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Schiffer problem and

isoparametric hypersurfaces
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Abstract. The Schiffer Problem as originally stated for Euclidean
spaces (and later for some symmetric spaces) is the following: Given a
bounded connected open set {2 with a regular boundary and such that
the complement of its closure is connected, does the existence of a so-
lution to the Overdetermined Neumann Problem (N) imply that € is
a ball? The same question for the Overdetermined Dirichlet Problem
(D). We consider the generalization of the Schiffer Problem to an ar-
bitrary Riemannian manifold and also the possibility of replacing the
condition on the domain to be a ball by more general condition: to
have a homogeneous boundary (i.e., boundary, admitting a transitive
group of isometries). We prove that if {2 has a homogeneous boundary,
then (N) and (D) always admit solutions (in fact, for infinitely many
eigenvalues), but the converse statement is not always true. We show
that in a number of spaces (symmetric and non-symmetric), many do-
mains such that their boundaries are isoparametric hypersurfaces have
eigenfunctions for (N) and (D) but fail the Schiffer Conjecture or even
its generalization.

These ideas can be extended to other (essentially more compli-
cated) overdetermined boundary value problems, including higher or-
der equations and non-linear equations, which, in a number of im-
portant cases, may also have solutions in domains with isoparamet-
ric (and not necessarily homogeneous) boundaries. Also, a number
of initial/boundary value problems for time-dependent equations with
some extra boundary conditions have solutions for domains with the
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above boundaries. If a time-dependent equation is non-linear and has
blow-up, this blow-up occurs at the same time at all the points on the
boundary.

0. Introduction.

Suppose X is a complete, analytic Riemannian manifold and Q C
X is an open, relatively compact, connected domain with 9€2 connected
with some regularity on 92 (e.g., C?*¢). Various researchers have con-
sidered the existence of a function u which satisfies one of the following
overdetermined boundary value problems.

Au+au=0, in Q,
N
) {u:constant, %:0, on 0f).
on
This is the Overdetermined Neumann Problem.
Au+au=0, in €2,
D
(b) {uzo,a—:constant, on 0.
on

This is the Overdetermined Dirichlet Problem. The constants in (N)
and (D) may be arbitrary non-zero real numbers (of course, one can
assume that they equal 1).

REMARK. It is well known that if the boundary 0f2 is not real-analytic,
then neither (N) nor (D) has a solution (see [KiN], [Wi]). Therefore,
without loss of generality we assume that 02 is analytic and the so-
lution is too so that the latter can be analytically extended to some
neighborhood of the closure €.

These questions arose in connection with a number of applied prob-
lems, including variational problems (for example, minimizing an en-
ergy functional) and problems of integral geometry. A possible phys-
ical interpretation of (N) (or (D)) is a stabilized heat distribution in
the body € (when the heat sources are proportional to the tempera-
ture) with constant boundary temperature and no heat flow through
the boundary for (N) (or with zero boundary temperature and constant
heat flow through the boundary for (D)). Also, to illustrate the impor-
tance of that, we show how an overdetermined boundary value problem
may be related to Pompeiu Transform.
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Definition 1. Let X be a homogeneous space as above and ) a rela-
tively compact domain in X. Let G be the group of isometries of X.
Define the Pompeiu Transform, Pgo : C(X) — C(G) in the following
way: given f € C(X),g € G, we have

(0.) (Paf)o) = [ f(@)do.
g2
Q is said to have Pompeiu Property (PP) if Pq is injective.

Now suppose that 2 C X has the properties described in formula-
tion of (N), (D). In 1983, C. Berenstein and M. Shahshahani (see [BeS])
proved the following:

Theorem. If X is R" or non-compact irreducible symmetric space of
rank 1, then Q fails (PP) if and only if (N) has a solution with o > 0.

If X is an arbitrary homogeneous space, we have a weaker state-
ment, namely:

Theorem. If (N) has a solution with o > 0 belonging to the global
spectrum of X (for the Laplace-Beltrami operator), then 2 fails (PP).

The Schiffer Conjecture (originally formulated for X = R™) is that
existence of a solution to (N) implies that €2 is a metric ball. So far,
there are no counterexamples to the Schiffer Conjecture (SC) in R"™
or non-compact irreducible symmetric spaces of the first rank but the
answer to that question is still unknown. The same situation occurs
with (D). It is proven that existence of a solution to (D) with a = A1, the
first Dirichlet eigenvalue (for which and only for which the eigenfunction
is positive or negative on the whole 2), or a solution to (N) with a = s,
both imply that € is a ball. Also, the existence of infinitely many
eigenvalues to (N) or (D) in the above spaces implies that 2 is a metric
ball (see [Be|, [BeY]).

J. Serrin in 1971 (see [Se]) considered, in particular, the following
overdetermined boundary value problem

{A’u:—l7 inQ,

(0.2)

u=0, = constant, on 0f).

on
He proved that if X = R™ and (0.2) has a solution, then 2 must be
a ball (another proof was given by H. F. Weinberger (see [Wei])). R.
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Molzon (see [Mo]) extended this result to the cases when X is real
hyperbolic space H" or upper hemisphere S .

In this work we show the existence of a number of domains in
different spaces for which (N) and (D) admit solutions for infinitely
many eigenvalues; (0.2) has a unique solution in each such a domain.
These domains don’t have to be metric balls and, moreover, in some
cases, metric balls don’t necessarily admit such solutions. Also, we
consider some possible generalizations to the Schiffer Conjecture and
other (essentially more complicated) overdetermined boundary value
problems, including higher order equations, nonlinear equations, time-
dependent equations, and the spread of blow-up.

1. Domains with homogeneous boundaries.

Definition 2. Let X be a Riemannian manifold, T' a reqular (C*, C*
or analytic) and connected hypersurface in X. T is called a homoge-
neous hypersurface in X if I' is an orbit of a subgroup G C ISO(X)
where ISO(X) is the group of all isometries of X.

REMARK. Obviously, the principal curvatures (see [Carm]|) of a ho-
mogeneous hypersurface are constant, but the converse statement is
not always true. If X is R” or a non-compact irreducible symmetric
space of the first rank (see [H1]) and I' is compact, then the fact that
I' is homogeneous in X means that I' is a metric sphere in X so that
this definition contains nothing new. If X is a non-compact irreducible
symmetric space of higher rank (see [H1]), then there are no compact
homogeneous hypersurfaces, i.e. surfaces of codimension 1 in X (in
fact, even metric spheres are not homogeneous in X). However, if X
is a compact irreducible symmetric space of the first rank, then there
are plenty of homogeneous hypersurfaces in X including non-spheres as
well as spheres (we will consider them later).

Lemma 1. Let X be a complete Riemannian manifold and €2 a bounded
domain tn X as in Section 0. If 02 is homogeneous in X, then the
group G in Definition 2 can be chosen in such a way that G C ISOg(X)
(identity component of ISO(X)), G is compact, connected and any g €
G maps €2 onto itself.

PROOF. Let G be the group of all g € ISO(X) mapping 952 onto itself.
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Then, of course, 0€) is a compact orbit of é, and G is compact as well
(see [H1]). Show that there is a compact subgroup G C G such that
any g € G maps € onto itself. Indeed, take any g € G. Let ' = g(Q).
Then 0€) = ¢g(02) so that 02 = 0 which is connected and regular.
Since X \ 0€2 consists of two connected components, namely, 2 and the
complement of the closure ©, g(£2) can be only € itself or Q°.

Now consider three possible cases:

Case 1. X is non-compact. Then Q° is unbounded and g(£2) can never
be Q°. Thus, for any g € G we have g(2) = Q as required so that
assume G = G.

Case 2. X is compact but €2 and Q° are non-isometric to each other.

Then, again g(£2) can not be Q°, i.e. we always have g(Q) = Q and can
take G = G.

Case 3. X is compact, 2 and Q° are isometric to each other. Define
Ggq as the group of all g € ISO(X) mapping  onto itself (G contains
at least the identical isometry). Obviously, Gg is compact as well as G.
Moreover, G is a normal (with index 2) subgroup of G, and G \ Ggq is
the set of all g € ISO(X) mapping € onto O° (or conversely).

Take any point p € 0€). Consider the orbit S of p under the action
of G, S is a closed subset of 02 (in the topology induced on 012).
Show that S = 0€2. Indeed, suppose the contrary. Take any g € 92\ S.
Then 02\ S is the orbit of ¢ under the action of G so that 02\ S
is a closed subset of 0€2. This implies that S is an open subset of 0f2
while S is already closed in 0€2. Since 0f2 is connected, S can be only
@ or 0f). But S > p is non-empty so that S = 0€2. Therefore, €2 is
the orbit of Gg,.

Thus, we can always choose Gg as a compact subgroup of ISO(X)
(and, of course, of é) such that any g € G maps €2 onto itself. Since
Ggq is compact, it contains finitely many connected components. Let
G be the identity component, G is a compact subgroup of Gg. Prove
that 02 is the orbit of G. If G has only one component, i.e. G itself,
the claim is obvious. If there are more than one components, take any
point p € 92 and consider the orbit S; of p under the action of G, Sy
is the closed subset of 0€2. Show that S; = 0€2. Suppose not. Since
G is acting on 0€2, 02 is split into finitely many orbits of GG, call them
S1,82,...,8k, k> 2. All they are isometric to one another so that 02
is split into a finite number (k > 2) of closed non-empty sets. But this
contradicts the connectivity of 0€2.
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Therefore, 0€) is the orbit of G and G is chosen as required. The
proof of Lemma 1 is completed.

Below we always assume that G is chosen as described in Lemma,
1.

As explained in Introduction, we can assume that 02 is C*° (even
real-analytic) which implies that classical (not overdetermined) Neu-
mann and Dirichlet eigenfunctions are at least C? (in fact, C™ as well)
(see [R]).

Lemma 2. Let Q be a bounded domain in X as in Section 0. Then the
classical Neumann Problem (respectively, the classical Dirichlet Pro-
blem) for Q2 has infinitely many eigenvalues « > 0 with corresponding
eigenfunctions fo(x) satisfying the condition

(1.1) fa(z)ds #0
o

or, respectively,

(1.2) /mafgrg )d £0.

The latter condition (for classical Dirichlet Problem) is equivalent to
(1.3) / falz)dz #£0.
Q

PROOF. The equivalence of (1.2) and (1.3) is obvious because of Gauss
Theorem:

e R

Now, take any real A which is not an eigenvalue for classical Neumann
Problem (respectively, classical Dirichlet Problem). Then usual bound-
ary value problem

%
on

(1.4)

Au+Au=0, in {2,
{ =1, on 0L2.
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or, respectively,

(1.5) {Au+)\u:0, in €2,

u=1, on 0f).

has a unique regular solution, call it ¢(z). For Dirichlet Problem (1.5)
one can assume A = 0 so that ¢(z) = 1. Then, if f,(z) is an eigenfunc-
tion for Neumann Problem, we can write

Op(z) _ Ofalz)

fo(@) = fa(2) on on

o(z), on 092,

and if f,(z) is an eigenfunction for Dirichlet Problem, we have

0fa(z)  Ofalz) Op(x)
o = o P~ falz) =5 =,

In both cases, Gauss’ Theorem implies

[ (fale) 25 = 20 )

- / (fal@) V(@) — (Vful)) o)) - it ds
o0

n of).

- /Qv (fal@) V() — (Valz)) o(a)) da
_ /Q (Vfalz) - V() + folz) Ap(z)
— Afo(z) () = Vfa(z) - V() dz

= [ al@) Apla) = Afala) - () da

Since A is not an eigenvalue, it can not equal a so that the condition
(1.1) for Neumann Problem or, respectively, (1.2) for Dirichlet Problem
is equivalent to

(1.6) /Q fal) () dz £ 0.
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Neumann Problem (respectively, Dirichlet Problem) has an increasing
sequence of eigenvalues approaching to infinity

ap <ag < - -<oap<---

where a; = 0 (respectively, @3 > 0) and the multiplicity of «; (i.e.,
the dimension of corresponding eigenspace) is 1. Then L?(Q) can be
decomposed into the direct sum of mutually orthogonal eigenspaces
E(Ozk), k Z 1

(1.7) L2(Q) = E(c1) @ E(ag) @ -+ ® E(og) ® - - -

Now suppose that the statement of Lemma 2 is not true, i.e. the
integral in (1.6) is non-zero for at most finitely many eigenvalues, call
them ay,, ak,, ..., ak,. Then ¢(x) is orthogonal to all E(ag), £k > 1 in
L?(2), decomposition (1.7), except, maybe, E(ay, ), F(ak,), .., E(ak,)
(at least one such E(ag,), ¢ > 1 exists since otherwise ¢(z) = 0). So
©(z) must be in the finite direct sum of these eigenspaces, i.e.

(,0(.77) S E(akl) EBE(akz) b "'EBE(OUW)

p(2) = p1(x) + pa(x) + -+ u(2),

(1.8)
vi(z) € E(ag,), 1<e<1,

where ¢;(z) are eigenfunctions for oy, (or, some of them may be zero).
Now consider the two boundary value problems separately.

Case 1. For the Neumann Problem

dp  0p1  Opy dor _
%_8n+8n+ +8n_0+0+ +0=9, on 91,

while d¢p/0n =1 on 0Q by (1.4). This contradiction proves the state-
ment of Lemma 2 for the Neumann Problem.

Case 2. For the Dirichlet Problem
o(z) = p1(z) + p2(z) +- -+ @(z) =0+0+---+0=0,  ondQ,

while ¢(2) = 1 on 0€2 by (1.5). This contradiction proves the statement
of Lemma 2. for the Dirichlet Problem.
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Since we have considered both Neumann and Dirichlet Problems,
the proof of Lemma 2 is completed.

Theorem 1. Let X be Riemannian manifold and 2 a bounded domain
i X as in the Introduction. Suppose 0S) is homogeneous in X. Let
a > 0 be an eigenvalue for the classical Neumann Problem (respectively,
classical Dirichlet Problem) on Q. Then, the Overdetermined Neumann
Problem (N) (respectively, Overdetermined Dirichlet Problem (D)) ad-
mits a solution for « if and only if a has an eigenfunction f.(z) for the
classical Neumann (respectively, Dirichlet) Problem satisfying the con-
dition (1.1) (respectively, (1.2) if and only if (1.3)). In particular, any
eigenfunction for the first Dirichlet eigenvalue (in the classical problem)
is a solution for (D).

Proor. If (N) (respectively, (D)) has a solution for some eigenvalue
a > 0, then this solution obviously satisfies (1.1) (respectively, (1.2)).

Now we have to prove the other direction. Let f,(x) be an eigen-
function corresponding to an eigenvalue a > 0 for classical Neumann
(respectively, Dirichlet) Problem and satisfying (1.1) (respectively,
(1.2)). Take any g € G. Since the Laplace-Beltrami operator is in-
variant under isometries (see [H1]), i.e. A(fy 09) = (Afa) 0 g, the
composition f, o g satisfies the equation

(1'9) A(faog)—i-a(faog)zo.

On the other hand, G acts transitively on 02 and any isometry is a
conformal map so that

(]

(1.10) B(fgn 9) _ (%{j)og, on 9.
In the case of Neumann Problem, (1.10) implies that O(f, o g)/0n
vanishes on 0 as well as df,/0n. In the case of Dirichlet Problem,
(fa © g) vanishes on 092 as well as f,. Therefore, in both cases f, og
is also an eigenfunction for the eigenvalue a and this is true for any
geq.

Now, since GG is a compact Lie group, it has Haar measure p which
is unique up to the assumption that u(G) = 1. Given any function 1 (z)
continuous on 92 and any point p € 0€2, invariance always implies that
the average value is

(L11) /Gw<g-p) dg = Aiofmw@) s,
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where g - p means g(p) and Ay is the area of 0.

_ Now define a new function f(z) on € (in fact, in some neighborhood
of Q) in the following way

(1.12) f($)=/(;faog(ﬂs)dg=/Gfa(g-x)dg

Since the Haar measure on GG is invariant under the action of G, so is

f(x), i.e.
(1.13) foh(z)=f(x), for any h € G

= 5( [ faoa(o)dy)

- / A(fu 0 g(x)) dg
G

Because of (1.9) we have

— [ (-ataogta)) da

- / foost
C of(

i.e. f(z) satisfies

(1.14) Af+af=0.

Since G acts transitively on 012, (1.13) implies that f(x) is constant on
0. Moreover, in view of (1.11), f(z) on 92 can be computed as

1
. a© a ) Q.
(1.15) /f g(z /yeagf(y)ds x €0

Similarly, because of (1.10) we have

so that we have

(1.16) of (@) _ i/ Oayds,  zeon,

on AO yEIN on
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and df/0n is constant on 082 as well as f(x).
Now we are close to the end. According to (1.14), we have Af +
af =0 on 0. Again, consider both problems separately.

Case 1. For the Neumann Problem, df,/0dn vanishes on 02 and, be-
cause of (1.16), so does Of/On. Also, (1.15) implies that f(z) is some
non-zero constant on d€2 (by the condition (1.1)). Therefore, f(z) is a
solution to Overdetermined Neumann Problem (N).

Case 2. For the Dirichlet Problem, f,(x) vanishes on 092 and, because
of (1.15), so does f(x). Also, (1.16) implies that 9 f/dn is some non-zero
constant on 02 (by the condition (1.2)). Therefore, f(z) is a solution
to Overdetermined Dirichlet Problem (D).

In particular, if « is the first Dirichlet eigenvalue, any correspond-
ing eigenfunction f,(z) has a constant sign on € (for non-zero values)
and the condition (1.2) is satisfied. Then f(z) is a solution to (D). In
fact, f = f, in this case because all eigenfunctions for « coincide up to
a constant multiple and (1.15) implies that f(x) = fu(x) on 0€.

Since we have considered both Neumann and Dirichlet Problems,
the proof of Theorem 1 is completed.

REMARK. Using the same technique as in Theorem 1, we can prove
that (0.2) has a unique solution in € whenever 02 is homogeneous in
X.

Applying Lemma 2, we get:

Corollary 1. Let X be Riemannian manifold and Q0 a bounded domain
in X as in Section 0. If OS2 is homogeneous in X , then (N) (respectively,
(D)) admits solutions (overdetermined eigenfunctions) fi(xz) for infini-
tely many eigenvalues «;. These eigenfunctions, f;(x) (taken once for
each a; and with a; =0, f1(x) a constant for (N)), form an orthogonal
basis for the subspace of all G-invariant functions in L*(Q), i.e. for

LEZ(Q)={f e L*(Q): foralged

(1.17)
such that fog= f in L*(Q)}.

REMARK. We can not automatically say that metric balls in any Rie-
mannian manifold X admit solutions to (N) or (D). One can guarantee
that only if metric spheres in X are homogeneous. This is, of course,
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true in R™ or irreducible symmetric spaces of the first rank but not in

the spaces of higher rank or non-symmetric spaces (we will see examples
below).

Generalized Schiffer Conjecture (GSC). The natural generaliza-
tion of Schiffer Conjecture to an arbitrary Riemannian manifold X is
that the existence of a solution to (N) implies that 0€2 is homogeneous
in X. In R” or non-compact irreducible symmetric spaces of the first
rank (GSC) and (SC) are equivalent since there is no difference between
metric spheres and compact homogeneous hypersurfaces in these spaces
(and the answer is still unknown). The examples below show that this
is not so in general. The same question, of course, applies to (D) (as
well as to (0.2)). Also, it is interesting to consider a weaker version of
the problem: if (N) or (D) admits solutions for infinitely many eigenval-
ues, does it imply that 9 is homogeneous in X7 (As noted above, in
R™ or non-compact irreducible symmetric spaces of the first rank this
is true).

In next sections we will see a number of different spaces where do-
mains with homogeneous as well as with non-homogeneous boundaries
admit solutions to (N) and (D) for infinitely many eigenvalues.

2. Domains with isoparametric boundaries in symmetric
spaces.

In this section we will construct a number of specific domains €2
admitting solutions to (N) and (D) in the classical compact irreducible
symmetric spaces of the first rank, namely, S™, RP", CP", HP"™, see
[H2] (we don’t consider the exceptional case P®(Cay)).

EXAMPLE 1. Suppose X = S" CR*t! =RF xR, n =k 41— 1. Let
Fra(@) =1(@l+ -+ ap) = k(@ + o+ zhy)

Let Qk,l = {$ e s": fk,l(a:) > 0} so that an,l = {.T e s fkyl(x) =
0} Then 8Qk71 = Sk_l(’f'l) X Sl_l(’l"z) (Wlth ry = \/k/(kﬁ‘l), Ty =

[/(k 1)) which is called generalized Clifford torus. It is connected if
both k,l > 1; if either & or [ equals 1, 0§, ; consists of two components,
isometric to S"~1(y/n/(n +1)). Obviously, for k,1 > 2, 98y, ; admits a
transitive isometry group, namely, SO(k) x SO(l). Therefore, Theorem
1 implies that (D) has a solution in ;. This conclusion (for that
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particular domain) was obtained by M. Karlovitz in 1990 (see [Kar])
by direct computations. He showed that fy ;(z) is such a solution itself
(in fact, it is first eigenfunction mentioned in Theorem 1).

Indeed, the second degree polynomial fj ;(z) is harmonic on R**1.
Then since fj ;(x) is also homogeneous it is known that fj; restricted
to S™ is a solution to the global eigenvalue problem

Asu+au=0, on S",

for = 2 (k+1) where Ag is the Laplace-Beltrami operator on S™ (see
[Ch]). After computations we will have

(2.1) Vs feall =4 = frg) (k+ fea),

where Vg is the gradient along S™, so that ||Vsfr|| =2 Vkl on 0Q
(where fi; = 0). Now because 0% is a level surface of fj;, a normal

I 2

(outward) vector to it will be =V g fi1/[|Vsfril|. Then
0 \Y
st _ __Vslud Vsfeg=—|Vsfrll = —2VEkLl, on 0Q .
on Vs frall

Therefore, fi () is a solution for (D) on €2 ; (it is a first eigenfunction
since fr(z) > 0 on Q). Of course, this is not the only solution since
Theorem 1 implies that both (N) and (D) have solutions for infinitely
many eigenvalues (and problem (0.2) has a unique solution in ;).

In the above example, one can make the following very important

OBSERVATION. Ag fr; and ||V fx]|? can be expressed in terms of f
only.

The class of functions having this property is very interesting as
well as the class of their level surfaces. Now we need a brief account of
the theory of this subject in general case.

2.1. Basic theory of isoparametric functions and hypersur-
faces.

Definition 3. Let X be a Riemannian manifold and f : X — R a
smooth function on X (or on some open connected subset U C X). We
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say that f is an isoparametric function on X (or on U C X) if there
exist smooth functions A and B defined on the image, f(X) C R, of X
under f (or f(U) C R, of U under f) so that

(2.2) Af=Aof,
(2.3) IVFI?=Bof.

Regular level surfaces of f are called isoparametric hypersurfaces in X.

A function f satisfying (2.3) is called transnormal. Geometrical
meaning of transnormality of f is that level sets of f are parallel (see
[Q1]). That is, for any two level sets of f, say, P C X, @ C X and
given any two points = € P, y € (), we have dist (z, Q) = dist (y, P).

By the definition, any isoparametric function is automatically
transnormal and, for any regular level surface of f, call it M C X,
its mean curvature

X =— lldiv(

n —

\7i
||Vf||>

is constant along M (see [Q1]). Thus, f is isoparametric if all its regular
level surfaces are parallel and have constant mean curvatures (generally
speaking, different for different levels).

Now, for a regular hypersurface M C X to be isoparametric means
that any hypersurface N, sufficiently close and parallel to M, has con-
stant mean curvature (see [Q1]). That is, the mean curvature depends
only on N but not on a position on N (including N = M). There-
fore, the concept of isoparametricity of hypersurface is geometrical and
doesn’t depend on defining isoparametric function (such a function can’t
be unique).

It is important that the definitions and geometrical interpretation
of isoparametricity can be given for arbitrary Riemannian manifold.
For the first time the above notions were introduced and intensively
studied by E. Cartan (see [Cart]) in the spaces of constant sectional
curvature. He proved the following beautiful result.

Theorem (E. Cartan, 1938). In a space X of constant sectional cur-
vature (basically, X is R™, sphere S™ or hyperbolic space H"), a hyper-
surface M s isoparametric in X if and only if all principal curvatures
are constant. If X is R™ or H* and M s a compact hypersurface, then
M s isoparametric in X if and only if M s a metric sphere.
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Since any homogeneous hypersurface has constant principal cur-
vatures, in any space X of constant sectional curvature one has the
following;:

Proposition 1. If a hypersurface M is homogeneous in X, then M is
1soparametric i X.

REMARK. In fact, Proposition 1 holds in any Riemannian manifold
X. If X is R™ or a non-compact irreducible symmetric space of the
first rank, then the class of known isoparametric compact hypersurfaces
coincides with that of the homogeneous compact hypersurfaces, i.e.
metric spheres.

Cartan classified isoparametric hypersurfaces in S™, n = d+1 with
g distinct principal curvatures for g =1, 2, 3:
Case g = 1. Subsphere S™1(r) in S™.
Case g = 2. Generalized Clifford Torus S*¥=1(ry) x S'=1(ry) in S™
(Example 1).
Case g = 3. M?* C S41 c RIt2 d = 3,6,12,24, M? is a level
surface of the following function f on R¢*2? (whose restriction on S¢+!
is isoparametric)

3
f(z) = $g + 5335 (|Zl|2 + |Z:J,|2 — 2|z2|2 - 2373)

3v3
+ 2w (af - JasP) -

(2.4) »

2

(21 22 23 + Z3 22 Z3) ,

where 21, 2o, 23 are real, complex or quaternions or octonians (according
to d = 3,6,12,24), x4, x5 are always real.

All hypersurfaces in the above Cartan’s examples are homogeneous.
Cartan proposed the following question: If M is an isoparametric sur-
face in S™, is M necessarily homogeneous in S™7

The negative answer to that question was obtained by H. Ozeki
and M. Takeuchi in 1975 (see [OzT]) for g = 4. They gave a number of
different examples but we will show only two of them, for n = 15 and
n = 31. Let F be the quaternion algebra (respectively, non-associative
octonian algebra). The dimension of F' over R is 4 (respectively, 8) so
that R"*! can be written as

R =F2x F2=FxFxFxF
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(as a Euclidean space). Let

U1 U1

Define the scalar product in F' as

r _
(Q17Q2):§(Q1Q2+CI2Q1)7 q1,92 € F,
where § means conjugate to g € F'. In fact, this product coincides with
the usual dot product in F = R* (respectively, F = R®). Then the
norm in F' is given by
1/2

lqll = (¢, 9) geF.

The scalar product and norm can be extended to F? = R® (respectively,
F? =R%) as

(4,0) = (0, v0) + (w,01) = = (WT+0'm),  |fuf = (u,u)¥2,

[\]

where ’ means transpose. Now define a function f isoparametric on

R+l = F2 x F? in the following way

Flux ) = ([ull® + [[0]|*)* = 2 fou x ),
(25)  foluxv) =4 (|u'7]* — (u,0)?)
+ (luall® = lorll® + 2 (uo, w0))*, w0 € F?.

The restriction of f on S™ is an isoparametric function, and its level
surfaces turn out to be non-homogeneous isoparametric hypersurfaces
in S™. (If one takes F' to be the complex field, one can obtain a func-
tion isoparametric on S C R® whose level surfaces are homogeneous
isoparametric hypersurfaces in S7 with g = 4.)

The complete geometric classification of isoparametric hypersur-
faces in S™ is still unknown. In 1980 H. Munzer (see [Mun]), in his
beautiful work, reduced this classification problem to a (difficult) alge-
braic problem. He obtained the following results.

Proposition 2. Number g of distinct principal curvatures for an iso-
parametric hypersurface M in S™ can be only: g =1,2,3,4,6.
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Proposition 3. Let x, > x; > - > Xg—1 be the distinct principal
curvatures of M. Then their multiplicities m;, 1 = 0,1,...,9 — 1 are
repeated as mg, my, mo,m1,... If g = 1,3,6, then my = mq, t.e. all
m; are equal. We have n —1 = g (mg+ mq)/2.

Proposition 4. An isoparametric hypersurface M of g distinct prin-
cipal curvatures is a level surface of so called Cartan polynomial f(x).
By the definition, such a polynomial is a homogeneous polynomial of
the degree g defined on R*tt O S™ and satisfying

Arf = cleo?,
(2.6) { nf=clef,
IV Rf | = g2 |af?0-2

where A and Vi mean the usual operations on R*t! ¢ = (my —
mo) g2/2 so that ¢ = 0 if g = 1,3,6. Namely, the restriction V = f|gn
is 1soparametric on S™, its range is [—1,1] and M = V~Y(t) for some
t € (—1,1). Given M, the polynomial f is uniquely defined (up to £ if
c=0).

Conversely, let f be a Cartan polynomial , i.e. homogeneous poly-
nomial of degree g satisfying (2.6) for some ¢ with g(n — 1) — ¢ # 0,
gn—1)+c#0. Let V = f|gn. Then V(S™) = [—1,1] and for any
t € (=1,1), My = V=Y(t) is a regular connected isoparametric hyper-
surface with g distinct principal curvatures, mo = (g (n — 1) — ¢)/g?,
my = (g(n—1)+¢)/g? (M_1 and M; are so-called focal sets). The
restriction V' is satisfying

2.7) {AV:—g(g-l-n—l)V—l—c,

IVV[*=g*(1-V?),

where A = Ag, V=Vg.

The restriction of a Cartan polynomial f(z) on S™ can be expressed
as

(2.8) V(x) = cos (g - dist (x, My)),

so that, given any two numbers a, b with —1 < a < b < 1, the distance
between the corresponding level surfaces (including, possibly, focal sets)
is

1
(2.9) dist (M, M) = — (arccos a — arccos b) .
9
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Any regular isoparametric hypersurface M; divides X = S™ into two
parts: 4 =Qf ={r € X: V(z) >t} and Q; ={z € X : V() <t}.
S. Helgason gave an effective technique of computation of the volumes
of metric balls and areas of spheres in symmetric spaces (see [H2]).
This technique can be modified and generalized to isoparametric hy-
persurfaces in Riemannian manifolds (see [Sh]). The following Lemma
3 is contained in (see [Sh]) but we reproduce it here for the reader’s
convenience.

Lemma 3. The volume of 4 can be computed as
1
(2.10) Vol () = 5/ (1 — r)mo=1/2(1 4 7)(m1=1)/2 gr
t

where 3 > 0 is a constant (which can be determined from the conditions
Vol (£21) = 0 and that Vol (Q2_1) is actually the volume of X, in this
case, S™).

PROOF. Integrate the first identity of (2.7) or, which is actually the

same,
AV =gt (M (14 Ty

over €2;. Using Gauss formula, we get

8—Vds:g2/ (ml—mo_<1+m1+mo)v)dx.
Q

20, On 5 -
Since
o vV
on =YV = (—IVVIDlyey = —g /1 — 2
on lag, IVV||lv=t (=lIVVIDIv=t g ,
we have

(ZH)—A@)gﬂ1—¢2:g21;<Tl%£@—(l+ﬁ£gﬁm)V)Mn

where A(t) means the area of M; = 0€;. Now, the derivative of the
volume Vol () = Vol () is

dvol(t) — A@)  AQ)
(2.12) T ([N ) ey w
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Differentiating (2.11), we get

%(—A(t) cgV1—12) :gz(m1 ;mo B <1+ my ;mo)t)dvc(;(t)
i ]
so that

e e e

Integrating this ordinary differential equation we have
(2.13) A(t) = B(L =)™/ (1+1)™/2,

where # > 0 is a constant. Therefore, by (2.12), we get (2.20) with
B =0y

Examples of Cartan polynomials are (2.4) for g = 3 and (2.5) for
g = 4. If some regular level surface of V(z) in S™ is homogeneous
(respectively, non-homogeneous), then so are all other regular level sur-
faces of V(x) in S™. Munzer’s theory admits generalization to the
classical projective spaces, namely, X = RP™, CP"™, HP"™. Let’s iden-
tify S with the group of the complex numbers with the absolute value
1 and S2 with that of quaternions. As follows from the work of Simon
Mullen (1994) (see [Mul]), isoparametricity is preserved under natural
projection which implies

Proposition 5. Let © be the natural projection

7:8m — X=8"/K=RP", CP" or HP",

(2.14)
K = {%1}, StorS®, m=mn, 2n+1 ordn+3.

Let f be a Cartan polynomial on R™tY > S™ which is invariant un-
der the action of K (say, left multiplication) and whose restriction
V = flgm satisfies (2.7) (with m instead of n). Then V = V o~ *
15 uniquely defined isoparametric function on X satisfying the same
equations (2.7) so that level surfaces of V' are isoparametric hypersur-
faces in X. In other words, the projections of (invariant under K)
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1soparametric hypersurfaces in S™ are isoparametric hypersurfaces in
X.

Conversely, any isoparametric hypersurface M C X (X is a space
described in (2.14)) is a level surface of

V=Vor !, V= flgm ,

where V,V satisfy (2.7) and f is a Cartan polynomial on R™T1 > §m
nvariant under K. In other words, isoparametric hypersurfaces in X

are the projections of (invariant under K) isoparametric hypersurfaces
in S™.

REMARK. Generally, in the classical projective spaces of non-constant
sectional curvature (C'P™, HP™) isoparametric hypersurfaces no longer
need to have constant principal curvatures (see [Q2]). However, this
condition still holds for homogeneous hypersurfaces. Obviously, any
Cartan polynomial f of even degree (¢ = 2,4,6) on R**t O S" is
invariant under K = {£1} so that V is isoparametric on RP™ (level
surfaces of V' are homogeneous in RP™ if and only if level surfaces of
V' are homogeneous in S™). Moreover, there are many second degree
Cartan polynomials on R™*! 5 S§™ invariant under K = S*, S3. They
can be formed as

(2.15) f@y=al+ - +ai—xi — - —Thyy,

where m = k + 1 — 1, both k£ and [ are divisible by 2 (when K =
S1) or by 4 (when K = S3). Cartan polynomials of fourth degree
(on R > S or on R3? > 831) in (2.5) are also invariant under
both S and S (only under S* on R® O S7, when F is the complex
field). Therefore, isoparametric hypersurfaces in the above projective
spaces exist as well as isoparametric functions on them. All spaces
X = RP™, CP", HP™ have homogeneous isoparametric hypersurfaces
(not necessarily metric spheres) and each kind of these projective spaces
has non-homogeneous isoparametric hypersurfaces for some dimensions.
In particular, isoparametric hypersurfaces with non-constant principal
curvatures in X = CP™, HP" (see [Q2]) are always non-homogeneous.

It is important that Lemma 3 extends to the considered projective
spaces X (because the basic formulae don’t change) (see [Sh]).
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2.2. Solutions for (N) and (D).

In general case, let f(z) be an isoparametric function on any Rie-
mannian manifold X, i.e. satisfying equations (2.2), (2.3). Given
a smooth, real-valued function h on R, for the composite function
ho f(z) = h(f(x)) we can express

(2.16) AR(f(z)) = [VI*B"(/)+Af-H () = B(f) h"(/)+AU) V' (f)

and

(2.17) IVECF @) = W (D IVET = VB - (I

Now we are ready to solve (N) and (D) for an arbitrary domain  C S™
with the boundary 0f) which is isoparametric in S™. Indeed, if OS2
is homogeneous in S™, Theorem 1 implies that both (N) and (D) have
solutions for infinitely many eigenvalues. Since basic equations (2.7) for
all the kinds of isoparametric hypersurfaces in sphere are virtually the
same, n — 1 = g (mo +m1/2), ¢ = g% (my —mg/2) and (2.16), (2.17)
yield

Theorem 2. Let f(z) be a Cartan polynomial on R*"*1 > S™ with
the restriction V. = f|gn satisfying (2.7). Then, given ¢ € (—1,1),
Q= {zx e S : V(x) > e} admits solutions to both (N) and (D)
for infinitely many eigenvalues o« > 0. These solutions have the form
u(z) = h(V(z)) where h(V') is a solution of hypergeometric equation

(L—V2)H'(V)

mp — mo mi + Mo
N
with A = a/g?, h reqular at V =1 and W' (¢) = 0 for (N) or h(e) =0
for (D). In particular, any eigenfunction for the first classical Dirichlet
eigenvalue is a solution for (D). Also, if there is a solution h(V') of
(2.18) with A = k (k+(m1 + myo)/2) or, equivalently, « = gk (g k+n—1)
for an integer k > 1, then h(V') is (proportional to) a Jacobi polynomial
of the degree k so that corresponding overdetermined eigenfunction u(x)
can be extended to a global eigenfunction on S™.

(2.18) )V) B (V) 4+ AR(V) =0

REMARK. Similarly, under the conditions of Theorem 2, (0.2) has a
unique solution in the form u(z) = h(V(x)) where

(219) (1= V) (V) + (TR0 (1 T Yy =

9
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with h regular at V =1 and h(e) = 0.

Using Proposition 5, we can extend these results to the projective
spaces.

Theorem 3. Let X = S™/K be one of the projective spaces described
in Proposition 5 (dim X = n). Let f be a Cartan polynomial on R™*1 >
S™ which is invariant under K and whose restriction V = flsm satisfies
(2.7) (with m instead of n) as well as V. = V o x~L. Then, given

€ (-1,1), Q@ ={zx € X : V(z) > ¢} admits solutions to both (N)
and (D) for infinitely many eigenvalues o > 0. These solutions have
the form u(z) = h(V(z)) where h(V') is a solution of hypergeometric
equation (2.18) with the same conditions as in Theorem 2. In particular,
any eigenfunction for the first classical Dirichlet eigenvalue is a solution
for (D). Also, if there is a solution h(V') of (2.18) with A = k(k +
(my 4+ mg)/2) or, equivalently, o = gk (g k+m—1) for an integer k > 1,
then h(V') is (proportional to) a Jacobi polynomial of the degree k so
that corresponding overdetermined eigenfunction u(x) can be extended
to a global eigenfunction on X.

REMARK. Given ¢ € (—1,1), the eigenfunctions h;(V') (taken once for
each eigenvalue \; = «;/g? and with A\; = 0, h1(V) a constant for (N))
of the hypergeometric equation (2.18) (for either (N), A'(¢) = 0 or (D),
h(e) = 0) form an orthogonal basis in a weighted one variable functional
space L2 [g, 1] with the weight

w(V)=(1- V)(mo—l)/2 1+ V)(m1_1)/2 .

The corresponding eigenfunctions u;(z) = h;(V(z)) are orthogonal to
one another in L2(2). This correspondence has a much deeper meaning.
Indeed, given two functions p(V'), ¢(V') on [e, 1], we automatically get
two functions p(V (z)), ¢(V(x)) on Q. Their product in L2(£2) can be
written as

V), a(V)) 2@y = /V V) oV (@) de

(2.20) o

_ / p(t) g(t) dVol(S2,)

=€

where d Vol(€2;) is an element of the volume between two parallel and
close isoparametric hypersurfaces (level surfaces of V). Due to Lemma
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3, the scalar product can be expressed as

(p(V), a(V))z20) = ﬁ/ p(t) q(t) (1 =)o D2 (14 ¢)m=D/2 gy

(221) = 6 <p7 Q>L?U[€,1] )

where 3 > 0 is a constant (not depending on p, ¢, €). That is, the dot
product (and the therefore the norm) of functions of the form (V') in
L?(Q) is equivalent to that in L2 [e, 1] and, very important, is actually
the same (up to a constant multiple) for all kinds of isoparametric
hypersurfaces and the considered spaces X (depending only on my,
ml).

Similarly to L%(Q) in (1.17), define the subspace

L2 () ={ue L3(Q): u=¢oV in L*(Q),
nay B =eP@:u=g @)
¢ is a function on [g,1]}.

The meaning of (2.22) is that if u € L% () is continuous, then it is
constant along any level surface of V(x) in €2, or, geometrically, along
any set (in €2) parallel to 9Q (including focal set). In particular, it is
true for the distance function (because of (2.9))

ugiss € L3 (2),

2.23
( ) uqist () = dist(x, 02) = g (arccose — arccos (V (z))) ,

and (2.22) is equivalent to

L2(Q) = {u € L2(Q) : u = 4 o ugise in L2(),

(2.24) 1

1 is a function on [0, — arccos 5] } .
g

Any arbitrary function u € L% (Q) can be approximated by continuous
functions from the same subspace. Moreover, because of (2.21), the
complete orthogonal basis of h;, ¢ > 1 in L2 [e, 1] gives the complete
orthogonal basis of u; = h; oV in L%(Q) (we have already known
that when level surfaces of V' are homogeneous - from Corollary 1, and
the basic equations for non-homogeneous level surfaces are actually the
same).
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Corollary 2. Let X be a (classical) compact irreducible symmetric
space of the first rank, i.e. X = S™, RP™, CP™ or HP™. Any do-
main Q0 C X with the boundary 0L being isoparametric hypersurface
in X, admits solutions (overdetermined eigenfunctions) u;(x) to (N)
(respectively, to (D)) for infinitely many eigenvalues o; > 0. These
eigenfunctions, u;(x) (taken once for each a; and with a; = 0, uy(x) a
constant for (N)), form an orthogonal basis for L (Q) in (2.22). Any
etgenfunction for the first classical Dirichlet eigenvalue is a solution for
(D). Also, if there is an overdetermined eigenfunction u(x) (for either
(N) or (D)) with an eigenvalue o« = gk (gk + m — 1) for an integer
k>1(m=n for X =S", RP™), then u(x) can be extended to a global
etgenfunction on X.

REMARK. Given a (regular at V' = 1) solution h(V) of (2.18) for any
sufficiently large A > 0 (or o > 0), there are zeros € € (—1,1) of A/ (V)
(respectively, of h(V)) so that the domains Q. = {x € X : V(x) > ¢}
admit solutions to (N) (respectively, to (D)) with the given eigenvalue
a > 0. In fact, for any @« = gk (gk +m — 1), k > 1, all zeros of the
corresponding Jacobi polynomial (as well as of its derivative which is a
multiple of another Jacobi polynomial) belong to (—1,1) (see [O]]). In
particular, there are infinitely many domains Q¢ with solutions to (N)
(respectively, to (D)) which can be extended to global eigenfunctions
on X.

Corollary 3. There are spaces X = S™, RP"™, CP", HP"™ which con-
tain domains 2 C X having non-homogeneous in X boundaries OS2 but
admitting solutions to both (N) and (D) for infinitely many eigenvalues
a > 0. In particular, Generalized Schiffer Conjecture (GSC') fails in
general for compact irreducible symmetric spaces of the first rank.

As mentioned in Section 0, a domain €2 fails Pompeiu Property
(PP) if (N) has at least one global eigenvalue a > 0, i.e. there is a
solution to (N) in a form of a Jacobi polynomial of V. Considering the
density of zeros of Legendre polynomials, P. Ungar showed in 1954 (see
[U]) that the set of concentric spherical caps in S? (if a center on S?
is fixed) has a countable dense subset failing (PP). Now, considering
that of Jacobi polynomials (see [Sz]), we obtain a generalization of this
fact to any collection of domains whose boundaries form a (continuous)
isoparametric family:
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Corollary 4. Let X be a (classical) compact irreducible symmetric
space of the first rank, I C R an interval and f(x) a non-constant
isoparametric function on X. Suppose that (Mg), 8 € I is a continu-
ous isoparametric family, with all Mg = {x € X : f(x) = € I} being
reqular (level surfaces may be homogeneous as well as non-homogeneous
but they all have the same kind for the given f). Then (Mp) has a
countable dense subfamily (Mp,), i > 1 such that for each i both do-
mains (Qfﬁc) with 89351_ = Mg, fail Pompeiu Property (PP).

3. Domains with isoparametric boundaries in non-symmetric
spaces.

In this section we will construct a number of specific domains €2 ad-
mitting solutions to (N) and (D) in non-symmetric spaces. We will see
that even in non-compact spaces boundaries of such domains may still
be non-homogeneous. However, metric balls in such spaces, generally
speaking, admit solutions neither to (N) nor to (D). For the purposes
of this section we need the extension of the theory of isoparametric
functions and hypersurfaces to that of isoparametric systems and sub-
manifolds (in a very brief account). We will follow A. West (1993) (see
[Wes]).

Definition 4. Let X be a Riemannian manifold and let f1,..., fq be a
system of smooth real functions on X. Put F = (fy,..., f1) : X — R%.
We say that f1,..., fq is an isoparametric system of functions if for all
i, j, k € {1,2,...,d} there exist smooth functions A;, Bj, Cikj defined
on the image F(X), of X under F so that

(3.2) (Vfi,Vfj) =BjjoF,
d
(3.3) Vi, V] =) (ChoF)V .
k=1

Regular level surfaces of F' are called isoparametric submanifolds in X .

REMARK. If X is a space of constant sectional curvature, the above
definition of an isoparametric submanifold is equivalent to some geo-
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metrical statement about its normal bundle and principal curvatures
(C.-L. Terng, 1985) (see [T]) but we will not go into these details.

A. West (1993) (see [Wes]) proved the following:

Proposition 6. Let X be a Riemannian manifold and let (f1,..., fa4)
be an isoparametric system. Let L = fd_l(T) be a regular level surface
of fa- Then filr, f2|L,---, fa—1|L is an isoparametric system on L.

In fact, the set of all isoparametric hypersurfaces of S™ is the
“same” as the set of all compact isoparametric submanifolds of R*+t!
of codimension 2 (C.-L. Terng, 1985) (see [T]). That is, the system
F = (f,r?) (where f(z) is a Cartan polynomial and r = |z|) is isopara-
metric on R*"*!. Then we can apply Proposition 6 in two possible
directions.

In the previous section we have exploited the isoparametricity of
f on S™ - level surface of r2. The other approach is that, according
to Proposition 6, 72 (as well as r) is an isoparametric function on any
regular level surface of f(z) in R*1,

Now, consider what structure X = f~1(7) can have (we assume
that g > 1 since otherwise X is isometric to R™). If 7 = 0, then X
contains the origin 0 at which f has a singularity ((2.6) implies that
Vrf(0) = 0). Thus, in order to have a regular level surface, we will
assume that 7 # 0. Observe that replacing 7 by —7 we actually replace
f7Y(7) by (= f)~ (7). However, if f(x) is a Cartan polynomial with the
parameters g, mg, my, then —f(x) is another Cartan polynomial with
parameters g, my, mo, i.e. with mgy and m; switched. (As mentioned
above, Cartan polynomial is uniquely defined by g, mg, my if m; # my
and up to & if m; = myg.) Therefore, without loss of generality, we
can assume that 7 > 0, and, moreover, since f(x) is a homogeneous
polynomial, it is enough to take 7 = 1. Thus, we will consider the

Riemannian manifold X of the dimension n being a submanifold of
Rn—i—l

(3.4) X ={r eR"!: f(x)=1}.

Any z € R"! can be expressed as x = r&, r = |z|, £ € S™ so that the
equation

(3.5) f(@) =1
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is equivalent to

(3.6) f&)=r=7.

Since f(S™) = [—1,1], (3.6) implies that » > 1 for x € X. Given any
p > 1, the level surface

My={zeX:r=pt={p: £€85", f(§)=p79}

is regular, i.e. M, is an isoparametric hypersurface in X. Of course,
M, is similar to an isoparametric hypersurface in S™. If p = 1, then
M, =M, ={{e S": f(§) =1} is a focal set. Notice, that although
r is constant on any M,, M, is not a metric sphere in X (one could
guarantee that only if X is a linear hyperplane of R*"™1 ie. g = 1).
Generally, metric spheres in X are neither homogeneous nor isopara-
metric. M, are homogeneous in X if and only if the corresponding
hypersurfaces Mp ={¢eS": f(§) = p 9} are homogeneous in S™ (all
M, are either homogeneous or non-homogeneous in X simultaneously).
Since we can change p continuously from 1 up to co, we have

(3.7) X=JMm,.

p>1

It follows that X is non-compact, non-symmetric and connected.
The simplest example of X is the hyperboloid given by

(3_8) f(aj):aj%—*—..._*_xlzc_x]zc_i_l_...—x?c_i_l:17

withn=k+1—1, k, [ >1 and

_ p+1 _ p—1
= 51T s (1),

Now, for an arbitrary X defined by (3.4) and given any real a # 0 (not
necessarily integer), we can compute (omit the calculations here) that

A(r®) :a'r“_z(n+a—2+(g—a+1)'r_29

(3.9) _m ;mo gr—g),

[V = a2 2= (1= p =),
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where A = Ax, V=Vx.

Now we are ready to solve (N) and (D) for domains Q@ C X with
the boundaries 02 which are isoparametric in X. Indeed, n — 1 =
g (m1+myp)/2 and (2.16), (2.17), (3.9) yield

Theorem 4. Let X be a Riemannian manifold as in (3.4), with a
Cartan polynomial f(x) of degree g > 1. Then, given p > 1, Q = {z €
X : r=|z| < p} admits solutions to both (N) and (D) for infinitely
many eigenvalues o« > 0. These solutions have the form u(z) = h(r)
where h(r) is a solution of the equation

(1 —r=29)h"(r) + Q(L LMo -1 4 =201
2
(3.10) my — mg
- T ,’,.—9—1>h/(7,) + O[h(?") = 0,

with h(r) reqular at r = 1 and h'(p) = 0 for (N) or h(p) =0 for (D). In
particular, any eigenfunction for the first classical Dirichlet eigenvalue
is a solution for (D). Also, the above solutions can be extended to global
etgenfunctions on X.

REMARK. Defining
311) X.={zeR"t: fz)=1}, f(z)=|z|? +cf(x),

where € € (—1,1) is a constant, we will get the compact non-symmetric
space X, with r still isoparametric on it. The domains €2 constructed in
a way similar to that in Theorem 4 will admit solutions to (N) and (D)
for infinitely many eigenvalues (but not necessarily extendible to the
whole X.). In particular, if g = 2 and f(z) is a quadratic polynomial
in (3.8) and X, is just the surface of an ellipsoid with exactly two
different main axes - in this case domains 2, admitting solutions to (N)
and (D), have the boundaries of a kind S*~1(r;) x S'=1(r3), i.e. well
familiar Generalized Clifford Torus.

In fact, we can consider X, as a continuous deformation of Xy = S™
as € is changing. It is interesting that such a deformation preserves solv-
ability of (N) and (D) for a certain class of domains in S™, namely, for
the domains whose boundaries are level surfaces of f in S”. A related
result when X is R™ or non-compact irreducible symmetric spaces of
the first rank was obtained by M. Agranovsky and A. Semenov in 1996
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(see [AS]). They proved that if a continuous deformation of a metric ball
as a domain € preserves the solvability of (N) with a bounded eigen-
value, then 2 must remain a ball during the deformation (with center
and radius possibly changing). The key difference with our situation
is that we consider the deformation of a space Xy = S™ (embedded
into R"*1), namely, X. (not remaining a sphere!) defined by (3.11),
which, as we said, preserves solvability of (N) and (D) for some domains
Q C S™ = X; (but not for all of them). In particular, one can arrange
a deformation in such a way that the boundary 02 remains unchanged
(in R"*1) while Q itself is changing along with X - and the solvability
is still preserved.

Corollary 5. There are non-compact irreducible non-symmetric spaces
X which contain domains Q2 C X having non-homogeneous in X bound-
aries 02 but admitting solutions to both (N) and (D) for infinitely
many eigenvalues o > 0. In particular, Generalized Schiffer Conjec-
ture (GSC) fails in general for non-compact irreducible non-symmetric
spaces.

REMARK. As follows from the remark after Theorem 4, a number of
compact irreducible non-symmetric spaces containing domains with the
same properties as in Corollary 5, can be constructed as well.

4. Domains with isoparametric boundaries in arbitrary Rie-
mannian manifolds.

4.1. Geometrical realization of a singular ordinary differential
equation.

Suppose we are given smooth functions p(t) and ¢(t) with p(t) > 0
on [a,b) and p(b) = 0. One can ask, does there exist a Riemannian
manifold X and an isoparametric function V' on X with the maximum
value b, such that

(4.1) IVV@)I* =p(V(2),  AV(z)=q(V(2)),

and Q = {z € X : V(z) > a} is relatively compact and connected as
well as its boundary 0Q2 ={z € X : V(z) =a}?

This question is interesting because when the answer is positive, the
eigenvalue problem for ordinary differentail equations with singularity
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att=>

p(t) W' (t) +qt) W (t) + ah(t) =0,

(4.2)
t € (a,b), hW(a)=0, or h(a) =0,

is equivalent to an overdetermined boundary value problem (N) (or (D))
with u(z) = h(V(z)) and

Ah(V(z)) 4+ ah(V(x))
= [VV(@)* h"(V(2)) + AV () - B (V (2)) + a W(V (2))
=p(V(2)) k"(V(2)) + q(V (2)) ' (V (2)) + a h(V (2)) .

Definition 5. We call a triple of X, Q@ C X and V(x) a geometrical
realization of a singular ordinary differential equation (4.2) if the above
conditions are satisfied.

Geometrical realization conjecture. A geometrical realization for
(4.2) exists at least if both p(t) and q(t) are real analytic, p(t) > 0 on
[a,b), singularity of this ordinary differential equation att = b is simple
(p'(b) # 0), and there exists a complete system of reqular eigenfunctions
for (4.2).

REMARK. In fact, given a continuous isoparametric family in a Rieman-
nian manifold X, ¢(b)/p'(b) is an invariant of the family, not depend-
ing on the choice of a,b and the function V(x) in (4.1) (p(¢) and ¢(¢)
are uniquely defined by V). In all examples considered in this paper,
2q(b)/p'(b) is an integer (actually, mg+ 1) but the author believes this
is not necessary.

4.2. Solvability of (N) and (D).

Conversely, suppose X is an arbitrary Riemannian manifold, 2 C
X is a bounded domain with connected boundary 092 and V() is an
isoparametric function on X (or at least in a neighborhood of Q), sat-
isfying (4.1) with p(¢) > 0 and 052 being a regular connected compo-
nent of a level set of V. We assume that V(z) is real analytic on X,
which implies that p(¢) and ¢(¢) are both continuous on V(X) C R (or

V(€2) C R) and analytic on V(X) \ E (or V() \ E) where E is the
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set of zeros of p(t). We don’t know for sure what kind of singularities
p(t) and ¢(t) may have on E. In general, for non-homogeneous isopara-
metric boundaries, it is not easy to say whether (N) or (D) (with, of
course, u(z) = h(V(x))), or, which is the same, singular ordinary dif-
ferential equation (4.2) has a solution (eigenvalue). The key point of
analysis in each particular case is that for Sobolev spaces (see [R]) of
functions u(z) on €, the property of being constant along level sets of
V is preserved under the operations u — Aw and u,v — (Vu, Vv) -
in view of (4.1). In the subspaces of functions with that property, the
Fredholm alternative (see [R]) implies the existence of countably many
eigenvalues v and corresponding eigenfunctions u(z) but the main dif-
ficulty is the behavior of u(x) on the focal sets of V(z) corresponding
to the zeros of p(t) (V(z) € E if and only if VV(z) = 0).

In many important cases (like in those considered in this paper),
if p(t) > 0 on [a,b) and b is a regqular zero of p(t), then, under certain
conditions, (4.2) has a complete system of solutions and so does (N)

(or (D).

5. Other overdetermined boundary value problems and appli-
cations.

The approach described above can be extended to a number of
other (essentially more complicated) overdetermined boundary value
problems. Below V' (z) will denote an isoparametric function on a Rie-
mannian manifold X so that when we choose a domain 2 C X with
an isoparametric boundary, we mean that such a boundary is a level
surface of V', i.e.

Q={zreX: V(z)>s}, N={zecX: V(z)=s},
Q={reX: V(z)<s}, N={zrecX: V(z)=s},

where s 1s some constant.
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5.1. Higher order equations.

Typically, a linear higher order overdetermined boundary value
problem has a form

Ay +a A" a4+t a1 Au+au=0, inQ,

(5.1) ou a2u

,u’:cOv%:Cle:C?w" On('?Q,
where a1, as,...,a,m—1 are coefficients (constants), a an eigenvalue,
co, C1,... are constants whose number i.e., the number of conditions

of the kind 0%u/0n* = cy, is bigger than m while 0 < k < 2m —1
for all such k£ and some of ¢, (but not all) may equal zero or be un-
known. The simplest example is m = 2, i.e. biharmonic equation
(when a; = 0), which is well known in the theory of thin membrane
oscillations.

The question, as before, is whether the existence of a solution to
(5.1) implies that €2 is a ball (or 0€2 is homogeneous in X). Choosing €2
with 0€2 isoparametric in X we will get a number of domains admitting
solutions to (5.1) in form u = h(V) and therefore giving the negative
answer to that question in general (unless X is R™ or non-compact
irreducible symmetric spaces of the first rank).

REMARK. Of course, overdetermined boundary value problems can be
considered for the system of differential equations (of the second or
higher order) as well.

5.2. Nonlinear equations.

Many applied problems lead to nonlinear equations, in particular, a
number of overdetermined boundary value problems for such equations
have a form

F(u, |Vu|?, Au, Vu - Hess(u) - Vu) =0, in Q,
(5.2)
u:co,@:cl, on 0.

on
Here Vu - Hess(u) - Vu = Vu - V(]Vul?)/2 and in the case of X = R"

"L Ou  0%u  Ou

1,j=1
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An example of nonlinear equation in (5.2) is the equation of gas dy-
namics, such as the stationary irrotational flow of an ideal compressible
fluid described by the equation of continuity which can be written in
the divergence form (see [GiT))

div(p(|Vu[)Vu) =0,

where u is the velocity potential of the flow and the fluid density p
satisfies a density-speed relation p = p(|Vu|). At the present time,
the only known domains admitting solutions to (5.2) in R™ are met-
ric balls (but, of course, not for any nonlinear problem does such a
solution exist). For some elliptic problems of a form (5.2) in R™ it is
proven that if  admits a solution (with some conditions, for instance,
u > 0), then it must be a ball, e.g. (see [S]) and further developments
in (see [GaL]). It is important to note that in the case of nonlinear
problems, homogeneity of 02 (in any space) doesn’t automatically im-
ply the existence of such solutions. In the spaces considered above (for
Laplace-Beltrami operator) we can choose the domains 2 with isopara-
metric boundaries and try to find the solutions in form v = h(V). Of
course, the simplest isoparametric hypersurfaces are metric spheres and
Generalized Clifford Tori (which, in some sense, can be considered as
surfaces of revolution). As we know, given a space X, for different
kinds of isoparametric boundaries 92 ordinary differential equation on
h are very similar. Thus, existence of a radially symmetric solution
to (5.2) (for © balls or 02 Generalized Clifford Tori) often implies ex-
istence of solutions to (5.2) for © with other kinds of isoparametric
boundaries €2 (maybe, with F' in (5.2) replaced by a slightly different
F ). Moreover, if 02 is isoparametric, then so is the distance function
uaist () = dist(z, 0Q) (except, maybe, focal points) and the above ap-
proach can allow us to find solutions to a more general overdetermined
boundary value problem, namely

F(u, |Vul?, Au,
(5.3) Vu - Hess(u) - Vu, dist(x,002)) =0, in Q,
u:co,a—u:cl, on 0L2.
on

A simpler case is an equation of the form

Au+ F(u,|Vul?) =0,
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with F(0,0) = 0. Let

_OF

 Oulu=0,vu=0" o (u,|Vul?) = F(u,|Vul?) — au,

(07

so that 9
¥
0,0)=0, — =0,
90( ) ou u=0,Vu=0
and Taylor expansion at (0,0) has a form
<p(u, |VU|2) = Go,1 |VU|2 + a2,0 uz + -
Then we can consider an overdetermined boundary value problem
Au+ p(u, |[Vul?) + au =10, inQ,
(5.4) ou

u==cy, %

When max |u(z)|, max |Vu(x)| on Q are sufficiently small, we can con-
sider (5.4) as a perturbation of a linear problem (see [R]) (obtained by
omitting ¢(u,|Vu|?)) and this guarantees the existence of solutions (in
form u = h(V') with 02 isoparametric) for a number of important cases.

Of course, the above consideration can be extended to overdeter-
mined boundary value problems for systems of differential equations
and for higher order nonlinear equations involving invariant differential
operators, such as |Vu|?, Au, Vu - Hess(u) - Vu, ... and their various
combinations and compositions.

=c, on 0L2.

5. Linear time-dependent equations.

It is interesting to comnsider initial value problem for linear heat
equation with the classical Dirichlet condition on the boundary.

8—u:a2Au, t>0, ze,
ot

(5.5) u=cy, t=0, z e,
u=20, t>0, xedl,

where a > 0, ¢p # 0 are constants. A solution u(x,t) to (5.5) exists and
it is unique. It can be found, say, by separation of variable as

(5.6) u(z,t) =Y wplz) et
k=1
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where ug(x) are Dirichlet eigenfunctions (some wug(x) can be zero, but
there must be infinitely many non-zero terms). The question is the
following: given a solution, suppose du/dn at 05, i.e. boundary heat
flow (up to a constant coefficient) is constant at any fixed moment ¢
(i.e., depends only on ¢t > 0 and doesn’t depend on x € 992). Does it
imply that € is a ball (or, generally, that 0€2 is homogeneous in X)? In
R", it does. Indeed, in view of (5.6) it would follow that all uy(z) are
constant on 02, i.e. are solutions to overdetermined Dirichlet Problem
(D). Now, without loss of generality assume that ¢ = 1 in (5.5). Then
(5.6) implies at t =0

(5.7) 1= Zuk(a:) ,
k=1

where eigenfunctions are ug(z) orthogonal to one another in L2(€).
Similarly to the proof of Lemma 2, one can easily see that overdeter-
mined Dirichlet problem (D) has a solution for the first eigenvalue (any
first classical Dirichlet eigenfunction has a constant sign in €2). This
forces €2 to be a ball and solutions to be radially symmetric. But, for the
spaces considered above for Laplace-Beltrami operator, we can choose
2 to have isoparametric boundary and find the solution of (5.5) in form

(5.8) u(w, t) = BV (2),) = Y hi(V (@) e !

and hy (V) are regular solutions of the corresponding ordinary differen-
tial equation. Then du/dn|aq will not depend on x € 9. (This is true
for restriction of u(z,t) on any isoparametric level surface of V' (z) or
focal set.)

Of course, the same consideration applies to linear wave equation

82
0—;;:a2Au, t>0, zeQ,
5.9 0
(5:9) u:co,a—?:cl, t=0, ze€Q,
u=20, t>0, xedd,

where a > 0, ¢g, ¢c; are constant with

ca+cl>0.
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A special kind of linear wave equation on S™ (not initial/boundary
value problem), namely
0%u
ot?

n—1\2
(5.10) ~Asu+ (") u=0, teR zes"
was considered by J. Kaneko in 1988 (see [Kan]). He studied the exis-
tence of a simple progressive wave solution (SPW) for (5.10) such that
SPW’s fronts are isoparametric hypersurfaces having three or more dis-
tinct principal curvatures with the same multiplicity my; =mg =m =1
or 2. That is, he considered the existence of a solution in the form

1
(5.11) u(z,t) = U(x)f(t ~y arccos(V(x))) ,

where U(z) is a specific function on S™, f is an arbitrary function on
R and V(z) is the resriction of a Cartan polynomial on S" C R"*+!
(with the degree ¢ > 3 and m = 1 or 2). Kaneko proved that SPW
doesn’t exist if m = 1 (when isoparametric hypersurfaces are neces-
sarily homogeneous) but exists if m = 2, in which case U(z) in (5.11)
must be constant. Unlike Kaneko’s conclusions on SPW, the results
on initial/boundary value problems considered in this paper (about the
existence) don’t depend on whether multiplicities are equal, how big
they are and whether isoparametric hypersurfaces are homogeneous or
not. Moreover, the principal curvatures of isoparametric hypersurfaces
can be non-constant (in spaces different from R™, S™, RP™ or H") -
and the existence still holds.

A number of linear higher order time-dependent problems or prob-
lems involving systems of equations can also be considered in the same
way as for (5.5) or (5.9).

5.4. Nonlinear time-dependent equations.

Consider nonlinear initial/boundary value problem for heat type
equation

0

a_,: = F(u, |Vu|?, Au, Vu - Hess(u) - Vu), t>0, z €,
(5.12) ¢ u=cp, t=0, z e,

ou

— =0 (oru=0), t>0, e,
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or for wave type equation

¢ 0%u
W:F(u,|VU|2,Au,
Vu-Hess(u) -Vu), t>0, z€Q,
5.13 {
( ) U:CO,Z—?:Q, t=0, ze€Q,
@—0(01"71—0) t>0, xe o
\8n_ - ) 9 .

(Initial/boundary value problems for systems of nonlinear time-depen-
dent equations or for higher order equations can also be considered.)
In a number of important cases, it is possible to prove the existence
of a solution to (5.12) or (5.13) for sufficiently small ¢ > 0 (at least).
However, it often happens that the solution can not exist for indefinite
period of time. That is, after some time blow-up (or, maybe, other kind
of singularity) can occur. In general, this time (call it ¢p,) is different
for different = € Q, i.e.

thy = tbu(x) , T € ﬁ

and the distribution of the blow-up time on € is often important. One
can say that the domain of u(x,t) is a subdomain of (z € Q) x (t > 0)
defined by

0<1t <ty (:1:)

(for some points z € Q, tp,(z) may be infinite). In particular, it is
interesting to know how ¢, is distributed on the boundary 0€2. In the
case of radial symmetry, when €2 is a ball in R™, the solution is radially
symmetric and ty,, is constant on 02 (as well as on any sphere concentric
with 0€2). It would be hard (if not impossible) to find domains 2 C R™
(non-balls) with ¢y, (x) constant on 0.

In the spaces X considered in this work, the theory developed for
the domains €2 with isoparametric boundaries 02 (being level surfaces
of V(z)) allows us to find a solution u(z,t) for (5.12) or (5.13) in a form

u(z,t) = h(V(x),t).
Like that in the above problems, 02 can be non-homogeneous in X:

if such a solution exists for a similar problem with 0f2 radially sym-
metric (say, being metric sphere or Generalized Clifford Torus), then it
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exists for domains €2 C X with 0f2 being other kinds of isoparametric
hypersurfaces as well. The blow-up for u(x,t), if occurs, comes at the
same time to any level surface of V' (z). This time is uniquely defined
by the level surface, i.e., by the value of V' (i.e., tpy, = tpu(V(2))). In
particular, the blow-up comes at the same time to the boundary 0f2.
Also, the time of blow-up is the same for all points of the focal set.

6. Conclusion.

We have considered a number of compact irreducible symmetric
spaces and non-compact irreducible non-symmetric spaces (similarly to
the latter, a number of compact irreducible non-symmetric spaces can
be considered). These spaces contain domains €2 admitting solutions to
(N) and (D), even for infinitely many eigenvalues a > 0. The bound-
aries 02 of such domains (constructed in this work) are isoparametric
hypersurfaces which may be homogeneous as well as non-homogeneous
(metric balls not always necessarily admit solutions to (N) and (D)).
In particular, the Generalized Schiffer Conjecture and even its weaker
version fail in the above spaces.

It follows that in compact irreducible symmetric spaces of the first
rank, any collection of domains whose boundaries form an isoparamet-
ric family, has a countable dense subcollection of domains failing the
Pompeiu Property (which extends the result of P. Ungar for concentric
spherical caps in S?%).

We also showed that there are deformations of S™ in R*t! pre-
serving the solvability of (N) and (D) for certain classes of domains
Qcsm.

We have discussed the solvability of (N) and (D) for domains with
isoparametric boundaries in arbitrary Riemannian Manifolds. While
the domains with homogeneous boundaries always admit solutions to
(N) and (D), in general, for non-homogeneous isoparametric bound-
aries, it is not easy to say whether (N) or (D), or, which is the same,
the corresponding singular ordinary differential equation (4.2) has a
solution (eigenvalue). Nevertheless, in many important cases, if the
singularity of (4.3) is simple, then, under certain conditions, (4.2) has a
complete system of solutions and so does (N) (or (D)). Our Geometrical
Realization Conjecture suggests that, if an arbitrary ordinary differen-
tial equation (4.2) has a simple singularity and a complete system of
regular eigenfunctions, then, under certain conditions, there is a domain
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2 in a Riemannian manifold X with the boundary 0f2 isoparametric in
X and such that (N) and (D) can be reduced to (4.2).

Finally, the developed approach can be extended to other (essen-
tially more complicated) overdetermined boundary value problems, in-
cluding higher order equations and non-linear equations, which, in a
number of important cases, may also have solutions in domains with
isoparametric (and not necessarily homogeneous) boundaries. Also, a
number of initial/boundary value problems for time-dependent equa-
tions with some extra boundary conditions (say, for the solution u(z,t)
on 0f), to depend only on ¢ but not on z € 0f2), have solutions for
domains with the above boundaries. If a time-dependent equation is
non-linear and has blow-up, this blow-up occurs at the same time at all
the points on the boundary.
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