REVISTA MATEMATICA IBEROAMERICANA
VoL. 16, N.° 3, 2000

On the generalized Bernoulli
numbers that belong

to unequal characters

Ilya Sh. Slavutskii

Abstract. The study of class number invariants of absolute abelian
fields, the investigation of congruences for special values of L-functions,
Fourier coefficients of half-integral weight modular forms, Rubin’s con-
gruences involving the special values of L-functions of elliptic curves
with complex multiplication, and many other problems require congru-
ence properties of the generalized Bernoulli numbers (see [16]-[18], [12],
[29], [3], etc.). The first steps in this direction can be found in the
papers of H. W. Leopoldt (see [15]) and L. Carlitz (see [5]). For further
studies, see [22], [24], [29]. This paper presents some new examples ex-
tending both old author’s results and recent investigations of H. Lang
(see [14]), A. Balog , H. Darmon, K. Ono (see [3]), etc.

On the whole the proved results are consequence of congruences
connecting the generalized Bernoulli numbers that belong to unequal
characters.

0. Notations.

Here it is listed some general notations which will be used through-
out this paper

e p, a prime number greater than 3,
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460 I. SH. SLAVUTSKII
em=(p—1)p'~1/2,l €N,
o (Z) = n!/(k!(n — k)!), the binomial coefficient,
e [z], the greatest integer at most = for a real number z, i.e. [z] <

x < |z]+1,

e B, the n-th Bernoulli number in the “even suffix” notation, i.e.
By=1, B, =-1/2, B,=1/6, B3 =0,...

e B, (z), the n-th Bernoulli polynomial,
e 0, the character with conductor ¢ > 1, (p,q) =1,
e w, the Teichmiiller character (with conductor p),

e x = Hw?, the character with conductor f =qp, (p,q) =1, ¢ > 1,
seNand 1 <s<p-—2,

e 3, 4, the n-th generalized Bernoulli number belonging to a char-
acter 1 (with the corresponding conductors).

We give relevant facts about B,, By(z), By, below. All other
notations will be defined as they arise.

1. Some congruences for the generalized Bernoulli numbers.

In this section, it is proved the extension of known properties con-
cerning to the generalized Bernoulli numbers and useful in theory of
modular forms of half-integer weight (see, e.g., [3, Theorem 4]).

As known, the Bernoulli numbers are defined by the symbolic re-
currence relation B,y = (B + 1)""Y n = 1,2,..., By = 1, which in
expanded form becomes

B, = —(n+1)_1§ <"21>Bk.

k=0

From this identity (or from the equivalent definition of B,, by formal
power series) it is easy proved that Ba,1+1 = 0 for n > 0 and other prop-
erties of Bernoulli numbers. Also, it is well known the Staudt-Clausen
theorem for denominators and the Staudt theorem for numerators of
B, (see, e.g., [29], [28] or [7]).
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Further, if 9 is a character with the conductor g, then L(1—n, ) =
—By, /1, that is, the special values of Dirichlet L-functions at nega-
tive points are represented with the help of the generalized Bernoulli
numbers By, ,, defined by the formal series

9 a

et > tn
Zw(a)tegt_l :;Bn,wa '

a=1

From this identity we find that

) By =Y o) B (%)

a=1

with Bernoulli polynomials

J

n
(2) Ba(z) = <"> B; a7
7=0
Here B,,. = B, for n # 1, By = —B; = 1/2, where ¢ is the iden-
tity character. Remark that properties of B, 4 are also important to
construct the p-adic L-functions ([13] or [29]).

Now, let x = fw?®, s = (p — 1)/2, be a representation of the char-
acter xy with the conductor f as the product of the character § with the
conductor g, ¢ > 1, and w?®, the s-th power of Teichmiiller character w
with the prime conductor p > 3. It is known that w = w(x) may be
defined by the p-adic limit

w(z) = lim ot

for an integer x with (z,p) = 1, so that w(z) € Qp, the field of p-adic
numbers, w?~! = ¢ and w(r) = 2P (mod p!*1). As usual, by setting
w(0) = 0 we remark that w(x) is a p-adic character (mod p) of order
p—1.

Note that w®=1/2(z) = (x/p), the Legendre symbol (see, e.g., [23]
or [29]), so that in our case we have x = 6(-/p).

Theorem 1. In the above notations, if 0(p) = 1, then Byy1, = 0
(mod p'), wherel € N and m = (p—1) p'=1/2 for any odd prime p > 3.
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PRrOOF. First, with the help of (2) we conclude that the identity

m+1,x =™ ZX m+1(f> )

may be rewritten as
m+1:X ZX ( 1im+1 + (m+ 1) Bl Zm

B
Fm+m i ),

so that

f

By = x(0) f7H™ 4 (m+1) Bi ) x(i)i™  (mod p'),
; =1

because m f = 0 (mod p'), Bs = 0 and
1
ordp<<m+ >f’ Ljm+1= ) >, fori>3.
i

Further, since x(z) (i/p) is a character modulo f, we have

gx(i) = Zf:x(i) <3> =0 (modp').

i=1 p
Therefore,
Bty = Zx(z) f7rimT (mod pt)
or
me—i-l,x = ZX m+1 (I’IlOd pl+1) :
=1
Since f = qp with (p,q) = 1 and w®=Y/2(z) = (x/p), it follows that
f Bmy1,x
qg—1p—1 k
=S S i+ k) ( ) (0 4kt
7=0 k=1
qg—1p—1

=>") 0(pj+k) <k> (K™ + (m+1)pj k™) (mod p'*h),

7=0 k=0
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because

1\ .
ordp<<m: )p’>2l+1, fori > 2.

Further, we can replace k™*! by (k/p) (m + 1) k because in any case
Z}CS O(pj + k) = 0. Moreover, as

pk™ =p <E> (mod p't1),
p

we have

FBusiy = (m+ 1) S 0+ k) (S) i+ k)

or

(3) Bty = " (1=0(0) D_0(0) i (mod p').

i=1
The congruence implies Theorem 1.

REMARKS. 1) The paper [3] considers the case [ = 1 for a real character
x only.

2) The result can be proved with the help of properties of p-adic
L-functions too (see, e.g., [29, Chapter 5]).
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3) The values of Dirichlet L-functions L(s|x) at negative integers
s are algebraic numbers: L(1 — n|x) = —B, /n. We denote by C,
the completion of @p, the closure of @@,. As known, the field C,, is
algebraicaly closed. We fix an embedding of Q in C, and considerB,, ,,
as an element of Q, (for details, see also [29, Chapter 5]).

4) Note that Bp,41, # 0 if and only if (—1) = —1. Indeed, it is
known that

Brsix #0 if and only if 6(—1) = (-1)™*!

(see, e.g., [15] or [29, Chapter 4]). In order to finish the proof it will
suffice to remark that

x(=1) = <_)9(—1) and  (-1)" = (-1)@/2 = (__1> '

p

2. Congruences for generalized Bernoulli numbers belonging
to unequal characters.

In this section, we would like study some connections between the
generalized Bernoulli numbers belonging to unequal characters. The
first results in this direction can be found in the papers [24], [25] (see
also [29]).

Theorem 2. Let x(—1) = (—1)", n > 1, n € N. In the notations of
Section 0, we have

(4) B,y =DB,g (modp?), leN, r=sp?14n,
and

Bn7X — Bspl’l—i-n,e I
(5) e e = (mod p'), ord,n <1.

PROOF. As known (see, e.g., [15]), in usual symbolic form we have

f' !
Si= Y x(@a"=n+1)"(By+ P )" = Bry1y) -

r=1
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Then il
S=(n+1)"" ; (n:r 1>Bn+1—i,x (fpty
or
S oy

(1-1)(i—1)+2
_ 2 : n 2 4i-3P
ot~ Pt = <z - 1) Buir-ixd /' 5 ’
because x(—1) =

(—1)™ implies By, # 0 and B,_1, = 0. Remark
that
a) ([—1)(i—1)+2>21lfori>3,
b) ord,By4+1-iy > 0 because f = ¢p and p,q > 1, see, e.g., [15] or
[29],

¢) ord,(f*=3/i) > 0 for i > 3 and p > 3.

Therefore, we have the congruence

S 21
(6) W =B, , (modp™).

On the other hand, with the help of

w(z)=2" " (mod p*),
we obtain that
q p'-1
r=1 y=o
q pl—1
529($)Z(qy+x)’" (mod p*'), with r = sp3 1 4+ 1.
r=1 Y=o

Now, noting that
N-1

S0+ at)=a* b+ )7 (Bea (N +

v ) ma(t)

or

k+1
b+at)h=a"(k+1)7")

=1 <k j 1) Pty (S)Nj ’
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for integers a # 0, b, K > 0, N > 1 (see, e.g., [24, Lemma 2]. Remark
that this identity was recently reproved in [8]), we conclude that

S = iH (z)q" (r+1)71 i (T —; 1>Br+1—j(§>plj (mod p*),

z=1 j=1

or
i 1 o a T
S=(r+1) 12( j >lequ JZQ(@ Br+1_j(5> (mod p*).
j=1 z=1

By the same arguments as above, we conclude that

Br—1,9

S=fp7 Brp+rg*p” =57 (modp™),
or g B
_ l 7"—179 2l
W:Br,g—}—rqp T (modp ).

Further, if B, g # 0 then B,_; ¢ = 0. Therefore,

S
fpl—l

and together with the congruence (6) we obtain

=B,y (mod p*)

By =B, (mod )%, for B,y #0.
To prove the congruence (4) it remains to note that

B, #0 if and only if B,y #0,

7
@) with r = sp3 !

+mnand y =0 w®.
A short way to do it was proposed to the author by the referee

By #0 if and only if X

(
if and only if 0(-1)(-1)*=(-1)",
if and only if  (—1) = (—1)"**,
if and only if 0(-1)=(-1)",

if and only if B,y #0.



ON THE GENERALIZED BERNOULLI NUMBERS 467

Provided that ord,n <, from the congruence (4) we conclude that

Bn X BT,G

)

(mod p'),

n n

so that by Kummer’s congruence

BT,9 _ Bsp’—l-{—n,@

= d pt
r Spl_l-l-n (mo p)

and r/n =1 (mod p') the proof of Theorem 2 is finished .

REMARKS. 1) A special case of Theorem 2 can be found in [24, Lem-
ma 4].

2) The congruence (4) is Staudt’s type congruence (for details,
see, e.g., [27] or [28]). Kummer’s type congruences for the generalized
Bernoulli numbers B, of fixed character (for example, in the case
when 1) is a nonprincipal character of conductor g # v with a prime v
and [ € N) show that characters ¢ “smooth over” requests to congru-
ences: they are correct for the case n = 0 (mod (p — 1)) too (see [5],
[29], [22] or [24]). As we see, sometimes the same situation takes place
for the generalized Bernoulli numbers belonging to unequal characters.

3. Applications.

Now we will indicate some applications of the results. Firstly,
let 6 (n) = (—¢/n) be an odd character of conductor ¢ and x (n) =
0 (n) (n/p), the real character of conductor f = ¢p, (p,q) = 1. Here
(n/p) = w®=D/2(n) is Legendre symbol.

Then, by the congruence (3) we have

oy i1
®) W= 0E)(-0) = -2 o ), =PI

where
q—1
h(—q)=—q¢"") _0(j)J
j=1
is the class number of the imaginary quadratic field Q(y/—¢). Note that
for (p, h(—¢)) = 1 (in particular, for h(—q) < p) we have

0(p)=1 ifandonlyif  Bpi1, =0 (modp').
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Further, it is known that h(—q) < (1/3) /g logq (see, e.g., [21]). Hence,
if (1/3) /g logq < p°*t, ¢ € NU{0} and I > ¢, the above equivalence
(i.e., a small sharpening of Theorem 1) is valid too.

REMARK. The congruence (8) was proved by A. A. Kiselev ([10],1 = 1)
and I. Sh. Slavutskii ([12] or [22], ] € N) in the form

(1-0) h—) =~ 2510 (mod ).

But the right sides of the congruences coincide (mod p'). Indeed, by
the congruence (5) withn =m+1 = (p—1)p'~1/2+1 and s = (p—1)/2
we obtain

Bm+1 X BZm+1 7] 1
9 == : dp).
©) mrl = Zme1 (mod?)
Now by the congruence (9), Theorem 1 implies

Corollary 1. In the above notations, if 0 (p) = 1 then Bapi1,9 = 0
(mod p!), wherel € N and m = (p—1) p'=1/2 for any odd prime p > 3.

Among other things, the last congruence has an equivalent form.

Corollary 2.

7'
Bomi16 =0 (mod p') if and only if Z 0 () [;] =0 (mod p'),
=1
(w,p):l

(p,g) =1, ¢>1, 0 (modq).

Indeed, by Voronoi’s congruence for the generalized Bernoulli num-
bers ([22])

9 Bn,9
n

qziv: 0 (z)z"* [%] (mod N),

Il
<N

n,NeN, ¢g>1, (N,q)=1,



ON THE GENERALIZED BERNOULLI NUMBERS 469
(for more general congruences, see [24, Lemma 1]) we can conclude that

Bng 1
n q

!
ap
ZO (z) 2" [;] (mod p'), (p,g) =1and g > 1.
z=1

Now, let n = 2m +1 = (p— 1)p=!t + 1. If we note that 2"~ = 0
or 1 (mod p') respectively when p|z or (p,x) = 1, then Corollary 2 is
proved.

Further, we can supplement the congruence (9) by the similar ones

Bm BZm [
1 7X = U l
(10) - o (mod p'),
BZm Bm [
11 X = d p!
B, B,
(12) 2 +1aX — +1;9 (mod pl) ,

2m+1 " m+1

if in the congruence (5) we assume n = m (respectively m + 1 and
2m +1).

With the help of these congruences it is possible to rewrite the
known system of the congruences for class numbers of quadratic fields
in the universal form, ¢.e. to obtain an approximation of Dirichlet’s
class number formula of quadratic fields (or the p-adic L-functions) in
the universal form.

In 1948-64 by efforts of a group of the authors [9], [10], [1], [2],
[4], [20], [12] (see also the survey [27]) it was proved the system of the
congruences for class numbers of quadratic fields

U, B,
1) h(d)p,—_’lz— | ==X (mod p'),
d=gqp>0,q¢>1, xmodgq,
Ul 2l BZm,
(14) h(d) ra =T, me (mod p'),

d>0, (dyp)=1, ¢>1, x mod d,

B,
h(d) = _—mtlx
(15) m—+ 1

d=—qp<-4,q>1, xmodgq,

(mod p'),
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BZm 1,x
(16) (1 —x(p)) h(d) = —ﬁ (mod p'),

d< -4, (d,p) =1, x mod |d|,

where Ey = Ty 4+ U;Vd is the fundamental unit of Q(v/d), d > 0,

1

B =T +UVd=E'|E =T +UVd=Erxor’ , _
(p—1)p'=1/2, 1 € N. Here p is an odd prime and x is Kronecker
character (of the corresponding conductor).

Now it is easy to see that the congruences (13)-(16) may be ar-
ranged into groups. Firstly, we will consider the case of the imaginary
field, that is, the congruences (15) and (16). We can combine them in
the form

_ Bompix I
(17) (1 —x(p)) h(d) = “Imatl (mod p), d < —4, x mod |d].
Indeed, if (d,p) = 1, then the congruence coincides with (16). If p|d and
d = —pq then x(p) = 0. Hence, by the condition (12) the congruence
implies (15).
Let d > 0. We claim that the congruences (13) and (14) may be
grouped together in the form

(18) h(d) Ui =T, o (mod p!),  x mod d.

Indeed, if (d,p) = 1, then the congruences (14) and (18) coincide. But
if d = ¢p > 0 then the congruence (18) implies

Ui41

B,
(19)  hpe) == = ~Tin 2x

4m

(mod p'), x mod d.

To finish we must prove that

Ui+ U
% P!

(20) and Tiy1 =T; (mod p').

First of all it should be noted that U; = 0 (mod p'~!) (see [21, Lem-
mal). Then

[—1

(T) + U Vdyp=t = P=P implies ~ TP"'=1 (mod p')

and
Tiv1 + Ui Vd = (T; + U, \/a)p
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implies
Tita ZvaLp(p—l)i’}pﬂUzz%vL'“
and
Uit :pTlp_lUl-l-"'
Hence, the conditions (20) is proved. Finally, with the help of the
congruences (11), (20) and (19) we have

U Bpg

h =T d pt 6 mod g .
(pqr)p,_1 L (mod p'), mod ¢

Therefore, it is proved
Theorem 3. The system of congruences (13)-(16) is equivalent to

Bop,
(1—x(p))h(d) = —;Tf:’f (mod p'), d< —4, x mod |d],

U _ Bopn,
h(d)_llE_Tl%(mOdPl)v d>0,qg>1, x modd,
P m

where B} = Egp_X(p))plil and By =Ty + Uy Vd is the fundamental unit
of the real quadratic field Q(v/d).

As we earlier indicated, the system is an approximated form of the
class number formula for quadratic fields (for details, see [22], [29]).
Therefore, it was solved the old problem which was set up by H. Hasse
(see his review Zbl 43.40 of the paper [1]). Namely, it was given the
universal form of the cited congruences for class numbers of quadratic
fields, belonging to A. Kiselev, N. C. Ankeny, E. Artin, S. Chowla, L.
Carlitz, etc.

REMARK. Consider one special situation. Let p = 3 and [ = 1. Com-
bining the congruences of the above system (13)-(16), we obtain the
relations between h(3¢) and h(—q) (or between h(q) and h(—3¢q)), the
main case of Scholz theorem (see [19]). A. Scholz used in his proof
methods of class field theory. By elementary methods this theorem was
proved by A. A. Kiselev ([10], [11]), and the result has been reproved
by several authors ([2], [26], [14], etc., see also [29]).

Now we want to rewrite the proved above Theorem 1 in the terms
of the theory of modular forms. In the cited paper [3] the authors
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were interested in the congruences of the type a(p N) = 0 (mod p) for
every N € Z with (—N/p) = 1, where a(n) are integer coefficients of
holomorphic half-integer weight form. Following H. Cohen (see [6]),
they explicitly constructed holomorphic modular forms of half-integer
weight whose Fourier coefficients are explicit expressions involving the
special values at negative integers of Dirichlet L-functions of quadratic
characters.

Let £ > 2, kK € N. We consider holomorphic modular forms of
half-integer weight k + 1/2 with Fourier coefficients a(n) = H(k,n) =
— By, /k where 1 = ((—=1)*n/-) when (=1)¥n is a fundamental dis-
criminant.

Definition ([3]). Let F(n) be an integer valued arithmetic function,
M a positive integer, and p a prime. If F(pq) =0 (mod M) for every
positive integer q that is a quadratic residue (respectively nonresidue)
modulo p, then we say that F' has a quadratic congruence modulo M

of type (p, +1) (respectively (p, —1)).
With these notations we prove

Theorem 4. Let x = 0 w®~Y/2 be the character of a quadratic field
with the fundamentail discriminant

D = (~1)#+2p g = ((~1)*~/p) (~g)

and 6 = (—q/-) where positive integer q is prime to p. Then Fourier
coefficients H(m + 1,n) of the weight m + 3/2 modular form satisfy a
quadratic congruence modulo p' of type (p, (—1/p)).

PROOF. As above, let m = (p — 1)p'~1/2, so that m = (p — 1)/2
(mod 2), and ¥, 0, wP=1/2 are the Kronecker characters for the corre-
sponding conductors (in particular, w®=1/2 is the Legendre symbol).
It is obvious that (¢/p) = (—1/p) implies 0 (p) = (—¢q/p) = 1. Hence,
by Theorem 1 we have

B,
H(m—}—l,pq)E—ﬁl’lXE (mod p').
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