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Abstract� This paper studies a possible de�nition of Sobolev spaces
in abstract metric spaces� and answers in the a�rmative the question
whether this de�nition yields a Banach space� The paper also explores
the relationship between this de�nition and the Haj�lasz spaces� For
specialized metric spaces the Sobolev embedding theorems are proven�
Di�erent versions of capacities are also explored� and these various def�
initions are compared� The main tool used in this paper is the concept
of moduli of path families�

�� Introduction�

The theory of Sobolev spaces was originally developed for domains
	 in R

n and was based on the notion of distributional derivatives� For

 � p � � the Sobolev space W ��p�	� is de�ned to be the collection
of all functions u in Lp�	� such that the distributional derivatives �iu�
i  
� � � � � n� are in Lp�	�� and is equipped with the norm

kukW ��p  kukLp �
nX
i��

k�iukLp �

See �EG�� �M�� and �Z� for details of Sobolev spaces for domains in R
n �

Since distributional derivatives are de�ned in terms of an action on

���
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smooth functions via integration by parts� an alternate way of de�ning
Sobolev spaces needs to be found for general metric spaces�

It has been shown in �H
� that for p � 
 a p�integrable function
u in R

n is in the Sobolev class W ��p�Rn� if and only if there exists a
non�negative p�integrable function g such that for almost all points x
and y in R

n

ju�x�� u�y�j � jx� yj �g�x� � g�y�� �

This inequality can be stated on any metric measure space X if the
term jx� yj is interpreted to be the metric distance between the points
x and y� and therefore can be used to de�ne Sobolev type spaces refered
to in this paper as Haj�lasz spaces�

De�nition ���� Let X be a metric space with a metric d and a measure

�� For 
 � p � � the Haj�lasz space M��p�X� is the collection of Lp�
equivalence classes of functions u that together with some p�integrable
non�negative function g� called a Haj�lasz gradient of u� satisfy the in�

equality

�
� ju�x�� u�y�j � d�x� y� �g�x� � g�y�� �

for ��almost all x� y in X� The corresponding norm for functions u in

M��p�X� is given by

kukM��p  kukLp � inf
g
kgkLp �

where the in�mum is taken over all Haj�lasz gradients g of u� With this

norm� M��p�X� is a Banach space�

See �H
�� �H��� and Section � below for properties of Haj�lasz spaces�
There is another equivalent de�nition of Sobolev functions for do�

mains in Rn due to Ohtsuka� based on the notion of primitives of vector
�elds� Ohtsuka showed that a p�integrable function u is in the Sobolev
spaceW ��p�	� if and only if u is a generalized primitive of a p�integrable
vector �eld� that is� there is a vector �eld V on the domain 	 such that
��x�  jV �x�j is a p�integrable function and for p�modulus almost all
recti�able compact paths one has the equality

u�x�� u�y� 

Z
�

V �
d	

ds
ds �

where x and y are the end point and the starting point of 	 respectively�
See �O� Section ���� Theorem ���
� for details� See De�nition ��
 below
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for the de�nition of moduli of path families and the notion of a property
holding for p�modulus almost all paths�

De�nition ���� Let u be a real�valued function on a metric space X� A

non�negative Borel�measurable function � is said to be an upper gradient

of u if for all compact recti�able paths 	 the following inequality holds

��� ju�x�� u�y�j �

Z
�

� ds �

where x and y are the endpoints of the path�

See �KM�� and �HeK
� Section ���� for a discussion on upper gra�
dients� �HeK
� uses the term very weak gradients for this concept�

In the case of domains 	 of Rn � it is easy to see in the light of
�KM�� Lemma ����� Proposition ��
� and �O� Theorem ��
�� that the
existence of a p�integrable upper gradient is a necessary and su�cient
condition for a p�integrable function to be a generalized primitive of a p�
integrable vector �eld� Since the concept of upper gradient is de�nable
on any metric space� for 
 � p � � one can de�ne a Sobolev type
space on a metric measure space X to be the collection of p�integrable
functions with p�integrable upper gradients� See De�nitions ��� and ����
In the event that the p�modulus of the family of all compact recti�able
paths in the space is zero� for example if the metric measure space
has no recti�able curves� by Lemma ��
 the corresponding de�nition of
Sobolev type space would yield the space Lp�X�� If the metric space
has an abundance of recti�able curves an interesting theory of Sobolev
spaces develops� In contrast� the Haj�lasz space can be strictly smaller
than Lp�X� even when the space has no recti�able curves�

The Sobolev type spaces obtained by using the above de�nition
is referred to in this paper as Newtonian spaces in recognition of the
fact that the idea behind their de�nition is a generalization of the fun�
damental theorem of calculus� The aim of this paper is to study the
Newtonian spaces and their relationship to the Haj�lasz spaces�

The Newtonian spaces are de�ned in the second section of this
paper� and in the third section it is shown that these spaces are Ba�
nach spaces� and the relation between Newtonian spaces and Haj�lasz
spaces are explored in the fourth section� In the �fth section Sobolev
type embedding theorems are proved� The �nal section contains some
examples�
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�� Notations and De�nitions�

This section lists the notations and de�nitions used throughout the
paper� The main focus of this section is to de�ne the Newtonian spaces�

Throughout this paper �X� d� �� is a metric� Borel measure space�
Assume also that � is positive and �nite on balls in X� Throughout
this paper constants are labeled C� and the value of C might change
even from one line of the same proof to the next�

Throughout this paper it is assumed that p is a real number satis�
fying 
 � p �� unless speci�cally stated otherwise�

Paths 	 in X are continuous maps 	 � I �� X� where I is some
interval in R� abusing terminology� the image 	�I� � j	j of 	 is also
called a path� Let �rect be the collection of all non�constant compact
�that is� I is compact� recti�able paths in X� For a discussion of recti��
able paths and path integration see �HeK
� Section �� or �V� Chapter 
��
If A is a subset of X� then �A is the family of all paths in �rect that
intersect the set A and ��

A is the family of all paths 	 in �rect such that
the Hausdor� one�dimensional measure H��j	j � A� is positive� The
following de�nition is applicable to all families of paths� not necessarily
only to collections of compact recti�able paths� The rest of the paper
however will only consider families of non�constant compact recti�able
paths�

De�nition ���� Let � be a collection of paths in X� The p�modulus of

the family �� denoted Modp�� is de�ned to be the number

inf
�
k�kpLp �

where the in�mum is taken over the set of all non�negative Borel�

measurable functions � such that for all recti�able paths 	 in � the

path integral
R
�
� ds is not smaller than 
� Such functions � used to

de�ne the p�modulus of � are said to be admissible for the family ��

It is known from �Fu
� that p�modulus is an outer measure on the
collection of all paths in X� It is clear from the above de�nition that the
p�modulus of the family of all non�recti�able paths is zero� For addi�
tional information about p�moduli see �V�� �AO�� and �Fu
� Chapter 
��

A property relevant to paths in X is said to hold for p�almost all

paths if the family of recti�able compact paths on which the property
does not hold has p�modulus zero� This is a slightly di�erent de�nition
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from the standard de�nition used in other papers� the standard de��
nition requires that the family of all compact recti�able paths as well
as non�compact locally recti�able paths on which the property in ques�
tion does not hold has zero p�modulus� The di�erence between these
two de�nitions is immaterial in practice� for instance� all non�compact
recti�able paths can be completed to be compact recti�able paths in
the event that X is complete�

For any path 	 � �rect and for distinct points x and y in j	j�
choosing any two distinct numbers tx and ty from the domain of 	 such
that 	�tx�  x and 	�ty�  y� denote 	xy to be the subpath 	j�tx�ty ��
The subpath 	xy is not a well�de�ned notion as there can be more than
one choice of the related numbers tx and ty� Because of this ambiguity
any property that is required for one choice of subpath 	xy� is also
required for all such choices of subpaths�

De�nition ���� Let l�	� denote the length of 	� A function u is said

to be ACCp or absolutely continuous on p�almost every curve if u � 	 is

absolutely continuous on ��� l�	�� for p�almost every recti�able arc�length

parametrized path 	 in X� If X is a domain in R
n a function u is said

to have the ACL property� or absolute continuity on almost every line�

if on almost every line parallel to the coordinate axes with respect to the

Hausdor� �n � 
��measure the function is absolutely continuous� An

ACL function therefore has directional derivatives almost everywhere�

An ACL function is said to have the property ACLp if its directional

derivatives are p�integrable�

The notation here is a slight modi�cation of the notation used
in �V�� where an ACLp�function is required to be continuous� It is
shown in �Fu
� Theorem 

� and �V� Theorem ����� that for functions on
domains in R

n the ACLp property is equivalent to the ACCp property�
Recall that for domains 	 in R

n � functions in W ��p�	� have ACLp
representatives� and that conversely every p�integrable ACLp�function
is in W ��p�	�� See �EG� and �Z��

The following de�nition is due to �KM��� and is a weakening of the
concept of upper gradient de�ned in De�nition 
���

De�nition ���� Let u be an arbitrary real�valued function on X� and

let � be a non�negative Borel function on X� If there exists a family

� 	 �rect such that Modp�  � and inequality ��� is true for all paths

	 in �rectn�� then � is said to be a p�weak upper gradient of u� If
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inequality ��� holds true for p�modulus almost all paths in a set A 	 X�

then � is said to be a p�weak upper gradient of u on A� As the exponent
p is usually �xed� in both cases � is simply called a weak upper gradient

of u�

By �KM�� Lemma ����� the existence of a p�integrable weak upper
gradient implies the existence of a p�integrable upper gradient which
approximates the given weak upper gradient to any desired accuracy in
the Lp�norm� This statement follows easily from the following lemma�
which is a direct generalization of a theorem of Fuglede� �Fu
� Theo�
rem ��� to metric measure spaces� The proof given in �Fu
� remains true
even in this generality�

Lemma ���� Let � be a collection of paths in X� Then Modp�  � if

and only if there is a non�negative p�integrable Borel function � on X
such that for all paths 	 in ��

Z
�

� ds � �

De�nition ���� Let the set eN��p�X� d� �� be the collection of all real�

valued p�integrable functions u on X that have a p�integrable weak upper
gradient�

Note that eN��p is a collection of functions and is also a vector space�
since if 
� � � R and u�� u� � eN��p with respective weak upper gradients
��� ��� then j
j �� � j�j �� is a weak upper gradient of 
u� � � u�� If u

is a function in eN��p� let

kuk
eN��p  kukLp � inf

�
k�kLp �

where the in�mum is taken over all p�integrable weak upper gradients
of u� Again by �KM�� Lemma ����� the in�mum could just as well be
taken over all p�integrable upper gradients of u�

If u� v are functions in eN��p� let u 
 v if ku � vk
eN��p  �� It can

be easily seen that 
 is an equivalence relation� partitioning eN��p into
equivalence classes� This collection of equivalence classes� under the
norm of De�nition ���� is a normed vector space�
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De�nition ���� The Newtonian space corresponding to the index p�

 � p � �� denoted N��p�X�� is de�ned to be the normed spaceeN��p�X� d� ��� 
� with norm kukN��p � kuk

eN��p �

It will be shown in Corollary ��� that if two functions in eN��p agree
almost everywhere� then they are in the same N��p�X��equivalence

class� However� it should be noted that if u is a function in eN��p and
v is a function that agrees almost everywhere on X with u� it does not
follow that v is also in eN��p� Hence functions in the same equivalence
class of N��p�X� disagree on a smaller set than merely a measure zero
set� see Section ��

If u� v are functions in eN��p� then it is easily veri�ed that the func�
tions juj� min fu� vg� and maxfu� vg are also in eN��p� Thus N��p�X�
enjoys all the lattice properties found in classical �rst order Sobolev
spaces�

De�nition ��	� The space X is said to support a �
� p��Poincar�e in�

equality if there exists a constant C � � such that for all open balls

B in X and all pairs of functions u and � de�ned on B� whenever �
is an upper gradient of u on B and u is integrable on B the following

inequality holds true

���

Z
B

ju� uB j � C diam �B�
�Z
B

� p
���p

�

where� if f is a measurable function on X� then

fB �



��B�

Z
B

f �

Z
B

f �

Note by the H�older inequality that if a space supports a �
� p��
Poincar�e inequality then it satis�es a �
� q��Poincar�e inequality for all
q � p� For more discussion and examples of spaces with a Poincar�e
inequality� see �HeK
�� �HK��� �KM��� �S
�� and �He�� These papers have
a de�nition similar to the above� but requiring only that the inequality
of De�nition ��� be satis�ed by continuous functions together with their
upper gradients� The two de�nitions coincide under certain conditions�
see �HeK���
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�� Newtonian spaces are Banach spaces�

This section explores some properties of Newtonian spaces� with
the primary focus on proving in Theorem ��� that N��p�X� is a Banach
space� The di�culty in proving that the Cauchy sequences in N��p�X�
converge in its norm lies in taking care of the term involving upper
gradients in the norm estimates� The problem lies in the fact that a
di�erence of two N��p�functions does not necessarily have the di�erence
of the respective weak upper gradients as a weak upper gradient�

Proposition ���� If u is a function in eN��p� then u is ACCp�

Proof� By the de�nition of eN��p� u has a p�integrable weak upper gra�
dient �� Let � be the collection of all paths in �rect for which inequality
��� does not hold� Then by the de�nition of weak upper gradients�
Modp�  �� Let �� be the collection of all paths in �rect that have
a sub�path in �� Then any admissible function used to estimate the
modulus of � is an admissible function for ��� and hence

Modp�� � Modp�  � �

Let �� be the collection of all paths 	 in �rect such that
R
�
� ds  ��

As � is p�integrable� Modp�� is zero� Hence Modp��� � ��� is zero� If
	 is a path in �rectn��� � ���� then 	 has no sub�path in ��� and hence
for all x� y in j	j

ju�x�� u�y�j �

Z
�xy

� ds �� �

Therefore u is absolutely continuous on each path 	 in �rectn��� � ����

Lemma ���� Suppose u is a function in eN��p such that kukLp  ��
Then the family

�  f	 � �rect � u�x� � � for some x � j	jg

has zero p�modulus�

Proof� Since kukLp  �� the set E  fx � X � u�x� � �g has measure
zero� With the notation introduced in Section �� one has �  �E and

�  ��
E � ��En�

�
E� �
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The subfamily ��
E can be disregarded since

Modp�
�
E � k� � 

E
kLp  � �

where 
E

is the characteristic function of the set E� The paths 	 in

�En�
�
E intersect E only on a set of linear measure zero� and hence with

respect to linear measure almost everywhere on 	 the function u takes
on the value of zero� By the fact that 	 also intersects E therefore� u
is not absolutely continuous on 	� By Proposition ��
�

Modp��En�
�
E�  � �

yielding that Modp�  ��

The above lemma yields the following�

Corollary ���� If u� and u� are two functions in eN��p�X� such that

ku� � u�kLp  �� then u� and u� belong to the same equivalence class

in N��p�X��

The rest of the paper will not explicitly distinguish between the
functions in eN��p and their equivalence classes in N��p�

The following lemma was �rst proved for Rn by Fuglede� �Fu
�
Theorem � �f��� The proof extends easily to metric measure spaces�

Lemma ���� If f�ig
�
i�� is a sequence of Borel functions in Lp�X� con�

verging to zero in the Lp�norm� then there exists a subsequence f�ikg
�
k��

and a zero p�modulus family � 	 �rect such that for all paths 	 in

�rectn�

lim
k��

Z
�

�ik ds  � �

Remark ���� By Lemma ���� if �i is a Cauchy sequence of non�negative
Borel functions in Lp converging to � in Lp� then there is a subsequence
�ik such that for p�modulus almost every path 	 in �rect�

lim
k��

Z
�

�ik ds 

Z
�

� ds �� �

Di�erent de�nitions for a capacity of a set can be found in lit�
erature� The de�nition of capacity used here is based on �KM
� and
�AO��
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De�nition ���� The p�capacity of a set E 	 X with respect to the

space N��p�X� is de�ned by

��� CappE  inf
u
kukpN��p �

where the in�mum is taken over all the functions u in N��p whose re�

striction to E is bounded below by 
�

In the light of the following lemma� the discussion in �KM
� proving
that the Haj�lasz capacity is an outer measure is easily adaptable to show
that Capp is indeed an outer measure� The papers �KM
� and �HeK��
explore the characteristics of sets of zero Haj�lasz capacity� In particular�
they discuss the Hausdor� measure properties of zero Haj�lasz capacity
sets�

Lemma ��	� If F 	 X such that CappF  �� then Modp�F  ��

Proof� Since CappF  �� for each positive integer i there exists a
function vi in N��p�X� such that kvikN��p � ��i with vijF  
� Let

un 
nX
i��

jvij �

Then un is in N��p�X� for each n� un�x� is monotonic increasing for
each x � X� and

kun � umkN��p �
nX

i�m��

kvikN��p � ��m �� � � as m ��� �

Therefore the sequence fung
�
n�� is a Cauchy sequence in N��p�X��

By the fact that the sequence is Cauchy in N��p�X�� the sequence
is also Cauchy in Lp� Hence by passing to a subsequence if necessary�
there is a function eu in Lp to which the subsequence converges both
pointwise ��almost everywhere and in the Lp�norm� Choose a further
subsequence� also denoted fuig

�
i�� for the sake of simplicity in notation�

such that

kui � eukLp � ��i ����

ui �� eu pointwise ��almost everywhere ����

kgi���ikLp � ��i ����
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where gij is an upper gradient of ui � uj � If g� is an upper gradient of
u�� then u�  u� � �u� � u�� has as an upper gradient g�  g� � g���
In general�

ui  u� �
i��X
k��

�uk�� � uk�

has as an upper gradient

gi  g� �
i��X
k��

gk���k �

For j � i�

kgi � gjkLp �
i��X
k�j

kgk���kkLp �
i��X
k�j

��k � ��j�� �� � � as j ��� �

Therefore fgig
�
i�� is also a Cauchy sequence in Lp� and hence converges

in the Lp�norm to a non�negative Borel function g�
Now let a function u be de�ned by

u�x�  lim
i��

ui�x� �

wherever the de�nition makes sense� Since ui �� eu� ��almost ev�
erywhere by ���� u�x�  eu�x� ��almost everywhere� and hence u is
p�integrable� Let

E  fx � lim
i��

ui�x� �g �

The function u is well�de�ned outside of E� In order for u to be in the
space N��p�X� the function u has to be well�de�ned on almost all paths
by Proposition ��
� To this end it is shown that the p�modulus of the
family �E is zero�

Let �� be the collection of all paths 	 from �rect such that eitherR
�
g ds � or

lim
i��

Z
�

gi ds �

Z
�

g ds �

Then by Lemma ���� Modp��  �� Recall from Section � that

��
E  f	 � �rect � H��j	j � E� � �g �
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As ��E�  � by ���� Modp�
�
E  �� Therefore Modp��� � ��

E�  �� For
any path 	 in the family �rectn��� � ��

E�� by the fact that the path is
not in ��

E there exists a point y in j	j such that y is not in E� For any
point x in j	j� since gi is an upper gradient of ui�

jui�x�j � jui�y�j � jui�x�� ui�y�j �

Z
�

gi ds �

Therefore�

jui�x�j � jui�y�j�

Z
�

gi ds �

Taking limits on both sides and using the fact that 	 is not in ���

lim
i��

jui�x�j � lim
i��

jui�y�j�

Z
�

g ds �� �

and therefore x is not in E� Thus �E 	 ����
�
E and hence Modp�E  ��

Next� if 	 is a path in �rectn��� � ��
E�� denoting the end points of

	 as x and y and noting by the above argument that x and y are not
in E� one has that

ju�x�� u�y�j  j lim
i��

ui�x�� lim
i��

ui�y�j

� lim sup
i��

jui�x�� ui�y�j

� lim
i��

Z
�

gi ds



Z
�

g ds � since 	 �� �� �

Therefore g is a weak upper gradient of u� and hence u is in N��p�X��
For each x not in the set E one can write u�x�  limi�� un�x�� with
u�x� �nite� If FnE is non�empty� then

ujFnE  unjFnE 
nX
i��

jvij
��
FnE

 n �

for arbitrarily large n� yielding that ujFnE is in�nite� which is not pos�
sible as x is not in the set E� Therefore FnE is empty� and hence
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�F 	 �E � and as it was shown above that the p�modulus of �E is zero�
the lemma follows�

Theorem ��
� N��p�X� is a Banach space�

Proof� Let fuig
�
i�� be a Cauchy sequence in N��p�X�� To show that

this sequence is a convergent sequence in N��p�X� it su�ces to show
that some subsequence is a convergent sequence in N��p�X�� Passing
to a further subsequence if necessary� it can be assumed that

��� kuk � uk��kN��p � ��k�p����p

and that

��� kgi���ikLp � ��i �

where gij is an upper gradient of ui � uj chosen to satisfy the above
inequality� Let

Ek  fx � X � juk�x�� uk���x�j  ��kg �

Then �k juk�uk��j is in N
��p�X� and �k juk�uk��j

��
Ek

 
� and hence

by inequality ���

CappEk � �kp kuk � uk��k
p
N��p � �kp ��k�p��� � ��k �

Let Fj 
S�
k�j Ek� Then

CappFj �
�X
k�j

CappEk � ��j�� �

Therefore the p�capacity of F 
T
j�N Fj is zero� If x is a point in XnF �

there exists j in N such that x is not in Fj 
S�
k�j Ek� Hence for all k

in N such that k  j� x is not in Ek� for all k larger than j therefore
juk�x�� uk���x�j � ��k� Therefore whenever l  k  j one has that

juk�x�� ul�x�j � ��k�� �

and thus the sequence fuk�x�g
�
k�� is a Cauchy sequence in R and there�

fore is convergent to a �nite number� Hence if x � XnF � then

u�x�  lim
k��

uk�x� �



��� N� Shanmugalingam

For k � m�

um  uk �
m��X
n�k

�un�� � un� �

Therefore for each x in XnF �

u�x�  uk�x� �
�X
n�k

�un���x�� un�x�� �

u�x�� uk�x� 
�X
n�k

�un���x�� un�x�� ��
��

Noting by Lemma ��� that Modp�F  � and that for each path 	
in �rectn�F for all points x in j	j equation �
�� holds� conclude thatP�

n�k gn���n is a weak upper gradient of u� uk� Therefore

ku� ukkN��p � ku� ukkLp �
�X
n�k

kgn���nkLp

� ku� ukkLp �
�X
n�k

��n by condition ���

� ku� ukkLp � ��k�� �� � � as k ��� �

Therefore the subsequence converges in the norm of N��p�X� to u� The
proof of the theorem is now complete�

Remark ���� The proof of the above theorem did not use the fact that
the de�nition of �weak� upper gradients was based on all the compact
recti�able paths in X� One can therefore modify the de�nition of New�
tonian spaces by modifying the de�nition of �weak� upper gradients by
considering a particular family of compact recti�able paths in X� and
the modi�ed spaces will also be Banach� This is useful in considering
Example ��
� below�

In the above proof it was shown that for each positive integer j
there exists a set Fj of capacity no more than ��j�� such that the chosen
subsequence converged uniformly outside of Fj � Hence the following
corollary holds true�
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Corollary ���� Any Cauchy sequence fuig
�
i�� in N��p�X� has a sub�

sequence that converges pointwise outside a set of zero p�capacity� Fur�
thermore� the subsequence can be chosen so that there exist sets of arbi�

trarily small p�capacity such that the subsequence converges uniformly

in the complement of each of these sets�

The above corollary makes it possible to apply the machinery de�
veloped in �Fu��� See also Remark ����

In the following example� P ��p�X� is the vector space of p�integra�
ble functions u that together with some p�integrable non�negative func�
tion �� not necessarily an upper gradient of u� satisfy the �
� p��Poincar�e
inequality ��� on each open ball B�

Example ����� Let 	 be a domain in R
n � and X  fX�� � � � � Xkg

be a collection of vector �elds in 	 with real�valued locally Lipschitz
coe�cients� Such X de�nes a di�erential operator on locally Lipschitz
functions u on 	

Xu�x� 
kX

j��

Xju�x� 
kX

j��

hXj�x��ru�x�i �

where ru is de�ned almost everywhere on 	 by a theorem of Radema�
cher� Associated with such vector �elds there is a Carnot�Carath�eodory
 metric! �� see �HK�� Section 

�� Suppose X satis�es the additional
assumptions that the associated Carnot�Carath�eodory metric � is in�
deed a metric on 	� the metric space �	� �� satis�es a �
� p��Poincar�e
inequality� and that the identity map from 	 equipped with the Eu�
clidean metric to 	 equipped with the Carnot�Carath�eodory metric is
a homeomorphism� that is� the two induced topologies are equivalent�
Vector �elds satisfying H�ormander"s condition� in particular the vector
�elds generating the tangent planes of a Carnot group� satisfy these
conditions� Under these assumptions �HK�� Proposition 

��� shows
that if one restricts attention to the class of compact recti�able paths 	
whose tangent vectors are spanned by X� then jXuj is an upper gradi�
ent for each locally Lipschitz function u on 	� In this structure� there
is a natural de�nition of Newtonian spaces� namely the space N��p

X �	�
of p�integrable functions u that have p�integrable upper gradients g�
that is� for each compact recti�able path 	 whose tangent vectors are
spanned by X inequality ��� is satis�ed� The papers �FHK� Theo�
rems 
�� 

� and 
�� and �HK�� Section 

� show that in this situation�
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if �	� �� supports a �
� p��Poincar�e inequality� then

N��p
X �	� 	 P ��p�	� 	 H��p

X �	� �

where H��p
X �	� is the closure of the collection of all locally Lipschitz

p�integrable functions on 	 such that jXuj is p�integrable� the closure
being taken in the norm

kuk  kukLp � k jXuj kLp �

Hence in this situation� by Remark ���� N��p
X �	�  H��p

X �	�  P ��p�	��
For more discussion of Carnot�Carath�eodory metric and Sobolev spaces
generated by vector �elds� see �GN�� The paper �HK�� contains further
references to this topic�

�� N��p�X� and M��p�X��

In the third section it was shown that even in the most general set�
ting of the metric measure space N��p�X� is a Banach space� However�
if X does not have many recti�able paths� then N��p�X� reduces to the
space Lp�X�� This section attempts to answer the question� when is
N��p�X� a reasonable space to consider�

Throughout the rest of the paper the open ball of radius r centered
at x is denoted B�x� r��

De�nition ���� A metric measure space X is said to be a doubling

space if there exists a constant C  
 so that for all x in X and all

radii r � ��
��B�x� � r�� � C ��B�x� r�� �

Note that Rn � together with Lebesgue measure� is a doubling space�
It is a classical result that smooth functions form a dense set in

W ��p�	� whenever 	 is a domain in R
n � The following theorem is an

analogue of this result for metric measure spaces supporting a �
� p��
Poincar�e inequality as in De�nition ���� The proof of the theorem is a
modi�cation of an idea due to Semmes� �S���

Theorem ���� If X is a doubling space that supports a �
� p��Poincar�e
inequality� then Lipschitz functions are dense in N��p�X��



Newtonian spaces	 An extension of Sobolev spaces ���

The proof of this theorem uses the following lemma� whose proof�
obtained easily by an application of standard covering arguments� is
omitted here�

Lemma ���� Let X be as in Theorem ��
� and let M� be the non�

centered maximal operator de�ned by

�

� M�f�x� � sup
B

Z
B

jf j d� �

where the supremum is taken over balls B in X containing the point x�
Then if g is a function in L�� then

lim
���

���fx � X � M�g�x� � �g�  � �

Lemma ���� Suppose u is an ACCp function on X such that there

exists an open set O 	 X with the property that on XnO the function

u  � ��almost everywhere� Then if g is an upper gradient of u� then
g 

O
is also a weak upper gradient of u�

Proof� Let E  fx � XnO � u�x� � �g� Then by assumption ��E� 
�� Hence Modp��

�
E� is also zero �since �

E
is then an admissible

function for this collection of paths�� Let �	 be the collection of paths
on which u is not absolutely continuous� Let 	 � �rectn��

�
E � �	�

connecting two points x� y � X� If 	 lies entirely in O �E� then clearly

ju�x�� u�y�j �

Z
�

g 

Z
�

g 
O

because 	 intersects E only on a set of Hausdor� 
�measure zero� If x
and y are not in O �E� then u�x�  u�y�  �� and hence again

ju�x�� u�y�j �

Z
�

g 
O
�

If x is a point in O � E and 	 does not lie entirely in O � E� noting
that �u � 	������ is a compact subset of the domain I  �a� b� of 	� the
set �u � 	������ has a lower bound a	 and an upper bound b	 in I with
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u � 	�a	�  u � 	�b	�  � �it is possible that b	  b� but that does not
create a problem here�� Thus�

ju�x�� u�y�j � ju�x�� u � 	�a	�j� ju � 	�a	�� u � 	�b	�j

� ju � 	�b	�� u�y�j

�

Z
�
��
�a�a��

g �

Z
�
��
�b��b�

g

�

Z
�

g 
O
�

since the subpaths 	
��
�a�a��

and 	
��
�b��b�

intersect E � �XnO� only on a

set of Hausdor� 
�measure zero� By the above three cases the result
follows�

Note that the important characteristic of the set O in the above
proof is that for p�modulus almost every curve 	 set 	����� is open�

Proof of Theorem ���� If u is a function in N��p�X�� let

E�  fx � X � M�gp�x� � �pg �

where g is a p�integrable upper gradient of u� By Lemma ���� functions
uk  min fmaxfu� �g� kg�minfmax f�u� �g� kg approximate functions
u in N��p�X�� Hence without loss of generality we can assume that u
is bounded� By Lemma ����

�
�� �p��E�� �� � � as � ��� �

If x is a point in XnE�� then for all r � � one has thatZ
B�x�r�

ju� uB�x�r�j � C r
� Z
B�x�r�

gp
���p

� C r �M�gp�x����p � C r � �

Hence for s � �r��� r� one has that

juB�x�s� � uB�x�r�j �

Z
B�x�s�

ju� uB�x�r�j

�
��B�x� r��

��B�x� s��

Z
B�x�r�

ju� uB�x�r�j

� C � r �
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whenever x is in XnE�� By a chaining argument for any positive s � r
�i�e� bounding s to be in an interval �r��n� r��n��� and then using
triangle inequalities to move up to the radius r�� for x in XnE� it is
seen that

juB�x�s� � uB�x�r�j � C � r

and hence any sequence uB�x�ri� is a Cauchy sequence in R and therefore
is convergent� Therefore on XnE� the following function can be de�ned

u��x� � lim
r�	

uB�x�r� �

Note that at Lebesgue points of u in XnE� it is true that u�  u�
and that E� is an open set� For x� y � X consider the chain of balls
fBig

�
i���� where

B�  B�x� d�x� y�� and B��  B�y� d�x� y��

and inductively for i � 
 obtain

Bi 



�
Bi�� and B�i 




�
B�i�� �

If x and y are in XnE�� then they are also Lebesgue points of u� by
construction� and hence

ju��x�� u��y�j �
�X

i���

juBi
� uBi��

j � C�d�x� y� �

Hence u� is C��Lipschitz onXnE�� Extend u� as a C��Lipschitz exten�
sion to the entire X� see �MS� for existence of such extensions� Choose
an extension such that u� is bounded by �C�� This can be done by
truncating any Lipschitz extension at C�� Such truncation will not af�
fect the values of u� on the set XnE� whenever � is large enough so
that ��E�� � C��
��� since the original function u is bounded�

Now� Z
X

ju� u�j
p 

Z
E�

ju� u�j
p

� C

Z
E�

jujp � C

Z
E�

ju�j
p

� C

Z
E�

jujp � C�p ��E�� �
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By the fact that ��E�� �� � as � �� �� by the fact that u is p�
integrable� and by �
��� it can be observed that the two terms on the
right hand side of the above inequality tends to zero as � tends to
in�nity� Hence u� converges to u as � tends to in�nity� the convergence
occuring in the Lp�norm� The non�zero values of u � u� are obtained
only at points in the open set E� and on the set L whose measure is
zero� and by Lemma ��
 u is ACCp and by the Lipschitz property so is
u�� Therefore by Lemma ��� the function �C��g�

E�
is a weak upper

gradient of u� u�� Hence u� u� is in N��p�X�� and therefore so is u��
Since by �
��� Z

X

j�
E�
jp  �p��E�� �� �

and Z
X

jg 
E�
jp 

Z
E�

jgjp �� � �

as � ���� the sequence u� converges to u in N��p�X��

Remark ���� By Corollary ��� and the above theorem� for all functions
u in N��p�X� there are open sets of arbitrarily small capacity such that
u is continuous in the complement of these sets� provided the space X
is doubling and satis�es the condition infx�X ��B�x� 
�� � �� and sup�
ports a �
� p��Poincar#e inequality� These sets are open since in the proof
of Theorem ��� the sets Ek are open if the functions uk are taken to
be these Lipschitz approximations� Such continuity property is called
quasicontinuity� The classical Sobolev spaces and Haj�lasz spaces are
composed of Lp�equivalece classes of functions� with each equivalence
class containing a quasicontinuous function� see �EG� Section ����
��
Due to the approach taken in this paper in de�ning Newtonian spaces�
the equivalence classes in the Newtonian spaces consist solely of quasi�
continuous functions whenever X supports a �
� p��Poincar�e inequality�
In other words� if X is doubling and supports a �
� p��Poincar�e inequal�

ity� then functions in eN��p�X� are automatically quasicontinuous�

Theorem ���� If X  	 is a domain in R
n � d�x� y�  jx� yj� and �

is Lebesgue n�measure� then as Banach spaces N��p�X�  W ��p�	��

Proof� Ohtsuka proved in �O� thatW ��p�	� 	 N��p�	�� See also �Fu
�
and �V��

Suppose u � N��p�X�� Then by Proposition ��
� u has property
ACCp and has a p�integrable weak upper gradient � in Lp� Therefore
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u is ACL with principal directional gradient matrix ru such that by
applying the fundamental theorem of calculus and a Lebesgue point
argument one easily sees that jruj � �� almost everywhere� Hence u
has property ACLp and hence by �Z� Theorem ��
���� u �W ��p�	��

The following Lemma has an easily veri�able proof�

Lemma ��	� If u � M��p�X�� p  
� with a Haj�lasz gradient g� then
there exists two functions eu� eg such that u  eu almost everywhere� and

kgkp  kegkp� and for all points x� y in X

jeu�x�� eu�y�j � d�x� y� �eg�x� � eg�y�� �
Furthermore� if u is a continuous function in M��p�X�� then only its

Haj�lasz gradient needs to be altered�

Inequality �
� de�ning the space M��p�X� in De�nition 
�
 is re�
quired to hold only almost everywhere� Hence M��p�X� is a collection
of equivalence classes of functions� with two functions belonging to the
same equivalence class if and only if they di�er only on a set of measure
zero�

The idea for the proof of the following lemma is from �H�� Propo�
sition 
��

Lemma ��
� The set of all equivalence classes of continuous functions

u in M��p�X� embeds into N��p�X�� with

kukN��p�X� � � kukM��p�X� �

Proof� Suppose u is a continuous representative of its equivalence
class in M��p�X�� Then by Lemma ���� for each Haj�lasz gradient of
u there exists a function g in Lp with the same Lp�norm such that
inequality �
� holds true everywhere� Let x� y � X and 	 be an arc�
length parametrizing recti�able path connecting x to y� If

R
�
g  ��

then we have that

ju�x�� u�y�j �

Z
�

g �

So suppose the integral of g over 	 is �nite� For each number n in N

let �n be the partition of the domain of 	 into n pieces of equal length�
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On each partition 	i  	
��
�n�i���n�i���

� � � i � n� 
� there exists xi in

j	ij such that

g�xi� �

Z
�i

g ds �

Note that d�xi� xi��� � � l�	i�� Using these points xi� one has that

ju�x	�� u�xn�j �
n��X
i�	

ju�xi�� u�xi���j

�
n��X
i�	

d�xi� xi��� �g�xi� � g�xi����

� �
nX
i�	

l�	i�

Z
�i

g ds

� �
nX
i�	

Z
�i

g ds

 �

Z
�

g ds �

Now� as u is continuous� by letting n ��� the following inequality is
obtained

ju�x�� u�y�j � �

Z
�

g ds �

Therefore the continuous representative u of its equivalence class in
M��p�X� belongs to an equivalence class in N��p�X�� with kukN��p �
� kukM��p � By Lemma ���� if any representative in the equivalence class
of u in M��p�X� belongs to an equivalence class in N��p�X�� then it
belongs to the same equivalence class as u in N��p�X�� Hence the
embedding is well�de�ned�

Theorem ���� The Haj�lasz space M��p�X� continuously embeds into

the space N��p�X��

Proof� By Theorem ��� the space N��p�X� is a Banach space� Hence
the closure of the subspace of equivalence classes of continuous functions
in M��p in the norm of M��p yields a subspace of N��p�X� by Lemma
���� By �H
� Lipschitz functions and therefore continuous functions are
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dense inM��p�X� and hence such closure is the Haj�lasz space M��p�X��
yielding the required result�

The author does not know whether the embedding norm � in the
above theorem can be improved�

The following theorem is obtained by Theorem ���� �KM�� Theo�
rem ����� and the fact that if X supports a �
� q��Poincar�e inequality for
some q in �
� p� then N��p�X� 	 P ��p�X�� The better Poincar�e inequal�
ity �q � p� is required in order to apply �KM�� Theorem ����� While
�KM�� assumes X to be proper �that is� closed balls are compact�� their
proof of Theorem ��� does not need this assumption� for they consider a
modi�ed version of the Korevaar and Schoen space� �KS�� Here P ��p�X�
is the vector space of p�integrable functions u that together with some
p�integrable non�negative function �� not necessarily an upper gradient
of u� satisfy the �
� p��Poincar�e inequality ��� on each open ball B�

Theorem ���� If X is a metric measure space equipped with a dou�

bling measure� and X supports a �
� q��Poincar�e inequality for some

q � �
� p�� then as sets

M��p�X�  N��p�X�  P ��p�X� �

Moreover� N��p�X�  M��p�X� isomorphically as Banach spaces�

For examples of spaces X where the Haj�lasz spaces do not coincide
with the Newtonian spaces� see Example ����

After this paper was submitted the author received a copy of a
paper of Cheeger� �C�� which gives another de�nition of Sobolev spaces�
It turns out that this de�nition yields the same space as N��p when
p � 
��

De�nition ���� For p  
� the Sobolev type space H��p�X� is the

subspace of Lp�X� consisting of functions f for which the norm

�
�� jf j��p  kfkLp � inf
ffig

lim inf
i��

kgikLp

is �nite� Here the limit in�mum is taken over all upper gradients �or
equivalently� weak upper gradients� gi of the functions fi� where the

sequence fi converges in the Lp�norm to the function f �

�
October
 ����
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Theorem ���� The above de�ned function space H��p�X� is isomet�

rically equivalent to N��p�X� when p � 
�

The following lemma is needed in the proof of the above theorem�
The proof of Lemma ��� inequalities ��� and ���� which remain

valid for general Cauchy sequences of functions in N��p�X�� yields the
following result� given a Cauchy sequence of functions in Lp�X� and a
corresponding Cauchy sequence in Lp of respective upper gradients� the
two functions that the respective sequences converge to are related as
a function�weak upper gradient pair� The following lemma from �KSh�
proves a stronger version of this result� This result can be used most
of the time in place of Mazur"s lemma�

Lemma ����� Let Y be a metric measure space and let p � 
� If

ffjgj�N is a sequence of functions in Lp�Y � with upper gradients

fgjgj�N in Lp�Y �� such that fj weakly converges to f in Lp and gj
weakly converges to g in Lp� then g is a weak upper gradient of f and

there is a convex combination sequence

efj 
njX
k�j

�kj fk

and

egj 
njX
k�j

�kj gk

with
njX
k�j

�kj  
 � �kj � � �

so that efj converges in Lp to f and egj converges in Lp to the function

g�

Proof of Theorem ����� Clearly functions in N��p�X� satisfy the
above de�nition� the sequence fi could be taken to be the function
itself� By Lemma ��

� it is also clear that functions satisfying the
above de�nition have an Lp�representative in N��p�X�� Moreover� the
N��p�X��norm is equal to the norm �
���
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When p  
� it is still true that N����X� embeds continuously into
H����X� by a norm non�increasing embedding� but it is no longer clear
that H����X� embeds into N����X��

The paper �C� proves that when X is doubling in measure and
supports a �
� p��Poincar�e inequality and p � 
� the space H��p�X� is
re$exive� Hence by the above theorem� in this situation N��p�X� is also
re$exive�

�� Classical Sobolev Embedding Theorem�

When X  R
n � d the Euclidean metric� and � the Lebesgue n�

measure� one has the following classical embeddings

W ��p�X� �� Lnp��n�p� � if p � n �

W ��p�X� �� C	���n�p � if p � n �

where� for positive numbers 
 � 


C	��  fu � X �� R � there exists C � � such that�

for all x� y � X � ju�x�� u�y�j � Cd�x� y��g �

Under certain conditions on the space X this section looks at the pos�
siblity of obtaining similar embedding theorems� See �HK
� and �HK��
for similar results for the Haj�lasz spaces�

Theorem ���� Let Q � �� If X is a doubling space satisfying

��B�x� r��  C rQ �

with C independent of x � X and � � r � � diamX� and supporting a

�
� p��Poincar�e inequality for some p � Q� then N��p�X� continuously
embeds into the space C	���Q�p�

In other words� every N��p�equivalence class has a representative
that is H�older continuous with exponent 
�Q�p� with the H�older norm
bounded by its N��p�norm�

Proof� For x� y � X consider the chain of balls fBig
�
i���� where

B�  B�x� d�x� y�� and B��  B�y� d�x� y��
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and inductively for i � 
 obtain

Bi 



�
Bi�� and B�i 




�
B�i�� �

If x and y are also Lebesgue points of u� the following is obtained

ju�x�� u�y�j �
�X

i���

juBi
� uBi��

j

and

juBi
� uBi��

j � C diam��Bi�
� Z
�Bi

� p
���p

� C �diam��Bi��
��Q�p

�Z
�Bi

� p
���p

� C �diam��Bi��
��Q�p k�kLp �

Therefore

ju�x�� u�y�j � C d�x� y���Q�p
� �X
i���

��jij���Q�p�
�
k�kLp

� C�Q� p� k�kLp d�x� y�
��Q�p �

Let L be the set of non�Lebesgue points of u� Since X is doubling�
��L�  �� By the above argument u

��
XnL

is H�older continuous with

index 
�Q�p� and hence by �MS�� can be extended as a H�older contin�
uous function eu to all of X� Note that the p�modulus of the collection
��
L is zero� If �	 is the collection of curves on which u is not abso�

lutely continuous� then Modp�	  �� If 	 is a path in the collection
�rectn��

�
L � �	�� then on j	j almost everywhere with respect to the one

dimensional Hausdor� measure it is true that eu  u� As u and eu are
both continuous on j	j� the two functions u and eu must agree on all
of j	j� Therefore if E is the collection of all points on which the two
functions do not agree� then the p�modulus of the collection �E is zero�
Hence eu is in N��p�X� and belongs to the same equivalence class as u�
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De�nition ���� Let Q � �� A metric measure space X is said to be

Ahlfors Q�regular or Q�regular if there exists a constant C  
 so that

for each point x in X and for each positive r � � diamX�




C
rQ � ��B�x� r�� � C rQ �

Theorem ���� If X is bounded� Q�regular� Q � 
� and supports a

�
� q��Poincar�e inequality for some q such that 
 � q � p and 
 �
p�q � Q� then if u is in N��p�X� and � is an upper gradient of u� then

�Z
X

ju�x�� uX j
t d��x�

���t
� C diamX����q k�kLp �

where t  Qp q��Qq � p��

The condition 
 � q is a technical requirement� If the space sup�
ports a �
� 
��Poincar�e inequality� then it supports a �
� q��Poincar�e in�
equality for each q � 
� and the theorem remains true in this case as
well� The condition p�q � Q is easy to satisfy as one can always in�
crease q while keeping the validity of �
� q��Poincar�e inequality� The
non�trivial requirement here is the condition q � p�

Proof� For Lebesgue points x in the space X consider the collection
of balls fBig

�
i�	 such that B	  B�x� diamX� and for each i � � the

ball Bi  B�x� ��i diamX�� Then�

ju�x�� uX j �
�X
i�	

juBi
� uBi��

j

� C
�X
i�	

�

Z
Bi

ju�z�� uBi
j dz

�
�X
i�	

C diam�Bi�
�Z
Bi

�q
���q

�
�X
i�	

C ��i�����q� diamX����q
�Z

Bi

��z�q

d�x� z�Q��
dz
���q

� C diamX����q
�Z

X

�q�z�

d�x� z�Q��
dz
���q

�
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The last integral is the Riesz potential estimate I���
q��x�� and since

in Q�regular spaces the Riesz kernel is a bounded map from Ls to
LQs��Q�s� for s � Q� the last integral yields a function in LQpq��Qq�p��
see �Z� for properties of Riesz potentials� The discussion in �Z� goes
through even in this general setting� For further details see �HK�� and
�He�� Thus the theorem is proved�

	� More properties of N��p�X� and examples�

De�nition 	��� An alternative de�nition for p�capacities of subsets E
of X is as follows

Cap�pE  inf
u
kukpN��p �

where the in�mum is taken over all functions u in N��p such that for

p�almost all paths 	 intersecting E the limit of u � 	�t� along 	 as 	�t�
and converges to any intersecting point in E exists and is not smaller

than 
�

This de�nition in Euclidean spaces was used in �AO��
Another de�nition of capacity� Cap��p E� is obtained when the cor�

responding in�mum is taken over all the functions u in N��p that are
bounded below by 
 in a neighbourhood of E�

Aikawa and Ohtsuka show in �AO� Theorem �� that under certain
conditions on the measure the last two de�nitions of capacity agree for
subsets of bounded domains in R

n � By the easily provable fact that if
� � R and u � N��p�X�� then the function v  min fu� �g is also in
N��p�X� with any weak upper gradient of u also being a weak upper
gradient of v� the condition  greater or equal to 
! can be replaced with
the condition  equal to 
! in the above de�nitions of capacity�

Lemma 	��� If E 	 X� then Cap��p E  CappE  Cap�pE�

Proof� Let u be any function in N��p�X� such that ujE  
� Then
as u is ACCp by Proposition ��
� it is also an admissible test func�
tion in determining Cap�pE� Also� any admissible test function used in
calculating Cap��p E is an admissible test function for CappE�

The rest of the section will assume that the measure is also an
inner measure� that is� for every subset A of X� the measure of A is
the supremum of the measures of closed subsets of A�
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The following de�nition for functions in Rn is due to Ohtsuka� �O��

De�nition 	��� Let � be a p�integrable non�negative Borel function

in X� Such a function de�nes an equivalence relation 
� as follows �
For x� y � X� x 
� y if either y  x or there exists a path 	 in �rect

connecting x to y such that Z
�

� ds �� �

It is easy to see that this is indeed an equivalence relation� and 
�

partitions X into equivalence classes�
A metric measure space X is said to admit the main equivalence

class property with respect to p� or MECp� if each p�integrable non�
negative Borel function � generates an equivalence class G�� hereafter
referred to as the main equivalence class of �� such that ��XnG��  ��
It has been shown in �O� that Rn has the MECp�property for all p�

Note that in general equivalence classes need not be measurable
sets� However� in MECp spaces� the main equivalence class� being of
full measure� is necessarily measurable� and so are the other equivalence
classes�

De�nition 	��� Let Q � 
� The space X is said to be a Q�Loewner
space if X is path�connected and there is a monotonic decreasing func�

tion � � ����� �� ����� such that for all disjoint non�degenerate

continua E and F the family ��E�F � of all paths connecting E to F in

X satis�es

ModQ���E�F ��  ��%�E�F �� �

where

%�E�F � 
dist �E�F �

min fdiam�E�� diam�F �g
�

See �HeK
� Section �� for details� In particular� �HeK
� shows that
under certain mild geometric conditions on a Q�regular space X� the
space X supports a �
� Q��Poincar�e inequality if and only if it is Q�
Loewner�

Theorem 	��� If X is a Q�Loewner space such that for almost all

points x in X the mass density

lim sup
r�	

��B�x� r��

rQ
�� �
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then X is a MECQ�space�

Proof� Fix � � LQ�X� and let �	  f	 � �rect �
R
�
� ds �g� Then

ModQ�	  �� Let

G 
�

���rectn��

j	j �

Clearly if x� y � j	j for some 	 � �rectn�	� then x 
� y� If x � j	�j�
y � j	�j� with 	�� 	� � �rectn�	 and 	� and 	� do not intersect� then
as 	� and 	� are compact sets� by the Loewner property there exists
	� � �rectn�	 intersecting both 	� and 	�� and hence x 
� y� Therefore
all elements of G belong to the same equivalence class with respect
to �� Furthermore� if x � G and y �� G� then there does not exist
	 � �rectn�	 such that x � j	j and y � j	j and therefore x �
� y� Thus
G is an equivalence class with respect to ��

Let A	  XnG� It remains to show that ��A	�  �� Suppose
��A	� � �� The set A	 may not be measurable� However� by the
assumption made at the beginning of this section the measure is an
inner measure� measure of arbitrary sets E are supremum of measures
of closed subsets of E� Hence there is a closed set A 	 A	 such that
��A� � �� Since � is a Borel measure� A is measurable� This set A has
a point of density x	 such that lim supr�	 ��B�x	� r���r

Q � Cx��� � ��

lim sup
r�	

��B�x	� r�
T
A�

��B�x	� r��
 
 �

Therefore for each positive number � there exists a positive number r	
such that

��B�x	� r	�nA�

��B�x	� r	��
� � �

Consider E�F 	 B�x	� r	��� such that E and F are non�degenerate
continua with the relative distance

%�E�F � 
dist �E�F �

minfdiam �E�� diam�F �g

comparable to a constant� and dist �E�F �  k r	 where k � 
�� is
some positive constant independent of �� Such E�F exist because X
is path�connected� For example� take E to be a path connecting the
boundary of B�x	� r	�
�� to the boundary of the ball B�x	� r	��� with�
out going outside the closure of B�x	� r	���� and take F to be a path
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connecting the boundary of B�x	� r	��� to the boundary of B�x	� r	���
without going into the ball B�x	� r	��� nor outside the closure of the
ball B�x	� r	���� By the Loewner property of X the Q�modulus of all
the paths joining E to F is bounded away from zero by a constant C
independent of �� Denote the collection of all such paths �	� Then

�	 	 �A
�

��	n�A� �

where� recall that �A is the collection of recti�able paths intersecting the
set A� The path 	 � �A implies that 	 � �	 and hence ModQ�A  ��
Therefore�

ModQ�	  ModQ��	n�A� �

But the function

�  
B�x��r��nA




k r	

is an admissible test function for �	n�A� and hence by the fact that

lim sup
r�	

��B�x	� r��

rQ
 Cx� �� �

the Q�modulus of �	 is less than or equal to Cx�� for some constant
Cx� independent of �� This term converges to zero as � tends to zero�
contradicting the Loewner property� Hence the measure of A is zero�
contradicting the choice of A� Therefore� ��XnG�  ��

The condition lim supr�	 ��B�x� r���rQ � � for almost every x
in X is satis�ed by the spaces having lower mass bounds of exponent
Q� The lower mass bound condition is a global condition� whereas
in the proof of the above theorem only the local version is needed�
Manifolds such as in�nitely long cylindrical surfaces are not ��regular�
but satisfy the above local limit property withQ  �� These surfaces are
��Loewner� and the above theorem shows that they are MEC� spaces�
In fact� by the proof of the theorem above� all Riemannian manifolds
of dimension n are MECn�spaces�

Remark 	��� Under the assumption of MECp condition� it is easily
seen by the following argument that CappE  Cap�pE�

Suppose u is a function in N��p�X� such that for p�almost every
path 	 in �E

lim
��t��j�j�E

�u � 	�t��  
 �
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Let E� be the set of all points x in E such that u�x� is strictly less than

� Then for each 	 in �E�

either

lim
��t��j�j�E�

�u � 	�t�� � 


or else� either the limit does not exist or u is less than 
 at some point
in j	j � E�� that is� u is not absolutely continuous on 	� By the choice
of u and by Proposition ��
 therefore Modp�E�

 �� By Lemma ���
and by the fact that X is an MECp space and hence ��E��  �� the
value of u can be adjusted on E� to be greater than or equal to 
 to
obtain a N��p�X��function in the same N��p�X��equivalence class as u
but with the property of being greater than or equal to 
 on all of E�
Hence CappE � Cap�pE� By Lemma ��
 the result follows�

Lemma 	��� Let X be a MECp�space containing two disjoint open

sets� If E 	 X� then Modp�E  � if and only if CappE  ��

Proof� Suppose E 	 X such that Modp�E  �� Then by Lemma ��

there exists a p�integrable non�negative Borel function � such that for
all 	 in �E the integral

R
�
� ds is in�nite� By the MECp property of

X� � has a main equivalence class G�� Since X contains two disjoint
open sets and open sets have positive measure� G� has more than one
element� If x is in E and y � x is in G�� one has that any path
connecting x to y is in �E and therefore by the choice of � one can see
that x �
� y� Hence E is a subset of XnG�� Thus ��E�  �� Therefore
the function u  

E
is in Lp and is absolutely continuous on all the

paths in �rect that are not in �E � In addition� the zero function is a
weak upper gradient of u� and hence u is in N��p�X�� Hence

CappE � kukpN��p  � �

Now suppose that E 	 X such that CappE  �� Then by Lemma ���
the p�modulus of �E is zero�

The proof of the above lemma yields the following�

Lemma 	��� Let X be a MECp space containing two disjoint open

sets� If E 	 X and Modp�E  �� then the measure of E is zero�

Corollary 	�	� If X is a MECp space containing two disjoint open

sets� then Modp�rect is strictly positive�
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Proof� Since the measure of X is positive� the p�capacity of X is not
zero� for each admissible function u chosen in calculating CappX�

kukpN��p  ��X� �

and hence taking the in�mum over all such admissible functions�

CappX  ��X� � � �

Hence by Lemma ��� the p�modulus of �rect is not zero�

Remark 	�
� A similar result to Lemma ��� holds true for Q�Loewner
spaces whose almost every point x satis�es the condition

lim sup
r�	

��B�x� r��

rQ
�� �

In such a space X� for any subset E of X the Q�modulus of the path
family ��

E is zero if and only if ��E�  �� This can be proved by an
argument similar to the proof of Theorem ���� Moreover� here it is
su�cient to require the space X to be  locally Loewner! in a suitable
sense�

Example 	��� If X is an MECp�space such that there exists a ball B in
X so that ��B� � � and ��XnB� � �� then there exists an equivalence
class �u� in Lp such that any function u in this equivalence class is not
in any equivalence class of N��p�X�� In particular� N��p�X� is strictly
smaller than the space Lp�X��

Let eu  
B

and �u� its equivalence class in Lp� here

keukLp  ���B����p �� �

Suppose u is a function in this equivalence class that also belongs toeN��p� Then u�x�  
 for almost all x in B and u�x�  � for almost all
x in XnB� Let

E  fx � X � u�x� � eu�x�g �
As u is in the same Lp�equivalence class as eu one can conclude that
��E�  �� Hence

Modp��
�
E � �u�  � �
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where �u is the collection of paths on which u is not absolutely con�
tinuous �Proposition ��
�� and so by Lemma ��
 there exists a non�
negative Borel�measurable p�integrable function � so that for all paths
	 in ��

E � �u the integral Z
�

� ds

is in�nite� As X is an MECp space � has a main equivalence class G�
��XnG�  �� Thus there is a point x in B and a point y in XnB so
that x and y are both in G� there is a recti�able path 	 connecting x
to y so that Z

�

� ds �� �

By the choice of � one then has that 	 is in neither ��
E nor in �u� and

hence u is absolutely continuous on 	 and

H��j	j � B �E�  �  H��j	j � �XnB� �E� �

Let x	 be the point in j	j at which 	 �rst leaves the open set B �such a
point exists since j	j is a compact set�� The function u however cannot
be continuous at x	 as every neighbourhood in j	j of x	 contains points
at which u is zero and also points at which u is 
� Thus u cannot be ineN��p�

The following example shows that it is not always the case that
N��p�X� embeds into M��p�X��

Example 	��� In �K� for every q � �
� n� Koskela has an example of a
space X  R

nnE� E 	 R
n���f�g� so that X supports a �
� p��Poincar�e

inequality for every p  q but does not support a �
� p��Poincar�e in�
equality for any p � q� In these spaces� by Theorem ��
� one knows
that Lipschitz functions are dense in N��p�X� whenever p  q Hence
as Lipschitz functions are extendable uniquely �since jEj  �� to all of
R
n � all N��p�X� functions are extendable to all of Rn

N��p�X�  N��p�Rn�  M��p�Rn� � p  q �

Since inequality �
� is needed to be satis�ed only almost everywhere for
M��p�functions and jEj  �� it is true that M��p�Rn �  M��p�X� for all
p� 
 � p ��� Hence whenever p  q one has thatN��p�X�  M��p�X��
When 
 � p � q� by �K� Theorem A� and Theorem ��� the space
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N��p�X� � N��p�Rn� and hence� as M��p�Rn�  M��p�X�� in this case
the space N��p�X� does not embed into the space M��p�X� if p � q�

Another question one could ask is whether in Theorem ��� one
really needs q � p� i�e� does there exist an example of a space that sup�
ports a �
� p��Poincar�e inequality but does not support a �
� q��Poincar�e
inequality for any q � p and N��p does not embed into M��p� In Ex�
ample ��� the embedding was done by extending the N��p functions to
all of Rn and then embedding into M��p� which does not capture the
essence of the e�ect of Poincar�e inequalities� The following example
answers the above question in the a�rmative�

Example 	���� Let p  
 and X be a unit ball B in R
n � Then

N��p�X�  W ��p�X� is not the same space asM��p�X� by the comments
in �H�� and �HK��� and there is no number q � p so that X supports a
�
� q��Poincar�e inequality�

For p � 
 so far it is not known whether there are examples
of spaces X supporting a �
� p��Poincar�e inequality but not a �
� q��
Poincar�e inequality for any q � p and N��p�X� does not embed into
M��p�X��
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