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Construction of functions

with prescribed H�older

and chirp exponents

St�ephane Ja�ard

Abstract� We show that the H�older exponent and the chirp exponent
of a function can be prescribed simultaneously on a set of full measure�
if they are both lower limits of continuous functions� We also show that
this result is optimal� In general� H�older and chirp exponents cannot
be prescribed outside a set of Hausdor� dimension less than one� The
direct part of the proof consists in an explicit construction of a function
determined by its orthonormal wavelet coe�cients� the optimality is the
direct consequence of a general method we introduce in order to obtain
lower bounds on the dimension of some fractal sets�

�� Introduction and statement of results�

A bounded function f is C�	x�
� � � �� if there exists a polyno�
mial P of degree at most 
�� and a constant C such that� if jx�x�j � ��
jf	x
�P 	x�x�
j � C jx�x�j

�� The H�older exponent of f at x� 	which
will be denoted by hf 	x�

 is by de�nition the supremum of all values
of � such that f is C�	x�
� Note that the knowledge of hf 	x�
 does not
give a very sharp information about the modulus of continuity at x�� for
instance� for all � � R� all functions jxj��� 	log 	��jxj

� have the same
H�older exponent ��� at �� The determination of the H�older exponent
of a function at a point x� can be reduced to estimating its wavelet

���
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coe�cients near x�� using Proposition �� Conversely� this proposition
allows to construct explicitely functions with prescribed H�older expo�
nent� see 
�� and 
��� The class of all admissible H�older exponents hf 	x

	if f is continuous
 coincides with the class of lower limits of contin�
uous functions� see 
��� 
�� and 
��� Prescribing the H�older exponent
has been proved to be an e�cient technique for signal simulation� in
several situations where the H�older exponent is strongly variable� see

��� 
��� however� characterizing the regularity with the sole H�older ex�
ponent yields a rather poor information since it does not describe the
more or less oscillatory behavior of the function near the point x�� This
oscillatory behavior is properly modelled with the help of the following
de�nition� which was introduced by Yves Meyer� 
��� 
����

De�nition �� Let f be a function in L�loc	R
� and denote by f ��l� a

l�th order primitive of f � f is called a 	h� �
�type chirp at x� if

f ��n� � Ch�n�����	x�
 � for all n � N �

The simplest example of a 	h� �
�type chirp at x� is supplied by
the function

	�
 jx� x�j
h sin

� �

jx� x�j�

�
�

The interior of the set of points 	h� �
 such that a function f is a
	h� �
�type chirp at x� is always a domain of the form h � hf 	x�
�
� � �f 	x�
� see 
��� The non�negative real number �f 	x�
 is called the
chirp exponent at x��

A strong local oscillatory behavior such as in 	�
 is very remarkable�
and it was commonly believed that it could only be found at isolated
points of a function� it was therefore a great surprise when Y� Meyer
showed that the Riemann function

P
n�� sin 	� n� x
 has a dense set

of points which are chirps of type 	���� �
� Since then� several other
functions were shown to have a dense set of chirps 	see 
�� for instance
�
However the problem of determining which couples 	h	x
� �	x

 can be
simultaneously the H�older and chirp exponents of a function remained
completely open untill recently� In sharp contrast with the problem of
the prescription of the sole H�older exponent� it was shown in 
�� that the
couple of functions 	h	x
� �	x

 must satisfy the following very strong
a priori requirement�
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Proposition �� Let f be a function whose H�older exponent hf 	x

satis�es

� � h � hf 	x
 � H � �� � for all x �

Then the chirp exponent �f 	x
 vanishes on a dense set of points�

Of course� this result doesn�t prevent the possibility of prescribing
the H�older and chirp exponents at �most� points� and one of our pur�
poses is to prove that they can be prescribed on a set of full measure�
We now �x a 	quite arbitrary
 set of points of measure �� outside which
we will prescribe h and ��

The Borel�Cantelli lemma implies that for almost every x � R�
there exists C 	 � such that

	�

���x� k

�j

��� � C

j� �j
� for all j � N� � k � Z �

We denote by E the complement of this set�

Theorem �� For any couple 	h	x
� �	x

 of bounded nonnegative func�

tions which are lower limits of continuous functions� there exists a func�

tion f whose H�older and chirp exponents are respectively h	x
 and �	x

at every point x satisfying 	�
� Furthermore� the restriction �at every
point x satisfying 	�
� can be dropped at the points where � vanishes�

Remark� The set E chosen here is an explicit set of points satisfying a
dyadic approximation property� However it will be clear from the proof
that many other choices are possible 	in particular� one can exclude from
E any given countable set� or we can replace dyadic approximation by
p�adic approximation � � � 
�

We know from 
�� that E has to be a dense set but one may wonder
if E can be chosen �smaller�� The following proposition shows on an
example that the size of the set E is essentially optimal 	the class Clog

will be de�ned below� let us just mention at this point that it is a weaker
condition than assuming that f � ����C

�	R

�

Proposition �� Let H and B be positive real numbers� and let dimH	A

denote the Hausdor� dimension of the set A� Any function f in Clog

satis�es

dimH	fx � h	x
 �� H and �	x
 �� Bg
 � � �
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In other words constant exponents 	H� �
 cannot be prescribed
outside a set of Hausdor� dimension less that one�

This proposition will be proved at the end of Section �� as a con�
sequence of a general technique that we will develop in Section � in
order to obtain lower bounds for the Hausdor� dimension of a fairly
general class of fractal sets� Since this technique might prove useful in
other settings� Section � can be read independently from the rest of the
paper�

Proposition � could have consequences in the context of multifrac�
tal analysis� Recall that the spectrum of singularities of a function is
the function d	h
 which associates to each positive real number h the
Hausdor� dimension of the set of points whose H�older exponent is h�
and the spectrum of chirps is the function d	h� �
 which associates to
each couple 	h� �
 the Hausdor� dimension of the set of points whose
H�older and Chirp exponents are 	h� �
� In view of Proposition �� one
can reasonably conjecture that� in contrast with the case of the spec�
trum of singularities d	h
� the spectrum of chirps cannot be an arbitrary
function� but necessarily satis�es some explicit conditions�

The main result proved in Section � is the following� Let 
n be a
sequence of points in 
�� �� and �n 	 �� We consider the sets

Ea � lim sup
N��

�
n�N



n � �an� 
n � �an�

	i�e�� Ea is the set of points that belong to an in�nite number of inter�
vals 

n � �an� 
n � �an�
� The function a �� dimH	Ea
 is decreasing�
Furthermore� if

A � sup
n
� �

X
��n ��

o
� inf

n
� �

X
��n ��

o
�

using the covering by the intervals 

n� �an� 
n� �an�� one easily obtains
dimH	Ea
 � A�a� This upper bound often turns out to be sharp in
situations where the 
n are �equidistributed� in some sense� However
this type of information is often hard to obtain or to handle� sometimes
a di�erent kind of information is easily available� For an a small enough�
we may know that almost every point of 
�� �� belongs to Ea 	it is the
case in problems related to diophantine or dyadic approximation� or
if the 
n are independent equidistributed random variables
� We will
prove that this sole information yields a lower bound on dimH	Eb
 for
b 	 a� In practice� a more precise result is often required� One needs
to obtain a positive Hausdor� measure for A�
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Let h � R� �� R
� be a continuous increasing function satisfying

h	�
 � �� and let A be a bounded subset of Rd � If jIj denotes the length
of the interval I� let

Hh
� 	A
 � inf

U

n X
�ui��U

h	juij

o
�

where the in�mum is taken on all coverings U by families of balls fuigi�N
of radius at most �� The Hh�measure of A can be de�ned as

Hh	A
 � lim
���

Hh
� 	A
 �

Theorem �� Let hd	x
 � 	logx
�jxjd� If almost every x belongs to Ea�

Hha�b	Eb
 	 � � for all b 	 a �

	In particular� the Hausdor� dimension of Eb is larger than a�b�


�� Construction of the function f �

The function f with prescribed H�older and chirp exponents will
be constructed by imposing its coe�cients on an orthonormal wavelet
basis� Therefore� we start by recalling some properties of wavelet ex�
pansions�

If the �j�k	x
 � �j�� �	�jx�k
 form an orthonormal basis of L�	R
�
with � in the Schwartz class� as in 
���� we de�ne the wavelet coe�cients
of f by

Cj�k � �j
Z

f	x
�	�jx� k
 dx

	note that we do not use a L� normalization here
�
We denote by Clog the class of functions such that

	�
 jCj�kj � C ��j� log j �

It is a slightly stronger asumption than uniform continuity� but it im�
plies no uniform H�older regularity� see 
��� More precisely if 
	t
 �
��	log log 	��t

�

jf	x
� f	y
j � C jx� yj��jx�yj� for all x� y �
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implies that f belongs to Clog� and conversely�

f � C log implies jf	x
� f	y
j �
� C


	jx� yj


�
jx� yj��jx�yj� �

for all x� y� The following proposition is a slight extension of 
�� Theo�
rem ��� For the sake of completeness� we prove it in the Appendix�

Proposition �� Suppose that f � C�	x�
� if jk �
�j � x�j � ��� then

	�
 jCj�kj � C ���j	� � j�jx� � kj
� �

Conversely� if 	�
 holds for all j� k such that jk ��j � x�j � ��j��log j�
�

�

and if f belongs to Clog� there exists a polynomial P of degree at most


�� such that

	�
 jf	x
� P 	x� x�
j � C jx� x�j
� 	log jx� x�j


� �

The following corollary is a straightforward consequence of this
proposition and will be useful in order to determine H�older exponents�

Corollary �� Suppose that f � Clog� then

	�
 hf 	x
 � lim inf
jk��j�xj���j��log j��

log jCi
j�kj

log	��j � jk ��j � xj

�

where the limit is taken for j �� �� and k ��j �� x�

We now start the proof of Theorem �� We thus suppose that h	x

and �	x
 are respectively lower limits of the sequences of continuous
functions hn	x
 and �n	x
� the prescription problem is local� so we can
make the construction of the function f only on the interval 
�� ��� thus
we can suppose that each of the hn	x
 and �n	x
 are uniformly contin�
uous� Each function hn and �n can itself be uniformly approximated
arbitrarily well by a Lipschitz function� so that we can suppose� without
losing any generality� that hn and �n are actually Lipschitz functions�
Furthermore� since h and � are bounded� we can also suppose that

	�
 � � hn	x
 � H and � � �n	x
 � B � for all x� n �
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We can also replace hn	x
 by infi�������n hi	x
� so that we can suppose
that the sequence hn	x
 is decreasing� and for the same reason� that
the sequence �n	x
 is also decreasing� Let

eHn � sup
x��y

jhn	x
� hn	y
j

jx� yj
and eBn � sup

x ��y

j�n	x
� �n	y
j

jx� yj

be the uniform Lipschitz constants of hn and �n� We de�ne

	�
 A	n
 � n� eHn � eBn �

Finally� we pick an increasing sequence of integers jn such that for all
n� jn � An� and we replace the functions hn	x
 by

	�
 hn	x
 �
B � �

log jn
�

where B is de�ned by 	�
�
The changes we made mean that without loss of generality� we

may make the following additional asumptions� h and � are limits of
decreasing sequences of nonnegative Lipschitz functions� and further�
more

hn	x
 �
B � �

log jn
� for all x �

We now de�ne the wavelet coe�cients of f � If j is not one of the
numbers jn� for all k� Cj�k � ��

Suppose now that the index j coincides with jn� All the Cjn�k will
vanish except for a sequence fkingi�� de�ned as follows�

First k�n � � and the corresponding wavelet coe�cient is

Cjn�k�n
� ���hn�����n������jn �

We now construct the following values kin� For i � �� we denote by

in the location of the corresponding wavelet� i�e� 
in � kin �

�jn � The
second nonvanishing wavelet coe�cient is located at the distance

���������n������jn	 � 
�n � k�n �
�jn �

from 
�n 	
x� denotes the integral part of x
 and the corresponding
wavelet coe�cient is

Cjn�k�n
� ���hn�	

�
n���n�	

�
n����jn �
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The location 
�n of the next nonvanishing wavelet coe�cient is deter�
mined as follows� It is located at the second next integer multiple of
�������n�	

�
n����jn	� and its size is

Cjn�k�n
� ���hn�	

�
n����n�	

�
n�����jn �

We construct all the following nonvanishing wavelet coe�cients the
same way�

Note that the substitution we made in 	�
 has for consequence that
all wavelet coe�cients satisfy jCj�kj � ��j�log j � so that the function we
constructed belongs to the class Clog�

This construction rule implies that for all k�

	��
 �������n�	
k
n�����jn � j
kn � 
k��

n j � ���������n�	
k
n�����jn �

�� Lower bounds of the H	older exponents of f and its primi


tives�

Suppose that x �� E� so that 	�
 holds at x 	we will treat the case
x � E and �	x
 � � at the end of Section �
� For each n� x will belong
to one of the intervals 

kn� 


k��
n �� By construction� 
kn is a multiple of

��������n�	
k��
n �����jn	� and 
k��

n is a multiple of ���jn����n�	
k
n�����	� thus�

because of 	�
�

	��
 jx� 
knj �
C� jn

�n	

k��
n 
 � �

�� �������n�	
k��
n �����jn �

and� because of 	��
�

	��
 jx� 
knj � ���������n�	
k
n�����jn �

For the same reasons�

	��
 jx� 
k��
n j �

�� jn
�n	
kn
 � �

�� �������n�	
k
n�����jn �

and

	��
 jx� 
k��
n j � ���������n�	

k
n�����jn �
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Using Corollary �� and the particular sequence of wavelet coe�cients
corresponding to the locations 
kn� we obtain

	��


hf 	x
 � lim inf

� hn	

k
n


�n	
kn
 � �
jn

� log�	�
�jn � j
kn � xj


�

� lim inf

hn	

k
n


�n	
kn
 � �
�

�n	
kn
 � �

	because of 	��
 and 	��

� Thus

hf 	x
 � lim inf hn	

k
n
 �

But� using the mean�value theorem and the bound on h	n given by 	�
�

hn	

k
n
 � hn	x
 �O	jn j


k
n � xj
 � hn	x
 �O	jn �

�jn���n�	
k
n����


but� since the functions ��	� � �n	x

 are uniformly bounded from be�
low�

hn	

k
n
 � hn	x
 �O	jn �

�Cjn
 � for a C 	 � �

Thus the H�older exponent at x satis�es

hf 	x
 � lim inf hn	x
 � limhn	x
 �

The determination of the H�older exponent of the iterated primitives of
f is made easy by the following remark� If 	Cj�k
 denote the wavelet
coe�cients of a function f � the 	��ljCj�k
 are the wavelet coe�cient of
f ��l� using the wavelets ��l�	�jx�k
� and the criterium given by Propo�
sition � remains valid using this system of nonorthogonal wavelets� since
it is the biorthogonal system of the ���l�	�jx � k
� see 
��� Denote by
hlf 	x
 the H�older exponent of f ��l�� These nonvanishing biorthogonal

wavelet coe�cients of f ��l� are thus

�Cjn�kmn
� ���hn�	

m
n ��l��n�	

m
n �������n�	

m
n �����jn �

and the same argument as above yields

	��
 hlf 	x
 � lim 	hn	x
 � l 	�n	x
 � �

 �
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�� Upper bound of the H	older exponents�

Let now 
mn be the position of a non�vanishing wavelet coe�cient
at the scale ��jn � This wavelet coe�cient satis�es

jCjn�kmn
j � ���hn�	

m
n ����n�	

m
n �����jn �

which� using 	�
 and the mean�value theorem� is bounded by

���hn�x���n�x�����jn �j
�
njx�	

m
n j �

Since in Corollary � we only have to consider the coe�cients such that
jx� 
mn j � ��j��log j�

�

� it follows that j�n jx� 
mn j � � and

jCjn�kmn
j � ������hn�x����n�x�����jn �

Furthermore� using 	��
 and 	��


jx� 
mn j � inf
nC
j�n

�������n�	
k��
n �����jn �

C

j�n
�������n�	

k
n�����jn

o
�

which� using the same argument as above� is larger than

C

j�n
�������n�x�����jn �

Applying Corollary �� we obtain

hf 	x
 � limhn	x
 � h	x
 �

We have thus obtained that� if x �� E� hf 	x
 � h	x
�
Using again that the biorthogonal wavelet coe�cients of f ��l� are

�Cjn�kmn
� ���hn�	

m
n ��l��n�	

m
n �������n�	

m
n �����jn �

the same argument as above yields

	��
 hlf 	x
 � lim 	hn	x
 � l 	�n	x
 � �

 �

So� at every point x �� E� and for every l� the H�older coe�cient of f ��l��
a l�th iterated primitive of f � is exactly

hlf 	x
 � lim 	hn	x
 � l 	�n	x
 � �

 �
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it follows that �f 	x
 � lim�n	x
� and the theorem is proved�
We now consider the case where �	x
 � � and x � E� In this

case we go back to 	��
� which is still true� The proof for the upper and
lower bounds of the H�older exponents of f and f ��l� remain exactly the
same� except for the lower bound bound of ��jn � j
kn � xj which was
obtained in 	��
 using the fact that x �� E� and is now crudely replaced
by ��jn � The same calculations as above then yield hf 	x
 � h	x
 and
hlf 	x
 � h	x
 � l� so that �f 	x
 � ��

Let us now show that Proposition � is a consequence of Theorem
� 	which will be proved in the next section
� We suppose that h	x
 �
H 	 � and �	x
 � B 	 � almost everywhere�

Let A � ��	� � B
 and h 	 H� Using Proposition �� applied to
f and its primitives� it follows that for almost every x there exists a
sequence jn ��� and kn such that

jx� kn �
�jn j � ��Ajn and jCjn�kn j � ��hjn �

Thus almost every x belongs to an in�nite number of the intervals

k ��j ���Aj � k ��j ���Aj �� where j and k are such that jCj�kj � ��hj�
Let C 	 A and denote by EC the set of points which belong to an
in�nite number of intervals 
k ��j � ��Cj � k ��j � ��Cj �� with jCj�kj �
��hj � It follows from Theorem � that EC has Hausdor� dimension at
least A�C� But if x � EC � �	x
 � 	��C
� �� The result follows since
A and B satisfy

A �
�

� � B
� C

but can be chosen arbitrarily close to each other�

�� A priori lower bounds of the dimension of 
approximation


type� fractals�

The idea of the proof of Theorem � is to construct a generalized
Cantor set K included in Eb and simultaneously a probability measure

 supported by this Cantor set� with speci�c scaling properties� The
�mass distribution principle� will allow us to deduce from these scal�
ing properties a lower bound for the Hha�b Hausdor� measure of Eb�
The Cantor set and the measure will be constructed using an iterative
procedure�

After perhaps reordering the sequence 	
n� �n
� we can suppose
that �n is non�increasing� Let b 	 a �xed� We introduce the notations

In � 

n � �an� 
n � �an�
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and eIn � 

n � �bn� 
n � �bn� �

	More generally� If I is the interval 

 � e� 
 � e�� eI will denote the
interval 

� eb�a� 
� eb�a��


We now construct the �rst generation of the intervals of the cantor
set K� First we will select a �nite subsequence I
�n� of In as follows�
Denote by � In the interval of same center as In and of width � jInj� We
�rst choose �	�
 � � 	i�e�� we select I�
� �	�
 is the �rst index such that
I
��� is not included in � I
���� �	�
 is the �rst index such that I
�
� is
not included in � I
��� � � I
���� � � � We stop this extraction at the �rst
index N such that

	��
 mes
� N�
i��

� I
�i�

�
�

�

�

	where mes 	A
 denotes the Lebesgue measure of A
� The index N
exists because each interval In which has not been selected among the
I
�i� is included in one of the � I
�i� previously selected 	because �n is
decreasing
� so that

	��



�N��
i��

� Ii 	
N�
i��

� I
�i� �

Since almost every x belongs to Ea� mes 	
Sn
i�� Ii
 �� �� and 	��


follows if N is large enough�
By construction� the intervals I
�i� thus selected are disjoint� and

	��
 implies that

	��
 mes
� N�
i��

I
�i�

�
�

�

��
�

The N intervals eI
�i� are the �rst generation intervals of our Cantor
set� The measure 
 will be supported by the union of these intervals�
and we take


	eI
�i�
 � jI
�i�j
NX
j��

jI
�j�j

� for all i �
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	��
 implies that

	��
 
	eI
�i�
 � �� jeI
�i�ja�b �
We will now construct the second generation intervals by subdivising
each eI
�i�� Let n be such that

	��

�

�n
� exp

� �

�
�N�

�
�

Let us consider one of the intervals eI
�i�� since �j�nIj covers almost

every point of eI
�i�� we can as above select a �nite number of intervals
I
�i���� � � � � I
�i�N�i�� from the sequence 	Ij
j�n such that

mes
�N�i��
j��

� I
�i�j�

�
�

�

�
jeI
�i�j �

The I
�i�j� are disjoint� so that

mes
�N�i��
j��

I
�i�j�

�
�

�

��
jeI
�i�j �

The intervals eI
�i�j� are the second generation intervals in the construc�
tion of K� and we take

	��
 
	eI
�i�j�
 � 
	eI
�i�
 jI
�i�j�j

N�i�X
j��

jI
�i�j�j

�

Thus

	��
 
	eI
�i�j�
 � �� jeI
�i�j�ja�b 
	eI
�i�

jeI
�i�j �

This construction is iterated� and we thus obtain a generalized Cantor
set K� and a probability measure 
 supported by K�

The intervals thus constructed at each generation are called the
fundamental intervals of the Cantor set� Note that the fundamental
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intervals constructed are indexed by a tree� and the lengths of the in�
tervals at a given depth of the tree need not be of the same order of
magnitude� If I is a fundamental interval� we will denote by bI the
�father� of I� i�e�� the fundamental interval from which I was directly
obtained�

The lengths of the fundamental intervals have been chosen such
that� if I is any fundamental interval of the n�th generation�

	��

�

jIj
� exp

�
sup

� �

jJ j

��
�

where the supremum is taken on all fundamental intervals J of the
previous generation�

We will now check that� if I is an arbitrary open interval�

	��
 
	I
 � C jIja�b 	log jIj
� �

following 
�� Principle ����� the Hausdor� measure of Eb constructed
with the dimension function ha�b will then be positive�

We �rst check that 	��
 holds for the fundamental intervals� by
induction on the generation of the interval� 	��
 asserts that it is true
for the �rst generation� Suppose now that I is any interval of the n�th
generation� The analogue of 	��
 at the n�th generation states that


	I
 � �� jIja�b

	bI

jbIj �

which� using the induction hypothesis� is bounded by

�� jIja�b jbIj�a�b��� 	log jbIj
� �
which� because of 	��
� is bounded by �� jIja�b j log jIj j log 	log 	jIj

��
Thus 	��
 holds for the intervals of generation n�

Let now I be an arbitrary open interval� If I does not intersect the
Cantor set� 
	I
 � �� Else� I contains fundamental intervals� Denote

by eL�� � � � � eLp the fundamental intervals of smallest generation included
in I� I intersects at most two more fundamental intervals of the same
generation� which we denote by eL� and eLp��� All these fundamental
intervals share either one or two fathers�

First case� We suppose that they share two fathers� for instance eL�� � � � �eLk are the sons of fM� and eLk��� � � � � eLp�� are the sons of fM�� Denote
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by J the interval between fM� and fM�� the de�nition of eIn implies that
the gap between two fundamental intervals is much wider than these
intervals� so that

jIj � jJ j � jfM�j� jfM�j �

and thus� since 	��
 holds for fundamental intervals�


	I
 � 
	fM�
 � 
	fM�


� C jfM�j
a�b 	log jfM�j


� � C jfM�j
a�b 	log jfM�j


�

� �C jIja�b 	log jIj
� �

Second case� We suppose that eL�� � � � � eLp�� share a common father fM �

If eL� and eLp�� do exist� we will write I as a union of three intervals

I�� I� and I
� Suppose that eL� � 
a�� b��� � � � � eLp�� � 
ap��� bp���� We
take

I� � I
�h

a��
b� � a�

�

i
�

I� � I
�hb� � a�

�
�
bp � ap��

�

i
�

I
 � I
�hbp � ap��

�
� bp��

i
�

jI�j � jeL�j 	we use again the fact that the gap between two fundamental

intervals is much wider than these intervals
� and 
	I�
 � 
	eL�
� thus

	��
 holds for I� because it holds for eL�� For the same reason� 	��

holds for I
� The conclusion will follow if we check that 	��
 holds
for I�� In the following� the only assumption we make on I� is that it
includes eL�� � � � � eLp� in order to cover the cases where eL� or eLp�� do
not exist� We separate two cases�

If p � �� eL� 	 I� and 
	eL�
 � 
	I�
� thus 	��
 holds for I� because it

holds for eL��

If p � �� Since I� contains the intervals between eLi and eLi�� for
i � �� � � � � p� �� it follows that

	��
 jI�j �
�

�

pX
i��

jLij �
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We denote by eL�� � � � � eLn 	n � p
 all the intervals sons of fM � Since

nX
i��

jLij �
�

��
jfM j �

	��
� rewritten for fM � implies that


	eLi
 � ��
jLij
	fM


jfM j
� for all i �

Thus


	I�
�
	eL�
�
 
 
�
	eLp
 � ��
jL�j� 
 
 
� jLpj

jfM j

	fM
 � ��

jI�j

jfM j

	fM
 �

using 	��
� Since 
	fM
 � C jfM ja�b 	log jfM j
�� we obtain


	I�
 � C jI�j jfM j�a�b��� 	log jfM j
� � C jI�j jI�j
�a�b��� 	log jI�j


� �

because jI�j � jfM j� and 	a�b
� � � ��
It follows that the measure 
 thus constructed is a probability

measure supported by a subset of Eb and satis�es� for any interval I�


	I
 � C 	log jIj
� jIja�b �

so that� following 
�� Principle ����� the Hausdor� measure of Eb con�
structed with the dimension function ha�b is positive�

Appendix� Proof of Proposition ��

Suppose that f belongs to C�	x�
� Then

jCj�kj �
��� Z f	x
 �j �	�jx� k
 dx

���
�
��� Z 	f	x
� P 	x� x�

 �

j �	�jx� k
 dx
���

� C

Z
jx� x�j

� �j

	� � �j jx� k ��j j
N
dx

� C �j
Z
jx� k ��j j� � jk ��j � x�j

s

	� � �j jx� k ��j j
N
dx

� C ���j 	� � j�j x� � kj�
 � if N � 
�� � �
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	the second inequality is true because the wavelets have vanishing mo�
ments�
 Let us now prove the converse result�

Let j� denote the integer such that

��j��� � jx� x�j � ��j� �

let j� � j�� and

fj	x
 �
X
k

cj�k �	�
jx� k
 �

From 	�
� using the localization of the wavelets� we deduce

	��
 jfj	x
j � C ���j 	� � �j jx� x�j

� �

and� since f � Clog�

	��
 jfj	x
j � C ��j� log j �

Similarly� for any l� using the localization of the derivatives of the
wavelets�

	��
 jf
�l�
j 	x
j � C ��l�s�j 	� � �j jx� x�j


s �

If g is a smooth function� let T 	g
	x�
 be the Taylor expansion of g at
the order 
�� at x�� Then

jf	x
� T 	f
	x�
j

�
X
j�j�

jfj	x
� T 	fj
	x�
j�
X
j�j�

jfj	x
j�
X
j�j�

jT 	fj
	x�
j �

Let l � 
�� � �� Using 	��
� the �rst term is bounded by

C jx� x�j
l
X
j�j�

sup
�x�x�	

jf lj	x�
j � C jx� x�j
l
X
j�j�

��l���j � C jx� x�j
� �

As regards the second term� using 	��
�X
j��j�j�

jfj	x
j �
X

j��j�j�

jx� x�j
� � C 	j� � j�
 jx� x�j

� �

and using 	��
�X
j�j�

jfj	x
j �
X
j�j�

��j� log j � C j� �
�j�� log j� �
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By 	��
� the third term is bounded by

C
X
j�j�

��	X
m��

jx� x�j
m ��m���j � C jx� x�j

� �

Hence the converse part of the proposition� since

j� � C
�
log

� �

jx� x�j

���
�
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