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Dedicated to the memory of my father

Abstract. We prove that & (k > 9) non-conjugate symmetries of a
Riemann surface of genus g have at most 2g — 2 + 2"73(9 — k) ovals
in total, where r is the smallest positive integer for which k < 271
Furthermore we prove that for arbitrary &£ > 9 this bound is sharp for
infinitely many values of g.

1. Introduction.

Let X be a compact Riemann surface of genus g > 2. By a sym-
metry of X we mean, in this paper, an antiholomorphic involution o
which has fixed points. A surface admitting a symmetry is said to be
symmetric. The principal motivation for the study of symmetric Rie-
mann surfaces comes from the theory of algebraic curves. A compact
Riemann surface X corresponds to a smooth complex projective alge-
braic curve and symmetries, non-conjugate in the group Aut*(X) of
all automorphisms of X, give rise to non-isomorphic over the reals, real
models of the curve. A classical theorem of Harnack [8] states that the
set F'(0) of fixed points of o consists of ||o|| in range 1 < |jo|| < g+ 1
disjoint simple closed curves to which, following Hilbert’s terminology,
we shall refer to as the owvals of 0. The number of ovals of a symmetry
equals the number of connected components of the corresponding real
model.

In this paper we are looking for the maximal number w(g, k) of ovals
that k non-conjugate symmetries of a Riemann surface X of genus g
may admit. This question was investigated at the end of seventies by S.
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M. Natanzon in [11], [12] and [13] who proved many results concerning
low values of k. In particular, he proved that w(g,k) < 2g + 2F~!
for 2 < k < 4 and that this bound is attained respectively for every
g congruent to 1 modulo 2¥=2. However the problem of finding the
bound for w(g, k) for £ > 5 has not been solved up to now. Results
concerning surfaces of even g, which by [6] have at most 4 non-conjugate
symmetries with fixed points, have been recently obtained in [7].

Recently this question was taken up by Singerman [17] who showed
that for arbitrary k£ there exist infinitely many values of g for which there
exists a Riemann surface of genus g having k£ non-conjugate symmetries
and My = 29+ 2F73(9 — k) — 2 ovals in total and he conjectured that
this is the best bound. From the recent paper of Natanzon [14] it
follows that this indeed is the case in the special situation of separable
symmetries. Observe that for £ = 3 and 4 the Singerman and Natanzon
bounds coincide without this additional assumption.

Here we show that for k > 9, w(g, k) <2g—2+2"73(9—k), where
r is the smallest positive integer for which & < 27—, Furthermore we
prove that for arbitrary k£ > 9 this bound is sharp for infinitely many
values of g. In particular there are no £ > 9 for which Singerman’s
conjecture is true. It is true for £ = 9 and probably true for 5 < k < 8.

2. Preliminaries.

The results announced in the previous section will be proved using
combinatorial techniques based on Fuchsian and NEC groups. The
basic results concerning these matter can be found in [3]. However
for the reader’s convenience we point out some of the most important
concepts and results.

The starting point in a combinatorial study of compact Riemann
surfaces of genus g > 2 is the Riemann uniformization theorem by which
each such surface can be represented as the orbit space of the hyperbolic
plane H under the action of some Fuchsian surface group I'. Further-
more having a surface X so represented its group of automorphisms can
be represented as A/I" for another Fuchsian group A. Now the orbit
space of X under the action of some symmetry ¢ has a structure of
Klein surface and the point is that the counterpart of these results for
Klein surfaces also holds (see [10] and [15]), where NEC groups play
the role of Fuchsian groups.

The algebraic structure of an NEC group A is determined by its
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signature ([9], [18]) which is a symbol of the form

(1) (" £ [ma, ... ome i {Ch, .., Gk},
where the numbers m; > 2 are called the proper periods, C; are the
si-uples (ni1,...,n;s;) called the period cycles, the numbers n;; > 2

are the link periods and ¢’ > 0 is sald to be the orbit genus of A.
A surface NEC group is an NEC group with only empty period cy-
cles and without proper periods, i.e, an NEC group with signature
(¢";+;[-],{(-),.%.,(—)}), a Fuchsian group can be regarded as an
NEC group with signature (¢'; +; [m1, ..., m,]; {—}) and finally a Fuch-
sian surface group is a Fuchsian group with signature (¢; +;[—]; {—1}).
A group A with signature (1) has a presentation with canonical gener-
ators

and

and relators

m , 2 ni; 1
;" 1<i<r, Cij» (Cij—1cij)"7, cioe;  cis; €

with 1 <1<k, 0<j5<s;, and
—1;-1 —1;-1
Ty --Trep---eparbray by ---ag:bgfag, bg, ,
or
$1"'$r61"'6kd§"'d§:,

according as the sign is + or —.
Finally the hyperbolic area of an arbitrary fundamental region of
an NEC group A with signature (1) equals

2) #(A)—2ﬂ(9—2+k+2(1——> ZZ( ).

1=15=1

where ¢ = 2 if there is a “+” sign and € = 1 otherwise. If I' is a
subgroup of finite index in A, then it is an NEC group itself and we
have the Hurwitz-Riemann formula

(3) [A:F]:%.
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3. Centralizers, conjugacy classes and some combinatorics.

A group G is said to be abstractly orientable if it admits an epimor-
phism « : G — Zy = {£1} which will be called an abstract orientation
of G. An element g of G is said to be orientation preserving (respec-
tively orientation reversing) subject to the orientation « if a(g) = +1
(respectively a(g) = —1). Examples of orientable groups are provided
by proper NEC groups and groups Aut®(X) of all automorphisms of
symmetric Riemann surfaces X. The first lemma of this section is an
immediate consequence of Sylow theorems.

Lemma 3.1. Let 2" be the biggest power of 2 that divides the order
of an abstractly oriented finite group G. Then G has at most 2"}
conjugacy classes of orientation reversing elements of order 2.

ProOF. Indeed let S be a Sylow subgroup of GG. Then each conjugacy
class has a representative in S. So the lemma follows since Ker qg,
which consists of orientation preserving elements is a subgroup of S of
index 2.

Lemma 3.2. Let G be a finite group and let y1,y2 be two elements of
order 2 whose product has order n. Then the order of the centralizer
C(G,y;) of yi in G does not exceed 2 |G|/n fori=1,2.

Proor. Let H be the group generated by y; and y2 and observe first
that C(H,y;) = Zy or Zy ® Zy according as n is odd or even. Fix a
system X of representatives for the cosets of G/H. Then each element g
of G can be represented as g = y x for some y € H and x € X uniquely
determined. Now assume that both ¢ = yx and ¢’ = ¢’z € C(G, y;).
Then H > y'y=1 = g¢'g~ € C(G,y;). Thus y'y~! € C(H,y;) and so the
lemma follows.

Finally in this section we prove the following elementary combina-
torial lemma that we shall need in the sequel.

Lemma 3.3. Assume that k,k > 3 labels are used to label s points
situated on a circle in such a way that no two consecutive points have
the same label. Then at least k — 1 points have neighbours with distinct
labels.
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Proor. We shall prove the lemma by induction on s. Observe first
that s > k and that the cases s = 3 and s = 4 are trivial. So assume
that s > 5. There is nothing to prove if no point has neighbours with
the same label; here s points have neighbours with distinct labels. So
assume that there are three consecutive points ¢ — 1,%,7 + 1, say with
labels 1, £ and 1 respectively and consider the induced configuration of
s—2points 1,...,e—1,¢+2,...,s.

Assume first that some of these points have label k. Then by the
inductive hypothesis ¢ > k£ — 1 points have neighbours with distinct
labels. If, in the new configuration, the point ¢ — 1 has neighbours
with the same label then in the former configuration these t points
have neighbours with distinct labels whilst if ¢ — 1 has neighbours with
distinct labels then in the former configuration ¢ — 1 of these points and
one among ¢ — 1 and ¢ 4+ 1 has neighbours with distinct labels.

If none of the points 1,...,2 — 1,72+ 2,...,s has label k£ then we
have a configuration of s — 2 points on circle labeled by k£ — 1 labels.
For k = 3, s is even and we see that ¢ — 1 and ¢ + 1 have neighbours
with distinct labels. So assume that & > 3. Then by the inductive
hypothesis, k — 2 of these points have distinct labels. So the assertion
follows since in this case these points and ¢ + 1 have neighbours with
distinct labels in the former configuration.

4. Symmetries of Riemann surfaces and their ovals.

Let Aut™(X) be the group of orientation preserving automor-
phisms of a compact Riemann surface X represented as #/I". Then
Aut™(X) = A/T for some Fuchsian group A which is the normalizer
of I' in PSL(2,R). Now, X is symmetric if and ounly if there exists
an NEC group A containing A as a subgroup of index 2 and I as a
normal subgroup. In such case G = A/T = Aut®(X) is the group of
all automorphisms of X, including those that reverse its orientation.
Let  : A — G be the canonical projection. A symmetry of X is an
element ¢ € Aut™(X)\ Aut™(X) of order 2. Let us denote by (c) the
group generated by o and represent it as I', /T" for some NEC subgroup
I', of A. Then the orbit space X /(o) = H/T', is a Klein surface whose
boundary coincides with Fix(o). So ||o|| is the number of period cycles
of the signature of I',. Given a system of canonical generators of A,
let {c¢; : i € I} be a set of representatives for the conjugacy classes of
reflections in A.
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With these notations, a symmetry o of X with non-empty set of
fixed points is conjugate to 6(c;) for some j € I and it was shown in [4]
(see also [5]) that it has

(4) lofl =D [C(O(A), 6(ci)) = O(C(A, ;)]

ovals, where the sum is taken over all elements ¢ of I for which 6(c;) is
conjugate to o. The index w; = w¥ = [C(8(A),0(c;)) : O(C(A, ¢;))] will
be called a contribution of ¢; to ||o]|.

Now let || X|| be the sum of all |||, where o is running over all
conjugacy classes of symmetries of X. From (4) it follows immediately
that

() I1X1I =) [C(8(A), 0(ci) : 0(C(A, )]

iel

In this context w; will be called a contribution of ¢; to || X|| or we shall
say simply that ¢; contributes to X with w; ovals.

Singerman [16] proved that the centralizer C(A,¢;) of a canonical
reflection ¢; in an NEC group A is

(6) (cj) x (ej) = L2 x Z

if ¢; corresponds to an empty period cycle and

(1) (eo) x (((coer)™/?) # (e M (csm1¢5)™/ €)) = Ly X (L % Lo)
or

(8)  {eg) x ({(ejo1.¢)™72) % ((¢j ¢j41)"41/?)) = Lo X (Lo  Lo)

if ¢; corresponds to a period cycle (n1,...,n,) with even link periods,
where j = 0 or j # 0 respectively. We are ready to state and prove the
main result of the paper.

Theorem 4.1. Let o4,...,0, be non-conjugate symmetries of a Rie-
mann surface X of genus g > 2 for which G = Aut*(X) is a 2-group.
Then ||o1]| +-- -+ [lowl]] <29 =24 (9 - k) |G]/8.

PrROOF. Let X = H/I" and G = A/I". Assume that A has signature of
a general form

(9) (gl;i; [mlv .- '7m7’]; {Clv ooy O, (_)7'€'7(_)})7
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where C; = (n;1,...,nis;) and denote s = s1 + - - - + s,,,. Observe that
every link period is a power of 2. Let # : A — G be the canonical
epimorphism.

Assume first that none of o1, ..., 0% is central. Then |C(G,0;)| <
|G|/2 for i < k. So any canonical reflection ¢ corresponding to an
empty period cycle contributes to || X|| with at most |G|/4 ovals, by (6)
and (5) whilst a reflection corresponding to a non-empty period cycle
contribute to || X|| with at most |G|/8 ovals by (5) and (7) or (8). So
IX]] < (21+5)|G|/8. On the other hand g—1 > (41+4m—8+5s)|G|/8
by the Hurwitz-Riemann formula as p(A) > 27 ({+m — 2+ s/4). Thus
since k <[+ s we obtain 61+ 8 m + s > 7 + k since for m = 0 we have
[ >k >9. Consequently

G G
||X||g(23+8l+8m—16)%+(16—6l—8m—s)|8—|
G
§2g—2+(9—k)|8—|.

So we can assume that some of the symimetries in question, say z, is
a central element of G. Furthermore we can assume that [ = 0 and
m = 1. Observe first that m # 0. Indeed if m = 0 then as above we
prove that || X|| <[|G|/2 and 29 —2 > |G| (I —2). So

G|

Ix) <120
:|G|(z—2)+(4—z)@
G|

<2g—2+(9—k)|8£|

since 4l —k >7asl>k>9. Thus we can assume that m > 0 because
otherwise the theorem holds.

We can assume that 0(cig) # z. If [ # 0 consider an NEC group
A" with signature

(gla :}:7 [mla [ '7m7’]; {(27 27 27 27”’117 [ '7n181)7 027 e '7C’m7
(_)7 1 ) (_)}) :

For the sake of technical simplicity, we denote in the same way as in the
group A some of the canonical generators of A’; namely those generators

(10)
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which correspond to “pieces” of the signature of A in the signature of
A" and for the sake of terminological convenience we shall refer to these
generators of A’ as old generators. To be more precise, this means here
in the case of the signatures (9) and (10) that the hyperbolic generators
of A"are ay,by,...,a4,bgy ordy, ..., dy according to whether the sign is
+ or —, the elliptic generators are x1,...,z,, generators corresponding
to the first nonempty period cycle are ey, ¢, ¢}, ¢4, ¢5, €10, C115 - - -5 C1s,5
the generators corresponding to the remaining nonempty period cycles
are e;, Co, Ci1, - - -, Cis, » Whilst generators corresponding to empty period
cycles are €p,41,Cm41y- -+ Em+i—1,Cm+i—1- Furthermore according to
this convention cj, ¢}, ¢b and %, are new generators whilst the remaining
are old ones. We shall consider separately two cases

a) O(cmi1) # 2, b) O(cmyr) = 2.

Case a). Here we define ' : A’ — G on all old canonical generators but
e1 by 0 and we put '(e1) = 0(e1 - emyi) 0(e2- - em_1)" L, 0'(ch) =
0'(e7! c1s, 1), 0'(c})) = 0'(cy) = z, and 6'(ch) = O(cmyy). Then, using
results of [3, Chapter 2], it is not difficult to see that [ = Ker 6’ is a
Fuchsian surface group. Indeed, by Theorem 2.2.4, its signature has no
proper periods, by Theorem 2.3.3, it has no link periods, and finally, by
Theorem 2.1.3, its sign is +. Let X' = H/T". As u(A) = p(A’) we see
that X and X’ have the same genus. We shall show that || X'|| > || X]||.

As the images under 0" of all old, except c19, canonical reflections
corresponding to nonempty period cycles and their neighbours are the
same as their images under 6 we see, by (5) and (7) or (8), that each
of these reflections contributes to X’ with the same number of ovals as
to X. Similarly, by (6) and (5), old reflections corresponding to empty
period cycles contribute to X’ with the same number of ovals as to X.
So we have to show that c9, ¢j, ¢, ¢ and ¢§ contribute all together to
X' with at least as many ovals as ¢,y and ¢1o contribute to X.

Let wyg be the contribution of ¢1o to || X||. Then ¢1p contributes to
X' with wyp or wyp/2 ovals according to whether 6(c1o 611)"11/2 =z or
not. Similarly ¢ contributes to X’ with wyg or wy9/2 ovals according
to whether 6(ci,, 1 c15,)™*1/2 = 2 or not. Consequently reflections ¢y
and ¢{, contribute to 6’'(c1p) at least the same number of ovals as ¢ to
9(610).

Assume now, that ¢, 4; had contributed with & ovals to 0(cp+1)-
Then ¢, contributes to the new surface X’ also with k ovals if 0(e,,+;) #
1 and in this case we are done since the new surface has at least the
same number of ovals as the former one. If 6(ey,,4;) = 1 then ¢ con-
tribute to X’ with £/2 ovals. Let n’ and n” be the orders of 6'(c})) 0'(c5)
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and €' (ch) 0'(c1p) respectively and let n = max {n/,n"}. Then the cen-
tralizer of 6(c,,+¢) had order not bigger than 2|G|/n by the Lemma
3.2 and so ¢;,4; had contributed to the former surface at most with
|G|/n ovals, i.e., k < |G|/n whilst now ¢} and ¢4 contribute to z with
|G|/4An" + |G|/4n" > |G|/2n > k/2 ovals on the new surface X'. So
indeed [ X"[| > [|X[].

Case b). If O(cpmy1) = z then we define 8/ : A — G on all old
canonical generators and on ¢ as for the case 0(c;,41) # 2z and we put
0'(cy) = 0'(ch) = 0(cmy1), and €'(cy) = 0(c10). Again, using results
of [3, Chapter 2] one can prove that I'' = Ker ¢’ is a Fuchsian surface
group and by the Hurwitz-Riemann formula X' = # /I is a Riemann
surface of genus g. We shall show that || X'|| > || X||. Also here all old
canonical reflections but ¢jg contribute to X’ with the same number
of ovals as to X. The new reflection ¢} contributes to X’ with no less
ovals than c¢;o to X. Here ¢,,4; had contributed to 0(c,,4;) with |G|/4
or |G|/2 ovals according as O(ep+yi) # 1 or 6(em4i) = 1. In the first
case we see that | X'|| > || X|| as ¢§ contribute to X’ with |G|/4 ovals
also. If 6(epy) = 1, then 6'(e1) = 0(e1). So in this case 0'(cp) = 0(c10)
and therefore ¢j and ¢4 contribute to X’ with |G|/4 ovals each. Hence
again [ X'[| > [|X[].

Thus we can assume that A has no empty period cycles, i.e., it has
signature

(11) (955 [ma, - ome);{(nat, o oy nasy)s ooy (Mt e e s Tns,, ) }) -

Now we shall see that, actually we can assume that m =1, i.e., A has
just one period cycle. For, observe that we can assume that 0(cis,) # 2
and 0(cgg) # z. Let A’ be an NEC group with signature

(gl' :}:7 [mla . '7m7’]; {(nlla ey, 27 27”’217 vy N2sy, 27 2)7

(12)
Cs,...,C5}).
Here the reflections corresponding to the first period cycle are

/ / /
C10,---,C1s15C05C20y - -+, C255,C1,Co

and also here p(A) = p(A’). We define 0" : A’ — G on all old
canonical generators but e; as before i.e., by 6 and we put 6'(e;) =
O(e1)O(ez). Furthermore we define 6'(cj)) = 60'(¢)) = z and 0'(c}) =
0'(e1) 0(c1o) 0'(e7"). Once more, using results of [3, Chapter 2], we
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see that IV = Ker#' is a Fuchsian surface group. Then X' = #/I"
is a Riemann surface of genus g. In a similar way, we can prove that
|X']| > || X]|]. Indeed all old canonical reflections, but ¢19 and cgg con-
tribute to X’ with the same number of ovals as to X.

Let w;¥ be the contribution of ¢;o to || X|| and let I; be the order of
the centralizer of (c;o) for i = 1,2. Then w;X = [;/4 k;, where k; is the
order of (cigci1)™ /2 0(e; (cis,—1 cis;)"*i/? €;). In particular we see
that w;X < [;/4. On the other hand, as 6'(c1oc11))™ /260" (e7' ¢} cyer)
and 0'(c15, -1 clsl)”lsl/2 0'(c1s, ¢(y) have order 2 we see that c19 and ¢y,
contribute to X’ with no less ovals than ¢y to X. Similarly ceg and
a5, contribute to X’ with no less ovals than cop to X. So we see that
indeed [|X"[| > [ X]].

So at last we arrive at the case of an NEC group A with signature

(13) (¢"; £ [ma,...,m]; {(n1,...,n5)}).

Let ¢g,...,cs denote the corresponding canonical reflections. Observe
that s <8(¢9 —1)/|G| + 4.

We can assume that 6(cp) is a central symmetry of X and so in
particular 0(cy) = 6(cs). Consider cg,cq1,...,c5—1 as s points on a
circle labelled by 6(cp),0(c1),...,0(cs_1) respectively. By the Lemma
3.3, at least for £ — 1 numbers in range 0 < 47 < -+ < i1 < 5§ — 1,
0(ci,—1) # 0(ci,+1), where the indices are taken modulo s.

Now if n;, > 2 or n;,41 > 2 then 6(c¢;,) is not central and so
|C(G,0(c;,))| < |G]|/2. Therefore ¢;, contributes to the corresponding
surface X with at most with |G|/8 ovals. If n;, = n;,+1 = 2 then
|0(C(A, ¢;,))| > 8 and thus also now ¢;, contributes to X with at most
|G|/8 ovals. The remaining canonical reflections contribute to X with
no more than |G|/4 ovals. So

||X||§(k—1)|8£|+(s—k+1)|4£|

_ Gl G|
=5 +(1—k) 3

G
§2g—2+|G|+(1—k)|8—|

:2g—2+(9—k)|8£|.

This completes the proof.
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Corollary 4.2. Let 0q,...,0k, where k > 9 be non-conjugate symme-
tries of a Riemann surface X of genus g > 2. Then ||oq||+ -+ ||og|| <
29 —2+2"3(9—k), where r is the smallest positive integer for which
E<2r—1

PROOF. As we are looking for the ovals of these symmetries and conju-
gate symmetries have the same number of ovals we can assume, using
Sylow theorem, that they generate a 2-subgroup G of Aut*(X). Let
X = H/I' and G = A/T. Assume that A has signature (9). Then,
as s +1 > k > 9, we see, by [2] (see also [3, Theorem 2.4.7]), that
its signature is maximal. So by [3, Theorem 5.1.2] there exists a max-
imal NEC group A’ and algebraic isomorphism ¢ : A — A’. Let
X' = H/T’, where I'" = p(T'). Then Aut*(X’) = A’/T’ and ¢ induces
an isomorphism ¢ : A/I' — A’/T’'. Now ¢(01),...,p(0r) are non-
conjugate symmetries of X’. Furthermore if (o;) = A;/T", then ||o]
is the number of empty period cycles of A;. So ||o;]| = ||¢(0i)]|| since
(@(03)) = o(A;)/T". Furthermore || X|| < [|X']| and G =2 Aut*(X') is a
2-group. Then by Theorem 4.1, || X'|| <2¢9—2+ (9 — k) |G|/8 and by
Lemma 3.1, |G| > 2". Hence the Corollary follows.

The next theorem shows that the bound obtained in Corollary 4.2
is sharp.

Theorem 4.3. Let k > 9 be an arbitrary integer and let r be the
smallest positive integer for which k < 2"=Y. Then for arbitrary g =
2"=2¢ 4+ 1, where t > k — 3 there exists a Riemann surface X of genus
g having k non-conjugate symmetries which have 2 g — 2+ 2773 (9 — k)
ovals in total.

PROOF. Let G = Zo® -~ ® Zy = (1) @ --- ® (2,) and let A be a
maximal NEC-group with signature (0; +;[—]; {(2, 2% ,2)}), where s =
(g—1)/2""2+2 >k —1. Let {a1,...,a9-—1} be all elements of order
2 in G which have odd length in z1,..., 2, and assume that a4,...,a,
generate G. Then since 7 is the minimal integer such that k < 2"~ we
have k£ > r and so the assignment

ai , fOI‘?::2j,0§j§$,
f(e)=1, and O(¢c;) = ¢ ajp2, fori=25+1, 0<j<k—-2,
ak , fori=27+1, k—1<757<s—-1,
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defines an epimorphism 6 : A — G for which I' = Ker @ is a surface
group and X = H/I' is a Riemann surface having k non-conjugate
symmetries with fixed points.

We see that cyj, for 0 < j < k —2 contribute to a; with 27 =3 ovals

whilst the remaining 2 s — k + 1 non-conjugate canonical reflections of
A contribute to the corresponding surface with 2"=2 ovals. As a result

ool + -4 llowl| =272 (k= 1) + 2772 (25 — k + 1)
=2""ls 4273 (1 — k)
=29-2+2"4+2""3(1—k)
=29g—-2+2"3(9-k).
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