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Square functions of Calderén

type and applications

Steve Hofmann and John L. Lewis

Abstract. We establish L? and L? bounds for a class of square func-
tions which arises in the study of singular integrals and boundary value
problems in non-smooth domains. As an application, we present a
simplified treatment of a class of parabolic smoothing operators which
includes the caloric single layer potential on the boundary of certain
minimally smooth, non-cylindrical domains.

1. Introduction and notation.

In this note we prove certain square function estimates which are
in the spirit of those considered by David, Journé, and Semmes [DJS,
Section 11]. In particular, they (essentially) include square function
estimates for solutions of the heat equation in time varying domains
[HL, Theorem 3.1], but our treatment here is of a purely real variable
and geometric nature, and does not depend on properties of solutions
of a PDE. Our approach will be based on an idea of P. Jones [JnsP],
who gave a proof of the deep result of Coifman, Mclntosh, and Meyer
[CMM] concerning the L? boundedness of the Cauchy integral operator
along a Lipschitz curve, by viewing the Lipschitz curve as (locally) a
pertubation of an approximating line, and then controlling the resulting
error terms by a certain Carleson measure estimate. In this context see
also the work of Fang [Fng], and the monograph of Christ [Ch]. We
note that an important antecedent of Jones’ ideas is contained in the
work of Dorronsoro [Do]. We shall apply our square function estimates

1



2 S. HoOFMANN AND J. L. LEWIS

to obtain an alternative proof of [H2, Theorem 3], which is a regularity
result for a class of parabolic smoothing operators which includes the
caloric single layer on the boundary of certain non-smooth time-varying
domains.

Our main application being parabolic, we shall state and prove a
parabolic version of our square function estimates. The elliptic ver-
sion is similar, but a bit simpler. Indeed, another application of our
method has been given by D. Mitrea, M. Mitrea, and M. Taylor [MMT,
Section 1], who follow our approach here to prove certain square func-
tion estimates that are useful in their work on elliptic boundary value
problems in non-smooth Riemannian manifolds.

Let us now introduce some notation. Our operators are modeled
on operators arising from the theory of layer potential on non-smooth,
time-varying domains. The class of domains under consideration have
boundaries given (at least locally) as graphs of functions A(x,t), x €
R*~1, ¢ € R, which are Lipschitz in space, uniformly in time, and which
satisfy a certain half order smoothness condition in the time variable,
which is related to the BMO Sobolev spaces of Strichartz [Stz]. To be
more precise, we suppose that there exists a constant 3 such that

(1.1) Az, 1) — Ay, 1) < Blz -yl

and

(1.2) 1D, All« < 5.

Here, || - ||« denotes the parabolic BMO norm (defined below), and,

following Fabes and Riviere [FR|, we have defined a half-order time
derivative by

- R v
(1.3) D, A(z,t) = (mA(g,T)) (2,1),

where”"and v denote respectively the Fourier and inverse Fourier trans-
forms on R, and &, 7 denote, respectively, the space and time variables
on the Fourier transform side. Also, ||z|| denotes the parabolic “norm”
of z. We recall that this “norm” satisfies the non-isotropic dilation in-
variance property [|(0z,62t)|| = & ||(z,t)]]- Indeed, ||(z,t)]| is defined as
the unique positive solution p of the equation

(1.4) Z%+ p

n—1 2 2
i v

=1

1=
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We note that the class of functions A(z,t) satisfying (1.1) and (1.2),
has been introduced (with a somewhat different, albeit equivalent for-
mulation) in [LM], and considered further in [H1], [H2], and [HL]. In
particular, it is shown in [H1| that this class of functions is the natural
sharp parabolic analogue, of the class of Lipschitz functions in the el-
liptic theory, for the development of a Calderén type singular integral
theory [Cal], [Ca2]. Indeed, in [H1] it is shown that

0
|(Ya-g54)[,, = 1VsAlle + D2 Al

where ~ means the two quantities are bounded by constant multiples of

each other. Moreover, || - ||op denotes the operator norm on L?(R"~1),
and
0 0
1.5 sz(—,...,7>.
( ) 8371 8$n_1

Since (/A — 0/0t, A) is the parabolic version of the first Calderén
commutator, we define the “commutator” norm of A by

(1.6) [Aflcomm = [V Alloo + [|Dn Al -

Of course, (1.1) and (1.2) say that this quantity is finite. In [H1] it
is also shown that finiteness of (1.6) implies the parabolic Lipschitz
condition

(L.7) Az, ) = Ay, )| < e Bl (@, 1) (g, 8)l| = ¢ B (Jo —y| + |t —s5[*/?).

We recall now that parabolic BMO is the space of all locally integrable
functions modulo constants satisfying

1
(1.8) ||b]|« = sup —/ |b(2) — mpb|dz < co.
B |Bl /g

Here, z = (x,t) and B denotes the parabolic ball
(1.9) B=B,(z)={z€R": [|z— 2 <7},
where | B| denotes the Lesbegue n measure of B and

1
b= — b(z)dz.
mpg B/, (2)dz
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We note that |B,.(z9)| = cr? where ¢ is a constant and d = n + 1 is
the homogeneous dimension of R” endowed with the metric induced by
| - ||, as defined in (1.4). We observe that R™ so endowed is a space
of homogeneous type in the sense of Coifman and Weiss [CW]. Indeed,
there is a polar decomposition

z = ('Tat) = (pglv"'vpgn—lap29n)7

(1.10)

dz=drdt=p¥ (14 02)dpdf,
where 0 = (01,...,0,), |#] =1, and df denotes surface area on the unit
sphere.

Finally, we note that througout the sequel, we shall use the conve-
nient notation

z=(z,t) e R", v=(y,s) e R",
and we shall denote the parabolic dilations by the convenient notation
6% = (0w, 6%t),

where a will always denote the n-dimensional multi-index (1,...,1,2).
In the next section, we introduce the class of operators which we
shall consider, and state our results.

2. Statement of results.

We begin by defining our square functions. To this end, let H €
CY(R™ \ {0}) satisfy the homogeneity condition

(2.1) H(6%) =6"%"1H(z), for z=(z,t), d=n+1,

and assume that F € C1(R) with

1
|E(r)| S CF T et

1
!/
[F(r)] < cr 1+ [r[@t2

(2.2)
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whenever r € R. For F,H as above define a square function G of
“Calder6n type” by setting

(23) Raf(z) =) [ HE-0) F(A(z)”; f(va) + /\)f(v) dv,
(2.4 6o = ([ 1mrars) "

Let w be a parabolic As weight (these are defined in the usual way, in
this case with respect to parabolic balls, or cubes), and f € L2 (R").

As usual,
1/2
£l = ([ 1@ Put@ )"

We shall work with weighted L?, because, when dealing with square
functions, this is a particularly suitable way to obtain LP bounds (via
extrapolation - see [GR]). Furthermore our main application is to rough
singular integral operators which do not satisy the standard Calderén-
Zygmund kernel estimates, and thus cannot be shown to be bounded
on LP via the standard program. However, as usual, it is really our
unweighted L? bounds which are the heart of the matter - the extension
to the weighted case is routine. We shall prove the following theorem.

Theorem 2.5. Suppose that for H, F as above (see (2.1) and (2.2))
we have either F' is odd and H(x,t) is odd in x for each fixed t; or
else that F' is even, H(x,t) is even in x for each fixed t, and also that
Jg F(r)dr =0. If |A]lcomm < B < 00, and w € Az, then there exists a
positive integer N depending only on d such that

IGfll2w < craw(l+ ﬁ)N | fll2w -

REMARK. Here and in the sequel, when we indicate that a constant
depends on w, we mean that it actually depends only on the A5 constant
of w, so that LP bounds follow by extrapolation [GR].

Theorem 2.5 is easily generalized, in a way that is useful for some
applications. Indeed, let H, F, be asin (2.1), (2.2), and let B : R* — R
with

||B||comm < ﬁO < 0.
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Let A be as in Theorem 2.5 and put

Ryf(z) = A nH(z_U)%
(2.6) R
(AR ZAW AL
F( Iz — o )f( ) dv,

(2.7) Gf(z) = (/Ooo | RAf(2) ?)1/2 :

We then have

Theorem 2.8. Let H, F', and A be as in Theorem 2.5, and let B satisfy
| Bllcomm < Bo < 00. Suppose that either F' is odd and H(x,t) is even
in z for each fized t; or else that F is even, H(x,t) is odd in x for each
fized t, and also that [, F(r)dr = 0. If w € Ay, then there exists a
positive integer N depending only on d such that

IGfllow < crmwBo(L+ AN |f

|2,w .

In our applications the square functions defined in (2.3)-(2.4) and
(2.6)-(2.7) model the second derivatives of the single layer potential
mapped to Rﬁ_“. We shall also describe here a model for higher order
derivatives. We refrain from stating the most general result of this
type as it would lead us too far astray from the purposes of this paper.
Suppose L € C*(R™ \ {0}) with

(2.9) L(6%2) = 6792 L(2), z€eR",

and let E € C'(R) with

1
[E(r)| < ce T ]2
(2.10) ,
!/
|E'(r)| < cE T4 o

whenever 7 € R. Suppose that either F is even with [, E(r)dr = 0
and L(z,t) is odd in z for each fixed ¢; or else that E is odd, with
Jor E(r)dr =0, and L(z,t) is even in x for each fixed ¢. Next assume
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that L € C*(R™ \ {0}) satisfies (2.9) and E € C(R) satisfies (2.10).
Suppose that either E is even with e E(r)dr = 0 while L(z,¢) is even
in 2 for each fixed t; or else that E is odd with Je r E(r)dr = 0, while
L(z,t) is odd in  for each fixed t. We set

Tpf(2) EAzfnL(z—v)E(A(z)||; fS)H)H)f(U) "
(211)  Taf(2) = Az/naz_v)%
H(AD - AW+
B(SE ) S dv,

where HAHcomm < B < 00, ||B||comm < 60 < 09, and

s = ([ e )"

i = ([ mrerd)”.

With this notation we have

(2.12)

Theorem 2.13. Let E,L,E‘,f/,g,fq',A,B, be as above. Then there
exists a positive integer N = N(d) such that if f,w are as in Theorem
2.5, we have

19 (N2 + G5 19(f)

where ¢ depends on w, E, L, E, Z, and d.

20 < c(L+ BN [ fll2w -

We shall not bother to give the proof of Theorem 2.13 in this note,
as the interested reader could easily supply it after reading the proofs
of Theorems 2.5 and 2.8.

To conclude this section, we now describe the parabolic smoothing
operators which are our main application. Let J denote a kernel which
satisfies the homogeneity property

(2.14) J(6%2) = 674 J(2),

where d = n+ 1 and z € R". We also assume that J is sufficiently
smooth away from the origin, i.e., J € C™(R" \ {0}), for some large
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m. With this notation, let E denote either sine or cosine, and define
“smoothing operators of Calderén type” by

Saf(z) = /nj(z—v)E(%>f(U) dv,
(2.15) Uapf(z) = /n JV—ME(%)
. wf(v) dv .

Iz = wli

We shall give a simpler proof of the following result of the first author
[H2, Theorem 3|. Let Lil /2 denote the parabolic Sobolev space de-
fined as the collection of all f having a spatial gradient and 1/2 a time
derivative in LP, i.e., those f for whom the following norm is finite

1Fllze

1,1/2

= ||Vafllp + |Dn fllp -

Theorem 2.16. Let ||A||comms || Bllcomm < oo and f € LP(R"), 1 <
p < 00. Suppose that J is sufficiently smooth away from the origin. If
J(z,t) has the same parity in x as does E, then for some large positive
N, we have

[Safllee

1,1/2

<o (l+ ||A||comm)N 1f]lp -
Similarly if J(x,t) has opposite parity in x to that of E, then

1Uasfllzr,,, < . 1Blleomm (1 + [|Allcomm)™ 1/l -

REMARKS. 1) Using the method of [CDM], one can immediately re-
place the trigonometric function E by any sufficiently smooth function
defined on R with the same parity as E. One can also treat layer
potentials via this method.

2) Theorem 3 in [H2| is stated for Ay weights but implies our
Theorem 2.16 by extrapolation.

In the next section (3), we treat our square functions (theorems
2.5 and 2.8). In the last section (4), we give the alternative proof of
Theorem 2.16.
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3. Proofs of theorems 2.5, 2.8.

We begin with a simple lemma. For (X,z), (A,v) € R, let
K (z,v) be a family of real valued kernels satisfying

A

3.1 ozl < e G e =

[Kx(2,0) — Kx(z,0)]
(3.2)

< . 1 A
< el =l min { S e

whenever 2 ||v — v]| < ||z — v||. Let w be a parabolic Ay weight. Put

Btz = | Kazo) flv)dv,  ze R

The following result is standard, and we omit the proof.

Lemma 3.3. Let (K)) satisfy (3.1), (3.2) and let w, f be as above. If
Kx1=0 for each A > 0, then

[ o) EE

< cxw If130 -

In Lemma 3.3, ck ., denotes a constant depending only on K,d,
and the A, constant of w, which is the same convention we used in
Section 2. Lemma 3.3 is stated in [Ch, p. 69, Theorem 20] for w = 1
(see also [CJ]) under slightly weaker hypotheses.

PrROOF OF THEOREM 2.5. Let P € C§°(B1(0)) be an even function
with [;, Px(z)dz = 1, where as usual Py(z) = A= P(A™*z) and let
| — P\ f be the convolution operator whose kernel is Py(z). Put

Qxf(z) = A H(Z—U)F(<Vz' P\A(2), 2 —v') + A

Rn Iz =]l

O
where 2/ =z, v =y if 2z = (z,t) and v = (y, s). Then
* dX\1/2 o° dX\1/2
1o < ([ Im—eurerT) ([ erer )

(3.4)
=G1f(2) + G2f(2) .
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We set Vy = Ry — @} and observe from (2.1) and (2.2) that the kernel
V(z,v) of V) satisfies

A
Z,U Cc d+2
(35) |V)\( ’ )| < (1 +/B) (/\+ ||Z - ’U||)d+2

|A(2) = A(v) = (Vo PAA(2), 2" = )],

where ¢ depends on F, H,d. Using (3.5) and (1.7) we deduce that V)
satisfies (3.1) with K replaced by V and cg replaced by c (1 + ()4+3.
Also by the same argument we see that the kernel of Q3 satisfies (3.1)
with @Q* = K and the same constants as V. Moreover, since H €
CY(R" \ {0}) we find in addition from (2.1), (2.2) and (1.7), that the
kernels of V), Q% satisfy (3.2) with the same constants as in (3.1).

First we consider G; in (3.4). This term will be treated using
the main idea in [JnsP], but with the particular details closer to the
exposition in [Ch]. From the above discussion we see that we may follow
the standard approach, as in [CM], to handle Ky = V) — (V) 1) Py, via
Lemma 3.3 since K1 = 0 for each A > 0. Thus to show

(36) ||G1f||2,w < CF.H,w (1 + ﬁ)N ||f||2,w

we need only prove

o dz dX
| [ aipgpe 52 < cnu (14 7Y |z
0 n

i.e., that

dz d\
A

is a weighted Carleson measure with norm comparable to the constants
in Theorem 2.5. To this end let 2y € R™, » > 0, and let x, x* denote the
characteristic functions of Big,(20), R™ \ Bior(20), respectively. Fixing
this ball, and using (3.1) for V) we deduce, as usual, that it suffices to
replace 1 by x in (3.7). Next we put A(z) = ¢(||z —20||) (A(z) — A(20)),
z € R, where ¢ € C§°(—207,207) is an even function with ¢y = 1 on
[—157,15r]. Then V) x(2) is unchanged for z € Byo-(20), 0 < A < 7,
if we replace A in its definition by A. Moreover from [H2, Section 6,
Lemma 2] we have

(3.7) dv(\, z) = (Val(2))? w(z)

D) 14 | comm < €| A][comm -

(3.8) -
i) For 1 < p < o0, [DA|Z < ¢, P r,
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where the parabolic fractional derivative operator D is defined by the
Fourier multiplier

Df = |[¢]| f-

Using (3.5), Schwarz’s inequality, and the change of variable A — \/2!
we obtain, for N large enough that

o= [1f e ee 5

gciz—l/:o/nxd—‘z(/B ()VT(Z)—E(U)
39 e

— (Vo Pyt A(2), 2 —0") 2 dv)

< ¢y 52 w(Br(20))

where the last inequality follows from (3.8) and an argument involving
Plancherel’s Theorem in the case w = 1 (see [H2, Section 5] for more
details) or else the argument of [H2, Section 6, Lemma 3] in the weighted
case. Thus (3.6) holds.

To prove the analogue of (3.6) with Gy replaced by G3 we note
that (3.1), (3.2) for Q3}, and Lemma 3.3 imply that it is enough to show
that Q31 = 0. To do this we introduce the parabolic polar coordinates
defined in (1.10) to get

(/Ooo F((@ o) + 3) @)H(a) ®(o) do,

p/ p?

1) =2 [

s
where @ = V, P\A(z2), ®(0c) = (1 +02), and 0 = (¢/,0,) € S =
the unit sphere in R™. We change variables in the above integral by
p —> Ap, then r = 1/p, then r — r — (@, 0’), to obtain

Q;1(z):/s(/(oo F(r) dr) H(o) ®(0) do =0,

a,o')

since our hypotheses in Theorem 2.5 guarantee that this last expression
is zero. Indeed [ éoa,) F(r)dr is a function of ¢’ having opposite parity
to H(o) ®(0), for each fixed non-zero a. The case @ = 0 is much simpler:
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if H is odd in o', then clearly [¢ H(0o)®(c)do = 0, and if F is even
with [ F(r)dr =0, then [;° F(r)dr = 0. Thus (3.6) holds also for
G2, and the conclusion of Theorem 2.5 follows.

ProOOF OF THEOREM 2.8. We shall be brief, since the ideas are now
familiar. Put

Uxf(2)

=\ . H(z—v) (V. PTs(_Z)?;f/ — ') F(A(z) —A(v) + A

Then as in (3.4)

Gro< ([ 1 -mrer ) ([Cosers)”

(3.10) . .
=G1f(2) + G2f (7).

If Vi = Ry — Uy, then as in (3.5) we deduce

~ A 1
1% <ec(l d+2 mj
Va(z,v)| <c(1+P) mm{||z—v||d+2’)\dHZ—’UH}

+|B(2) = B(v) = (Vo PAB(2), 2" = )],

where ¢ depends on F, H,d. Using this inequality in place of (3.5) we
can now repeat the argument following (3.5) through (3.9) to get that
(3.6) holds with Gy replaced by G and constants as in Theorem 2.8.
As for G5 we note from (1.7) that the kernel of Uy can be written as a
sum of L* functions (the components of V, Py\B(z)) times operators
whose kernels satisfy the hypotheses of Theorem 2.5. Thus (3.6) holds
with G replaced by G- and constants as in Theorem 2.8, and we are
done.

4. Alternative proof of Theorem 2.16.

Next we shall use Theorems 2.5, 2.8, and 2.13, to give an alternate
proof of Theorem 2.16 (i.e. essentially [H2, Theorem 3]). Our reduction
of the proof of Theorem 2.16 to the square function estimates which we
have proved in the previous theorems, will be in the spirit of some
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recent work of Li, McIntosh, and Semmes [LiMS, Section 4]. To begin,
we consider the operator S = S of Theorem 2.16. For specificity, we
consider

A(z) — A(v)

Iz =]l

Sf(z)z/nJ(z—v)cos< )f(v)do,

where

a) J(z,t) is even in x, for each fixed ¢,
(4.1) b) J(A%2) = A% J(2),z € R,
¢) J € CV(R™\ {0}), for some large N .

Our goal is to show that for some large NV and for each 7, 1 < 5 < n,
we have

(4.2) D3 S£llp < eap (1+B)Y [IFlp -

whenever f € LP(R"), and 1 < p < oo. Here, D; = 0/0z; for 1 <
j <n—1,and D, is the 1/2 order time derivative defined in Section 1.
Since VA € L*®(R"™), we have that, modulo pointwise multiplication
by a bounded function, each ID;S, 1 < 57 < n — 1, gives rise to a
standard parabolic Calderén-Zygmund operator which falls under the
scope of [H2, Theorem 1] (to see this, just differentiate formally under
the integral sign in the definition of S f — this formal computation may
be justified by smoothly truncating the kernel J, and obtaining bounds
independent of the truncation). Thus it suffices to prove the case j = n
of (4.2). In fact if w is an Ay weight and f € L2(R"), we shall show
that

(4.3) DS fllzw < cqw L+ BN I f

|2,w .

Once (4.3) is proved, the Theorem then follows from extrapolation (see
[GR, Chapter 4, Theorem 5.19]). We remark that the operator D, S
cannot be viewed as a standard Calderén-Zygmund operator (modulo
multiplication by a bounded function), and hence does not fall under
the scope of [H2, Theorem 1], nor can one use the classical Calderdn-
Zygmund theory to pass from L? bounds to LP. The failure of the
standard C-Z estimates in this case is related to the fact that the chain
rule does not hold for fractional derivatives like D, .
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To make our arguments rigorous, we observe that since
[A(z) = A(v)] < ¢[|Allcomm ||z — v]]

(see (1.7)), we can replace the cosine in the definition of Sf by A where
A(r) = ¢(r) cos(r) and ¢ € C5°(R) is an even function with ¢ =1 on
[—c B, cp]. Clearly we can also choose ¢ so that ffooo A(r)dr =0. We
make the a priori assumption that f € Cg°(R"), A € C*°(R"), and that
J has been smoothly truncated so that it is supported on a parabolic
annulus. These assumptions allow us easily to justify repeated differ-
entiations and integrations by parts in the argument which follows. In
the rest of the proof we shall systematically suppress the truncation, so
as not to tire the reader with routine details. This means that we shall
be ignoring certain error terms which arise as a result of the truncation,
but these are not difficult to handle. Of course, our estimates will not
have any quantitative dependence upon our a priori assumptions.

Under these assumptions we first use a construction of Kenig and
Stein (which appeared first in a paper of Dahlberg [D]; see also [DKPV]
and [HL] for applications related to the present paper), to write Sf(z) =

limy_,0 Sxf(2), where
)= o P zA(z) + X — A(v)

and P,y is defined as follows. Let P € C§°(B1(0)) be an even function
with [, Px(z)dz = 1, where as usual Py(z) = A~ P(A™%z), and let
f — Pxf be the convolution operator whose kernel is Py(z). We
choose 7 to be a small, fixed number, depending only on ||A||comm,
such that

)f(v)dv, zeR",

0 1
Y p.A ‘< -
‘6)\ nAQZ)| < 5
Next let g € C§°(R™) with ||g[/2,1/, = 1 and observe that

|IDy, S f |2, = sup ‘ / D,Sfgdz

where the supremum is taken over all such g. Moreover,

0

—/ Dnngdz:/ — (D, S\ f Prg) dz dA

° 0
- D, ~ Sy f Prg dz dA
(4.4) /0 / ox M

> 0
D, Sy\f =— PrgdzdA
+/0 /n )\fa)\ \g dz

=I+1I.

Y
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We recall that we have defined a parabolic fractional derivative operator
D by the Fourier multiplier

(4.5) Df = |i¢|| -

We observe that 0Py/0\ = ]D)QVA where QVA is an approximation to
the zero operator (i.e., @ Al = 0) whose convolution kernel satisfies the
standard kernel estimates (3.1) and (3.2). We leave the details of this
routine estimate to the reader, noting only that to prove it, one uses
the fact that the kernel of 0Py/0\ has not only mean value zero, but
also vanishing first moments, since we have chosen P(z) to be an even
function. Thus since D, = iD~1(9/0t), we have

|H|—\/ | 5 saf Qugdzar|.

Since ||g||2,1/» = 1, weighted Littlewood-Paley theory implies that

/ /RQAg z—)\<cw.

Hence, by Schwarz’s inequality,

(4.6) 12 < e, /OOO/

Now let

85 2)\dd)\
%Af‘w zd\.

w(xg, z) = /nJ(z—v)A(LA(U)> f(v)dv

Iz =
and define the Kenig-Stein mapping
(4.7) p(A2) = (A Prad(2), 2).
Since w o p(\, z) = Sxf(z), we have for z = (z,t) that

0 0

Sxf(2) = 52 (wop)(As 1)
(4.8) ot ot ,
= PVAA(.T, t) .

= w0 p(A, z,t) + wy, 0 p(A, 2, 1) gy
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To handle the contribution of w; o p to the integral in (4.6) we use the
change of variable

(4.9) A=A+ PAz) — Alz),

which defines a mapping (X, z) — (X, z) of R with Jacobian

1 9 P \A(z) =n(X, 2).

"o
Since [(0/0A) PyaA(z)] < 1/2 for v small enough depending only on
|Al|comm, and limy_,o PyxA = A, we deduce first that 1/2 < n < 3/2

and thereupon that the above mapping is 1-1 and onto R:L_H. Changing
variables as in (4.9) we find that by Theorem 2.5,

(4.10) / /(wtop)%AdszscJ,w<1+ﬂ>2N||f||%,w,
0 n

as desired.
To handle the contribution of the second term in (4.8) to the inte-
gral in (4.6), we claim that the non-tangential maximal function of

Wy © P(A, 2, 1)

is bounded on L? with norm on the order of (1 + ||Al|comm)”. Indeed,
the operator
f—> wg, 0 p(0,z,1)

is of the form

A(z) — A(v)

Iz = wli

Taf(z) =p.v. RnK(z—v)F(

)#(w)dv,

where

K(6x,0%t) =6 “ K (,t),

K € C™(R" \ {0}), for some large m, F € C*(R!), for some large k,
and where the parity of K(z,t) in the x variable is opposite to that
of F. It is essentially the conclusion of [H2, Theorem 1], that such
operators are bounded on L%, and hence on L2, with norm on the

order of (1+||A||comm)” - The claim now follows by applying a standard
argument involving Cotlar’s inequality for maximal singular integrals,
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to pass from the singular integral on the boundary to the non-tangential
maximal function. Furthermore

Ha PA(z H AdAdz

is a parabolic Carleson measure with a norm no larger than ||D, A2.
The desired bound for (4.6) now follows by the usual properties of
Carleson measures.

We now turn to I in (4.4). We integrate by parts in the integral
defining I to get

—I—/ /n IN2 SAfPAg)\dzd)\

(4.11) / /n_s)‘f—P)\g)\dzd)\

=L +1.

Arguing as in the proof of (4.6) we find

|1|2—‘/oo 9.9 g tOrgrdzar|
2070 ), S ot ax A M

(4.12)
2 2
§cw/ SAf‘ w3 dzd).
Rn
Again
2 92
gron M = graawer
9 9
= o (s o) (14 55 oA PA))
9
(4.13) = (wwotop)<1+ ﬁpv,\A)
9 9
+ (wwomo o p) (& P,YAA> (1 + 5 PW\A>

+ (W, 0 p) (af—;)\ P%A>

=N+ A+ A5
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Since [(9/0A) PyxA|l < 1/2, we have Ay < 2|wge o p|l. We now use
the change of variable (4.9), and invoke Theorem 2.13, to handle the
contribution of Ay. As for A,, since

|2 Pl <e(l4p)? A7,

we can use Theorem 2.5 to handle w4, in the same way that we treated
wg above. Finally, we may handle the contribution of A3z, by the usual
nontangential maximum-Carleson measure arguments, ¢.e., by exactly
the same method that we used previously to treat the contribution of
the second term on the right hand side of (4.8). Altogether, we obtain
the desired bound for the term Is. B

It remains to estimate I;. We note that AID,, P, = @ » Where @ )\ 18
an approximation to the zero operator whose kernel satisfies (3.1) and
(3.2). Thus arguing as in the proof of (4.6), we obtain

L] = \/ /naAzsAfQAgdsz\

(4.14)
< e, / / |8A2 S,\f|2w)\dzd)\>

1/2

But

H2 ) 2 02
8/\2 Sxf = (wIBoIBo © P) (1 + a P’Y)\A> + (wIBo © P) (W P’Y)\A> )

and these terms can each be handled by our earlier arguments. This
concludes the proof of Theorem 2.16 for S = S4. The proof for the
second class of operators, Ua g, is similar, and we leave the details to
the interested reader.
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