5.103) § = dist (R, R').
We start with the case when
(5.104) E(Q) < k(Q) and 0§ < A~H@)+L,

(The first condition is just here for the sake of definiteness, but the
second one is serious.) In this first case we want to refine the estimate
(5.102) before we apply it. The idea will be that if @’ is somewhat
smaller than ), Lemma 5.31 will tell us that (100 B(Q')) < A=*@"),

Let us assume that we are in Case 1, and that D(R, R’) is not
empty. If z € D(R, R’),

dist (z, R) < dist (2, Q") + diam Q" + dist (R', R)
(5.105) <A@ £ 100 Cp AH@D) 4§
< 2 A~ k(@Q)+1
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because R’ C @', x € 2Q', and by (5.104). Since x € D(R,R') C
E\ 2 R, we also have that dist (z, R) > A7) and so (5.105) yields
(5.106) K(Q) —1< k(R).

Now suppose that in addition £(Q') — 1 > k(Q), and denote by R the
cube of generation k(Q') — 1 that contains R. Then R C R C @, and
we may apply Lemma 5.31 to R and get that

(5.107) 1(100 B(R)) < CA~10®Q)=K@) 1,100 B(Q)) .

Since D(R, R') meets 2Q’, (5.105) tells us that all points of 100 B(Q’)
lie at distance at most 3A~F@)+1 = 34~FE) from R. Hence 100 B(Q")

C 100 B(R). We also know (from (4.13) applied to @ or its parent) that
(100 B(Q)) < CA=*(@) " and so (5.107) implies that

(5.108) (100 B(Q')) < CA~1OHRQ)=kQ) g=k@)

This was when k(Q') —1 > k(Q). In this first case where (5.104) holds,
the only other possibility is that £(Q') = k(Q), and in this case (5.108)
also holds, more trivially, by (4.13). So (5.108) always holds, provided
that D(R, R') # @ and we are in Case 1. Now we use the first half of
(5.102) to get that

(5.109) (Vi) < CA~100HKQ)=KQ) 4=k(Q) |

Then we say that pu(Dy;) < min {pu(Uy), n(V;)}, and use (5.98), (5.101)
and (5.109) to obtain

(5110)  aps < CAFH AR@) g {4-108, 4 10(+5(Q)=k(Q))}
Next min {u!?, 019} < w208, and so
Gt < CARH ARQ) g2k 4=8(+K(Q) K@)
(5.111) _ CA-F-TL 4-TRQ)48E(Q)
< CA™F—1 ARQ)

(The other convergence factors will not help, and so we drop them.)
Now use (5.92) and (5.97), and sum over k£ and [ to get that

(eq,rseq . r) < W(R) p(R') a(R, R')
(5.112) =3 u(R) (R axy

< C u(R) p(R') AR
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Now denote by Z; the set of all quadruples (Q, R, Q’, R") where Q € R,
ReSQ),Q eR, R € 8(Q'), D(R,R') # @ and (5.104) holds (i.e.,
we are in Case 1). Also set

(5.113) 01 = Z Q(Q) Q(Q/) <6Q,R7 6Q17R1> .
(Q,R,Q",R")€Z,
Then
o1 <CY _0(Q)0(Q) u(R) p(R') AH®)
(5.114) -
<CY, D, Q@) Q) u@) AN,
QRER Q' ER(Q)
where

(5.115)  R(Q)={Q €R: k(Q') > k(Q) and 2QN2Q £ 2}.

(The last condition is needed if we want any of the sets D(R, R') to be
nonempty.) Notice that all the cubes Q)', Q" € R(Q), are contained in
a fixed ball centered on @ and with radius CA=*(@), Then (4.51) and
(4.76) imply that

(5.116) Y Q) u(@) <cATHO
Q'ER(Q)
and then
(5.117) 7 <C Y 0Q) uQ) < Cu(E)
QER
by (5.59).

Now we come to our second case when k(Q’) > k(Q), but (5.104)
fails, ¢.e., when

(5.118) E(Q) > k(Q) and &> A~R@)+T

In this case there is an additional constraint that we want to use: if
Dy, ; is not empty, then Uy meets V; and

(5.119) 5 = dist (R, R') < AMH@~k 4 g1-k(Q)~1
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(Compare with (5.94) and (5.95).) Since in this case § > A~F@)+1 >,
A~F@)= (because [ > 0), we even have that

(5.120) § < 2AR@)—K

Here diam Q" is much smaller than ¢ (by (5.118)), and hence not much
larger than the “scale” A=F(@)=F of Uy (by (5.120) and the definition
(5.94)). Thus it will be reasonable to derive our estimate of p(Dy )
only from the estimate (5.102) on p(V;). Let us do this. From (5.98)
and (5.102) we deduce that

(5.121) ag; < C AR AR(@)

Sum this first over [, with k fixed. We get less than C A¥+*(@), Then
sum again over all £ > 0 such that (5.120) holds. This gives at most
C 6=t Thus (5.92) and (5.97) yield

(eq,rseq.r) < W(R) pu(R') a(R, R')
(5.122) = u(R) p(R) Y Y " an

< Cu(R) p(R) 67"

Let Z5 denote the set of quadruples (@, R,Q’,R’') with Q € R, R €
S5(@Q), Q" e R, R € §(Q'), and for which (5.118) holds and D(R, R") #
. Also set

(5.123) oy = > 0(Q)0(Q") (eq.rseqr i) -

(Q7R7Q’)R’)€Z2

Then
(5.124) 02 < 0(Q)0(Q") u(R) p(R') dist (R, R)) ™"

Next we fix Q@ € R and R € §(Q), and we wish to sum over Q" and R'.
We want to compare the sum with an integral.

Lemma 5.125. If (5.118) holds and D(R,R') # @,

the parent @' of Q' is contained in

(5.126)
{z e E: dist (z,Q) < CA™H@}

1
(5.127) dist (B, R') > 5 AR
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and

(5.128) dist (z, R) < Cdist (R, R),  forallz € Q'.

Recall from (5.91) that D(R,R’) C 2Q N 2@’ and that k(Q") >
k(@) by (5.118). Our first assertion follows from this.

Next D(R,R') C 2Q" \ 2R, and so 2@’ meets F \ 2R and in
particular there are points in 2Q’ at distance greater or equal than
A7) from R. On the other hand all points of 2Q’ lie at distance
at most diam2 @’ + dist (R, R) from R, and this number is at most
2dist (R, R') by (5.118). This proves (5.127).

Finally, if z € @', then dist (z, R) < dist (z, R') + dist (R', R) <
CAR@Q)TT 4 dist (R, R) < Cdist (R, R') by (5.118). The lemma fol-

lows.

Lemma 5.129. For each choice of (Q and R, set

(5.130) o(Q,R) =) 0(Q) u(R)dist (R, R)™",
QR

where we sum over pairs (Q', R') such that (Q,R,Q',R') € Zy. Then
(5.131) o(Q,R) < C/~90Rdl/u
Q

where Q = {z € E : dist (z,Q) < CA @)} is the same set as in
(5.126), and

(5.132) or(z) = (A7FB) 4 dist (z, R)) L.

To prove the lemma, first observe that if (Q,R,Q',R') € Zs,
the hypotheses of Lemma 5.125 are satisfied. Then dist (R, R')™! <

Cmp(Q"), where mp(Q') = inf {or(z) : = € Q'}. This follows from
(5.127) and (5.128). Next

(5.133) > u(®)dist (R, R)™ < Cu(Q) mp(Q').
R'ES(Q")
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Now all cubes Q" that show up in (5.130) lie in A,, U A% for some cube
Q) such that @, C Q. (This comes from (5.126).) Thus

c(@QR)<C > D Q) Q) mr(@)

n:Q,CcQ QEAUAS

<C Y ) ma(Qa)
n:Q,CQ

<C ) /HsoRdu

n:Q,CQ

<c /Q or(z) du(z)

(5.134)

~

with a definition of mpg(Q,,) similar to the definition of mpg(Q’) above,
and by (4.75) and the disjointness property (4.69) for the H,’s. This
proves the lemma.

Our next task is to estimate the integral in (5.131). As usual, we
cut it in slices and use the fact that there is no good cube between R
and ). Let us start with the contribution of the “annuli” Uy, 0 < k <
k(R) — k(Q) + 1, from (5.94). We can use (5.101) to get that

(5.135) [ enin < 4K () < 07
U

The contribution of the region near R can be estimated in the same
way. If Dy = {x € E : dist (2, R) < A~F)=11 then pp(z) < AFER)
on Dy (and even everywhere), and Dy C 100 B(R). Then
1(Do) < p(100 B(R))
< C A 0K(R)-k(Q)) (100 B(Q))
< O A~ 1OK(R)+9K(Q)

by Lemma 5.31 and the density estimate (4.13), applied to @ or its
parent. Thus

(5.136) | ordu < 450 u(Dy) < cA-DK@),
Do
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For the exterior “annulus” Dy, = {z € Q : dist (z,R) > A~*@)} we
use (4.13) again (applied to an ancester of ), possibly its grandparent)
to get that u(Q) < CA™*®) and then

(5.137) / erdp < C.
D

From (5.135), (5.136), (5.137) and the fact that

- K(R)-k(Q)
Q:Dquou( U Uk>,
k=0

we deduce that

(5.138) / erdp < C,

Q

and then Lemma 5.129 tells us that o(Q), R) < C. If we compare (5.124)
with the definition (5.130), we obtain that

(5.139) 02 <C Y > Q) uR)<C Y 0(Q) Q) < Cu(E)

QER RES(Q) QER

by (5.59). Note that o1 and oy control all the terms where k(Q') >
k(Q), and so

2

.

IWallean = || 32 2 0@ ean

QER RES(Q)
(5.140)
S 20’1 + 20’2

< Cu(E)
by the definition (5.87) of Wy, the definitions (5.113) and (5.123) of

o1 and o9, and the estimates (5.117) and (5.139). This completes our
study of the function Wy.
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5.4. The very local part Ws.

We are left with

=D, > 0Qconr

QER ReS(Q)

with eg) p as in (5.85). We start with an estimate of eQ g for @ and
R fixed. Of course we may assume that € 2R\ @, since otherwise
ety r(r) = 0. Set

(5.141) dr(z) = A¥® dist (z, R) .

Lemma 5.142. We have that

(5.143) e () < C dp(z) 110 A=OGE k@)

Before we prove the lemma, observe that we could have proved an
estimate with only a logarithmic singularity in dg(z), but we prefer
(5.143) because of the convergence factor A~2k(R)=k(Q))

To prove the lemma, recall first from (5.26) that u(Q \ Q) = 0.
Let z € 2R\ Q be given and denote by [(x) the largest integer [ such
that © € N;(R), where N;(R) is as in (5.25) (or Chapter 3). Note that
the only case when z ¢ Ny(R) is when dist (z, R) = A=*(@) because
x € 2 R. In this case we still set [(z) = 0. In all events

(5.144) ATFR)ZI@)=L < (igt (2, R) < A™FER)I@)

We split the domain of integration R into regions

(5.145) Dp={ycR: A" <|x—y|l< AP},

Let us check first that if Dy is not empty, then

(5.146) kE(R) <k <k(R)+!l(z)+1

If y € R, then |z —y| < A7F)+1 because 2 € 2R, and so A™F <
AR+ if Dy is not empty; this proves the first inequality. Similarly,

the first inequality in (5.144) forces A=F(R)—H=)=1 < A=k+1if Dy is not
empty; this completes the proof of (5.146).
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Next d(y, E\ R) < |z —y| < A7**L for y € Dy, and so Dy C
Ni—rry-1(R) if & > k(R). (If k¥ = k(R), we shall simply remember
that Dy C R.) Then

d _93(k—
) [ S < g ) < AT o0 B(a)
k

by (5.26). Recall from (4.1) that A = CC}{% for some absolute constant
C, and so AC;? = CCY < CY10CE0 = AV if O is large enough,
which we are happy to assume. Because of this,

/ du(y) < AB=K(R)/10 AKR) |90 B(R))
D

L=y
(5.148) < O Ak—k(R)/10 g—9(k(R)=k(Q)) pk(Q) (100 B(Q))
< CAK—K(R)/10 4=9(k(R)=k(Q))

by Lemma 5.31, the fact that R is a maximal good subcube of (), and
the usual density estimate (4.13) applied to @) or its parent.

When we sum (5.148) over k, we get a geometric series whose
leading term is when k is largest, i.e., k = k(R) + [(z) + 1. Also note

that A="®) ~ dg(z) by (5.144). Thus
/ du(y)
Dy, lz —y]

< Cdp(w)~/10 A=9KE) K@)

k(R)+I(z)+1

dp(y)
eOQyR(x = =

el -yl k=k(R)

(5.149)
< CAN@/10 4=9(k(I)=k(Q))

This proves Lemma 5.142.

Now we fix the cubes @, @', R, R’, and we estimate

(5150) I(R, R,) = <60Q,R7 60Q/,R,> = / eOQ,R 60Q,,R, d,u,
D(R,R')

where

(5.151) D(R,R)=(2RN2R)\ (QUQ').
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Obviously by Lemma 5.142

(5.152) I(R,R) < CA™ YRR —k(Q+KE)-KQ) J(R R'),

where

(5.153) J(R, R') = / (dr(x) dp ()~ dyu(x)
D(R,R')

and dgs is defined like dg (i.e., dps (x) = A*E) dist (z, R').)

Lemma 5.154. Suppose for definiteness that k(R') > k(R). Then

A—k(R) 1/10
) p(R!

1 ) <
(5.155) J(R, ) < C(A—k(R') + dist (R, R')

We start the proof of Lemma 5.154 in the case when
(5.156) dist (R, R') > diam R’ + A~F()

In this case the function dg(x) is essentially constant on D(R, R’) (be-
cause D(R,R’) C 2 R’) and

J(R,R')

< € (AMD) digt (R, R'))~2/10 / A ()20 dpu(z)
D(R,R')

(5.157)

The last integral is easy to estimate. Since we are going to need a
variant later, let us state a slightly more general lemma.
Lemma 5.158. For each cube R € A, set

or(z) = AF®B) (dist (z, R) + dist (z, E'\ R)),

for all x € EN100 B(R). Then

(5.159) [E I 5r(x)~ 5 du(z) < Cp(100 B(R)) .
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To prove the lemma, we use the sets N;(R) of (5.25) and Chapter 3.
For each [ > 0,

/ 51 (2) V5 du(z) < ACHV/S W(Ny(R))
N{(R)\Ni11(R)

(5.160) < CAY5 059 1(90 B(R))
< C(C'CF Oy ™) u(90 B(R))

by (5.26), and because A = C'° CL for some absolute constant C’, as
n (4.1). We may sum over [ > 0 and get that

(5.161) /N . Sr(x) =5 du(z) < Cu(90 B(R)).

(The set where dr(z) = 0 has measure zero by (5.26), so we can forget
about it.)

On the rest of £ N 100 B(R), that is, on (£ N 100 B(R)) \ No(R),
dr(r) > C~1 and the corresponding integral is at most C(100 B(R)).
The lemma follows.

Notice that g = dr on 2 R\ R, and so it follows from (5.157) and
Lemma 5.158 (applied to R') that

(5.162) J(R,R) < C (A*®) qist (R, R'))~Y1° 11(100 B(R')) .

This is less than the right-hand side of (5.155) because of (5.156) and
the fact that p(100 B(R')) < Cy u(R') since R’ is a good cube. This
proves (5.155) when (5.156) holds.

Now assume that dist (R, R') < diam R'+A~*)_ Cover 2 R'\ (RU
R’) by the cubes S of generation k(R')+1 that meet 2 R"\ (RUR'). Note
that 100 B(S) C 100 B(R’) for each such cube S, and also that we need
less than C' cubes S. If z € S, dp(x) dp: (x) > AFF) ARE) dist (2, E \
S)%, because S does not meet R or R'. (Recall that k(S) > k(R') >
k(R).) Thus

/ (deR,)—l/lod,u
D(R,R')

< A-(R+HE))/10 3 / dist (z, B\ §)~Y/5 dp(x)
S S
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< C A~ (R(B)+K(R))/10 ZAk(R’)/5 (100 B(S))
(5.163) 5
< CA~RE)=KED)/10,,(100 B(R"))

< C A= (HB=KE)/10 ()

by Lemma 5.158 (applied to each S), and the fact that R’ is a good
cube. This time A~*) 1 dist (R, R') ~ A~*®) because dist (R, R') <
diam R+ A~*(®) and (5.155) follows from (5.163). This completes our
proof of Lemma 5.154.

Now let us fix @, @ and R, and try to sum I(R,R’) over all
cubes R' € S(Q'). We want to do a comparison with an integral. If

R’ € §(Q') and x is any point of Q' (the parent of '), and if D(R, R’)
is not empty,
dist (z, R) + dist (z, E \ R)
< dist (z, R') + diam R’ + dist (R’, R) + dist (z, E' \ R)
< CAH@) 4 dist (R', R) + dist (z, E \ R)
(5.164) ,
< CA™MQ) 4 dist (R, R') + dist (z, D(R, R'))
< CAH@) 4 dist (R, R') + CA™M@)
< CARED=RQY) (4=FE) 1 qist (R, R'))

because R’ C @', and D(R,R') = (2RN2R")\ (QU Q') is contained
in £\ R and meets 2Q’. With the notation of Lemma 5.158,

A~R@E) 4 dist (R, R’))

(5:165)  dnle) < AT (S

for all z € @’ . Now suppose that
(5.166) Q' C 100 B(R),

and let Sp(Q’) denote the set of cubes R’ € S(Q') such that k(R') >
k(R). (We need not prove that (5.166) implies that k(Q') > k(R), so
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let us not bother.) Then

> IRR)

R'eSR(Q')

’ ’ A_k(R) 1/10
—9(k(R)—k(Q
= C;A e (A—k(R’) + dist (R, R’)) uIt)

(5.167)
< C’Zinf {6r(z)" Y™ z€Q'} W(R)
RI

< Cinf {0p(x) Y2 2 € Q') w(Q)

by (5.152), (5.155) and (5.165). We have dropped most of the conver-
gence factor in (5.152) because it will no longer be useful here. Now we
want to sum over )" as well. Set

(5.168) L(R)=> ) 0(QVI(R,R),
QI RI
where we sum on pairs ', R’ such that (5.166) holds and k(R') > k(R).
For each cube @,, such that @, C 100 B(R),
> Q) u(@) inf {0r(x)"H1: 2 € Qn}
QEA,UAY
(5.169) < Cu(Hy,)inf {6p(x) /0 z € H,}
<C [ bale) 1 du
H

n

by definitions, and (4.33) when @,, € PLI. Then

nry<c > /5;{1/1%”
Hn

n:Q, C100B(R)
(5.170) <C 5t dp
100B(R)
< Cu(100 B(R))
< Cu(R)

because all the cubes Q' for which (5.166) holds lie in A,, U.A? for some

@, such that @, C @' C 100 B(R), by (5.167), (5.169), Lemma 5.158,
and the fact that R is a good cube.



REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS IN THE PLANE 211

Let Z; be the set of all quadruples (@, R,Q’, R") for which @,
Q' €R,Re SQ), R € 8(Q), (5.166) holds, and k(R') > k(R). Then

Ze ) (ed) r e ri) Ze I(R,R)
<0y Y e

(5.171) QER RES(Q)

<0 3 6Q) @)

QeER

< Cu(E)

by (5.150), (5.168), (5.170), and (5.59).

Now let Z; denote the set of quadruples (Q,R,Q', R) with @Q,
Q € R, R e SQ), R € §Q), and k(R') > k(R) as before, but
(5.166) does not hold.

If (5.166) does not hold and D(R, R") # @, then k(Q') < k(R) + 1
because (' is not contained in 100 B(R) while 2Q’ meets 2 R. Then

A_k(R) ! ! !
< AR(R)=K(R) < gR(R)=K@Q)+1

5.172
(5.172) A-FE) L dist (R, R') ~

and we deduce from (5.155) that J(R, R') < CAFE)=FQ") ,(R') and
then from (5.152) that

(5.173) I(R,R') < CA~FEDTRQ@Y) Ry

(Here again we may drop most of the convergence factor.) Because
D(R,R") C 2RN 2R and k(R') > k(R), we only need to consider
cubes R’ that are contained in 100 B(R).

For a given cube R’ C 100 B(R), the sum over all cubes Q" of
generations at most k(R) + 1 of the right-hand side of (5.173) is less
than CA—kER)+K(ER) pu(R'), because there is at most one cube @' per
generation. If we sum this bound over all cubes R’ of a given gener-
ation k' > k(R), we get less than CA~* *T5(®) (100 B(R)), and if we
sum again over all possible generations k' > k(R), we get less than
Cup(100 B(R)) < Cu(R) because R is a good cube. Thus for each
@ € R and each R € §(Q),

(5.174) > ) IR, R) < Cu(R),

QI RI
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where we sum over all pairs @', R’ such that (Q, R, Q', R") € Z5. Hence

ZQ eQR,eQ,R, ZQ I(R,R')
<C> > 0@

(5.175) QER ReS(Q)

by (5.150), (5.174), and (5.59).

When we collect the sum over Z1UZ5, we get all the terms for which
k(R") > k(R); the other ones can of course be obtained by symmetry,
and so

2
(6176)  [Wallfewy = [ X2 X 0@ e n| <CuE)
QER ReS(Q)

by (5.171) and (5.175).
This completes our estimate of the last piece of W. (See (5.82),
(5.89), (5.140) and now (5.176) for the control of W.) Since we have

seen also that W controls Wy and W (see (5.64) and (5.72)), we get
the desired bounds on these functions as well. Thus the proof of The-
orem 2.4 is complete.

REMARK 5.177. Suppose we give ourselves a set J C N* and define
functions Wy, Wi, W3 and Wy as in (5.1)-(5.4), but where we sum
only on those cubes @) € R that lie in A,, U.A for some n € J. A close
look at the arguments in this chapter shows that we also get that

W72y + W 122 gy + WS 172y + WS 112 a0y

<CY  pu(H,)

(5.178) =

<on( Q).

neJ

where the last inequality comes from (4.69). The proof is the same;
we simply have to replace the usual estimate that ) 5 0(Q) u(Q) <



REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS IN THE PLANE 213

Cup(E) at the end of our various estimates (i.e., in (5.60), (5.81), (5.117),
(5.171) and (5.175)) with the corresponding fact that

S (Y 0Qu@) <0 ).

n A, UAY

REMARK 5.179. In our L?-estimates we have used the measure v, but
we could also have used the following slightly larger measure

vt =1g_du+ Z(p:;)_l dvy,
n>1
(5.180)

N(Hn) 1
:1E°°d“+ZH1(c y 4H [
n>1 n

where p; denotes the constant value of p,,_; on @),,, as in the definitions
(4.17) and (4.26) of v,,. (Compare (5.180) with the definition (4.41) of
v.) Note that

(5.181) (pr) " lvall = n(Hy)

by definitions (or by (4.21) and (4.37)).

We claim that our proof also allows the same control on the norms
of Wy, Wi, Wy and Ws in L?(dv™), and similarly that

W22y + W 122 ey + WS gy + WS 122 a0t

<C p(Hy)

neJ

SCu( U Qn)-

neJ

(5.182)

This time we only have to recall the way we obtained our control on
W1, Wi, Wy and W in terms of the L?-norms (for du) of the functions
W3 and W defined in (5.9) and (5.63). For Wi, we only noticed that
hq(z) = 1g(z) hiy(z) for @ € Ew, so that W1 = W3 on Ew. Thus
||W1||%2(dy+) < ||W3||%2(d“) directly (i.e., without using the weight poo).

As for Wy, let us note that the proof of Lemma 5.10 only uses the
information that ||v, || < p(Hy), and not any more precise informations
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that would have used the fact that ||v,|| = p} n(H,) and the precise
size of p%. Thus we may replace v with vt in Lemma 5.10 and use
(5.181). Similar remarks apply to our control on Ws and Wz using
the function W: we only used the fact that Wy(z) = W(z) on E
(and not the size of po, on Ey ) and the fact that ||v,|| < pu(H,) (and
not the precise value of p)). Except for these initial reductions (i.e.,
Lemma 5.10, (5.64) and (5.72)), the argument of Chapter 5 does not
need to be modified; we were only working with the measure pu. The
same modifications also work with Wy and its colleagues, and gives
(5.182).

Remarks 5.177 and 5.179 are probably the first step towards a
BMO-type estimate on the T¢(g dv).
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