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Multi-multifractal decomposition

of digraph recursive fractals

Dominique Simpelaere

Abstract. In many situations, both deterministic and probabilistic,
one is interested in measure theory in local behaviours, for example in
local dimensions, local entropies or local Lyapunov exponents. It has
been relevant to study dynamical systems, since the study of multifrac-
tal can be further developped for a large class of measures invariant
under some map, particularly when there exist strange attractors or
repelers (hyperbolic case). Multifractal refers to a notion of size, which
emphasizes the local variations of the weight of a measure, of the en-
tropy or the Lyapunov exponents. All these notions are explicited in
the case of digraph recursive fractal studied by Edgar & Mauldin where
some questions are given. We study the extremal measures and intro-
duce the notion of multi-multifractality which may be useful in problems
of rigidity.

1. Introduction.

In many situations implicated the dimension of measures, singular
measures are investigated, and more precisely how densely the singu-
larities of a measure are distributed.

Let (X, d) be a compact metric space and p be a Borel probability
measure. The decay rates of the measure p of small balls are determined
in order to define local dimensions. The singularities of the measure p
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are specified by

n (B » — Inp(B
O doe) = lim 2EEED) g G ) = g 2B
r—0 Inr r—0 Inr
and when d ,(z) = d, () = d,(z), the measure p has pointwise di-

mension d, (), and it is said that p is exact dimensional [Sil], [Y] if
for p almost every point & we have d,,(x) = d,, = constant.

Even for nice measures, it is not expected that this pointwise di-
mension exists or the measure p to be exact dimensional [LM], [S]. The
singularity sets are then defined for any real number o > 0 by

a}7
a}?

Cy,={reX: d,(z)
(2) Cr={reX: d,(z)
C,=CHnacy,

which is called the multifractal decomposition.
This concept first appeared in a paper of physicists [HJKPS] where
it was suggested to study the so-called dimension spectrum f(«), i.e.

(3)  f(a) =HD(C,) and f(a) = -, itCy =2.

There exist many definitions of dimension [F2|, [P2]: Packing-dimen-
sion, Box-dimension ... For theoretical purposes the Hausdorff dimen-
sion is prefered: for any Borel set A and any positive real number 7,

put
HD, .(A) = inf { A-T}
A=t [Tl
|Al|<€ -
and

HD. (A) = lim HD, . (4) € [0, +oc].
e—

We obtain finally the Hausdorff dimension (which derives from a mea-
sure) by the following

HD(A) =sup {r: HD,(A) = +oo} =inf{7: HD,(A) = 0},

and the Hausdorff measure of A is the value HDyp(4)(A) € [0, +00].
We define the dimension of a Borel measure i by

HD(p) = inf {HD(A) : A a Borel set and p(A) =1}.
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In fact it has been found relevant information in a large class of mea-
sures, namely dynamical systems (X, p,T) where the map T : X «
is ergodic and the measure p is T-invariant. The first rigorous re-
sult [CLP] was the multifractal analysis of C? one-dimensional Markov
maps. Many articles appeared on this subject: [R] for Cookie-cutters,
[Lo] for hyperbolic Julia sets, [Sil] for Axiom A surface diffeomor-
phisms. Other models have been developped: multiplicative chaos (tree
structure) which is a model of the phase transition of a system with
random interactions in physics and chemistry, in polymers, turbulence,
thermodynamics, rainfall distribution — random measures with fixed
supports [HW] or with random supports [F1]; iterated function sys-
tems [BPS1], [BPS2], [BMP], [CM], [CLP], [EM], [K], [Lo], [O1], [02],
[Sil]. There are now many references that may be found in particular
in [P2], especially in the very well-known case of self-similarity for sets
or measures [Mo], [MR].

One physical motivation is when ergodic-time averages along the
process converge to a measure y = lim,_,,(1/n) Z?:_Ol O7i(z) Which
describes the occupation of the attractor under iterations of 7'. This
measure g is the one that can be seen on the screen when computing
the iterates of a point under the dynamical system. This is the case
for SBR (Sinal-Bowen-Ruelle) measures of diffeomorphisms of smooth
Riemannian manifolds which contain a compact hyperbolic attractor
A of T. The limit measure p has absolutely continuous conditional
measures on unstable manifolds [HY], and the measure p describes the
orbit distribution of points in a basin B D A. Clearly, one sees how
densely the singularities of u are distributied — areas are darker and
darker when there are more and more visits.

Most of the measures in the literature are equilibrium measures —
Gibbs measures — and therefore are very common and typical in physics.
In some cases explicit formulae can be obtained [BPS1], [BPS2], [R],
[Sil], and in all the cases the dimension spectrum f is proved to be real
analytic.

A new approach is suggested when looking at the distribution along
orbits. We define for any x € X and any integer ¢ > 2 the quantity
(GHP], [HP], [P1], [PT],

Clz,q.rn) = % Bl (i1, ... i)+ (T (x), T (2)) < r

for 0 <i; <ip <n}.
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If the measure p is ergodic, we have for p allmost every x,

n—-+oo

1mcmem=Amm%Mme»

Provided the limit exists, we define the HP spectrum

L ) InC(x,q,r,n)
(1= 0) Oye) = limy i =P
(4) _
1n(/ u(By, )" dp(y))
pae. X
Inr ’

In [O1], [O2], [P1], [Si2] this function is generalized to real numbers and
is called the correlation dimension,

In (B(y,))” du(y)
S (/Xu y uy)

r—0 Inr

, forall e R,

provided the limit exists, which is for § = 1 the average of the singu-
larities of p [Si2].

This function can be seen in the following way (order two approach)
suggested by D. Ruelle and described in [P1]. Consider the product
metric space Y = X x X equipped with the metric

d'((z1,91), (T2, 92)) = d(z1, 1) + d(T2, y2)
and define the direct product measure v = p X p. Define the diagonal
D={(z,z)eY}and forr >0, D, ={yeY: d(y,D)<r}.

We then obtain

V@H=AMM%MMM%

and therefore we have

w”:mémmmewkﬁcm.

Inr Inr r—0

lnv

This function C' plays an important role in the numerical investigation
of some models and the procedure is simple and runs fast [GHP], [P1].
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In multifractal analysis there are two methods: the first one comes
from the theory of operators (Perron-Froenius) and gives the existence,
uniqueness and regularity of the solution [EM]. The other one is based
on large deviations and thermodynamics, and leads to explicit formulae
[CLP], [Sil]. The latter is described in the following.

Using large deviations and under suitable assumptions, we have the
multifractal formalism, 7.e. the dimension spectrum f is the Legendre-
Fenchel transform of a function F, called free energy function, concave
and at least C!, i.e.

() fla) = nf{ta - F(t)},

teR

where F' is derived from a sequence of partition functions {Zp }n>1

(6) F(B) = lim —= iy Zu(8) (=Fa(), forall BeR.

n—4+oo n

These partition functions are defined by the following

(7) Zn(B)= Y w(U)’,  foral BeR,

UeRn
w(U)>0

where {Q,,},>1 is a well chosen sequence of partitions (typically the
Markov partition {P, },>1 generated by the dynamics and the iterates
under 7" [Bo], [Ru]) whose diameters tend to 0 when n goes to +oo (for
b(n(f)) see (31) and (32)).

There is another intrinsic free energy function [CLP], [RUJ, [Sil]
associated to the Markov partition {P,}, >1 defined on R? by (see
Theorem A and (35))

1 n
(8) Gp(z,y)= lim —In G%)(:p,y) , for all (z,y) € R?,

n—+oo n
with

G (wy)= Y w4, forall (z,y) € B
AeP,

For these thermodynamic quantities it is proved that [O1], [02], [Si2]

CpB)=Fp)+1, for all B € R,
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and this equality holds if and only if F' can be associated to a sequence
of uniform partitions. It is also proved that [CLP], [Si2]

HD(p) = inf {HD(A) : A a Borel set and p(A) =1} =d, = F'(1).

The main result in multifractal analysis is the following: f is smooth
(real analytic or C°°) and strictly concave on an interval |amin, Gmin| C
R and is the Legendre-Fenchel transform of a function F' of same
regularity, except in the degenerate case where it is defined at one point
(this case can be described).

There exist also multifractal decompositions for (Kolmogorov-Si-
nail) entropy and Lyapunov exponents — decompositions into level sets.

For the entropy spectrum, let {£} be a generating partition, i.e.
if B(X) is the Borel algebra, then B(X) = V.5, T %(¢) p mod0 (for
example the Markov partition) and &, () be the element of the partition
&, at rank n,

n—1
én = \/ T_z(é) )
i=0
which contains the point . Then define local entropy,

9) () = b, 6T) = Tim — (6 (0))
provided the limit exists (it exists for p almost every point z in the
ergodic case), and for p almost every point z, h,(x) = h, (p is exact
for the entropy in the ergodic case), the entropy of the dynamical system
(the exact value).

We define the level sets for entropy for any real n > 0 by

(10)  E(n) ={x: hu(z)=n} and  E,(n) = HD(E(n)),

which is the entropy spectrum.

For the local Lyapunov exponent, let M be a smooth manifold,
T : M < a C? conformal expanding map leaving invariant a compact
subset A of M. Let 1 be a T-invariant probability measure on A. We
have for any tangent vector v € Ty(A),

. 1 .
(1) Xu(@) = lm I fldz3(3)]).
provided the limit exists (it exists p almost everywhere), and for p
alomost every point =, x(x) = x,, the Lyapunov exponent of the dy-
namical system (the exact value).
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We define the level sets for Lyapunov exponents: for any real 9 > 0,
consider

(12) L) ={x: Xu (x) =9} and L,(9¥) = HD(L(9)),

which is the Lyapunov spectrum.
We then have the following multifractal decompositions

(A ={z: h,(z) does not exist} U{x: h,(x) =h,}

Uagn, {2+ hu(z) = o},

A ={z: x,(z) does not exist} U{z: x,(z) =x,}

| U, fo: X (@) =0},

and the corresponding spectra. Notice that the existence of the exact

values for the different spectra are given by: the Eckmann-Ruelle con-

jecture [BPS1] for dimension, the Shannon-McMillan-Breiman theorem

for entropy and the Kingman theorem for Lyapunov exponents.
Notice that in general we have

HD({z € X : h,(x) does not exist}) > 0
and similarly
HD({z € X : x,(v) does not exist}) >0 (= dim(X)).

Our aim is to answer to questions found in [EM]: completness of the
dimension spectrum (and finally the other spectra), problems at the
bounds of the interval of definition of the spectra, case where the tran-
sition matrix is not irreducible. ..

Results found in [EM] are given in Section 2. We find again these
results and generalize them in a different framework (Section 3). Then
using notations and results of Section 3, let us define the following.

In the case of expanding Markov maps, a map T € C19(A) is
given, and for x € A, J(z) = —InT'(z) < 0 (¢ C%(A)). The T-
invariant measure g is a Gibbs measure associated to the potential
£ € C°(A) < 0. Since the set A is compact the functions ¢ and J take
their values in compacts sets [a, b] and [c, d] since there are continuous.

For any real number 3 we define a Gibbs measure pg associated to
the potential {g = & — F(B)J (and pi4o are limits when § — +o00).
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/A Edpiyoe

(13) min ="——— =010 and Quax=""————=0_ -
[ s [
A A

We then have the following results.

Consider

Theorem A. For any (3,s,t) € R® we have

G(s,t) = P(s€ +tJ),

" o+ | €4,
F(B) = ;
/I;Jdﬂﬁ

and

In the degenerate case the different spectra are reduced to points.

Otherwise we can associate a family of probability measures {us} BER?
and we have the following.

Theorem B. We have in the general case

e Cy # @ if and only if & € [min, ¥max] wWhere 0 < pin < Qmax <

—+00.

e For all o € [min, (umax) there exists a unique 8 = f'(a) € R such

that pg is exact dimensional, and

—&du

f@zm@mﬂmm=%=A (D)
/_Jdﬁbﬁ XWa(T)
A

e 1 is exact dimensional: HD(p) = d, = f(a(1)) where (1)
F'(1).
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Theorem C. We have in the general case:

1) For the entropy spectrum (9) and (10):

e E(n) # @ if and only if n € [Nmin, Nmax] where 0 < Nmin < Nmax <
+00.

e For all 1 € [Nmin, Mmax| there exists a unique 3 € R such that
n= [y —&dug = hy, (pg is exact dimensional), and

/ _gd“ﬁ h
/ — Jdpg  Xws
A

where o = F'([3).

e 1 is exact dimensional: forn = h, (8 =1), we have u(E(n)) =1
and

Eo(n) = HD(E(h,)) = d, =

2) For the Lyapunov spectrum (11) and (12):

e L(Y) # @ if and only if ¥ € [Umin, Vmax] where 0 < Yppin <
ﬁmax < +o0.

o For all ¥ € [Umin, Ymax] there exists a unique 3 € R such that
V= [, —Jdug = Xus (up is exact dimensional), and

where o = F'([3).

e 11 is evact dimensional: ford = x, (8=1), we have p(L(9)) =1
and L
Ly(9) = HD(L(x,)) = d, = X—“ :
m

Theorem D. The extremal measures pio, are uniform on their Can-
tor-like fractal supports.
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In Section 2 we define the model and the results (theorems 1 and
2) obtained in [EM].

In Section 3 we give a short exposition concerning the thermody-
namic formalism that we use for our computations in the next sections.

In Section 4 we find again and generalize the results in [EM]| by
proving theorems A and B.

Section 5 deals with the multifractal spectra, entropy and Lya-
punov exponents, which correspond to the level sets (10) and (12), and
we prove Theorem C.

In Section 6 we develop a new concept: multi-multifractality, which
allows us to give answers concerning extremal points (the points o)
in a quite simple fashion and we prove Theorem D. In particular we
give some graphs of the functions we have studied.

Section 7 is devoted to discussion and new questions.

2. The model and the operator theory.

We start from a directed multigraph (V, E) [EM]. The set E =
{e1,...,er} consists of the edges of the graph, and the elements of V' =
{u,v,...,w} are the vertices. This graph is supposed to be strongly
connected, that means there is a path from any vertex to any other along
the edges of the path (if not we decompose it into connex components).

Now we define notions of length and measure (mass) in order to
compute local dimensions (1).

A path of length k£ in the graph is a finite string

v=eiex e,

of edges, and to each edge e correspond a ratio r(e) €10, 1] (parameter
of a homethety in R”), and r(y) = r(e1) r(e2) - - - r(ex). The subset E,,,
the edges from u to v, is a partition of E for (u,v) € V2. The set E®
is composed of all the paths of length k£ that start at w and end at v,
E&k) is the set of paths of length k starting at u, and F, is the set of
infinite paths starting at w.

For any vertex uw € V, let J, be a nonempty compact subset of
R™. Actually we may assume for simplicity that the diameter of the set
|Ju| =1 for any v € E.

A digraph recursive fractal, based on seed set .J, and ratios r(e),
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is the set

(14) K, = ﬂ( U J(v)),

k20 ek

where the sets J(y) are choosen recursively:
i) J(Ay) = J,, where A, is the empty path from u to w.

ii) For « of length k with terminal vertex v, the set J(v) is geo-
metrically similar to J, with reduction ratio r(vy).

iii) For v of length k£ with terminal vertex v, the sets J(ve), e €
E,, are nonoverlapping subset of J(v) (they intersect at most at their
boundaries: “open set condition”).

There are many choices to place the sets J(ye) in J(7v), and for
example consider the “self-similar graph” fractals using similarities H. :
R” — R", one for each edge e € E. Define for any v = ejez---ex €
B

J(’Y) = Hel H€2 o 'Hek (Jv) ’

where the seed set J, must be choosen such that iii) is satisfied.

We now define the measure of Markov type p, on K, recursively:
we start with p,,(J,) = 1, and the mass is distributed among the subsets
J(e), e € E,so that J(e) has mass p(e). Once the mass of a set J(7) has
been assigned, then it is distributed among the subsets J(y e) according
to the values of p(e). With (14) we get finally a unique probability
measure depending on the choice of the number ((p(e))ceg. As for the
definition of r(vy), we get p(y) = p(e1) - - -p(eg) for v = ereq - - - €.

It implies that p is defined on “cylinders”, and then by the Kol-
mogorov consistency theorem a unique measure p, on K, is defined.

Let for (o,k) = (e1ea - - -ex) the finite string of length k,

h, : E, — K,
(15) o— ﬂ J(ox)

k>1

(representation of the coding sequences of the trajectories, one-to-one
at least on a set of yu measure 1 — the points with more than two
representations have no local dimension). We have y = v, o hy;! where
vy is defined on E,, (it is defined on the cylinders).
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Let A be the transition matrix associated to the Markov partition
given by the iterations of the sets J,, v € E, by the map H which de-
termines the distribution of the J(ve), e € E, inside J(v) (for example
in the case of “self-similar graph fractals”, H is composed of similarities
H, :R* — R", for each edge v).

Define the matrix B,

BUU(/Bv S) = Z p(e)ﬁr(e)s7 (/37 S) S R2

e€Eyy

(compare with (35) and the function G%)) (8,s)), and let ¢(3,s) be the

spectral radius of B. By the Perron-Frobenius theory of nonnegative

matrices, ¢ is real analytic in both variables, and given any real number

(3, there exists a unique real number s = ¢ (3) such that ¢(3,1(5)) = 1.

We get in particular HD(K,) = 9 (0) = d which is independant of w.
Here are the results obtained in [EM].

Theorem 1. The function v is real analytic, strictly decreasing from
+00 to —oo and conver.

Let for any real number f3,

(16) a=¢'(8)>0 and f=Ba+v(B),
and for v =ejeq - - - e,

_ Inp(y) _ In(p(er) p(ez) - - -plex))
o) = Inr(y)  In(r(er)r(e) --r(ex))

and api, = inf{d(y) : 7 is a simple cycle} (@max = sup).
Let {x,}yey be the Perron numbers and consider the pairs
(A, pv)vev. We have, for allv € V, 2, > 0 and for all u € V,

> D r(e)fag=ay,

vEV eEFEy,

> ) Ple)=1,

VEV e€EEyy

for all u e V,

where P(e) = p7p(e)P r(e)?*® p,. The real numbers 7, define a sta-
tionary distribution for the Markov chain: given Xj = wu, the condi-

tional probability that Xy11 =vis Y} cp P(e).
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These are the transition probabilities for some stationary measure
on F,, V&ﬁ ), a measure of Markov type defined on the cylinders of E,.
With the map h,, it corresponds to a measure ,ugf ) on K.,

v () = o o) (¥ P py and P = vl ongt.

We then have defined for all w € V measures l/q(ﬁ ), B € R, on the sets
E,, by its transition probabilities, and therefore measures u&ﬁ), B eR,
on the sets K, u&ﬂ) = I/I(LB) ohyl.

Consider for any u € V,

qua) = {x € K, : lim —ln,uu(B(x,r)) = a} ,
r—0 Inr

(17)

1
E&“):{aeEu; lim M:a},
k—+o0 In7 (o))

then ES = hy1(KS™). Tt is proved that we have for f given by (16)
pP () = v (B) = 1
and
HD(K (™) = HD(E{") = f = HD(u”)) = HD(v\)).

Finally there are two cases for the multifractal analysis.

Theorem 2.

i) In the degenerate case: for all (u,v) € V2, for all e € Ey,,
ple) = (z;tr(e)x,)? Then 1 is linear and for all B € R, ¢(B) =
d(1-p), HD(K,) =d =d,, and K\ # @ if and only if o = d.

ii) In the nondegenerate case: there exists e € Ey,, p(e) #
(x7tr(e)z,)?. Then 1 is real analytic and strictly conver; « is a
strictly decreasing function of 3, i.e. a : R — |amin, Qmax|; [ s
a strictly concave function of o and K™ # @ if and only if « €
[mins Cmax) -

3. Thermodynamic formalism.

This is a useful theory developped in [Bo|, [Ru]. It allows to trans-
port some problems from the dynamical system (A, p, T'), where T' is for
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example a picewise C1T? expanding Markov map [R], onto a symbolic
dynamical system (X7, v,0) by a coding map.

3.1. Symbolic dynamics.

We introduce Markov partitions to make an analogy with the sym-
bolic dynamical systems. In a sense, we replace small balls in the defi-
nition of dimension by small elements of the iterations of this partition
by the expanding Markov map.

Let A be a basic set, a T-invariant compact metric set. A Markov
partition is a finite cover of A : Uy = (U, ..., U,,), consisting of proper
rectangles (compact sets R such that R = int(R)) which satisfy

e int(U;) Nint(U;) = @ for i # j.
e Bach T'(U;) is a union of rectangles Uj.

We can construct Markov partitions of arbitrary small diameter.
We then define the partition at the rank n by

n—1
Uy =\ T (U).
i=0
We associate to this partition the transition matrix A defined by

£ T-L(UTN AU
(18) A,J: ]_7 lfT (U])ﬂUrL#g, 1§Z,J§p,
0, otherwise,

which is irreducible (for all (7, j), there exists n such that (A™);; > 0:
you reach any U; from any Uj).
Consider the subshift of finite type associated to the matrix A

St={z={2n}tnso € {L,....om}" 1 Ap 4, =1},

which is the set of admissible sequences.
We define the metric on ¥ (for 0 < A < 1)

; Moo ifk=sup{j: x; =y, foralli, 0<i<j},
d'(z,y) =
B 0, ifz=y,
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which is a compact set, and the shift o(z) = y, where for all n € N,
Yn = Tp+1-
We then define a continuous (Lipschitz) surjection ,
Vg EX — A

T —> ﬂ T (Uy,)
720
which is one-to-one on the set of points whose trajectories do not in-
tersect the boundaries of the elements of the Markov partition (if not
these points have no local dimension), a set of g measure 1 when p
is a Gibbs measure. Nevertheless, it is bounded-to-one and satisfies
moog" =T"om.

3.2. Thermodynamics.

Let us define the following sets.

e Consider M (A) (respectively M (X)) the set of Borel probability
measures defined on A (respectively M(X7F)).

e Let Mp(A) (respectively M, (7)) be the set of T-invariant Borel
probability measures on A (respectively o-invariant on X¥).

e Let C(A) (respectively C(X7)) be the set of continuous functions
defined on A (respectively X7 ) and C°(A) (respectively C°(X7)) be the

set of 0-Holder continuous functions.

The pressure of a function ¢ € C°(A) (respectively p € C°(XF))
is defined by

(19) P = Prie) = sw (bt [ 9do) (= Palpom) = Pa()),
PEMT (A) A

and the measures which achieve this supremum are called equilibrium

measures. The entropy h,(T') — the Kolmogorov-Sinail entropy of the

map 1" — is the following: define the set

B(z,n,r)={y € A: d(T"(z),T"(y)) <7, for 0 <i<n—1},
the set of points that cannot be distinguished from x at the small dis-
tance r after (n — 1) iterations. Then we get for an ergodic T-invariant
probability measure ,

a.S. . I ]-
h(T)"E" —lim Tim = lnu(B(z,n,7)),

r—=+0n—+oco N
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which is a nonnegative real number in our case. Notice that the larger
the entropy, the greater the rate of decrease of the indeterminacy of the
dynamical system.

In our case, there exists a unique measure p, (respectively v, p, =
T*vz) which is the Gibbs measure of the potential ¢ (respectively @).
The map 7 : (X1, v, 5) — (A, py, T) is an isomorphism of dynamical
systems.

This means that the pullback of any Gibbs measure p, on A is
a Gibbs measure vz on EZ. Conversely the pushforward of any Gibbs
measure Vg on EZ is a Gibbs measure p, on A, and their thermody-
namic quantities are equal: Pr(¢) = Py(¢ o), h,, (T) = h,_(o).

The measure v is well defined on the cylinders which generate the
topology of Ej. There exist nonnegative constants ¢ and C' such that

ve{y e ¥ =Ty ey Yp_1 = Ty
(20) o< sy EXA: Yo =10 Yn—1 n1}§07

n—1

exp ( — nPz+ Z G(a’%g)))

uniformly in n.
The pressure function P : C°(X}) — R is real analytic (not true
for arbitrary symbolics). Consider for (¢,() € C°(X})2, the map

Q:R? —R

(@) (e,9) — PeE+y0).

It is real analytic in both variables, convex and strictly convex if and
only if the functions £ et ¢ are not conjugate to constants ¢ and ¢, i.e.
E£c+P—p oo, peCO(X)) (respectively ¢ and ¢’).
Let VoE+y0l be the Gibbs measure of the function zo& + yo ¢ €
C°(x}), then we have [M], [Ma], [MC], [R], [Ru], [Sil]

Q _
Getaom) = [ RLw 2
(22)

oQ B Fd

oy (20, yo) = EXC VoE 410l -
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4. Dimension spectrum and the thermodynamic theory.
4.1. Idea of the computation.

Consider the Markov partition
n—1 '
Po=\ T7(P),
i=0

where P = (K1, Ko, ..., K,) (see just below). The idea for computation
of local dimensions (1) is to replace small balls B(x,r) by elements
V. =T7"(U) € Pa(U € P) which are in the set B,  (see (29))
which cover at the limit the singularity set C, for a = F'(3). Those
elements generate a measure pg (of course singular to each other) which
is ergodic. We use the assumptions on 7" and p:

e For any V. = T""(U) := V(U) € P, there exists an element
y(U) € U such that

(23)

n—1

=exp (I (U) U]

7=0 ~1

(where the sign & expresses that the ratios of both sides are uniformly
bounded by constants), expression which controls the length of V(U).

e Since the measure p is a Gibbs measure we have following (20)

(24) p(V(U) =exp (3 €T (y(U))),

expression which controls the mass of V/(U).
It follows from the Birkhoff’s sums and the ergodicity of the dy-
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namical system that

np(B(z,r))  Inp(VU))
Inr In|V(U)|

I ey

N awwwy)

. /ﬁd#ﬁ

Hpas- JA

n—)-{—oo/Jd“ﬁ
A

=

:F/(/B)7

which gives the existence and the value of the local dimension for points
covered by the sets of the type B, (29). Otherwise it suffices to
prove for the points which do not have this property that they do not
have local dimension.

Note that it is not always possible to replace balls by elements of
the partition [O2].

4.2. Dimension spectrum.

The Markov measures that are used are in fact a special case of
Gibbs measures. These measures are associated to potentials p depend-
ing only on the first coordinate, i.e. B(z) = g(xo) for £ = (x;);>0. For
this purpose, consider the transfer operator

Ly: C°(Zh) — C2(=h)
F— > exp@) fy),

yeo~(z)

and the corresponding operator defined on measures Lz M (Ej) —
M(ZF).
Then there exist (see [Ru]):
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i) A >0 (= exp(P(9))),

ii) h € CO(XY) such that h > 0,

i) p € M),

such that Lg(h) = Ah, LZ(p) = Ap and vz = hp € My (2%)
(dvg = h(xy) dp) which is the Gibbs measure for @ and can be repre-
sented on the cylinder sets by
(25) %{QEEZ: Yo = T0y .-y Yn = Tn}

= R(zo,71) R(z1,72) -+ R(zp—1,0) p(20) ,

where we have

Aij h(z;) exp (P(z;))

Rlei, ;) = Ah(z;)

and p is an invariant probability vector: » . p; =1 and R(p) = p.
These equations define all the Markov measures v, and a fortiori
all the measures fi,,.
We compute the partition functions (7) for any pair (k, s) € N* xR,

Zu(s)= Y, wVU)* =D, > ()

V(U)EPy u€E ~eE®
p(u)>0

Let C(s) = maxyeg P(Xo = u)® and for any pair (k,m) of integers, we
have
Z(s) = Y p(1)°P(Xo=u)°
’U,EE 'YeEik)

and

Zn(s)=>_ Y. p(y)*P(Xo=0)".

We then obtain ”
Z1(8) Z(s)
=3 3 b)) [P(Xo = w) P(Xp = v))°

ueEE veFR (’y,’y’)EEI(Lk) XEi(,m)

< C(5) Ztm (s)

=C(s)) D > () P(Xe=w)*,

uweE veFR ,y//eEik-Fm)
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where v/ =~v+" iy =wueg-- e, and 4 =wveh---el,. Finally we obtain

1 1 1
% Zk(s) Ws) Zm(s) < Ws) Zk+m(s) ’

which implies that the sequence {In(Z(s)/C(s)}r>1 is subadditive,
and that the sequence {In Zj(s)/k}x>1 converges to a concave function.

Following the same method we prove (8) that for any pair (s,t) of
real numbers the sequence

- (k)
klnG (s,t) _)—+>OOG(3 t),

Gpl(s, )= > =u)’|7(7)[

u€E e gk

where

(we haved assumed that |J,| =1 for any u € F).

Framework. The dynamical systems (Ky, iy, H)ucr (respectively
(Ey, vy, 0)uce ) may be studied in the same way. Define (K, p, T') (re-
spectively (E, v, o)) be one of these sets, where the map T is a picewise
C® expanding Markov map (T’ = H™ !, foralle € E, T, ! = H,).

The measure y is the Gibbs measure of the potential ¢ € C°(K) < 0
(respectively £ € C?(E)), and J = —InT € C°(K) < 0 (respectively
J € C°(E)). We have seen that for Markov measures the associated
potentials J and & depends only on the first coordinate.

We now prove theorem A. B

Assume that P(£) = 0, if not take £ = & — P(¢) which is cohomol-
ogous to the potential &, which implies the equality g = He = [

From the expressions (23) and (24) there exists for any set V(U) =
T-"(U) € P, an element y(U) € U C P such that

(26)

Since the functions J and ¢ are C°-Holder, they are continuous on the
compact set K and therefore take their values in compact sets [a, b] and

[c,d].
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Consider for any integer i € Z N [an,bn — 1] (linear scale) the set
(27) A ={V(U) € P, : np(V(U)) € [i,i+ 1]},

and for any real number £, the integer i(3,n) such that

> o)< p(V(U))?.

V(U)eAT V(U)EAT ;5 )

Since there is a linear scale we have for any real number 3,

SVt <> YT wv))Pf

V(U)EAY 4 ) i V(U)EA?
= > wv©)”
V(U)EPn
- 22}1(13)
<@b-an > VW)~
V(U)eA™

i(B,mn)

We get therefore for any real number 3 (7),

Tz~ om0 Y wv@)’)

V(U)eA™

(28) i(B,n)
n n ’

since the elements of Aff;  have same mass ~ exp (i(3,n)).

Among the elements of A?(B,n) we make a new selection for the
length, in order to obtain elements of A?( .1 with same mass and same
length.

Therefore consider in the same way for all integer j € ZN[cn,dn—
1] (linear scale) the set

(29) Bi ={V({U) € Afig ny: MmV(U)| €j,5 +1[} -

For any real number (3, define the integer j(/3,n) such that

Yoo < Y wv)”r.

V(U)EB? V(U)EB? 4 )
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We then have for any real number g3,

vt <d Y wv)”

V(U)EB] 45 ) j V(U)eB}
= ) wvw)
VU)EAT 4 .y
<d-on Yy wV©)’,
V(U)eB?

J(B,n)

which implies for any real number j3,

H D SENCHE BF I D SRR

n n n n
V(U)EAT 45 ) V(U)EB] 5,1

Finally we have

1 1
— Iy (n(8y) Zn(B) ~ - Ing(n(8)) ( Z N(V(U))ﬁ)

(30) V(U)EBJT'L(BJL)
_aiBn) | B
PG T TG

Notice that the set B;L(ﬁyn) C A’;(ﬁ,n) consists of elements of the partition

P,, with “same” measure exp (i (5,n)) and “same” length exp (j(3,n))
= b(n(B))~™ (in the order (1/n)In), where b(n(3)) is the logarithmic
basis in the expression of the free energy function (6),

(31) { uV(U)) & exp (46, m) for all V(U) € BJg.,) -

V(U)| = exp(j(B,n)),

In fact it is the set where the distribution of the mass u(V (U))? of the
function is the largest, and this is where large deviations occur.

The aim is to determine the measures pg whose supports are the
singularity sets C,. We consider for any real number [ the following
probability measures

n—1

()= g O Dy and Gl) = - > TI6,(0)

n
Bj5.n) V(U)EBY 4 ) jzo
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(We remark that a cluster point of the sequence {(,(8)}n>1 is T-inva-
riant.)

By our assumptions, the following sequences take their values in
compact sets

1 (5,
I #B(5,) € [~d, =], Z(ﬂn") € [a,b],
IO e, ) e M.

Then there exists a sub-sequence {n}r>1, that we note for simplicity
{m}m>1 (m =m(B)), such that

1 m
Eln# j(ﬁ,m)mjoo’Y(ﬁ) €[~d,—] >0,

WBom) ) € a,b] <0,
(32) m m—+oo

IBm) gy e e d <o,

m m— 400

| Gn(B) € M(K) — (s € Mr(K).

We get finally with (30) for any real number f3,

b (1) )

1
(33) _E lnb(m(,@)) Zm(ﬁ) = Fm(ﬁ)

where v(83) and —n(/3) represent entropies and b(3) a Lyapunov expo-
nent.
Consider the functional

I:Mp(K)xR—R

We have the following fundamental result.
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Lemma 1 ([Sil]). We have for any real number 3,

F(B3) = pelngf(K) (I(p,0)) = peﬂilrif(K)(I(p, B)) -

p ergodic

The proof is given in three steps (the three following expressions):

DForall fe R, sup (~I(p.f) = sup (~I(p,f))

pEM1(K) peEM1(K)
p ergodic
2) Forall fE R, lim —F,(8) > sup (—I(p, ).
n—-+o0o pEMT(K)
p ergodic
3) Forall e R, lim —F,(B) < sup (—I(p,[3)).

The functional I is semicontinuous since the (entropy) map p —
h,(T) is expanding, i.e. two orbits never stay e-close. Its infimum is
attained since M (K) is a compact set. Since the ergodic measures are
extremal and form a Gy set in the convex set My (K), we have the first
equality. The two others are much harder to prove.

For the second step we consider an ergodic Borel probability mea-
sure p € Mp(K). The ergodic theorem implies that for p allmost every
€T,

1 n
w2 S
J:

We know that for p (where p <> p) allmost cylinders the ergodic mea-
sure 7 satisfies: p(Cy(z)) ~ e~™%(?) and |C,(z)| ~ e~™X7(?). For the
elements of the Markov partition (which correspond on the dynamical
system to the cylinders) V(U) € P,,, we have

p(V(U)) m e e and  |V(U)| m e ™),

Using the sets Bj(z.,) (29) we see that (31)

iWom) _, /Kgdp:—hp(T),

n n——+oo

3(B;n) — /KJdp:—Xp(T).

n n—4+oo
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According the Shannon-McMillan-Breiman theorem [DGS, p. 81] we
define for € > 0 the set

H(ﬁ,p,n,e) = {V(U) € Pn . Xp (T) —&< J(ﬁv n’) <-n Xp(T) + 6}7

for which there exists an integer N such that for any integer n > N,
we get

p(Hppne) >1-e and  #Hgpne > (1—¢)exp (n (hy(T)—¢)).

We get therefore for any real number g and any element V(U) €
Hg,pn.e)s

p(V(U)) > exp (ﬂn(/Kédp— ).

(+e according to the sign of the real number ), which gives for any
integer n > 1,

1
—F.(B) = - Iy (8)) Zn(6)

1
2 — yn(p) ( > P(V(U))ﬁ)
V(U)GH(ﬁ,p,n,E)

dp+¢€
S #H g pne) /K§ 0

_/—Jders /—Jdp+e
K K

hp(T)Jrﬂ/Kédp—Ze

/ —Jdp+¢
K

+ 4

v

Y

which implies that

hp(T)"‘ﬁ/ §dp
lim —F,(3) > =

n—-+00 / —Jdp
K

which ends the second step since the ergodic measure p is arbitrary.

= _I(pr)v
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For the third step, using (23), (24) and (26), we compute for any
real number [ the following integrals

;

1 1 j
T din () = < m 2/ ),
/K #Bj(g,m) V(U)EZB;’(Lﬁ,m) (m J=o ,>
% —1n [V(U)] (23)
| €en®) = op— % (L S arwn)
K #8B56,m) V(U)EBT, ) " J=0 _
=In /,L(V‘(rU)) (24)

\

Using (32) and (33) we have

ipm _, n(m:/K&dcﬁ,

m m——+oo

J(ﬂam) :—b(ﬂ,m) — _b(ﬂ):/KJdCﬁ

m m—+oo

We get finally for any real number g3,

1 1(6)+ 5 ¢dgy
(34) - Ny (m(8)) Zm(B) = —Fm(ﬁ)m::oo K :
| -
K

In this expression we do not know the value v(3) which satisfies the
following.

Lemma 2. For all f € R, v(8) < he,.

This estimate uses a standard argument of Misiurewicz [DGS,
p. 145].
It implies that (34) becomes for any real number £,

which implies that

_Fm(/B) < sup (—I(p, ﬁ))
peMT(K)
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Remember that the sequence {—F;,(8)}m>1 is a subsequence (32),
which implies that

m _Fn/B S sup —1I 7ﬁ ’
JE P < sw (<1(6.5)

which ends the third step and the proof of Lemma 1.
By the same way we prove that for any pair (z,y) € R? we have
(35)

Gp(z,y) =P(x&+yJ)= sup (hp(T)+/(a:§+yJ)dp).
pPEMT (K) K

This function is real analytic in both variables, and by the way it is
computed we have

(35) Gp(s,t) =In¢(s,t).

Finally define the Gibbs measure pg associated to the potential {g =
B¢ — F(B)J. We verify that we have for any real number /3,

() Ples) = PEE—FA D= sw () + [ gap) =0,

pPEMy (K)

It implies that the unique measure which achieves the value 0 is the
Gibbs measure pg. Replacing this result in the expression of the free
energy function, we obtain

hp<T>+ﬂ/ ¢dp hug(T)+5/§dlLﬁ
61 PO = _ Eﬁ‘(K)( K >: o
T Jd Jd
/K ) /K g

for all # € R. Since we have for any real number f3,

(38) Gp (6,9 (8)) =Ing(B,¥(8)) =0 =Gp(B,—F(p)),

we have ' = —1, which ends the proof of Theorem A.

Since the pressure is differentiable (36), by differentiating the fol-
lowing expression

P& —F(B)J) =0,
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we get for any real number 3 (22),

oP

e 0 =F ) = [ €ans <0
and aP

3—y(ﬂ,—F(ﬂ))=/KJduﬂ<0-

We then obtain for any real number [,

/ﬁd#ﬁ
K >0.

Lz
K

Differentiating once more, we obtain for any real number 5 [M], [Ma),

[R], [Sit],

(39) F'(B) =

(DD , (0PN (0%P
F©2(57) =2 0) (509,) + (522)
oP
( ox )

We prove that F” < 0 if and only if the functions ¢ et J are not

cohomologous to constants [Ru] (if not F is linear).
Consider the Legendre-Fenchel transform of F' (5). Since F' is at

least C? (it is real analytic) and according to the theory of conjugate
functions [E], we have for the function f and any real number £,

F'(B) = (8,~F(8)) < 0.

O[:F/(ﬁ),

40 a)+ F =« if and only if
(10)  fla)+F(B) =aB y {ﬁzf@%

We then obtain (37) for any real number 3,

d
B hNB(T) _/Kfﬂ ua .
— — =d,, .
Xug(T) /Jd,ug ?
K

In the degenerate case, the free energy function F is linear 8 — d,, (8—
1), and the dimension spectrum f =d = d, = HD(u).

(41)  f(E'(B) = BE'(B) — F(B)
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If not the free energy function is strictly increasing and strictly
concave. This implies in particular that the dimension spectrum f is
real analytic on the interval |min, max[ Where

Omin = inf F’ = lim F'
(42)

Omax = sup F'(B) = lim F'(B),
BER B——o0

and strictly concave since for any o = F'() € |omin, @max| s

1
- F”(ﬁ)

In the expression (32) and the existence of the limit F(3), we have for
any real number 3, (g = pg. The sets BY; ) from (29) cover at the
limit the singularity set C,, where oo = () = F'(8) (see Section 4.1).

We can prove directly [CLP], [Sil] that f(«) = HD(C,). Here we
have parametrized all the fractal sets {Cy()}ger, and we have asso-
ciated to the Gibbs measure p a family of Gibbs measures {ug}ser
(respectively v and the family {vg}ser) where ug has the potential
BE—F(B)J € C°(K) (respectively 3¢ — F(B) J € C°(E)).

Let pi_o (respectively pyoo) be a cluster point of the pg when
B — —oo (respectively § — +00) — respectively v_,, and vio in
M,(E). It is clear with (13) that we obtain the extremal points .
given in (39) and the corresponding singularity sets C, . Remark that
the way there are given they may be not well defined. But in Section 6
we see that they are uniquely determined.

We have thus proved Theorem B which contains Theorem 2 (Sec-
tion 2).

<0.

f// (a)

REMARKS. 1) We have:

e P(0) = ~HD(K) = d; f(F'(0)) = sup f(a) = d.

e F(1) =0; f(F'(1)) = F'(1) and the tangeant of the graph o ——
f(c) at the point & = F'(1) = d,, is the line y = x. Moreover we have
[ = p.

2) For any 8 € R and a = F'(8) we have ug(C,) = 1 (therefore
the pg are singular to each other), the measure g is exact dimensional
since d,, = HD(ug) = f(a). The tangent of the graph a — f(«)
at the point a = «(f) = F'(f) is the line y = oz — F(B) (41). The

measure j is also exact dimensional since p1 = p.
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5. Multifractal spectra of entropy and Lyapunov.

The multifractal spectra of entropy, (9) and (10), and Lyapunov
exponents, (11) and (12), are given by the following.
Let us define (there are same values when using the subshift E =

X%
Tmin = 1n£/ _é dluﬂ = M40 5
BeER JK
Tmax = sug/ —§dpp = 1N—co
BeR/K
(44)
ﬁmin == 1Ilf;‘/ —Jd,ug == 19-{—00 s
BERJK

Ymax = sup/ —Jdpg =9_ -
BeRVK

In the degenerate case for the dimension spectrum, the two spectra are
simultaneously degenerate: hence the functions ¢ and J are cohomol-
ogous to constants. In this situation the two intervals [fmin, max] and
[Umin, Umax| are reduced to points h, and Xy

Otherwise at least one of the two spectra is not degenerate. This
means that at least two of the three spectra (plus dimension spectrum)
are not degenerate, and therefore one of the functions F, (10) and L,
(12) is real analytic on an open interval.

PrOOF OF THEOREM C. Suppose that for some 1 ¢ [Mmin, Jmax] We
have E(n) # @ (10). The concentration of the measures vz and v are
given on E by expansions of the type (26)

(45) Y@ wmd YT,
For any z € E(n) we have
AN E @),
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and for any 3 € R, vg(E(n)) = 0 since n & [fmin, Tmax] because the last
expression converges to

/ —E dV,B € [nminvnmax] .
E

We obtain in the same way the following convergence

n—+oo

_% i j(o'j () — U ¢ [Umin, Imax] -

We have on a set €2 the existence of local dimension : for all x € €,
dy(z) = n/9. On the other hand we have for any 8 € R, v5(Q2) = 0
implies E(n) C {z : d,(z) does not exist}, which gives a contradiction.

In fact the sequences in (45) are in the domain of attraction of the
measure vg, and therefore we have

(n,9) = (/E—Zdyg,/E—jdyﬁ) (: (/K—fd,ug,/K—Jdp,ﬁ>),

Then we obtain for & = F'(8) the spectra (10) and (12)

and
En(n) = Ly(ﬂ) = HD(Ca) = f(a) = dua

which gives Theorem C.

6. Multi-multifractal, extremal measures and graphs.

In the multifractal analysis of a measure p the support K is decom-
posed into fractal sets which represent the singularity sets (level sets
for local dimension or other spectra) and of course the sets of points
which do not have local dimension.

The idea for multi-multifractal analysis is to iterate infinitely this
process and refine the decompositions. The interesting case is when
the dimension spectrum is nondegenerate (if not all the spectra are
degenerate and constants). We introduce multi-multifractal analysis
for dimension, but notice that the constructions for the other spectra
are similar.
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In the nondegenerate case we define a set of Gibbs measures (we
omit the measures p4o since we show that they are uniform on their
supports, and in particular pq = p) Mo(p) = {pg}ser where the sin-
gularity sets C, satisfy for a = F'(3),

pp(Co) =1 and  HD(Cy) = f(@) = HD(ug) = dy, .

Then multifractal analysis can be represented by the triple (u,F,

Mo(p))-

In fact it is possible to define many infinite sequences of multifractal
spectra. Let us describe the second step.

First fix # € R\{1} and realize the multifractal analysis for the
measure pg. Define for (p,7) € Mp(K) x R,

hp(T)+7'/K§ﬁdP
Ii(p,7) = and Fi(p,7)= inf (Ii(p,7)).
1(p; 7) /Jdp 1(ps 7) pEMT(K)( 1(p, 7))
K

We have the following:

e at the first step: p = pe «— B e R, F(B) = I(ug,B) «— &3 =
BE— F(B)J, ppg = pey < f(a) = dy, for a = F'(B),

e at the second step: pg = pg, «— 7 € R, Fi(7) = Ii (pg,r, 7) <
G = 765 — Fi(T), g = pic, & f1(@) = d,, = HD(Cpa) for
o= F{(B) and Cpo = {x € K 1 dy, () = a}. T M (up) = {1p,r}res.
we have then defined a new triple (ug, Fi1, M1(ug)).

We can iterate this construction step by step at any level.

Suppose that multifractal analysis has been defined at level n. We
have then for (3,...,08,_1) € R*~1 a triple

(Nﬁh---,ﬁnfl ) Fﬁl:---yﬁn717 {Nﬁl,---,ﬁnfl,ﬁ}ﬁER)

and

HB1,...Bn—1 = Hép, .5,
B €R, Fp, .. g, .(Bn)
= On €ER, gy piB s s, sy 6
< f(a) =HD(Cp,.,...8, 1,0) = HD(kp,,..., 1.8.) 5
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fora=F; 5  (Bn) where we have

| B(z,
Cﬂly---,ﬂn_ha — {.I : Il,uﬂl,...,ﬁn—1( (-T 7“))_>a} .
Inr r—0

We have then defined a new triple

(uﬂla"'vﬂn—laﬂn7Fﬂl:"'aﬂﬂ—laﬂﬂ’ {uﬂly"'vﬂn—lyﬂnyﬂ}ﬂeR) ?

where we omit the two extremal measures pg, ... g, .8, +oc-

If at the first level the spectrum is nondegenerate, then it is non-
degenerate at any level. We have seen that it is degenerate at the first
level if and only if the two potentials & and J are cohomologous to con-
stants. Since at any level it is a linear combination of the functions &
and J it is never degenerate.

Concerning local Lyapunov exponents this is the same behaviour
than for dimension. If the multi-multifractal spectrum is nondegenerate
at the first step (J is not cohomologous to a constant), then it is not
degenerate at any step.

The behaviour for local entropies is different. For example at the
first level it may be degenerate (£ is cohomologous to a constant), but
at the second level it may be not since for any real number g # 1,
¢ = & — F(B)J is not cohomologous to a constant, and in fact it is
not at any further level.

We omit at each step the extremal measures pg, ... g8, 8, ,400 Ob-
tained at the limits when |3] goes to +00. In fact at any level these
measures are uniform on their supports and then imply degenerate spec-
tra.

We will see it on a very simple example on the unit interval, namely
a linear Markov map modeled by the full shift on 3 symbols.

Let us describe this dynamical system by the following simple
model.

..............................

UM L - P"h 1}
3 3

Figure 1. The measure p given by p; + 2pg = 1.
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(for example py = 0.3 and p; = 0.4), and

LA\JA‘ YA y v.vV \\ff{}/{
AR B
Poz §1" Plz %— Po P1

Figure 2. The measure p given at the second step (and so on...).

In the computation of the partition functions (7), the different sets

Bl 5, that are selected (29) (= A% ) (27) since J is constant: the

partitions are uniform, |V(U)| = 37") when 8 — 400, are in fact
the intervals where the distribution of the mass p(V (U)) is the largest.
They are actually the central intervals [1/2—1/(2-3"),1/2+1/(2-3"™)]
of measure p} which covers at the limit the set {1/2}. We have then
Poyoo = 0172 and dy, = 0.

When g — —o0, it is the set of intervals where the distribution
of the mass u(V(U)) is the smallest. In fact we select the sets

gn-1l_1

([ 25 o[ )

k=0

composed of 2" intervals of measure pf, which cover at the limit the
tryadic Cantor set. We obtain therefore that p_o is the uniform mea-
sure on the Cantor set for which the dimension spectrum is degenerate
at the point d, _ =1In2/In3.

The multifractal analysis implies the following results.

1) HD({z : d,(x) does not exists }) = 1. This set contains for
example the set of points obtained by iterations of the boundaries: for
these special points we have

In pq

In pg
In3

CIn3

d,(r) = 4o = and dy(2) = 0o =
In higher dimension n > 2, this set contains iterates of the boundaries of
the Markov partition (countable in dimension 1) and then has Hausdorff
dimension greater or equal to 1 (equal to n in general).
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2) The dimension spectrum is real analytic on the interval |4,
ool -

3) For all B € R, pg is exact dimensional and d,,, = BF'(8) — F(5)
where we have

B B
F(p) = -REIER) g ) =

2pgInpg + pf Inp,
(2p) +p7)In3

For 8 =1, u1 = p is exact dimensional.

We see that the extremal measures p4, are uniform measures on
their supports. This phenomenon seems to be general, and it is quite
clear for linear Markov maps equipped with Gibbs measures. The next
step is for subshifts of finite type where things are more complicated
(case of the digraph recursive fractals) in the nondegenerate case.

We have seen in (29) that for any real number § the set Bf;
consists of elements of the Markov partition P,, (of “same” measure
exp (i(B,n)) and “same” length exp (j(5,n)) ~ b(B,n)~™ in the order
(1/m) In) indicates at the step n the distribution of the mass u(V (U))?
of the partition function (7) and where the large deviations occur (6).

In the order (1/n)ln some small variations for the mass of the
elements of B;?( g,n) Oceur which imply the multifractality of the measure
pp (multi-multifractality at the second level).

The situation is different for the extremal measures pi., given by
the limits of the measures pg when |G| — +o0.

For the measure p_o, the elements of P,, which cover at the limit
the set K(—>) are those which satisfy the following:

0 <p(V(U)) = pomn p(V([U)).

In the same way, for the measure p4 the elements of P, which cover
at the limit the set K(+>) are those which satisfy the following

0 <p(V(U)) = p i p(V([U)).

In our example these sets are respectively the 2™ intervals of measures
pgy and the central intervals of measures p7.

Therefore if we want to realize the multi-multifractality analysis of
the measures p14+, at the second level, we get for example pi_oo —oo =
Peoo aNd flyoo 400 = Htoo and finally for any 7 € R, Peoor = P—oo
and fi4oo,r = H4oo- This gives Theorem D.
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Here we present the different graphs of the functions we have stud-
ied for the particular values: pg = 0.3 and p; = 0.4: Figure 3: the
function F'; Figure 4: the derivative F’; Figure 5: the function which
represents the distribution of 3 +—— d,,; (see (41); Figure 6: the di-
mension spectrum : o — f(a).

-20 -10 D 10 20

Figure 3. The free energy function F': R — R, g+ F(f).

1.057
14
0.954
0.9
0.854
-20 -10 0 10 20

Figure 4. The derivative of the free energy function

F': R —aio, 0 oo, B+— F'(B).
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0.8
0.6
0.4

0.2

Figure 5. The parametrized dimension spectrum

fp : R —]0,1], 8+ BF'(B) — F(B).

0.8
Log2
Log3
0.6
40 =0,834
04 L a0 = HD(u) =0,991
’ oy = 1,009
oo =1,096
0.2
Qoo « ap ag X—oo

Figure 6. The dimension spectrum
f : [a-i'oova—oo] — [07 1]7 o — f(a)
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7. Discussion and questions.

We may summarize the differents results concerning the measure
p- The measure p is exact dimensional, i.e. d,(x) = h,/x,p almost
everywhere, although we have the following

HD({z : d,(z) does not exist}) =n.

For o = F'(1) = d,,, we have u(K(®) = 1 which gives the completness
of the measure.

There are limiting constructions for the K(® when o — a4o0.
The sets K(@t=) are the supports of the measures fi4oo which are
uniform on their supports. Therefore their multifractal and multi-
multifractal are reduced to points

hy o h
d, = = and d =

— oo Moo -
Xb— oo Xptoo

Hrtoo

The disjointness conditions on the sets .J(y) are those for Markov parti-
tions, i.e. the interiors are disjoints and they intersect at most at their
boundaries which are of measure 0 for any Gibbs measure. Like for the
example, all the points on the boundaries belong to the set

{z : d, () does not exist}

which is not countable in dimension geater or equal to 2.

If the graph is not strongly connected, we analyse all the strongly
connected components of the graph, i.e. if the matrix A (see Section
3.1) is not reducible, we decompose it into irreducible components.

To each irreducible component Agj<) j<p We associate in the same
fashion as in the digraph recursive fractal sets the singularity sets and
the different dimension spectra which may or not intersect with the
others. For any value & € [umin, max], there are at most p different
singularity sets where c¥ = {z : d,(r) = o} (which may be = @),
and therefore we define

fla) = max HD(C{)) (= —o0 if all the singularity sets are &)
<i<p

— ©))
11%1?5)(11 / (a) ’

where fU) is the dimension spectrum of the measure j restricted to the
set generated by the j-th strongly connected component.
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The result means that we get for any positive real number «, f(«)

to be the greatest Hausdorff dimension of the singularity sets C&J ) (since
we have the following: HD(E U F') = max {HD(E), HD(F)}).

We have seen in (43) in the nondegenerate case that F'" < 0 (if and
only if the Holder continuous functions £ and J are not cohomologous
to constants), and we get finally that f” < 0 on |amin, @max| Since we
have f"(a) = 1/F"(B). Then we have for any real number 5 € R and
@ € |amins max|, F" () < 0 and f"”(a) < 0, and the value 0 is never
achieved.

The challenging question at this moment comes from the concept of
rigidity and the conjecture that the dimension spectrum is an invariant
for dynamical systems modeled by subshifts of finite type.

Rigidity deals with an important problem which is to know if we
can restore the dynamics of a dynamical system by recovering infor-
mation from the different spectra. The aim is to obtain a physical
classification of dynamical systems given by maps and Gibbs measures.

Let (X, p, T) and (Y, p, S) be two topologically equivalent dynam-
ical systems, i.e. there exists a homeomorphism h : X — Y. The
problem is to know if some of their multifractal spectra coincide then
they are smoothly equivalent and h is a diffeomorphism. If there exists
a topological conjugacy ¢ between 71" and S, we want to find in all the
class of conjugacies a homeomorphism ¢ preserving the differentiable
structure, T' = S o ¢, and also measure preserving, u = p o ¢.

This has been proved in [BPS2] in a very particular case, namely
one-dimensional (and two-dimensional) linear Markov maps of [0, 1] (or
[0,1]?) modeled by the full shift on two symbols (where all the things
work). We believe that this assertion is true for linear Markov maps of
the unit interval (or [0, 1]?) modeled by the full shift on p > 2 symbols.
The generalization of this statement will be for arbitrary subshifts of
finite type Ejg.

We believe that multifractal dimension spectrum is only needed
to recover information, but if necessary one can use multi-multifractal
analysis.
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