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Square functions of Calder�on

type and applications

Steve Hofmann and John L� Lewis

Abstract� We establish L� and Lp bounds for a class of square func�
tions which arises in the study of singular integrals and boundary value
problems in non�smooth domains� As an application� we present a
simpli�ed treatment of a class of parabolic smoothing operators which
includes the caloric single layer potential on the boundary of certain
minimally smooth� non�cylindrical domains�

�� Introduction and notation�

In this note we prove certain square function estimates which are
in the spirit of those considered by David� Journ�e� and Semmes �DJS�
Section ��	� In particular� they 
essentially� include square function
estimates for solutions of the heat equation in time varying domains
�HL� Theorem ���	� but our treatment here is of a purely real variable
and geometric nature� and does not depend on properties of solutions
of a PDE� Our approach will be based on an idea of P� Jones �JnsP	�
who gave a proof of the deep result of Coifman� McIntosh� and Meyer
�CMM	 concerning the L� boundedness of the Cauchy integral operator
along a Lipschitz curve� by viewing the Lipschitz curve as 
locally� a
pertubation of an approximating line� and then controlling the resulting
error terms by a certain Carleson measure estimate� In this context see
also the work of Fang �Fng	� and the monograph of Christ �Ch	� We
note that an important antecedent of Jones ideas is contained in the
work of Dorronsoro �Do	� We shall apply our square function estimates

�
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to obtain an alternative proof of �H�� Theorem �	� which is a regularity
result for a class of parabolic smoothing operators which includes the
caloric single layer on the boundary of certain non�smooth time�varying
domains�

Our main application being parabolic� we shall state and prove a
parabolic version of our square function estimates� The elliptic ver�
sion is similar� but a bit simpler� Indeed� another application of our
method has been given by D� Mitrea� M� Mitrea� and M� Taylor �MMT�
Section �	� who follow our approach here to prove certain square func�
tion estimates that are useful in their work on elliptic boundary value
problems in non�smooth Riemannian manifolds�

Let us now introduce some notation� Our operators are modeled
on operators arising from the theory of layer potential on non�smooth�
time�varying domains� The class of domains under consideration have
boundaries given 
at least locally� as graphs of functions A
x� t�� x �
R
n�� � t � R� which are Lipschitz in space� uniformly in time� and which
satisfy a certain half order smoothness condition in the time variable�
which is related to the BMO Sobolev spaces of Strichartz �Stz	� To be
more precise� we suppose that there exists a constant � such that


���� jA
x� t��A
y� t�j � � jx� yj �

and


���� kD nAk� � � �

Here� k � k� denotes the parabolic BMO norm 
de�ned below�� and�
following Fabes and Riviere �FR	� we have de�ned a half�order time
derivative by


���� D nA
x� t� �
� �

k
�� ��k
bA
�� ����
x� t� �

whereband � denote respectively the Fourier and inverse Fourier trans�
forms on Rn � and �� � denote� respectively� the space and time variables
on the Fourier transform side� Also� kzk denotes the parabolic �norm�
of z� We recall that this �norm� satis�es the non�isotropic dilation in�
variance property k
�x� ��t�k � � k
x� t�k� Indeed� k
x� t�k is de�ned as
the unique positive solution � of the equation


����
n��X
i��

x�i
��
�

t�

��
� � �
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We note that the class of functions A
x� t� satisfying 
���� and 
�����
has been introduced 
with a somewhat di�erent� albeit equivalent for�
mulation� in �LM	� and considered further in �H�	� �H�	� and �HL	� In
particular� it is shown in �H�	 that this class of functions is the natural
sharp parabolic analogue� of the class of Lipschitz functions in the el�
liptic theory� for the development of a Calder�on type singular integral
theory �Ca�	� �Ca�	� Indeed� in �H�	 it is shown that

����
r
��

	

	t
� A
����

op
� krxAk� � kD nAk� �

where � means the two quantities are bounded by constant multiples of
each other� Moreover� k � kop denotes the operator norm on L�
Rn����
and


���� rx �
� 	

	x�
� � � � �

	

	xn��

�
�

Since 

p
�� 	
	t� A� is the parabolic version of the �rst Calder�on

commutator� we de�ne the �commutator� norm of A by


���� kAkcomm � krxAk� � kD nAk� �

Of course� 
���� and 
���� say that this quantity is �nite� In �H�	 it
is also shown that �niteness of 
���� implies the parabolic Lipschitz
condition


���� jA
x� t��A
y� s�j � c � k
x� t��
y� s�k � c � 
jx�yj� jt�sj���� �

We recall now that parabolic BMO is the space of all locally integrable
functions modulo constants satisfying


���� kbk� � sup
B

�

jBj

Z
B

jb
z��mBbj dz �� �

Here� z � 
x� t� and B denotes the parabolic ball


���� B � Br
z�� � fz � R
n � kz � z�k � rg �

where jBj denotes the Lesbegue n measure of B and

mBb �
�

jBj

Z
B

b
z� dz �
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We note that jBr
z��j � c rd where c is a constant and d � n � � is
the homogeneous dimension of Rn endowed with the metric induced by
k � k� as de�ned in 
����� We observe that Rn so endowed is a space
of homogeneous type in the sense of Coifman and Weiss �CW	� Indeed�
there is a polar decomposition


�����
z � 
x� t� � 
� ��� � � � � � �n��� �

� �n��

dz � dx dt � �d�� 
� � ��n� d� d� �

where � � 
��� � � � � �n�� j�j � �� and d� denotes surface area on the unit
sphere�

Finally� we note that througout the sequel� we shall use the conve�
nient notation

z � 
x� t� � R
n � v � 
y� s� � R

n �

and we shall denote the parabolic dilations by the convenient notation

��z � 
�x� ��t� �

where  will always denote the n�dimensional multi�index 
�� � � � � �� ���

In the next section� we introduce the class of operators which we
shall consider� and state our results�

�� Statement of results�

We begin by de�ning our square functions� To this end� let H �
C�
Rn n f�g� satisfy the homogeneity condition


���� H
��z� � ��d��H
z� � for z � 
x� t� � d � n� � �

and assume that F � C�
R� with


����

jF 
r�j � cF
�

� � jrjd��
�

jF �
r�j � cF
�

� � jrjd��
�
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whenever r � R� For F�H as above de�ne a square function G of
�Calder�on type� by setting

R�f
z� � �

Z
Rn

H
z � v�F
�A
z�� A
v� � �

kz � vk

�
f
v� dv �
����

Gf
z� �
�Z �

�

jR�f
z� j
� d�

�

����
�
����

Let � be a parabolic A� weight 
these are de�ned in the usual way� in
this case with respect to parabolic balls� or cubes�� and f � L��
R

n ��
As usual�

kfk��� �
�Z

jf
x�j� �
x� dx
����

�

We shall work with weighted L�� because� when dealing with square
functions� this is a particularly suitable way to obtain Lp bounds 
via
extrapolation � see �GR	�� Furthermore our main application is to rough
singular integral operators which do not satisy the standard Calder�on�
Zygmund kernel estimates� and thus cannot be shown to be bounded
on Lp via the standard program� However� as usual� it is really our
unweighted L� bounds which are the heart of the matter � the extension
to the weighted case is routine� We shall prove the following theorem�

Theorem ���� Suppose that for H�F as above 
see 
���� and 
�����
we have either F is odd and H
x� t� is odd in x for each �xed t� or
else that F is even� H
x� t� is even in x for each �xed t� and also thatR
R
F 
r� dr � �� If kAkcomm � � ��� and � � A�� then there exists a

positive integer N depending only on d such that

kGfk��� � cF�H�� 
� � ��N kfk��� �

Remark� Here and in the sequel� when we indicate that a constant
depends on �� we mean that it actually depends only on the A� constant
of �� so that Lp bounds follow by extrapolation �GR	�

Theorem ��� is easily generalized� in a way that is useful for some
applications� Indeed� letH�F� be as in 
����� 
����� and let B � Rn �� R

with
kBkcomm � �� �� �
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Let A be as in Theorem ��� and put

eR�f
z� � �

Z
Rn

H
z � v�
B
z�� B
v�

kz � vk

� F
�A
z��A
v� � �

kz � vk

�
f
v� dv �


����

eGf
z� � �Z �

�

j eR�f
z� j
� d�

�

����

�
����

We then have

Theorem ���� Let H�F � and A be as in Theorem ���� and let B satisfy

kBkcomm � �� � �� Suppose that either F is odd and H
x� t� is even

in x for each �xed t� or else that F is even� H
x� t� is odd in x for each

�xed t� and also that
R
R
F 
r� dr � �� If � � A�� then there exists a

positive integer N depending only on d such that

k eGfk��� � cF�H�� �� 
� � ��N kfk��� �

In our applications the square functions de�ned in 
�����
���� and

�����
���� model the second derivatives of the single layer potential
mapped to Rn��� � We shall also describe here a model for higher order
derivatives� We refrain from stating the most general result of this
type as it would lead us too far astray from the purposes of this paper�
Suppose L � C�
Rn n f�g� with


���� L
��z� � ��d��L
z� � z � R
n �

and let E � C�
R� with


�����

jE
r�j � cE
�

� � jrjd��
�

jE�
r�j � cE
�

� � jrjd��
�

whenever r � R� Suppose that either E is even with
R
R
E
r� dr � �

and L
x� t� is odd in x for each �xed t� or else that E is odd� withR
R
r E
r�dr � �� and L
x� t� is even in x for each �xed t� Next assume
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that eL � C�
Rn n f�g� satis�es 
���� and eE � C�
R� satis�es 
������

Suppose that either eE is even with
R
R

eE
r� dr � � while eL
x� t� is even
in x for each �xed t� or else that eE is odd with

R
R
r eE
r� dr � �� whileeL
x� t� is odd in x for each �xed t� We set


�����

T�f
z� � ��
Z
Rn

L
z � v�E
�A
z��A
v� � �

kz � vk

�
f
v� dv �

eT�f
z� � ��
Z
Rn

eL
z � v�
B
z��B
v�

kz � vk

� eE�A
z��A
v� � �

kz � vk

�
f
v� dv �

where kAkcomm � � ��� kBkcomm � �� ��� and


�����

g
f�
z� �
�Z �

�

jT�f
z�j
� d�

�

����
�

eg
f�
z� � �Z �

�

j eT�f
z�j� d�
�

����
�

With this notation we have

Theorem ����� Let E�L� eE� eL� g�eg� A�B� be as above� Then there

exists a positive integer N � N
d� such that if f� � are as in Theorem

���� we have

kg
f�k��� � ���� keg
f�k��� � c 
� � ��N kfk��� �

where c depends on ��E� L� eE� eL� and d�

We shall not bother to give the proof of Theorem ���� in this note�
as the interested reader could easily supply it after reading the proofs
of Theorems ��� and ����

To conclude this section� we now describe the parabolic smoothing
operators which are our main application� Let J denote a kernel which
satis�es the homogeneity property


����� J
��z� � ��d�� J
z� �

where d � n � � and z � R
n � We also assume that J is su�ciently

smooth away from the origin� i�e�� J � Cm
Rn n f�g�� for some large
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m� With this notation� let E denote either sine or cosine� and de�ne
�smoothing operators of Calder�on type� by


�����

SAf
z� �

Z
Rn

J
z � v�E
�A
z�� A
v�

kz � vk

�
f
v� dv �

UA�Bf
z� �

Z
Rn

J
z � v�E
�A
z�� A
v�

kz � vk

�

�
B
z�� B
v�

kz � vk
f
v� dv �

We shall give a simpler proof of the following result of the �rst author
�H�� Theorem �	� Let Lp����� denote the parabolic Sobolev space de�

�ned as the collection of all f having a spatial gradient and ��� a time
derivative in Lp� i�e�� those f for whom the following norm is �nite

kfkLp
�����

� krxfkp � kD nfkp �

Theorem ����� Let kAkcomm� kBkcomm � � and f � Lp
Rn �� � �
p � �� Suppose that J is su�ciently smooth away from the origin� If

J
x� t� has the same parity in x as does E� then for some large positive

N � we have

kSAfkLp
�����

� cp�J 
� � kAkcomm�
N kfkp �

Similarly if J
x� t� has opposite parity in x to that of E� then

kUA�BfkLp
�����

� cp�J kBkcomm 
� � kAkcomm�
N kfkp �

Remarks� �� Using the method of �CDM	� one can immediately re�
place the trigonometric function E by any su�ciently smooth function
de�ned on R with the same parity as E� One can also treat layer
potentials via this method�

�� Theorem � in �H�	 is stated for A� weights but implies our
Theorem ���� by extrapolation�

In the next section 
��� we treat our square functions 
theorems
��� and ����� In the last section 
��� we give the alternative proof of
Theorem �����
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�� Proofs of theorems ���	 ����

We begin with a simple lemma� For 
�� z�� 
�� v� � R
n��
� � let

K�
z� v� be a family of real valued kernels satisfying

jK�
z� v�j � cK
�


�� kz � vk�d��
�
����

jK�
z� v��K�
z� ev�j
� cK kv � evk minn �

�d kz � vk
�

�

kz � vkd��

o
�


����

whenever � kv � evk � kz � vk� Let � be a parabolic A� weight� Put

K�f
z� �

Z
Rn

K�
z� v� f
v� dv � z � R
n �

The following result is standard� and we omit the proof�

Lemma ���� Let 
K�� satisfy 
����� 
���� and let �� f be as above� If

K�� � � for each � � �� thenZ
R
n��
�


K�f�
�
z��
z�

dz d�

�
� cK�� kfk

�
��� �

In Lemma ���� cK�� denotes a constant depending only on K� d�
and the A� constant of �� which is the same convention we used in
Section �� Lemma ��� is stated in �Ch� p� ��� Theorem ��	 for � � �

see also �CJ	� under slightly weaker hypotheses�

Proof of Theorem ���� Let P � C�
� 
B�
��� be an even function

with
R
Rn

P�
z� dz � �� where as usual P�
z� � ��d P 
���z� and let
f �� P�f be the convolution operator whose kernel is P�
z�� Put

Q�
�f
z� � �

Z
Rn

H
z � v�F
�hrz� P�A
z�� z

� � v�i� �

kz � vk

�
f
v� dv �

where z� � x� v� � y if z � 
x� t� and v � 
y� s�� Then

Gf
z� �
�Z �

�

j
R� �Q�
��f
z�j

� d�

�

����
�
�Z �

�

jQ�
�f
z�j

� d�

�

����
� G�f
z� �G�f
z� �


����
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We set V� � R� �Q�
� and observe from 
���� and 
���� that the kernel

V�
z� v� of V� satis�es


����
jV�
z� v�j � c 
� � ��d��

�


�� kz � vk�d��

� jA
z�� A
v�� hrz� P�A
z�� z
� � v�ij �

where c depends on F�H� d� Using 
���� and 
���� we deduce that V�
satis�es 
���� with K replaced by V and cK replaced by c 
� � ��d���
Also by the same argument we see that the kernel of Q�

� satis�es 
����
with Q� � K and the same constants as V � Moreover� since H �
C�
Rn n f�g� we �nd in addition from 
����� 
���� and 
����� that the
kernels of V�� Q

�
� satisfy 
���� with the same constants as in 
�����

First we consider G� in 
����� This term will be treated using
the main idea in �JnsP	� but with the particular details closer to the
exposition in �Ch	� From the above discussion we see that we may follow
the standard approach� as in �CM	� to handle K� � V� � 
V���P�� via
Lemma ��� since K�� � � for each � � �� Thus to show


���� kG�fk��� � cF�H�� 
� � ��N kfk���

we need only proveZ �

�

Z
Rn


V��P�f�
� �

dz d�

�
� cF�H�� 
� � ���N kfk��� �

i�e�� that


���� d�
�� z� � 
V��
z��
� �
z�

dz d�

�

is a weighted Carleson measure with norm comparable to the constants
in Theorem ���� To this end let z� � R

n � r � �� and let �� �� denote the
characteristic functions of B��r
z��� R

n nB��r
z��� respectively� Fixing
this ball� and using 
���� for V� we deduce� as usual� that it su�ces to

replace � by � in 
����� Next we put eA
z� � �
kz�z�k� 
A
z��A
z����
z � R

n � where � � C�
� 
��� r� �� r� is an even function with � � � on

���� r� �� r	� Then V� �
z� is unchanged for z � B��r
z��� � � � � r�

if we replace A in its de�nition by eA� Moreover from �H�� Section ��
Lemma �	 we have


����
i� k eAkcomm � c kAkcomm �

ii� For � � p ��� kD eAkpp � cp �
p rd �
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where the parabolic fractional derivative operator D is de�ned by the
Fourier multiplier cD f � k�k bf �
Using 
����� Schwarzs inequality� and the change of variable � �� �
�l

we obtain� for N large enough that


������N
Z r

�

Z
Br�z�	


V���
�
z��
z�

dz d�

�

� c
�X
l��

��l
Z �

�

Z
Rn

��d��
�Z

B��z	

j eA
z�� eA
v�
� hrz�P��l�

eA
z�� z��v�ij� dv�
����

� �
z�
dz d�

�

� c� �
� �
Br
z��� �

where the last inequality follows from 
���� and an argument involving
Plancherels Theorem in the case � � � 
see �H�� Section �	 for more
details� or else the argument of �H�� Section �� Lemma �	 in the weighted
case� Thus 
���� holds�

To prove the analogue of 
���� with G� replaced by G� we note
that 
����� 
���� for Q�

�� and Lemma ��� imply that it is enough to show
that Q�

�� � �� To do this we introduce the parabolic polar coordinates
de�ned in 
����� to get

Q�
��
z� � �

Z
S

�Z �

�

F
�
h�a� ��i�

�

�

� d�
��

�
H
��  
�� d� �

where �a � rz�P�A
z��  
�� � 
� � ��n �� and � � 
��� �n� � S �
the unit sphere in R

n � We change variables in the above integral by
� �� � �� then r � �
�� then r �� r � h�a� ��i� to obtain

Q�
��
z� �

Z
S

�Z �

h�a��� i

F 
r� dr
�
H
��  
�� d� � � �

since our hypotheses in Theorem ��� guarantee that this last expression
is zero� Indeed

R�
h�a���i

F 
r� dr is a function of �� having opposite parity

toH
��  
��� for each �xed non�zero �a� The case �a � � is much simpler�
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if H is odd in ��� then clearly
R
S
H
��  
�� d� � �� and if F is even

with
R�
��

F 
r� dr � �� then
R�
�

F 
r� dr � �� Thus 
���� holds also for
G�� and the conclusion of Theorem ��� follows�

Proof of Theorem ���� We shall be brief� since the ideas are now
familiar� Put

U�f
z�

� �

Z
Rn

H
z�v�
hrz� P�B
z�� z

� � v�i

kz � vk
F
�A
z�� A
v� � �

kz � vk

�
f
v� dv �

Then as in 
����

eGf
z� � �Z �

�

j
 eR� � U��f
z�j
� d�

�

����
�
�Z �

�

jU�f
z�j
� d�

�

����

� eG�f
z� � eG�f
z� �


�����

If eV� � eR� � U�� then as in 
���� we deduce

jeV�
z� v�j � c 
� � ��d�� min
n �

kz � vkd��
�

�

�dkz � vk

o
� jB
z�� B
v�� hrz� P�B
z�� z

� � v�ij �

where c depends on F�H� d� Using this inequality in place of 
���� we
can now repeat the argument following 
���� through 
���� to get that


���� holds with G� replaced by eG� and constants as in Theorem ����

As for eG� we note from 
���� that the kernel of U� can be written as a
sum of L� functions 
the components of rz�P�B
z�� times operators
whose kernels satisfy the hypotheses of Theorem ���� Thus 
���� holds

with G� replaced by eG� and constants as in Theorem ���� and we are
done�


� Alternative proof of Theorem �����

Next we shall use Theorems ���� ���� and ����� to give an alternate
proof of Theorem ���� 
i�e� essentially �H�� Theorem �	�� Our reduction
of the proof of Theorem ���� to the square function estimates which we
have proved in the previous theorems� will be in the spirit of some
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recent work of Li� McIntosh� and Semmes �LiMS� Section �	� To begin�
we consider the operator S � SA of Theorem ����� For speci�city� we
consider

Sf
z� �

Z
Rn

J
z � v� cos
�A
z�� A
v�

kz � vk

�
f
v� dv �

where


����

a� J
x� t� is even in x� for each �xed t �

b� J
��z� � ���d J
z�� z � R
n �

c� J � CN
� 
R

n n f�g�� for some large N �

Our goal is to show that for some large N and for each j� � � j � n�
we have


���� kD jSfkp � cJ�p 
� � ��N kfkp �

whenever f � Lp
Rn�� and � � p � �� Here� D j � 	
	xj for � �
j � n� �� and D n is the �
� order time derivative de�ned in Section ��
Since rxA � L�
Rn �� we have that� modulo pointwise multiplication
by a bounded function� each D jS� � � j � n � �� gives rise to a
standard parabolic Calder�on�Zygmund operator which falls under the
scope of �H�� Theorem �	 
to see this� just di�erentiate formally under
the integral sign in the de�nition of Sf ! this formal computation may
be justi�ed by smoothly truncating the kernel J � and obtaining bounds
independent of the truncation�� Thus it su�ces to prove the case j � n
of 
����� In fact if � is an A� weight and f � L��
R

n �� we shall show
that


���� kD nSfk��� � cJ�� 
� � ��N kfk��� �

Once 
���� is proved� the Theorem then follows from extrapolation 
see
�GR� Chapter �� Theorem ����	�� We remark that the operator D nS
cannot be viewed as a standard Calder�on�Zygmund operator 
modulo
multiplication by a bounded function�� and hence does not fall under
the scope of �H�� Theorem �	� nor can one use the classical Calder�on�
Zygmund theory to pass from L� bounds to Lp� The failure of the
standard C�Z estimates in this case is related to the fact that the chain
rule does not hold for fractional derivatives like D n �
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To make our arguments rigorous� we observe that since

jA
z�� A
v�j � c kAkcomm kz � vk


see 
������ we can replace the cosine in the de�nition of Sf by " where
"
r� � �
r� cos
r� and � � C�

� 
R� is an even function with � � � on
��c �� c �	� Clearly we can also choose � so that

R�
��

"
r� dr � �� We
make the a priori assumption that f � C�

� 
R
n�� A � C�
Rn�� and that

J has been smoothly truncated so that it is supported on a parabolic
annulus� These assumptions allow us easily to justify repeated di�er�
entiations and integrations by parts in the argument which follows� In
the rest of the proof we shall systematically suppress the truncation� so
as not to tire the reader with routine details� This means that we shall
be ignoring certain error terms which arise as a result of the truncation�
but these are not di�cult to handle� Of course� our estimates will not
have any quantitative dependence upon our a priori assumptions�

Under these assumptions we �rst use a construction of Kenig and
Stein 
which appeared �rst in a paper of Dahlberg �D	� see also �DKPV	
and �HL	 for applications related to the present paper�� to write Sf
z� �
lim��� S�f
z�� where

S�f
z� �

Z
Rn

J
z � v� "
�P	�A
z� � �� A
v�

kz � vk

�
f
v� dv � z � R

n �

and P	� is de�ned as follows� Let P � C�
� 
B�
��� be an even function

with
R
Rn

P�
z� dz � �� where as usual P�
z� � ��d P 
���z�� and let
f �� P�f be the convolution operator whose kernel is P�
z�� We
choose � to be a small� �xed number� depending only on kAkcomm�
such that ��� 	

	�
P	�A
z�

��� � �

�
�

Next let g � C�
� 
R

n� with kgk����� � � and observe that

kD nSfk��� � sup
��� Z
Rn

D nSf g dz
��� �

where the supremum is taken over all such g� Moreover�


����

�

Z
Rn

D nSf gdz �

Z �

�

Z
Rn

	

	�

D nS�f P�g� dz d�

�

Z �

�

Z
Rn

D n
	

	�
S�f P�g dz d�

�

Z �

�

Z
Rn

D nS�f
	

	�
P�g dz d�

� I � II �
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We recall that we have de�ned a parabolic fractional derivative operator
D by the Fourier multiplier


���� cD f � k�k bf �
We observe that 	P�
	� � D eQ� where eQ� is an approximation to

the zero operator 
i�e�� eQ�� � �� whose convolution kernel satis�es the
standard kernel estimates 
���� and 
����� We leave the details of this
routine estimate to the reader� noting only that to prove it� one uses
the fact that the kernel of 	P�
	� has not only mean value zero� but
also vanishing �rst moments� since we have chosen P 
z� to be an even
function� Thus since D n � i D ��
	
	t�� we have

jIIj �
��� Z �

�

Z
Rn

	

	t
S�f eQ�g dz d�

��� �
Since kgk����� � �� weighted Littlewood�Paley theory implies thatZ �

�

Z
Rn


 eQ�g�
�
� �
�

�
dz

d�

�
� c� �

Hence� by Schwarzs inequality�


���� jIIj� � c�

Z �

�

Z
Rn

��� 	
	t

S�f
���� � � dz d� �

Now let

w
x�� z� �

Z
Rn

J
z � v� "
�x� � A
v�

kz � vk

�
f
v� dv

and de�ne the Kenig�Stein mapping


���� �
�� z� � 
�� P	�A
z�� z� �

Since w 	 �
�� z� � S�f
z�� we have for z � 
x� t� that


����

	

	t
S�f
z� �

	

	t

w 	 ��
�� x� t�

� wt 	 �
�� x� t� � wx� 	 �
�� x� t�
	

	t
P	�A
x� t� �
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To handle the contribution of wt 	 � to the integral in 
���� we use the
change of variable


���� e� � �� P	�A
z��A
z� �

which de�nes a mapping 
�� z� �� 
e�� z� of Rn��� with Jacobian

� �
	

	�
P	�A
z� � �
�� z� �

Since j
	
	��P	�A
z�j � �
� for � small enough depending only on
kAkcomm� and lim��� P	�A � A� we deduce �rst that �
� � � � �
�
and thereupon that the above mapping is ��� and onto Rn��� � Changing
variables as in 
���� we �nd that by Theorem ����


�����

Z �

�

Z
Rn


wt 	 ��
� � � dz d� � cJ�� 
� � ���N kfk���� �

as desired�
To handle the contribution of the second term in 
���� to the inte�

gral in 
����� we claim that the non�tangential maximal function of

wx� 	 �
�� x� t�

is bounded on L�� with norm on the order of 
� � kAkcomm�
N � Indeed�

the operator
f �� wx� 	 �
�� x� t�

is of the form

TAf
z� � p�v�

Z
Rn

K
z � v�F
�A
z��A
v�

kz � vk

�
f
v� dv �

where
K
�x� ��t� � ��dK
x� t� �

K � Cm
Rn n f�g�� for some large m� F � Ck
R��� for some large k�
and where the parity of K
x� t� in the x variable is opposite to that
of F � It is essentially the conclusion of �H�� Theorem �	� that such
operators are bounded on L�� and hence on L��� with norm on the
order of 
��kAkcomm�

N � The claim now follows by applying a standard
argument involving Cotlars inequality for maximal singular integrals�
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to pass from the singular integral on the boundary to the non�tangential
maximal function� Furthermore

��� 	
	t
P	�A
z�

���� � d� dz
is a parabolic Carleson measure with a norm no larger than kD nAk

�
��

The desired bound for 
���� now follows by the usual properties of
Carleson measures�

We now turn to I in 
����� We integrate by parts in the integral
de�ning I to get


�����

�I �

Z �

�

Z
Rn

	�

	��
S�f P�g � dz d�

�

Z �

�

Z
Rn

	

	�
S�f

	

	�
P�g � dz d�

� I� � I� �

Arguing as in the proof of 
���� we �nd


�����

jI�j
� �

��� Z �

�

Z
Rn

	

	t

	

	�
S�f eQ�g � dz d�

����

� c�

Z
Rn

��� 	�

	t 	�
S� f

���� � �� dz d� �
Again


�����

	�

	t 	�
S�f �

	�

	t 	�
w 	 �

�
	

	t

�

wx� 	 ��

�
� �

	

	�
P	�A

��
� 
wx�t 	 ��

�
� �

	

	�
P	�A

�
� 
wx�x� 	 ��

� 	
	t

P	�A
��
� �

	

	�
P	�A

�

� 
wx� 	 ��
� 	�

	t 	�
P	�A

�
� "� � "� � "� �
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Since j
	
	��P	�Aj � �
�� we have "� � � jwx�t 	 �j� We now use
the change of variable 
����� and invoke Theorem ����� to handle the
contribution of "�� As for "�� since��� 	

	t
P	�A

��� � c 
� � ��� ��� �

we can use Theorem ��� to handle wx�x� in the same way that we treated
wt above� Finally� we may handle the contribution of "�� by the usual
nontangential maximum�Carleson measure arguments� i�e�� by exactly
the same method that we used previously to treat the contribution of
the second term on the right hand side of 
����� Altogether� we obtain
the desired bound for the term I��

It remains to estimate I�� We note that � D nP� �
eeQ� where

eeQ� is
an approximation to the zero operator whose kernel satis�es 
���� and

����� Thus arguing as in the proof of 
����� we obtain


�����

jI�j �
��� Z �

�

Z
Rn

	�

	��
S�f

eeQ�g dz d�
���

� c�

�Z �

�

Z
Rn

j
	�

	��
S� f j

� � � dz d�
����

�

But

	�

	��
S�f � 
wx�x� 	 ��

�
� �

	

	�
P	�A

��
� 
wx� 	 ��

� 	�

	��
P	�A

�
�

and these terms can each be handled by our earlier arguments� This
concludes the proof of Theorem ���� for S � SA� The proof for the
second class of operators� UA�B� is similar� and we leave the details to
the interested reader�
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