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On pseudospheres

that are quasispheres

John L. Lewis and Andrew Vogel

Abstract. We construct bounded domains D not equal to a ball in
n > 3 dimensional Euclidean space, R™, for which 0D is homeomorphic
to a sphere under a quasiconformal mapping of R” and such that n —1
dimensional Hausdorff measure equals harmonic measure on 0D.

1. Introduction.

Denote points in Euclidean space, R*, by = = (z1,...,z,) and let
E,0F, denote the closure and boundary of E C R", respectively. Put
B(z,r) ={y: |ly—z| < r}and S(z,r) = {y : |y — x| = r} when
r > 0. Define k dimensional Hausdorff measure, 1 < k£ < n, in R” as
follows: For fixed 6 > 0 and £ C R", let L(0) = {B(=z;,r;)} be such
that £ C UB(z;,7;) and 0 < 7; < d,i=1,2,... Set

#(E) = int (Y alk)rf).,

L(9)
where (k) denotes the volume of the unit ball in R*¥. Then

Hk(E):%E%(p’g(E), 1<k<n.

Let D be a bounded domain in R® with 0 € D and H"~}(0D) < +o0.
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222 J. L. LEwis AND A. VOGEL
Then 0D is said to be a pseudo sphere (see [S]) if

a) D # ball and there is a homeomorphism
[ R* — R with f(S(0,1)) =0D,

1.1
(1) b) h(0) = a/ hdH"™' | whenever h is harmonic
aD

in D and continuous on D .

In b), a denotes a constant. The construction of pseudo spheres in R2,
which are not circles, was first done by Keldysh and Lavrentiev to show
the existence of domains not of Smirnov type (see [KL|, [P, Chapter 3]).
Also a completely different proof of existence in R? has been given by
Duren, Shapiro, and Shields in [DSS] (see also [Du, Chapter 10]). In
higher dimensions we proved in [LV].

Theorem A. There exists a pseudo sphere in R", n > 3.

Recall that a function g : R* — R™ is said to be K > 1 quasicon-
formal on R™ (see [R], [Re]) if:

i) ¢ is a homeomorphism of R™ onto R”,

ii) g has distributional partial derivatives that are locally n-th
power integrable,

iii) |[Dg(x)||™ < K J4(x), almost everywhere.

In iii), Dg(x) = (0gi(x)/0x;), is the Jacobian matrix of g and
|Dg(x)|| is the norm of Dg(z) as a linear operator on R”. Also J,(z)
(the Jacobian of g at x) is the determinant of Dg(z). In [LV] we asked
whether f in the definition of a pseudosphere can also be chosen K > 1
quasiconformal from R™ to R® when n > 3. If so, then 0D is said
to be a K quasisphere. In R? it follows easily from the geometric
construction of Keldysh and Lavrentiev and the Ahlfors three point
condition [A] that there exists pseudospheres which are quasispheres.
The construction in [DSS] (see also [D, Chapter 10]) is also easily seen
to produce pseudospheres that are quasispheres. In this note we answer
our own conjecture by proving

Theorem 1. Given K > 1 there exists a pseudo sphere in R, n > 3,
which is a K quasisphere.
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We note that the only 1 quasiconformal maps of R® are Mobius
transformations. Also, it was shown by [FL] that convex domains satis-
fying some mild smoothness conditions cannot be pseudospheres. More
generally, let G be Green’s function for a bounded domain D with pole
at 0 and suppose B(0,2s) C D. Assume that

+) [VG| < M < oo in D\ B(0,5),
++) H"=1(0D \ 0D*) = 0, where

OD* = {z € 0D : limsupr~ " min {H"(B(z,r) N D),

r—0

H"(B(z,7)\ D)} > 0}.

In [LV1, Theorem 5] we showed that if b), +), ++) are valid, then D
must be a ball. Recall that 0D is said to be Ahlfors regular if for some
ro > 0 and every z € 0D we have H"~Y(B(x,r) N 0D) ~ r"~! where
~ means the two quantities are related by constants independent of x
and r,0 < r < rp. This inequality and b) are easily seen to imply +).
Also if D is an NTA domain in the sense of Jerison and Kenig [JK],
then ++) is valid. We conclude that an NTA domain whose boundary
is Ahlfors regular and satisfies b) must be a ball. So in particular if f
is a bilipschitz mapping of R" with f(S(0,1)) = 0D and b) holds, then
D = ball. Thus pseudospheres can be nice (quasispheres) but not too
nice (Lipschitz).

To point out some of the differences between Theorem 1 and The-
orem A we need to recall some details from [LV]. Suppose a =1 in the
definition of a pseudosphere. To construct D, let Dy = B(0, pp) and let

Go(w) = (n(n—2)a(n) " (|«*™" —pg™"), =€ B(0,po),

be Green’s function for B(0, pg), where py is chosen so that if © €
0B(0, po), then

(1.2) VGo(z)| = (na(n) oy " = 2.

By induction, if D,, has been defined for m = a nonnegative integer,
we added certain smooth bumps to 0D,, to get D,,+1 with D,, C
D, 41. Then D = J D,,,. To obtain f we modified the identity mapping
slightly in a neighborhood of each bump, to get h,,+1 a homeomorphism
from R™ into R™, with hy,41(0Dy,) = 0Dpt1, hmt1(Dm) = Dy, for
m = 0,1,.... Put ho(z) = pox and set fip(z) = hg o hg_10---0
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ho(x). Then f = limg_ oo fr uniformly in R”. The problem with our
construction in [LV] was that the distortion (i.e. K) could build up
under successive iterations. In the present paper we overcome this
difficulty by using the so called “mickey mouse” construction which is
apparently due to Thurston (oral communication to the first author
by Seppo Rickman). Under this construction h,,41 is defined in such
a way that it is 1 quasi-conformal (i.e. the restriction of a Mdobius
transformation) in a neighborhood of H™~! almost every point of 9D,,.
To get Dy, 42 we then only allow bumps to be added that lie in the image
of the above neighborhoods. It turns out for H"~! almost every point
x € R* that we can arrange it so that all functions in the composition
defining fi(z), with one exception, are 1 quasiconformal, while the
remaining function can be chosen K quasiconformal for fixed K > 1.
We note that the construction of a pseudosphere in R? given in [P] also
uses circles, but for a different reason. To carry out the above program
we have had to overcome certain problems not encountered in [LV]. For
example in this paper we added C'*° bumps to dD,, and consequently
were able to use Schauder type theorems to make the desired estimates
on the Green’s function of D,, .. However, to get h,,+1, as above, we
are forced to add non smooth spherical bumps to 0D,,,. Hence we have
to argue that our earlier program can still be used. Also in [LV] we used
an important lemma of Wolff [W, Lemma 2.7] for the Green’s function
of a domain obtained by adding a C°° bump to a half space. Again
we have to verify that Wolff’s lemma remains valid for spherical bumps
(whose radius is large). As for the proof of Theorem 1 we follow closely
the proof of Theorem A in [LV] so the reader is advised to have this
paper at hand. In Section 2 we discuss adding spherical bumps to a
domain and show inequality (1.1) in [LV] (see (2.3)) is still valid. In
Section 3 we use the “mickey mouse construction” to get D and f. In
Section 4 we add a spherical bump to a half space and show that the
conclusion of Wolff’s lemma remains true. We then use this lemma
in Section 5 to show that (1.3) in [LV] (see (3.14)) still holds. (1.2),
(1.3), and (1.9) of [LV] imply that (1.1) b) is valid (see the discussion
in Section 3 following (3.11)).

2. Spherical bumps.

We assume throughout this section that € is a bounded domain
with 0 € 2. Moreover we assume (2 is locally Lipschitz. That is given
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y € 0N there exists s > 0 such that B(y, s) N 0Q is a part of the graph
of a Lipschitz function defined on a hyperplane in R" and B(y,s) N2
lies above the graph. We also assume that OS2 is connected and the
union of a finite number of closed spherical caps with centers in €2
and the property that each point of 0f2 lies in at most two spherical
caps. Thus either two caps are disjoint or their intersection is an n — 2
dimensional “circle” (intuitively cut out by the smaller sphere from
the larger sphere). Let 7' denote the set of points in the union of
these “circles”. Finally we assume that F' C R™ is a compact set with
FnNnoQ Cc T. We remark that in our construction F' will be the set
of points where a certain iterate is not 1 quasiconformal. Intuitively
we want to avoid this set in modifying € to get €' so that successive
iterations will not increase K. Let G be Green’s function for 2 with
pole at 0. By definition,

G(z) — (n(n—2)aln)) >, reR",

is harmonic in 2 and G has boundary value 0 in the sense of Perron-
Wiener-Brelot. Using the Kelvin transformation (see [H]) we see that
each component of

oG oG
extends to a C™ function on Q\ (7"U {0}). Under this assumption
suppose that

(2.1) VG| >1, ondQ\T.

Given 6, 0 < § < 10729, we shall add smooth spherical bumps to 99 by
“pushing out” 0f2 along certain small surface elements in {x € 9Q\ T :
|IVG|(x) > 140} of approximate side length r’. Let €', G’ be the domain
and Green’s function with pole at 0, obtained from this process. Then
0 will have the same properties as 0€2, i.e. it is locally Lipschitz,
connected, and the union of a finite number of closed spherical caps
with centers in €’ and the property that each point of 9€ lies in at
most two spherical caps. Define T" relative to €2’ in the same way that
T was defined relative to 2. Then Q@ C Q', T C T’ and we shall choose
the spherical bumps so that

(2.2) VG'| > 1, on O\ T".
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Also for t > 9, we shall have
(2.3) H"10Q) > H" 1 0Q) +n(t) H" *({z: |VG(z)| >1+1t}),

where 7 is a nondecreasing positive function on (0, 00) which is inde-
pendent of Q, .

Let 0 < 09 < 1073 be a small positive number to be chosen in
Section 5 and let [ be the largest nonnegative integer such that 2~ ‘o >
§ > 0. Put o, =2 %0, for k=0,1,... and set

Ep={2x€dQ: 1+o0, <|VG()| <1+ 0k_1}, 1<k<l+1,
Ey={z€0Q: |VG(z)|>1+o00}.

Let d(FE1, F3) denote the Euclidean distance between the sets Eq, Fs
and put
U={yeco: d{y},T) <10%7,},

where 79 > 0 is so small that
1
(2.4) H" Y E,NU) < I H" Y (EY), for 0 <k <Il+1,

which is possible since H"7(T') = 0. Next if 0 < 7; < 1 is the smallest
radius of the spheres whose caps form 0€2 we also choose

57\ 20
2. 7o < (_) .
(2.5) o= {4
Let

V={yeQ: d{yhT) 2 10' R} 0 {y e @1 d({y{oh) = 2}

where pg is as in (1.2) and set
M, = E 0sG
1 = max 108G ()],

where 5 = (01, f2,...,0n), 0 < |B] <2, is a multiindex and dg denotes
the corresponding partial derivative with respect to 2, x € V. We first
choose r(, 0 < 7, < 7, so that

1

2.6 AR
(2:6) 0= W00 M)
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Given y € 02\ U let B(y,T) denote the reflection of B(y,10%r{)
with respect to the sphere whose spherical cap C 0€2 contains y. From
our assumptions on J€) we can choose r{, > 0 so small that for any

y € 0N\ U,
B(y,10*r}) intersects exactly one spherical cap C 952,

(2.7)
and (B(y, 10*r)) U B(7,70)) N F = @.

From compactness and a standard covering argument it follows for each
', 0 <1’ < rj, that there exists, yt,y2,...,y~ € 9Q\ U, such that

N
0Q\U C | JB(y, 100" ) nQCV
(2.8) i=1
and B(y',107") N B(y?,107") = @, i F£ 7.
We now construct €. Let L be the set of all y € {y*}Y for which

+1

B(y,1007") N ( U Ek) £ 0.

k=0

Let A\, > 2, k = 0,... be an increasing sequence of positive numbers
to be specified later and set 1, = r'/Ag for k = 0,...,01 + 1. For fixed
y € L, let 7 = j(y) be the smallest nonnegative integer with

(2.9) B(y,100r")NE; # @.
We draw a sphere S(y,7) of radius 7, center y €  with the following
properties

a) S(y,r) NI = S(y,ajz-'rj) N o,

b) The angle between the normals to S(y, )
2.10
( ) and 0f2 at points of intersection is UJ2- ,
c) B(y,7) C QU B(y,a?- ;) -

Existence of S(y,r) as in (2.10) follows from (2.5) and elementary ge-
ometry. Define ' by

i) Q\ ( U B(z,ajz-rj)) =Q"\ ( U B(Z,J?Tj))a

z€L zeL
ii) 9Q' N B(y, O'JZ- rj) = S(7,7) \ Q whenever y € {y'}Y,
iii) Q' N B(y,02r;) = B(§,7) N Bly, 0r;) .

(2.11)
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From (2.10), (2.11), and (2.7) it is clear that 9’ is locally Lipschitz,
connected, and the union of a finite number of closed spherical caps with
centers in 2 and the property that each point of 9€2 lies in at most
two spherical caps. We now prove (2.2). If z € 0Q' N0, then it follows
from (2.1) and the Hopf boundary maximum principle that (2.2) is true.
Otherwise, z € S(y, 7)N(OQY'\T") for some y € {y*}¥, S(y,7), satisfying
(2.7)-(2.11). Using (2.5), (2.10) a), b) and high school geometry it is
easily seen for o small enough that

(2.12) <r; <2F.

o

From (2.12), (2.5) we deduce that S(7,7)NQ C V and thereupon from
(2.6), (2.1) as well as Taylor’s theorem with remainder that

(2.13) (L= (r)Y?) VG )| (v, 2 — y) < G(2),

whenever z € S(y,7) and (v,z —y) > 805 r;. Here v denotes the inner
unit normal to J€2 at y and (-, -) denotes the inner product on R™. Let
¢ be a C> function on R with ¢ = 0 in (—o0,807 7)), ¢(z) < z, for
x > 0, with equality when x > 16 a}* rj and

. dt
4., \i—1
(0-' TJ) drt

j
whenever x > 0 and 0 < ¢ < 2_ Let A be the harmonic function in
B(y,r) which is continuous in B(y,r), with boundary values h(x) =
¢((v,z — y)) whenever x € S(y, 7). Let

(¢p(z) —x)| < 10%,

H(iz)=hy+7r2) - (v,y—y+r2), for z € B(0,1).
Using (2.12) and Schauder type estimates (see [GT]), or direct estimates
by way of the Poisson integral for B(0, 1) we find that

IVH|(2) < c(n) 70?2,

whenever y + 7z € 0. Transferring back we get

(2.14) Vh—v| < e(n)oi?,

in S(y,r) N OSY, where ¢(n) > 1 as in the sequel is a constant which
only depends on n, not necessarily the same at each occurence. Since
G < G’ in Q, we see from (2.13) and the boundary values of h that

(2.15) (1= (rp)?) IVG(y)|h < G,
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on S(y,7). Using the Hopf boundary maximum principle and (2.14),
(2.15) it follows that

(2.16) VG| > (1= (rg)/?) (1= c(n) 0} VG (y)],

on S(y,r) N9IQY. Now from (2.5), (2.6), (2.9) we deduce that

Putting this inequality in (2.16) we see for 09 = o¢(n) > 0 small enough
that (2.2) is true for x € S(y,7) NOSY. Hence (2.2) is true on 092" \ T".

Next we prove (2.3). To do this observe from (2.5) that since
r’ < 71 we have

H" N0QN B(y,05 ;)
(2.17)

<a(n-—1) (032- 'rj)"_1 —c(n) ?1_2 (032- 'rj)""’1 )

Note from (2.5), (2.12), and elementary trigonometry, that the solid
angle 6 subtended by B(y,r) N 02 with respect to y satisfies

(2.18.2) 10— o?| < iro;
. .a O.J —= ?1 )
and
2,3
~ . 2 (O-'Tj)
(2.18.b) rsinf > oir; — 1030?12 ,

for o9 = op(n) > 0 small enough. Now using spherical coordinates and
(2.18.a) it is easily seen that

4

HY(S@,7)\Q) > a(n—1) (1 + ﬁ) (Fsin§)"1.

From this inequality, ( 2.18.b), and once again (2.5) we conclude that

4
95

(219) H""HO N B(y,0fry) > (1+ c(n)

)a (n—1) (ajz- )"t
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Combining (2.17), (2.19), and using A; 7; = 7/, we find for some ¢(n) > 1
that

H" Y0 N B(y, 0]2 o))

(2.20) > (1 n %)H"—l (BQ N B(y,ag2 %)) .

Let n(t) = 02" 2\ 7" /c1(n) for o441 < t < 04,4 = 0,1,... and set
n(t) = o3 t? )\1 "/01( ) for t > 0¢. Then from (2.20), (2.4), and (2.8)
we conclude for c1(n) large enough that (2.3) is true for ¢ > 9.

3. The Mickey mouse construction.

We continue with the same notation introduced in sections 1-2. Let
Q,Qy e {y'}Y,r',7 = 7(5),8(y,7), Aj, and 7 be as in (2.7)-(2.12).
Suppose that B(y, 1007") N 9Q C S(w, p*) with B(w, p*) C Q. Choose
a Mobius transformation L so that

a) L(B(w,p*))=H ={z € R" : x2 >0},

B) L(S(w,p*) N S(y,7) = {z € R" : 1 =z =0},
(3.1) v) L(B(§,7) = H and L(H\ H) C {z: z1,22 < 0},

§) The angle between the normals to H, H

at points of H N H is o3 .

(3.1) is easily proven using (2.10) b), as well as the fact that Mobius
transformations preserve angles and map balls into hyperplanes or balls
(see [Re, Chapter 3]). We introduce polar coordinates x; = rcos#,
xg =rsinf, r > 0,0 <6 < 2n. If z = (x1,29,...,2,) We put T =
(x3,...,Ty) and write = (z1, 2, 7). Next we define a quasiconformal
mapping q of R” as follows

q(z) =z, WhGDOSQSO’?,
q(x) = (rcos (A (0 —03) +03),rsin (A (0 — 07) +07),Z)
2 2 _ 2 2
for o7 <0 <7 —o0j with A = (7 —05) /(7 — 2073),

Q(l"):(TCOS(9+0?),rsin(9+aJ2-) z), fOI‘ﬂ'—O’ <9<7r+0 ,
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q(x) = (rcos(N* (0 =7 —07) + 7+ 207),
rsin(A (0 — 7 —03) + 7+ 203),7),
for 7r-|—aj2- <0< 2r— 032-, with \* = (7 — 30?)/(#— 2(7]2-),
q(z) =z, for 27r—<7]2- <0< 2.
From the above definition of ¢ we note that

i) ¢ maps H onto HUH |,

ii) ¢ is the identity mapping on
(3.2) {o: w1/\[a3+ a3 > cos (o))},

iii) ¢ is a rotation on {z : x1/y/2? + 23 < —cos (ajz)} ,

iv) gis 1+ 10 a? quasiconformal on R" .

Put g(z) = L='oqo L(z) when z € R*. From (2.7), (2.12), (3.1) we
note that if

T

o)),
DS T )

then

33) (Fug™(F)) € B(y, 10*ry) U B(g, 7o)
' and (FUg Y F)NF =0,
where the last line follows from (2.7). From (3.2) we also conclude that

a) ¢ is the identity transformation
on the unbounded component I of R \ ¢~ *(F),
(3.4) b) ¢ is a Mobius transformation
on the bounded component J of R \ g~ (F),

c) gis 1410 a? quasiconformal on R"™ .

We do this construction for each y € {y*}&V obtaining functions g, ...,

gn and sets Fy, I, Jq, ..., Fy,In, Jn, corresponding to y!, y2, ..., yV,
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in such a way that (3.3), (3.4) hold with ¢ = ¢;, 1 < ¢ < N. Define
®:R*" — R” by

T, whenxz € IT1NIly---Nin,
(3.5) O(x) =

gi(x), Wheangi_l(ﬁi)UJi, 1<i<N.

We note that ® is well defined since from (3.3), (2.8), and (2.12) it
follows that the sets g; '(F;) U J;, 1 < i < N, are pairwise disjoint.
Using this note and (3.5) we conclude that

*) P(Q)=Q and Pisal+10 a? quasiconformal mapping
of R" onto R" ,

xx) ® = a Mobius transformation in each component

(3.6) ~ - N
of R* \ & 1(F) where F = | ] F, ,
=1

wx%) (FUO Y F)NF=@ and F' = FUF
is compact with F' noQY c 1"

We now construct D, f. Let Dy = B(0, py) be as in Section 1 where pg
is as in (1.2) and set F' = Fy =T =Ty = @. Let § = §p = 1070y
and put 2 = Dy. We use the results in Section 2 to get £ = D; satis-
fying (2.2), (2.3) and ®; = ® satisfying (3.6) with ®1(Dy) = D;. Let
Fy = F',T; =T’ be the sets obtained from this construction. We now
proceed by induction. Suppose Dy, @y, Tk, Fy, have been constructed
using the results in Section 2 for m > 1 with

(3 7) Dk C Dk+17 Tk C Tk—f—la Fk C Fk+1 ,
. and Fk+1ﬂaDk+1CTk+1, fOI"OSk‘Sm—l,

in such a way that

(38) |VGk| >1, on 8Dk \Tk ,

H" Y0Dg11) > H" 1 (0Dy,)

(3.9)
+(t) H" ({z: [VGr(x)] > 1+1}),
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whenever t > 6, = 107204, 0 < k < m — 1. Here G} denotes the
Green’s function for Dy with pole at 0. We also assume that

(3.10) (3.6) holds with ®, F, F' replaced by ®yy1, Fk, Fj1,
3.10
respectively, for 0 < k <m —1.

We put Q@ = D,,, FF = F,,, T = T,,, and note from the induction
hypothesis, (3.7), that FNoQ C T. If § = §,, = 1072%,,, then we can
apply the results in Section 2 to get Q' = D,,,11, T = T41, for which
(3.8), (3.9) hold when k = m + 1. Also using (3.6) we get F' = Fy,, 41,
® = D, 41, satisfying (3.10) with £ = m. By induction we conclude
that (3.7)-(3.10) holds, for each nonnegative integer k.

Put D = J;” D;. We note that f,, = ®,, 0 -+ o ®; maps Dy onto
D,,,. From (3.6) %xx), (3.7), and (3.10) it is clear for given x € R*\T},,_1
that each function in the composition defining f,,, with at most one
exception, is a Mobius transformation in a neighborhood of . Moreover
such an exception is 1 + 1002 quasiconformal in a neighborhood of
x. Thus f,, is 1 + 100 quasiconformal on R* and f,,(Dg) = D,,
for m > 1. Now {f,}5° is a locally bounded sequence of 1 + 1002
quasiconformal mappings on R”, so a subsequence (see [Re, Chapter 9]
or [R, Chapter 6]) of this sequence either converges uniformly to a

1+ 1002 quasiconformal f from R™ to R™ or to a constant. Clearly a

~

constant is ruled out. Put f(z) = f(po«x). Then from our construction
we conclude that f(B(0,1)) = D, f(S(0,1)) = dD. Thus if 1002 < K,
then (1.1) a) in Theorem 1 is true.

For the reader’s convenience we outline the proof of b) given in
[LV]. Using (2.5)-(2.12) it is intuitively clear for oy small enough that
D is NTA in the sense of Jerison and Kenig [JK] with constant 1000
(see [LV, Section 4] for details). Also from Green’s theorem and (3.8)
we see that

(3.11) H"(0Dy) g/ VG| dH™ = 1.
0Dy,

From (3.11) we see that D is of finite perimeter in the sense of Federer
(see [GE]). Thus as k — oo,

(3.12) H" Y op, — H" Y oop = H"  Yop .

Here the convergence is weak convergence as measures. Also 0*D is the
reduced boundary of D. To get the last inequality, we note that 0*D
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agrees H"™1 almost everywhere with the so called measure theoretic
boundary of D, defined as the set of points where the Lebesgue lower
n densities of D,R™ \ D are positive. Using the fact that D is NTA,
it is easily seen that 0D equals the measure theoretic boundary of D.
Hence (3.12) is true (for a more direct proof see [LV, Section 4]). Also
observe from (3.9) that

(3.13) Jim H" '({z € 0Dy, : |VGr(x)| >1+6}) =0,
—»00

for each § > 0, since otherwise we could use (3.9) and iteration to get
a contradiction. Finally we shall show in Section 5 that

(3.14) / VG| log |[VGy|dH" ! < ¢ < 00, for k=0,1,...
Dy,
From (3.14) we deduce for o > 1, k =0,1,...

(3.15) loga/ IVGR|dH" ! < ¢ < +c0.
{IVGk|>a}

Let ¢ > 0 be a harmonic function in D which is continuous on D. Then
from (3.8), (3.12), and Green’s theorem we get

90) = [ g|VGi|am
0
(3.16) D
2/ gdH" 1 — gdH™" 1,
0Dy, oD

as k — oo. To obtain the reverse inequality for fixed § < 1072 and
a > 103, put

P, ={x € 0Dy : 1<|VGg(x)| <146},
Qr ={x € 0Dy : 1+ < |VGk(x)| < a},
Ly ={x € 0Dy : |VGi(z)| > a},

for k=0,1,2,... Then

g(O):/ g|VGk|dH"_1:/ _|_/ _|_/ =L+ 1+ 15.
0Dy, Py Qk Ly



ON PSEUDOSPHERES THAT ARE QUASISPHERES 235

Clearly,

1] < (1+5)/ gdH" .
8Dy,

Also from (3.13) we find that
L] < al|glloc H* ' ({x € 0Dy : 146 < [VGi|}) — 0,

as k —» oo. Here, ||g||co denotes the maximum of g in D. Using (3.15)
we get

BI<lgle [ VG < clloga) ™ gl
{IVG[>a}
Letting £ — oo we obtain from the above estimates and (3.12) that
9(0) < (145) [ gdH" + c(loga) ™ gl

oD

Finally letting 6 — 0, « — 00, we have

g(0) < / gdH™ !,
oD

In view of (3.16) we conclude that
(3.17) 9(0) = / gdH™ ™,
oD

when g > 0 is continuous on D and harmonic in D. From (3.17) with
g = 1 we note that, H"~1(9D) = 1. If g; is continuous on D, harmonic
in D, and g1 —m > 0 in D, then from (3.17) and the above note we

deduce

91(0) = (g1 — m)(0) +m = (g1 —m)dH" ' +m = gLdH™ 1.
aD oD

Finally from a simple barrier estimate it is easily seen that for each
Yy e T17
oo = limsup |[VG1|(z) < limsup [VG|(z).

From this inequality we conclude that D # ball.
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Thus D is a pseudosphere and Theorem 1 is true once we have
proved (3.14).

4. Lemma of Wolff.

If x = (z1,...,2,) € R* we write z = (2/,z,), where 2/ =
(r1,...,%n_1). For given e > 0, 0 < ¢ < 1/10, define ¢(-,¢) on R*~! by

et (1—y1+2(1-12']?)),
when 2/ € R*™! and |2/| <1,
0,
when 2/ € R*~! and |z/| > 1.

Put K ={z € R": z, >0} and set K(¢) ={z = («/,z,) e R" : z,, >
¢(z',e)}. We note that 0K (¢) \ 0K consists of the part of the sphere
with center (0,...,0,e71) and radius, ve=2 + 1 which lies outside K.
Thus K (¢) is obtained by adding a spherical bump to K. Let g(-,¢) be
the Green’s function for K (e) with pole at oco. That is, g(z,¢) — =, is

a bounded harmonic function in K (¢) and g(-, €) is continuous on K (¢)
with g(-,e) =0 on 0K (). Set

I(e) :/ IVg(-,¢)|In |Vg|(-,e) dH™ .
0K (g)

Next let 8(2') = (1 — |/|2)*, 2/ € R*~!, where a* = max {a,0}. Let
9_ denote theAbounded harmonic function on K which is continuous on
K with § =0 on 0K = R*1. Put

A(9)=/ ((02,)° —3|V'01%6,,)dH" L,
Rnfl

where V' denotes the gradient in z’ only. We prove

Lemma 4.1. If A(f) > 0, then there exists ¢* = ¢*(n) > 1, such that
I(e) < —e* A()/100, for 0 < e < c¢*(n)~tmin {A(6),1}.

PROOF. The proof is essentially the same as [W, Lemma 2.12]. However
this lemma was proved under the assumption that 0K (e) is smooth
(C*°) where in our case 0K (¢) is just Lipschitz. Therefore we include
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some details. We shall show that I has continuous fourth derivatives
and |I""| < ¢(n) on (0,¢eq) for eg = o(n) > 0, sufficiently small. Also
it will turn out that the derivatives of I can be found by differentiating
under the integral sign as in [W] and 1(0) = I'(0) = I”(0) = 0, while
I'"'(0) = —(1/8)A(f). Using Taylor’s theorem with remainder we then
get Lemma 4.1.

To begin, let y € 0K (e) and suppose for some r > 0 that w is
harmonic in K (g) N B(y,2r) with continuous boundary values zero on
OK(e)NB(y,2r) and |w| < M < oo in B(y,2r)N K (g). From a barrier
type argument we find for 0 < e < ¢g¢ < 1/100, sufficiently small, that

(1.2 jwl(e) < e(m) b (XU,

r

for z € K(e) N B(y,r). With g9 now fixed let g(-, z,e) denote Green’s
function for K(e) with pole at z € K(eg) for 0 < ¢ < gp. We note
that g(x,z,¢) < ¢(n) |z — 2|>~™ since the righthand side is a constant
multiple of the Green’s function for R*. Let S = {(«/,0) e R* : |2'| =
1} and let ,Z2 € 0K(e) N (B(0,2) \ S). Let z € B(z,|1 — |z||/2),
z € B(z,|1—z]|/2), with |1 — |z| | < |1 —|Zz||/16. Then from (4.2) with
r=lr—2z|/2,y=7, w=g(z¢), and the above note it follows that

(4.3) g(w,2,€) < c|L— |a] [7/10 |o — 217110,

Next suppose that v is harmonic in K (¢) with
o) = | (1= )" [Vy(e, 2. ) dH" 2, w € K(e),
OK (e)NB(0,1)

where derivatives of g(-, -, £) are with respect to z. Under these assump-
tions we prove for z € B(Z, |1 —|z]|/2)N K (¢), and T € 0K ()N B(0,2)
that there exists ¢(n) > 1 with

(4.4) [o(@)] <E(n) |1 — o] [*/°.

Now from Green’s formula,
(4.5) |o(@)| < e(n) |1 = |=||*/® +/(1 — 2)*° |Vy(, 2,€) | dH" 'z,
J

where J = {z € 0K (¢)NB(0,1) : |1—|z|| < (1/100) (1—|z|)}. From the
Kelvin transformation (see [H|), it is easily seen that g(z, -, ¢) extends
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to a harmonic function in B(z, |1 — |z||) whenever z is not in this ball
and z € 0K(g) \ S. We shall also denote this extension by g(z,-,¢).
Using this fact, (4.3), and interior estimates for harmonic functions we
see that

IVy(z,z,€)| < c(n) |1 — || |10 |z — 2|~ F/10 whenever z € J .
Putting this estimate in (4.5), using 2 | — z| > |1 — |2|| when z € J
and integrating we get (4.4).

Again from the Kelvin transformation, (4.2) with w = g, and inte-
rior estimates for harmonic functions we observe that

3k9 —k+9/10 ~ 1 ~
(4.6) —‘(g;,g) < clk,n) |1 — |z|| . ze B(x, “1- 3 |) ,
oz« 2
whenever 7 € 0K (¢) N (B(0,2)\ S), 0 <e < e, and £k =0,1,... Here
a = (a1,...,q,) is a multi index with |a| = k and =% = z{* - 20",
Also we have
(4.7) gz’ ¢(z',e),e) =0, ¢ e RvL, 0<e<egg.

Next observe for k = 0,1,..., that 0%¢(-,¢)/0e* is uniformly Lipschitz
for 2’ e R*~1, 0 < e < g, Wlth

(i)k
)7 =5 < e
k
@8 i) | TAL D) < oy (1 o
iii) 8(;5(;36 -0) —(1 — |§/|2)+ ] 82%(:2/70) =0.

We claim that (4.6)-(4.8) imply g¢(-,e) has continuous mixed partials
in z,e of all orders whenever, x € B(z, |1 — |Z||/2), 0 < ¢ < gy and
T € 0K (e) \ S. Moreover if also |Z| < 2,

‘ 0k+l (
Oz Oe!

for k,1 =0,1,..., while

(4.9) ‘ < c(k,l,n) |1 — ||| 7FFY/5,

O (g(,€) — an)

=) < el L) U+ fa] 7

(4.10) ‘
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with € 0K (¢), |z] > 2. (4.9) for | =0, kK = 0,1,... is implied by
(4.6). (4.10) follows from the fact that g(-, &) —x,, extends to a bounded
harmonic function in R™ \ B(0,3/2) which is zero on {(z/,0) : 2’ €
R, |#'| > 3/2} and the Poisson integral formula for such functions.
Thus (4.9), (4.10) are true for { =0, k = 0,1,... We can now proceed
by induction to get (4.9), (4.10). We do only the case [ =1,k =0,...,
in detail. From (4.7), (4.8) ii), the mean value theorem from elementary
calculus, and (4.6) for £k = 1 we see that

g(2', @(a', €2),€2) — g(a’, p(2, £2), €1)]

= lg(a’,¢(a',€2),61) — g(a', p(a,€1),€1)]
99
ox,,
: |¢($/,€2) - ¢($/7€1)|

< c(n) ez — e1] (1 = J2"|)T)¥/,

(4.11) < ¢(n) max {

(', p(x',e),e): 0<e< 50}

for 2/ € 0K(ez) \ S, 0 < €1, €2 < gp. From (4.11) we deduce that
{(ea — 1) (g9(-,e2) — g(-,€1))} is uniformly bounded and has a con-
tinuous extension to 0K (e2) whenever 0 < g1, €2 < g¢ and €1 # €.
From the maximum principle for harmonic functions and the Kelvin
transformation, it follows that this sequence is harmonic and uniformly
bounded in L(ey) = K(e2) | {B(Z,|1—|Z||) : T € 0K (e2)\ S}. Letting
g1 — &9 it follows that dg/0de is uniformly continous and bounded in
L(g2) whenever 0 < g2 < g9. Moreover,

) ) o6
(112 L (0,8) =~ s (@) 5 (@),

with z = (2/,¢(2',¢)) € 0K(e) \ S. Using (4.8) ii) and (4.6) with
k=1 we get [0g/0¢ (-,¢)| < ¢(n) (1 — |z|)7)*/® on OK (¢). Using this
inequality and the maximum principle for bounded harmonic functions
in K(g) we conclude first that |0g/0¢| < ¢(n)wv, and thereupon from
(4.4), the Kelvin transformation, and interior estimates for harmonic
functions that (4.9) is true when [ =1, £k = 0,1,... (4.10) follows for
[ = 1 by the same reasoning as when [ = 0. Finally since a uniformly
convergent sequence of harmonic functions has derivatives which also
converge uniformly, it follows that the mixed partial derivatives consist-
ing of one partial derivative in € and k partial derivatives in the space
variable z are independent of the order of differentiation.
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Next we use (4.12) and argue as in (4.11) to obtain that

0%g _ ., P ¢
@(%5) =2 e Oz, (z,¢€) e (2, €)
o9 0% g (092
(4.13) ~ Ga, ©9) 5 (8 = 5 (e (57) e,

whenever z € 0K (¢). Using (4.8) ii) and (4.9) with! = 0,1, k = 1,2, we
conclude first that |02g/0e?(z, )| < c¢(n) ((1—|z|)F)*/® when = € 0K (¢)
and thereupon from (4.4), the Kelvin transformation, and interior esti-
mates for harmonic functions, that (4.9) is true when [ = 0, 1, 2. (4.10)
follows by the same reasoning as when [ = 0,1. As above we see that
the mixed partial derivatives consisting of two partial derivatives in e
and k partial derivatives in the space variable z are independent of the
order of differentiation. Continuing by induction we get (4.9), (4.10).
Finally observe from a barrier argument that

(4.14) c(n)|Vg(,e)| >1, ondK(e)\S,

for 0 < e < gg. Using (4.9), (4.10), (4.14) we deduce that derivatives of
I with respect to € of all orders can be found by differentiating under the
integral sign defining /. Doing this and letting ¢ — 0 we find that the
argument of Wolff [W, pp. 360-362] can be used essentially verbatim.
One only needs to check that the second and third partial derivatives of
¢ with respect to € do not add additional terms in the calculations when
e = 0. In fact from (4.8) iii) we see that the second partial of ¢ with
respect to € vanishes identically. Moreover all terms involving the third
partial of ¢ with respect to € vanish at € = 0 (since all second partials
of g(x,0) = z,, are identically zero and |Vg(z,0)| = 1). Lemma 4.1 now
follows from Wolft’s argument in the way mentioned at the beginning
of the proof.

In order to apply Wolft’s lemma we need to show that A(6) > 0.
In fact we shall show in [LVV] that if {p\ > 0, is a radial, nonincreasing,
Lipschitz function on R*~! with compact support and {b\ Z 0, then
A(¢) > 0. As usual, ¢ denotes the bounded harmonic extension of
to K which is continuous on K with 1) = {p\ on 0K. Clearly this result
implies

(4.15) A(9) > 0.

Here we outline a direct method for establishing (4.15) which gives a
numerical lower bound for the integral when n > 5. Using separation
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of variables or the Poisson integral formula for harmonic functions in a
half space one can show for r = |2/| that

1 -1
0., (x',0) = —an<g,—§,nT,r2), 0<r<l1,

where F'(a, b, c, z) is the usual hypergeometric function,
C, =
7 1 )
2 2

and I' is the Euler gamma function. Writing the hypergeometric func-
tion in a series it is easily seen that

n 1 n—-1 n
—F(—,——,—, 2)>—1 1—(1—r2)/?),
Ty g 7 ) 2 = A=)

Using this estimate and doing some arithmetic we find that

1 1
/ 95;” "2 dr > ¢ (n— 1)_3/ (-1+n(1- 7"2)1/2)3 2 dr
0 0

1 6n?
_ .3 _1—3< )
e (n ) n—1 n?2-1
2 3 n’
4.16 —6 —1—(1 )
(1.10) &= (14 -
=b, .

Also we note that

1 1
1 -1
3/ 937 |v/9|2rn_2 dT‘ = —12 Cn/ F(Ev__v n )7"” dT‘
0 " 0 2 2 2

_ 48(n—2)
C (n+2)wn

The last equality is obtained by writing out the series for the integrand
and integrating term by term. The series one gets after evaluating
at 1 can be written as the sum of several hypergeometric functions
evaluated at 1. Using tables one then gets the last equality. Finally
using Stirling’s formula and making some more estimates one can show
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that b, +48 (n—2)/((n+2) wn) > 0 for n > 5, which in view of (4.16),
the above equality, and the fact that 6, (r,0) > 0 for r € (1,00) (by
positivity of 6 ) implies (4.15) for n > 5. The cases n = 3,4 can be
done separately. A more involved argument using estimates also for
[ 100 933;” r"=2dr can be used to show that for some absolute constant ¢
one has A(f) > ¢/n, n = 3,4,... (more details will be supplied upon
request).

Next we introduce some notation in order to state some conse-
quences of Lemma 4.1 and (4.15). Let 3 be a bounded domain with
diameter ~ 1 and NTA constant 1000. Then by definition,

i) (corkscrew condition) For each z € 09y,
0 < r < 1, there are points P, (z) € Q1, Q,(z) € R" \ Qy,
with |P.(z) — x| < 10007, |Q.(z) — x| < 1000 r, and
dist (P, (x),0Q1) > 100017, dist (Q,(x),0;) > 10007,

ii) (Harnack chain condition) For each x,y € €2y there is a path

v :10,1] — Q3 with v(0) = z, v(1) = y, and with

length < 1000 |z — y|. Also

dist (y(t),0Q1) > 1000~ min {|y(t) — x|, |y(t) — y|} for ¢ € [0,1].
Next suppose that €2; is Lipschitz on scale ¢t with constant 1000. That
is assume for each z € 9€2;, there exists a coordinate system such that
0Q1 N B(z,t) is the graph of a Lipschitz function defined on R*~! with
Lipschitz norm < 1000. Moreover, €3 N B(z,t) lies above the graph of
this function. Finally assume for some w € 0€2; and t > 0 that after a
possible rotation of coordinates,

o0 NB(w,t)=A{x: =, =w,}NB(w,t)

(4.17)
QN B(w,t)=A{x: z, >w,} N B(w,t).

Let ¢(-,€) be as defined at the beginning of Section 4, A > 2, and define
Qy(e) D Qy for 0 < e < g, as follows:

a) 0\ B(w,t) = Qa(e) \ B(w, t),

b) 9Q2(e) N B(w,t) = {(z' + w',w, + t AL p(t" A’ e)) : 2’ €
R*~1} N B(w,t),
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¢) Q(e)NB(w,t) = {(z'+w', zn) : p > wa+t AL Pt N2 )N
B(w,t).

We assume

where pg is as in (1.2). Denote Green’s functions for Qq,3(e), with
pole at 0, by G1,G2(-, €) respectively, and let w; be harmonic measure
on €27 with respect to 0. With this notation we state

Lemma 4.19. Let 1 be NTA and Lipschitz on scale t with constant
1000. Suppose 2y satisfies (4.17), (4.18), and Qy is obtained by adding
a spherical bump to Qy as in a)-c). Let g9 = (2¢*(n)) =1 min {A(0),1},
where ¢* is as in Lemma 4.1. If 0 < € < gq, then there exists \* =
A*(E,n), ¢ =¢(&,n) > 2, such that for X > \*,

/ IVG3(-,¢)|log |VGa|(-, e) dH™ !
892(6)

1
E/\n—l

g/ VG| log |V G| dH™ — o (B(w, 1)),
o

whenever € < € < gg.

PROOF. In view of Lemma 4.1 and (4.15) we can essentially apply
[W, Lemma 2.7] to get Lemma 4.19 in R3. The proof in R”,n > 3, is
unchanged.

5. Proof of Theorem 1.

Armed with Lemma 4.19 we can use the argument in [LV, Section 3]
to prove (3.14) and hence complete the proof of Theorem 1. Unfortu-
nately, in [LV, Section 3] Schauder estimates for smooth domains were
again used, whereas our boundaries are only locally Lipschitz. Thus
for the reader’s convenience we sketch the argument in [LV, Section 3]
indicating the necessary changes. We wish to apply Lemma 4.19 to
D,,,, Dy, 41 constructed in Section 3, but in order to do so we need to
introduce intermediary domains with flat bumps as in Lemma 4.19 and
make some estimates. We shall use the same notation as in Section
2. Note that in Section 3 we constructed D,,4; from D,, by adding
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spherical bumps as in (2.9)-(2.11). Thus we work with ©, Q" as in Sec-
tion 2. We assume, as we may, that o3 < g¢/100 where o is yet to
be fixed and ¢¢ is as in Lemma 4.19. We now define (\;) introduced
above (2.9). Let 7o,71,0, My, r(, 7', (Ey), L,l,7; be as in Section 2. For
fixed y € L recall from (2.9) that j was the least postive integer such
that B(y,1007") N E; # @,1 < j < 1+ 1. Let T be the tangent
plane to 9Q at y € 9. From the above restriction on oy, (2.5), we
see as in (2.18) a) that the central angle, say n; = n;(y), subtended by
B(y,7)NT (relative to y) satisfies 271 05 < n; < 207 < 0/4, regardless
of the choice of A; > 2,y € L or 1. Put &; = tan (c7/2), \j = A*(gj,n)
and set )\'j = max{aj_2,bj,/\>‘f} j=0,1,..., where b; = ¢(ej,n). Let
Ak = MaXo< <k Xj, k=0,1,..., and observe that (A;)5° depends only
on n once oq is fixed.

We add flat bumps to Q, Q" as follows. Let y,j be as above and
as in (3.1) let S(w, p*) be such that B(y,1007") N 9Q C S(w, p*) and
B(w, p*) C Q. After a rotation if necessary we may assume that y =
(w', wy, —p*), where w = (w', wy,). Let A = p*—+/(p*)2 — (' + (11)3/2)2
and define ¢ : R®»~! — R by

(W, — p*, for |2/ —w'| <7/,
(r) 73 PA (" = w'| = 1') + wn = p*,
(') = 4 for v < |a’ —w'| < o' + (r')3/2,
wn ~ P~ W
( for v/ + (r")3/%2 < |z' — w'| < p*.

Note that the graph of ¢ coincides with the tangent plane T to S(w, p*)
at y when |2/ — w’| < 7’ and “linearly” connects this tangent plane
with S(w, p*) when r' < |2’ — w'| < ¢’ + (r')3/2. Suppose that L =
{#1,22,...,2p} and put Ly = {z1,..., 2}, 1 <k <p.

Define Qk, 1<k <p, by

AQk\(UBzmr) (UB 10r>

zE€Ly zELy

1) 09, N B(y, 107") = {(z', ("))} N B(y, 107",

1) QN By, 1077) = {(2', 2,) : zn > p(2)} N By, 1077),

whenever y € Lj. Next we define Qk D Qp, 1 < k < p, relative to Qk
in the same way that Q" was defined by adding spherical bumps to €.
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That is,

I) ﬁk\( U B(z,ajz-'r] ) Qk\( U B(z,0; 13)
zE€Ly zELy
1) 9N B(y,02r;) = Bly,o2r;) N (0% \ BG,7) US(H,7) \ ),
whenever y € Ly, ,

ITT) QN B(y,o5r;) = (B(y,7) U Q) N B(y, 07 r;) whenever y € Ly, .

Here y, 7 are defined as in (2.10) relative to y. From the definition of
Q,Q we see that Qk D Q, Qp O Q for1 <k < p. Also from the
definition of ¢ and (2.5) it can be shown as in [LV, Section 4] that

Qk,Qk, 1 < k < p, are NTA and Lipschitz on scale r’ with constant
1000. Let Qp = Q, Q = 2,. From the defininion of {A;} and our
restriction on oy we deduce after a possible rotation and translation
that Lemma 4.19 can be applied with Q1 = o, Q2 = ;. Next by
the same reasonir}\g we can apply Lemma 4.19 with {2y = Q7 and Qs =
Qy, ..., etc. Let G, Gy, @k, wg, be the Green’s functions and harmonic
measures relative to 0 for Qk, Qk Applylng the above argument p times

we obtain an inequality for G = Go and G Using the definition of
{ Ak}, we conclude

/~ VG| log |VGy| dH™

QP
(5.1) < /A VG| log VG| dH"

—c(n) (Ai41)” )Zwk (zk+41,277)).

To prove (3.14) we must show that @p, ép, in (5.1) can be replaced by
G, G, with a manageable error term. To do so we introduce Q;c,O <
k < p, defined by Qy = €', and for 1 < k < p,

I ;\( U BC=. 107«')) :Q’\( U B(z,lOr')),

zE€Ly z€Ly
1I') 9%, N B(y,107") = 0%, N B(y, 107",
IIT') Q) N B(y,107") = QN B(y, 107",
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for each y € Ly. Denote the corresponding Green’s functions and har-
monic measures relative to 0, by G;C,w;v, 1 <k < p. We shall also
need the following facts about the NTA domain €2; with constant 1000
satisfying (4.18). If z € 02y and 0 < p < 10, then

wi(B(z,p)) < c(n) p"~? plax G

<c(n) p"2G1(P,) < c(n) wi(B(z,p)),

(5.2)

where P, = P,(z). Moreover,
(5.3) wi(B(2,2p)) < c(n) wi(B(z,p)) -

(5.3) is called the doubling inequality for harmonic measure. Also, there
exists u = p(A) > 0 so that for z, P,, as above, and = € B(z, p) N Qy,

|z — 2|

; )“Gl(Pp).

(5.4) G1(z) < c(n)(

From Harnack’s inequality, it follows that there exists v = v(n), 1 <
v < o0, with

(5.5) c(n) tp” <wi(B(z,p)) <1, 0<p<l1.

Next we note that if z € 00, and wu,v, are two positive harmonic
functions in €; which vanish continuously on 0€; \ B(z, p), and P, =
P,(z), then for = € Q; \ B(2,2p)

-1 U(Pp) U(I) U(Pp)
(5:6) By S v ey

Moreover, (5.6) is valid when w,v, vanish on 0Q; N B(z,2p), and
x € B(z,p) N Q2. (5.6) is called the rate inequality. Next since {2y
is Lipschitz on scale ¢, we have for 0 < t; <,

(5.7) t}_"/ VG2 dH™ ! < ¢(n) (11 "wi(B(z,t1)))?,
B(Z,t]_)

which is called an L? reverse Holder inequality. Using (5.7) and Holder’s
inequality one easily deduces the following A, type condition. If £ C
B(z,t1) is a Borel set, then

w1 (E) HY™Y(E) \1/2
(5:8) 5)

Bz 1)) = C(n)(H"—l(B(z,t
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Also using (5.5), (5.7) and Jensen’s inequality one deduces,
(5.9) / (VG| |log VG| | dH™ ! < —c(n)logt, wi(B(z,t1)) -
B(Z,t]_)

For the proof of (5.2)-(5.6) see [JK, sections 4 and 5]. (5.7) follows from
(5.6) and a result of Dahlberg (see [D]). Using (5.2)-(5.5) it follows as
in [LV, (3.10)] that

p—1
(5.10) > wi(B(zr41,67")) < c(n),
k=0
whenever * is an element of {A, ~,”}. We show for 0 < k < p — 1 that

| WG VG am < [ 196, 10g VG ar
aQ, .

k41

(5.11) +c(n) (r)Y8 wy(B(zk41,37"))

/ IV Gri1|log | VG| dH™ T < / VG| log |VGy|dH™ 1
8§k+1 aﬁk

(5.12) + ¢(n) (") Y8 Gp(B(zp41,37)) .

Summing (5.11) and using (5.10), it then follows that

VG| log |[VG'| dH™ 1
o9
(5.13)

< [ I9Gy|log [V Gyl + cln) ().

Qp

where we have used the fact that Qy = @/, Q;, = Qp. Summing (5.12)
and using (5.10), we find

/A |V@p|log|V§p|dH"_1

0%,

(5.14)

S/ IVG|log [VG|dH™ ! + ¢(n) ()8,
o0
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since Qg = Q. Putting (5.13), (5.14) into (5.1) we get

/ VG| log |VG'|dH™ 1
(5.15) %
< / IVG|log |VG|dH™ ™! + ¢(n) (7")1/8 .
oQ

Using this inequality in the definition of D,,4; we obtain

/ VG 1| log |[VGir | dH™ 1
a-Dm,+1

(5.16) < / VG| 10g VG | dH™ L + c(n) ()18,

m

where 7' = r/(m). From (2.5) and the definition of d; following (3.9) we
see that Y °°_ (r'(m))Y/® < co. Hence (3.14) is true and the proof of
Theorem 1 is complete after we prove (5.11), (5.12).

We prove only (5.11) for k& = 0, since the proof of all the other
inequalities is the same. To prove (5.11) for k = 0 let y = 21 in the
definition of ] and let 9 be as defined earlier relative to y. If 3,7 are
as in (2.10), put

7(x")
win {(@'), o — VTP =TT =@}, for o —w'| <7,
- P(a’), for ¥ < |z’ —w'| < p*.
Then
094 1 By, 10+") = {(&/, 7(a"))} N Bly, 101"
Q) N B(y,10r") = {(a',z,) : z, > 7(z")} N B(y,107").
Also if
win {wn — /G =T =W, 5 — V=W =T},
for |[2" —w'| <7,
o(z) =

wn P W
for 7 < |2’ —w'| < p*,
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then
o' N B(y,107") = {(2',0(z"))} N B(y,107"),
Q' NBy,10r") ={(z',z,) : x, >0o(z')} N B(y,107").

Next let

Ky, ={z": (2 2,) € S(y,7) N S(w, p*)},

Ky = {-T/ : (xlvwn - P*) € S(gv?‘/)}v
Ks={a': ' <|¢' —w'| <+ + (')3?}.

Let K be the set of all 2/ € R*"™! whose distance from U;_; K; is at
most 1000 (/)32 and set

H={a: |2/ —w'| <3r'}\ K,
K/ = {('/L.lvxn) € 8Q/ﬂB(z1737'/) . x/ c K}’
K{ = {(a' ) € 094 N B(e1,31) s ' € K.

We have
‘/ VG| log |VG! | dH™ 1
Q' NB(z1,3r")
—/ |VG’1|1og|VG’1|dH"_1‘
0Q\ NB(z1,3r")

< ‘/ |VG'|1og|VG'|dH"_1—/ |VG'1|1og|VG’1|dH"_1‘
(5.17) K' K]

+ ‘/ VG| log VG| dH™
(OQU\K'")NB(z1,3r")

- / VG| log |[VGY| dH"‘l‘
(0Q\K{)NB(z1,3r")

=T +T1>.

To estimate T; we cover K’ by balls of radius 10 (r/)3/2 with centers in
K’ and the property that the balls with the same centers and radius



250 J. L. LEwIS AND A. VOGEL

(r")3/% are disjoint. Using (5.9) in each ball and (5.3), (5.8) with E =
K', t; = 37" we deduce after summing that

‘/ VG |log [VG'|dH™ | < —¢(n)logr'w'(K')
K'NB(z1,3r")

< e(n) (') /30! (B(z1,31")).

This inequality also holds with K’ G, w’ replaced by K1, G}, w]. Next
we observe that it follows in the same way as (5.10) that wi(B(z1,37"))
~ w'(B(z1,31")) where ~ means the two quantities are constant multi-
ples of each other (depending only on n). From the above inequalities
we conclude

(5.18) T) < ¢(n) (r") Y3 W' (B(21,37")) .

To begin the estimate of Ty we write z for (z/, o(z')) and z for (z', 7(z'))
in the following integrals.

T; = ‘ / VG| log |VG, | dH™
(OQU\K'")NB(z1,3r")

— / VG| log |[VGY | dH™ 1
(0Q\K{)NB(z1,3r")

< /H |1V, |(2) 1og | VG| |()]

VI No@)f — 1+ V(@) | do!
(5.19

)
+/ [ IVG1](Z) — [VGi|(2)] [1og VG| [(x) /1 + |V7(2!)]? da’
H
+/ IVGL(@)|10g | VG (2)| = log [VGL ()] | V1 + [V7(a!)[? da
H
=U;+Uy;+Us.
From the definition of 7,0, and (5.9) we find that
(5.20) Uy < c(n) (") Y8 W, (B(21,37")) < ¢(n) ()Y W' (B(z1,371")).

To estimate Us, Us let ¥ = (o', 7(2)), v = (2',0(2")), ' € H, be as in
(5.19). Then z € 09] \ K| and using the Kelvin transformation it is
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easily seen that G extends to a harmonic function in B(Z,2 (1')3/2).
If p = (+')3/2, then from standard estimates for harmonic functions in
balls, (5.2), and the fact that |z — Z| < ¢(n) (r)?/p*, we obtain

VG (x) — VG (Z)| < c(n) |z — 2] p~2 Jnax e

(n) (r'p*) "t GL(Py(T))
c(n) (r'p*) =t p* "W (B(Z, p)) -

Using positivity of G} and (5.3) we also find that

(5.21)

VAN
o

VAN

(5:22) c(n)™!p' " wi(B(T, p)) < [VGL(F)] < c(n) p' " Wi (B(@,p)) -
Putting (5.22) in (5.21) we find in view of (2.5) that

(5.23) VG (x) = VG ()] < e(n) (F)V* VG (@)

where T =z or Z. From (5.23) and (5.9) we see that

(5.24) Us + Us < ¢(n) (r")Y8 W' (B(z1,37")).

Using (5.24), (5.20) in (5.19) we deduce

(5.25) Ts < c(n) ()2 W' (B(21,37")).

If 2 € 0\ K',Z, and p = (r')%/2, are as above, then again using the
Kelvin transformation we deduce first that G’ — G has a harmonic

extension to B(z,2 p) and second that

(5.26) VG — VG |(z) < ¢(n) p~t él(lax) |G’ — GY).
@,p

We claim that

n1/2
I ! < I / (T / P
fnax |G" = G| < c(n) A, |G" = G| +c(n) G (Py(x))
. < I ni/2 P / .
(5:27) < () max (G = G+ () ()7 ) VG ()

The second line of (5.27) follows from the first line, (5.2), (5.3), and the
same argument as in (5.22). To prove the first line of (5.27) observe that
if x € S(y,7) N K', then this inequality is obvious since both functions
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are extended by essentially reflecting across S(y, 7). Otherwise suppose
Z € B(x,p) and z, Z denote the reflection of z with respect to the plane
{ueR": u, =w, — p*} and the sphere S(w, p*), respectively. Then

F-2 < e(n) ()2 L
p

Using this fact, the definition of the Kelvin transformation, and stan-
dard estimates for functions vanishing on B(z, p) N S(w, p*) we obtain
(5.27). As noted earlier we have

w'(B(z1,37")) ~ wi(B(z1,37"))
so from (5.2), we have
G (P (2)) = G (P ().

Now if 09 = o¢p(n) > 0 is small enough, then from this note and a
barrier type estimate using interior and exterior cones, we deduce for
r' >t > 2|z — | that

c n) 1( )
(5.28.&) T’

max {G' (P (x)), G (P (x))}

< min {G'(P(z)), G} (P:(z))}

and
wax (7 (P (). G (Py(x))}
(5.28.b) 9/10
< ) (%) wmin (G (P (), GL(B ()

We observe that every point of 9Q' N B(z1, 31') lies within c(n) (r')?/p*
of a point of 0. From this observation, the maximum principle for
harmonic functions, (5.28) and (2.5) we see that

max |G —Gi|<c(n) max |G
B(z,p)nQ’ Q' NB(z1,3r")
r'\9/10
T P,
(5.29) < cfn)( p*) & (Fr (@)

< ¢(n) ()1 G’ (Py(x))
< e(n) ()4 p VG (2)].
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Using (5.27), (5.29) in (5.26) we get
(5.30) VG — VG |(z) < e(n) (F)YVE ()]

Finally from (5.30), (5.25) we conclude that
1> < ‘/ VG| log VG| dH™ 1
(OQU\K'")NB(z1,3r")

—/ IVG'|log |[VGE'| dH”_l‘ +T5
(OQU\K')NB(z1,3r")

< /H |IVGY|(z) — [VG|(2)] [1og VG| () /1 + [Va(z')|? dz’
(5.31)
+¢(n) (r")Y8 W (B(z1,37"))

+ /H IVG'|(2)]1og | VG (2)] —1og |[VG'(2)] | /1 +|Vo(z')|? dz’
< ¢(n) (r')l/s w'(B(z1,37")).

From (5.18), (5.31) and (5.17) we conclude that

‘ / VG, |log VG| dH™
9Q  NB(z1,3r")

(5.32) _ / VG| log VG| dH™ 1
0Q'NB(z1,3r")

< ¢(n) (MY W (B(z,31").

Next we note that the argument in [LV] from (3.26) to (3.28) uses only
NTA estimates (primarily (5.4) and (5.6)) so is also valid for our current
domains. Thus

‘ / VG, | log VG, | dH™
Q' \B(z1,3r")

(5.33) - / VG |log VG| dH™
OQ'\B(z1,3r")

< e(n) (MY W (B(z,31").
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From (5.32), (5.33) we find that (5.11) is valid for £ = 0. Fix

oo = op(n) > 0 subject to the stipulations in sections 2-5. From our
earlier remarks we conclude first (3.14) and thereupon that Theorem 1
is valid.
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