REv. Mat. IBEROAM, 17 (2001), 179-193

On certain Markov processes
attached to exponential
functionals of Brownian motion;

application to Asian options

Catherine Donati-Martin, Raouf Ghomrasni and Marc Yor

Abstract. We obtain a closed formula for the Laplace transform of
the first moment of certain exponential functionals of Brownian motion
with drift, which gives the price of Asian options. The proof relies on
an identity in law between the average on [0, t] of a geometric Brownian
motion and the value at time ¢ of a Markov process, for which we can
compute explicitly the resolvent.

1. Introduction.

The aim of this paper is two-fold:

i) We take up the computation of the value of a continuously aver-
aged Asian option in a Black-Scholes setting, with initial price normal-
ized to 1, at maturity date ¢, and strike k, i.e. E[(A%" — k)*] where
APb = f(f ds exp (a Bs + bs) and (Bs;s > 0) denotes a one dimen-
sional Brownian motion. The computation of the general price, which
involves r the instantaneous risk-free rate easily reduces to the previous
computation (for details, see [4, p. 354-355]).

However, our approach in the present paper is very different from
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that in Geman-Yor [3], [4], or Yor [19], which relies very heavily upon
Lamperti’s representation

(1.1) exp (By +vt) = RW(AM),  t>0,

where A§”) = f(f ds exp (2(Bs +vs)), and (R (u);u > 0) denotes a
Bessel process with index v.

In the present paper, rather than relying on (1.1), we shall use the
following remark

aw)

t
(1.2) ALP (law exp (aBt+bt)/ ds exp (—(a Bs+bs)),
0

for any fixed ¢ > 0, which is a very particular case of a general identity
in law involving the generalized Ornstein-Uhlenbeck processes discussed
in Section 2 below.

An important fact is that the right-hand side of (1.2) defines the
value at time ¢ of a Markov process (Y;*’;¢ > 0). This remark being
made, we write

(1.3) E[(AY" = k)T = B[(Y,"" — k)*],

and we develop the right-hand side of (1.3) using It6-Tanaka formula.

It turns out than we can compute explicitly the density of the
resolvent of Y% so that, finally, we obtain another derivation of the
main results of Geman-Yor (see [3], [19]).

ii) The second aim of this paper is to present, throughout the text,
a more complete view of the bibliography about exponential functionals
of Lévy processes than in the Monograph [21]; the incompleteness of
the bibliography in [21] is the sole responsability of the third author
of the present paper. In particular, we refer to Urbanik [16], [17] for
the study of the law of fooo exp (—u X¢) dt for a positive Lévy process X
and to Paulsen [14] and co-authors ([13], [5]) for computations of the
laws of randomly discounted integrals [~ exp (—X;) dP;, where X and
P are two independent Lévy processes.

Concerning the price of Asian options, we also mention the work
of Rogers-Shi [15] which gives interesting lower and upper bounds for
the price.

In a different direction, Leblanc’s work [12] deals with the joint law
of

¢ t
<6Xp(Bt—|—Vt),/ exp(Bs+Vs)ds,/ epo(Bs—H/s)ds).
0 0
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We now hope that, together with the references found in [21] concern-
ing exponential functionals of Lévy processes, this paper offers a more
reasonably complete bibliography (than in [21]). Needless to say, any
new omission of relevant work is not intended.

2. On generalized Ornstein-Uhlenbeck processes.

It is a remarkable fact that, if {(&,n:);t > 0} is a two-dimensional
Lévy process with respect to a filtration (F3), then the process defined
by

(2.1) X; = exp (&) (a: + /Ot exp (—&,-) dns>

is also a Markov process. Cases of particular interest involve indepen-
dent ¢ and n, but this independence hypothesis is not necessary.

Some of these processes have been studied in the literature. The
case where £ = As and 7 is a Brownian motion gives the usual Orn-
stein-Uhlenbeck process of parameter A\. Hadjiev [7] considers the case
where & = As and 7 is a Lévy process without positive jumps and
determines the distribution of the hitting times for X. Gravereaux [6]
studies the case where 7 is a d-dimensional Lévy process and {5 = sh
where h is a linear map on R?, and looks for the existence of an invariant
measure. We also refer to Jurek [9] for the condition on 7 insuring the
existence of [ exp (As) dn for A < 0 and to Jacod [8] for the study of
(2.1) when the initial condition z is replaced by an anticipating random
variable.

Yor [22] considers the process X for £ and 7 two independent Brow-
nian motions with respective drifts p and v and deduces from Propo-
sition 2.1 below the law of a subordinated perpetuity, a result already
obtained by Paulsen [14] by a different method.

We also mention the work of de Haan-Karandikar [10] where the
Markov process X appears as the solution of a “SDE” of the form

X, =AX,+ By, s<t,

for random variables {Af, Bf; s < t} satisfying compatibility conditions
and certain independence and stationarity properties.

These Markov processes are related to exponential functionals of
Lévy processes via the following:
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Proposition 2.1. Let & and n be two independent Lévy processes, then
for fixed t,

o (exp(&).exp () [ expl(=6. ) an,)

(law) (exp (&), /Ot exp(&s-) dns) X

This identity follows from the invariance by time reversal of the
distribution of a Lévy process. We refer to Carmona-Petit-Yor in [21]
for applications of this result.

Corollary 2.1. Consider the Lévy process
ft = —(Ct + O'Bt + Tt+ - Tt_) 5

where (1355t > 0) are subordinators without drift and Lévy measures
vy ; B is a Brownian motion and the processes B, 7T, 77 are inde-
pendent. We denote by ®(A\) the Lévy exponent of £ determined by

E(exp (A&)) = exp (=t 2(A)).
Let

t
At:/o exp (&) ds

and

t
Xi = exp (5,5)/0 exp (—&s) ds.

T, denotes an exponential variable of parameter a, independent of £.
i) The law po of Ar, satisfies

1 *
(2.3) Proy = EL Lo s on (0,00),
where L denotes the infinitesimal generator of the Markov process X.
ii) In particular, the moments of Ar, satisfy

m

(2.4) E[AT ] = o B(m)

E[A7, ],

form >0 and o + ®(m) > 0.
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iii) Finally, if Aw < 00 almost surely, then pg, the law of A,
solves L* py = 0.

PRroOOF. i) From Proposition 2.1, for f € Dom(L),

E[f(A:)] = E[f(X3)]
_ f(O)—i-E[/Oth(Xs)ds]

_ F0)+ / B[LJ(A,)]ds

Thus,
E[f(Ar.)] = £(0) + a / " dt exp (—at) / EILF(A,)] ds

= 10)+ [ dt exp () BLLF ()] =  ELF(Ar, )

proving (2.3), as we restrict f to C((0,00)), and use integration by
parts.

ii) (2.4) has already been obtained by Carmona-Petit-Yor in [21].
We give another proof relying on (2.3).
The generator L of X is given by (see [21, p. 81])

2

Li@) = T a (@) + (("7 1)@

/f y+ ln du+/ ' (u ())du

where 7 is the tail of v. (We point out a misprint in the formula given
in [21, p. 81] where the sign minus before the coefficient of f” must be
deleted).

An easy computation shows that if f,,(x) := 2™, m > 0, then

Lfn(z) = (%2 m? —cm + /Ooo(exp (—m2z) — 1) 74 (dz)

T /0 " exp (m2) = 1)7-(d2) fu &) + m fons (@)
= —®(m) fm(z) + mfr_1(z).
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Thus, from (2.3),
m 1 m—1 m
BIAR,) = & Elm A7 — ®(m) AR

hence
m

E[AT ] = a+ o(m)

E[A77Y].

iii) It suffices to multiply both sides of (2.3) by a and to let «
converge to 0.

3. Application to the computation of the price of Asian op-
tions.
We take up (1.3) again, i.e.
E[(A}" = k)*] = BI(Y;"" - k)],

where
t
Y4t (x) = exp (a By + bt) (a: + / ds exp (—(a Bs + bs)))
0

is a Markov process and we write simply Y,*" for V;*(0). It may
be worth mentioning that these processes come up as an important
example throughout Arnold’s book [1].

Proposition 3.1. The process Y, (z) is the solution of the equation

Yt:x+a/0tdBuYu+/0tdu<(a;+b)Yu+1).
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ProoF. This is immediate, using Ito’s formula, and Fubini’s theorem.

By scaling, we may and we shall assume that a?/2 = 1 and we set
Y, = YV2¥,

Theorem 3.1. We denote by U, the resolvent of the Markov process
Y,, that is

Unf(z) = /OOO exp (—at) By[f(Y, (1)) dt

Then, the resolvent U, admits a density which is given by

F(V + u) i .
wa@9) = T (oaw () ew (=)@ ew
(3.1) i @) e (= 1) wale) ).

for x,y > 0 where

(3.2) p1(z) = (%)(VW)/z‘P(V;M;IJru; i)
(3.3) pa(z) = <i>(y+u)/2‘1’(’/;“;l+u;%),

with p = Vv2 +4a and ® and ¥ denote the confluent hypergeometric
functions of first and second kind (see Lebedev [11, Section 9.9)).

PROOF. Let f be a bounded function on Ry. The function u(z) :=
Uaf(x) solves the differential equation (ol — L)u(x) = f(z) where
L denotes the infinitesimal generator of Y,. Thus, u is the bounded
solution of

2

(3.4) 2? % u(z)+ (1+v)x+1) %u(m) —au(r)+ f(z) =0.

Let us consider the homogeneous equation associated to (3.4)

(3.5) 2?2y +(1+v)z+1)y —ay=0.
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Then, ¢ and @9, given by (3.2) and (3.3) are two independent solutions
of (3.5). Moreover, ¢; is bounded near +o0o and ¢y is bounded near
0 (¢2(0) = 1). Now, we are looking for a solution of (3.4) of the form

u(z) = a1(z) p1(x) + az(x) p2(z) with
ay(z) p1(7) + as(z) pa(z) = 0,

04 (2) ¢4 (2) + 0 (2) ) = 2
Then,
Oéll(.T) _ f(‘r) (102(‘77) al (.T) . _f(‘r) (,01(.1‘)

W (1, p2) () 22’ 2T Wer, p2)(w) 22
where the Wronskian W (p1, p2)(z) is given by

C(14p) (1\HY 1
W (1, p2)(x) = V7(5> exp (;)
r(*3")

(see [11, (9.10.10)]). Using the boundary conditions on ¢, ¢z, the
bounded solution of (3.4) is glven by

/ W(pr, dt) p1(z)

/ W 801 o2)( )) 2 dt)(pz(aﬂ).
1).

(3.6)

This gives formula (3.1)

Corollary 3.1. Let T,, be an exponential time with parameter « inde-

pendent from B; then the density of Af’” s given by

r(5")
ky(z) =a —=2—"

(3.7) I'(1+ p)

1 1
- exp (— —)@<V+M;1+,u;—>.
T 2 x

(l) I+(p—v)/2
x

For a > v+ 1, we have

)l G el
1) -1
2 i 2

r(1+u)r(“;”)

I
E[(AY>" — k)T = (

(3.8) -kl—W—”)/%xp(— %)@(”;“ + 214 %)
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Proor. 1) From (1.3), the distribution of A}f’" is the same as the
distribution of Y, (T, ), that is o ua(0,y) dy. Thus, (3.7) follows from
(3.1) and ¢2(0) = 1.

2) E[(Agf’y — k)] = aU, fx(0) for fr(z) = (x —k)*. From (3.1),
v+ pu
M)

1 v+ 1
e (- Do (E
eXp( t) g it

and the integral converges for « > v + 1. Now, we have the following
relation

/koo(t - k)<%)1+(u—'/)/2 exp (_ %)@(V;—’u, L+ p; %)dt

59 - r(tr ) =02 gy (— Do (HE 451 4 )
r(-+1) k 2 k

(see Lebedev [11, 21. p. 279] and Yor [19, Chapter 6] for a probabilistic
proof of this relation) and (3.8) follows.

REMARK. 1) Formula (3.8) yields the result of Geman and Yor [3, (2)]
since, by scaling,

B(aR - 55) | =3 8(axlr - 2)]

2) We can decompose the right-hand side of (1.3) using It6-Tanaka
formula

Bl - 0= [ as[((% +0)%e+ 1) 1] + 5 F1LEL

where (LF;t > 0) denotes the local time of Y% at level k. Thus, the
quantity C*°(t, k) := E[(Y; — k)T] can be decomposed as

2
1
C(t, k) = (% + b) CYY(t k) + C3 (1, k) + 5 C5 (¢, k),
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where

. t
Co0(t, k) = / ds E1Y, 10y, 1]
0

t
Cob(t, k) = / ds ELy. o]
0

[ C37"(t, k) = BILf].

We restrict ourselves to the case a = v/2, b = v and we delete the
superscripts in C.
From Proposition 3.1, we can compute the Laplace transform

/ it exp(—at) Ci(t, k)

for : = 1,2,3. For ¢ = 3, from the occupation density formula

t [e’)
/ F(Y2) d(Y), = / F(y) LY dy.,
0 0
it follows that
E[LY. ] = 2y% ua(0,y)

Now,
E[Cy(Ty, k)]
_ /0 " exp (—at) Bl gy o] dt
= Uy 14553 (0)
(")

R [ e (- (g a

Now, the following relation holds (see Lebedev [11, 21. p. 279])
0 ]\ 1+(u—v)/2 I\ v+p 1
fk (7) exp (=g )o(Fy iy )

2 1 1
_ f (=2 exp<— —)<I>(V+“+1;1+u; —).
pw—v k 2 k

(3.10)
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In the same way,
E[C1(Ta, k)]

_F(V—;—u> 00 1\ 14+ (u—r)/2 1 o V+u'1 1 d
—m/k (%) exp (= )@ ( i1+ mg ),

which can be expressed in term of ®((v + u)/2 + 151 + p;1/k) and
O((v+ p)/24 2;1+ p;1/k) using the two relations (3.9) and (3.10).
In terms of confluent hypergeometric functions, the equality

1
BlC(Ta, k)] = (1 +v) E|C1(Ta, k)] + E[Co(Ta, k)] + 5 B[Cs(Ta, k)]
corresponds to the recurrence relation
(b—a)®(a—1;b;2)+ (2a—b+ 2z) P(a;b;2) —aP(a+ 1;b;2) =0

(see [11, (9.9.10)]).

4. Some finite dimensional Markov processes.

It was shown in [2], [20] that, for a # 0, and b > 0,

(4.1) the variable / ds exp (a Bs —bs) is distributed as — ,
0 a Z2b/0t2

where Z, is a gamma variable with parameter v, i.e.

dtt’—1le™?

P(Z, edt) = T

However, in [21], the joint law of

{/ ds exp (a; Bs — b; s) , izl,?f"an}v
0

for different constants a;, b; could not be obtained.
In this section, using (1.2), we can express this law as the invariant
measure of a Markov process. Indeed, we consider jointly the one-

dimensional Markov processes (Yt(i); t > 0) defined as

v\ = / ds exp (¢ — ¢y, t>0,
0
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where 5,@ = a; By+b; t, and (B;) is a one-dimensional Brownian motion.
Of course, these processes are not independent, and jointly, they
constitute a (Ry)™-valued Markov process, specified in the following:

Thorem 4.1. The process Y; = (Yt(l),...,Yt(")), t >0 s a Markov
process, whose infinitesimal generator coincides on C%((0,00)™) with

(Za y? oy Z—f—ZZazajy,yja o )

oy Yi 0y
= a? 0
+;<(7+bi)yi+1)a—yi .

We are now interested in the case where b; < 0, for every 7. In this
case, since

y® (2 / ds exp (61),
0

the vector Y; = (Yt(l), e ,Yt(")) converges in law, towards
U=UWMUu®, . . um),

where U = [* ds exp ( {0y,

Our aim now is to describe p, the joint law of the random vector
U.

Just as in Carmona-Petit-Yor in [21], we note that p is the unique
invariant measure of the Markov process Y'; hence, it satisfies: uL = 0,
i.e.

(4.2) for all f € CZ((R)"), (u, Lfy =0.

Let us assume that p(dy) = k(y) dy, where y denotes the generic ele-
ment in (R4 )™, and dy is Lebesgue’s measure on (Ry)™.
Now, from (4.2), it follows that

1/« 02 02
5( 38 2 (yz k +2Zaza3 Dy, 8 (yz yjk(y))>
=1 1<J
(4.3)

n 2

=3 (5 ) 5 ko)) + 5 () =o.

=1
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We check that in the case n = 1, we recover the result (4.1). Indeed,
the density (k(u),u > 0) of X =¢/Z, is

c

k() = gyt o0 (= ).

where we have denoted ¢ = 2/a?, and v = 2b/a?.
On the other hand, for n =1, and a; = a, by = —b, (4.3) becomes

(4.4) (W k(y)" — (L+v) (yk(y)) —ck'(y) =0,
and we easily verify that the density k defined above solves (4.4).

REMARK. 1) Unfortunately, except in the case n = 1, it does not seem
easy to solve (4.2), i.e. to find explicitly the density of U. It may be
easier to find the Laplace transform 1 of U. From (4.3), we can easily
deduce the equation satisfied by %, that is

(4.5) Ew(x) = (ix»z&(m), r e R},

where

o S A ERIT

1<j

with the boundary conditions ¢ (0) = 1 and lim,_, ¥ (x) = 0.

For n =1, (4.5) is a particular case of Theorem 3.3 of Paulsen [14]
where it is shown that the Laplace transform of a randomly discounted
integral solves an integro-differential equation.

2) For n = 2, the Laplace transform of U = (UM, U?)) is obtained
[22] in the two particular cases where

0],
1) a; = —ag =2 and b; = by = —1.
2) a; =2a3 =2 and by =2be = p (p < 0).

in [2
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