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di�erential equations driven

by L�evy processes

David R� E� Williams

Abstract� In this paper we show that a path�wise solution to the
following integral equation

Yt �

Z t

�

f�Yt� dXt � Y� � a � R
d �

exists under the assumption that Xt is a L�evy process of �nite p�
variation for some p � � and that f is an ��Lipschitz function for some
� � p	 We examine two types of solution
 determined by the solution�s
behaviour at jump times of the process X
 one we call geometric
 the
other forward	 The geometric solution is obtained by adding �ctitious
time and solving an associated integral equation	 The forward solution
is derived from the geometric solution by correcting the solution�s jump
behaviour	

L�evy processes
 generally
 have unbounded variation	 So we must
use a pathwise integral di�erent from the Lebesgue�Stieltjes integral	
When X has �nite p�variation almost surely for p �  we use Young�s
integral	 This is de�ned whenever f and g have �nite p and q�variation
for ��p� ��q � �	 When p �  we use the integral of Lyons	 In order
to use this integral we construct the L�evy area of the L�evy process and
show that it has �nite �p���variation almost surely	

���
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�� Introduction�

In this paper we give a path�wise method for solving the following
integral equation

��� Yt � Y� �

Z t

�

f�Yt� dXt � Y� � a � R
d �

when the driving process is a L�evy process	
Typically
 a L�evy process
 almost surely
 has unbounded variation	

The integral does not exist in a Lebesgue�Stieltjes sense	 However
 the
integral still makes sense as a random variable due to the stochastic
calculus of semi�martingales developed by the Strasbourg school ����	

The semi�martingale integration theory is not complete though	
There are processes of interest which do not �t into the semi�martingale
framework
 for example the fractional Brownian motion	 An alternative
integral is provided by the path�wise approach studied by Lyons ����

��� and Dudley ���	 The basis of their papers is that of Young ���

who showed that the integral

��

Z t

�

f dg

is de�ned in a Riemann sense whenever f and g have �nite p and q�
variation for ��p���q � � �and they have no common discontinuities�	
For a comprehensive overview of the theory we recommend the lecture
notes of Dudley and Norvai�sa in the case p � 
 ���	

Recently in ����
 a system of linear Riemann�Stieltjes integral equa�
tions is solved when the integrator has �nite p�variation for some � �
p � 	 These results are contained in Theorem �	� where we allow
non�linearity of the vector �eld f 	 This is because our approach is an
extension of the method of ����
 ���	

The approach that we follow distinguishes two cases	 The �rst is
when the process has �nite p�variation
 almost surely
 for some p � 	
We use the Young integral ���	 In ����
 ��� is solved when Xt is a
continuous path of �nite p�variation for some p � 	

The second case is when the process has �nite p�variation
 almost
surely
 for some p � 	 The Young integral is only de�ned when f
and g have �nite p and q�variation for ��p � ��q � �	 So an iteration
scheme on the space of paths with �nite p�variation does not work	
However
 Lyons de�ned an integral against a continuous function of
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p�variation for some p � 
 ���	 The integral is developed in the space
of geometric multiplicative functionals �described in Appendix A�	 The
key idea is that we enhance the path by adding an area function to
it	 If there is su�cient control of the pair
 path and area
 then the
integral is de�ned	 The canonical example in ��� is Brownian motion	
The area process enhancing the Brownian motion is the L�evy area ���

Chapter �
 Section ���	 We show that there is an area process of a L�evy
process which has �nite �p���variation
 almost surely	

In order to solve ��� for a discontinuous function we add �ctitious
time during which linear segments remove the discontinuities
 creating
a continuous path	 By solving for the continuous path and then re�
moving the �ctitious time we recover a solution for the discontinuous
path	 This is called a geometric solution	 A second type of solution is
derived from the geometric solution which we call the forward solution	
Several papers
 ���
 ���
 and ���
 have used the geometric solution to an�
swer questions about continuity of solution for a stochastic di�erential
equation driven by a discontinuous path	

The �rst section treats the case where the discontinuous driving
path has �nite p�variation for some p � 	 The second section treats the
case where the path has �nite p�variation for some p �  only	 The main
proofs of the second section are deferred to the third section	 In the
appendix we prove the homeomorphic �ow property for the solutions
when the driving path is continuous	 This is used in proving that
forward solutions can be recovered from geometric solutions	

�� Discontinuous processes � p � �

In this section we extend the results of ���� to allow the driving path
of ��� to have discontinuities	 The results are applied to sample paths of
some L�evy processes
 those that have �nite p�variation
 almost surely

for some p � 	 Throughout this section p � ��� � unless otherwise
stated	

First
 we determine the solution�s behaviour when the integrator
jumps	 There are two possibilities to consider� the �rst is an extension
of the Lebesgue�Stieltjes integral� the second is based on a geometric
approach	

Suppose that the discontinuous integrator has bounded variation	
The solution y would jump

yt � yt� � f�yt�� �xt � xt�� �
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at a jump time t of x	 If x has �nite p�variation for some � � p � 
we insert these jumps at the discontinuities of x	 We call a path y with
the above jump behaviour a forward solution	

The other jump behaviour we consider is the following� When a
jump of the integrator occurs we insert some �ctitious time during which
the jump is traversed by a linear segment
 creating a continuous path
on an extended time frame	 Then we solve the di�erential equation
driven by the continuous path	 Finally we remove the �ctitious time
component of the solution path	 We call this a geometric solution be�
cause the solution has an �instantaneous �ow� along an integral curve
at the jump times	 This jump behaviour has been considered before by
����
 ��� and ���	

The disadvantage of the �rst approach is that the solution does
not
 generally
 generate a �ow of di�eomorphisms
 ���	

In this section we prove the following theorem�

Theorem ���� Let xt be a discontinuous function of �nite p�variation
for some p � � Let f be an ��Lipschitz vector �eld for some � � p�
Then there exists a unique geometric solution to the integral equation

��� yt � y� �

Z t

�

f�yt� dxt � y� � a � R
d �

With the above assumptions� there exists a unique forward solution as

well�

Before proving the theorem we recall the de�nitions of p�variation
and ��Lipschitz�

De�nition ���� The p�variation of a function x�s� over the interval

��� t� is de�ned as follows

kxk
p����t�

�
�

sup
������t�

X
�

jx�tk�� x�tk���j
p
���p

�

where ���� t� is the collection of all �nite partitions of the interval ��� t��

Remark� This is the strong p�variation	 Usually probabilists use the
weaker form where the supremum is over partitions restricted by a mesh
size which tends to zero	
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De�nition ���� A function f is in Lip��� for some � � � if

kfk� �� and
	f

	xj
� Lip��� �� � j � �� � � � � d �

Its norm is given by

kfkLip��� � kfk� �
dX

j��

��� 	f
	xj

���
Lip�����

� for � � � �

This is Stein�s ��� de�nition of ��Lipschitz continuity for � � �	
It extends the classical de�nition� f is in Lip��� for some � � ��� �� if

jf�x�� f�y�j � K jx� yj� �

with norm

kfk� � sup
x ��y

jf�x�� f�y�j

jx� yj�
�

���� Geometric solutions�

In this subsection we de�ne a parametrisation for a c�adl�ag path x
of �nite p�variation	 The parametrisation adds �ctitious time allowing
the traversal of the discontinuities of the path x	 We prove that the
resulting continuous path x� has the same p�variation that x has	 We
solve ��� driven by x� using the method of Lyons ����	 Then we get
a geometric solution of ��� by removing the �ctitious time �i�e� by
undoing the parametrisation�	

De�nition ���� Let x be a c�adl�ag path of �nite p�variation� Let 
 � ��
for each n � �� let tn be the time of the n�th largest jump of x� We

de�ne a map � � � ��� T � �� ��� T � 

P�

i�� jj�ti�j
p� �where j�u� denotes

the jump of the path x at time u� in the following way

��� � ��t� � t� 

�X
n��

jj�tn�j
p �

ftn�tg
�t� �

The map � � � ��� T � �� ��� � ��T �� extends the time interval into one

where we de�ne the continuous process x��s�

��� x��s� �

�����
x�t� � if s � � ��t� �

x�t�n � � �s� � ��t�n ��

� j�tn� 

�� jj�tn�j

�p � if s � �� ��t�n � �
��tn�� �
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Remarks ���� �� �s� x�s�
 s � ��� � ��T �� is a parametrisation of the
driving path x	

� The terms jj�tn�j
p in ��� ensure that the addition of the �ctitious

time does not make � ��t� explode	

�� In Figure � we see an example of a parametrisation of a discon�
tinuous path xs in terms of the pair �t�s�� y�s��	

The next proposition shows that the above parametrisation has
the same p�variation as the original path
 on the extended time frame
��� � ��T ��	

T(s)

Y(s)

s
0

0

X(s)

Figure �� Parametrisation of a discontinuous path�

Let xs be a discontinuous path of bounded variation �p � ��	 De�
�ne a map ��s� inserting �ctitious time for the discontinuities of x	
De�ne a parametrisation �t�s�� y�s�� in the manner of ���	 �t�s�� y�s��
traverses the jumps of x during the �ctitious time	
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Proposition ���� Let x be a c�adl�ag path of �nite p�variation� Let x�

be a parametrisation of x as above�

kx�kp�������T �� � kxkp����T � � for all 
 � � �

Proof� Let �� be a partition of ��� � ��T ��	 Let

Vx� ���� �
X
��

jx��ti�� x��ti���j
p �

We show that we increase the value of Vp���� by moving points lying
on the jump segments to the endpoints of those segments	

Let ti��� ti� ti�� be three neighbouring points in the partition ��
such that ti lies in a jump segment	 Consider the following term

� � jx�ti � x�ti��
jp � jx�ti��

� x�ti j
p �

We show that � � is dominated by replacing x�ti by one of x�l and x�r

where l and r denote the left and right endpoint of the jump segment
containing ti	

For simplicity we set a � x�ti��
� b � x�ti��

and c � x�l 	 Let

L � fc� k x � k � ��� ��� c� x � R
d � x �� �g � a� b � R

dnL �

Let the function f � ��� �� �� ����� be de�ned by

f�k� � ja� djp � jd� bjp � d � c� k x �

Then f � C	��� �� and one can show that f �� � � on ��� �� when p � �	
To conclude the proof we move along the partition replacing ti which
lie in the jump segments by new points t�i that increase Vx�����	 The
partition �� is replaced by a partition ��� whose points lie on the pre�
image of ��� � ��T ��	 Therefore we have

Vx����� � Vx� ��
�
�� � Vx��

�
�� �

Hence kx�kp�������T �� � kxkp����T �	

Theorem ���� Let x be a c�adl�ag path with �nite p�variation for some

p � � Let f be a Lip�� vector �eld on R
n for some  � p� Then there
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exists a unique geometric solution y� having �nite p�variation which

solves the di�erential equation

��� dyt � f�yt� dxt � y� � a � R
n �

Proof� Let x� be the parametrisation given in ���	 The theorem of
���
 Section �� proves that there is a continuous solution y� which solves
��� on ��� � ��T ��	 Then �s� y�s� is a parametrisation of a c�adl�ag path y
on ��� T �	

The solution is well�de�ned	 To see this
 consider two parametrisa�
tions of x and note that there exists a monotonically increasing function
�s such that

�s� x�s� � ��s� x
�
	s� �

���� Forward solutions�

In this subsection we show how to recover forward solutions from
geometric solutions	 The idea behind our approach is to correct the
jump behaviour of the geometric solution using a Taylor series expan�
sion
 cf� Lemma �	�	 The correction terms are controlled by

�X
i��

jxti � xt�i
j	 �

which is �nite due to the �nite p�variation of the path x	
In the case where the driving path has only a �nite number of

jumps we note that the forward solution can be recovered trivially	 It
is enough to mark the jump times of x and solve the di�erential equation
on the components where x is continuous
 inserting the forward jump
behaviour when the jumps occur	 It remains to show that the forward
solution exists when the driving path has a countably in�nite number
of jumps	 The method we use requires the following property of the
geometric solution�

Theorem ���� Let x be a continuous path of �nite p�variation for some

p � �� Let f be in Lip��� for some � � p� The maps ��t�t�� � Rn ��
R
n obtained by varying the initial condition of the following di�erential

equation generate a 	ow of homeomorphisms

��� d�t � f��t� dxt � �� � Id � �the identity map� �
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We leave the proof of Theorem �	� until Appendix A	 We note the
uniform estimate

��� sup
��t�T

j�at � �bt j � C�T �ja� bj �

The following lemma will enable estimates to be made when the geo�
metric jumps are replaced by the forward jumps�

Lemma ���� Let x be a c�adl�ag path with �nite p�variation� Let f be in

Lip��� for some � � p� Let !yi �respectively !zi� denote the geometric

�respectively forward � solution�s jump which correspond to !xi� the i�th
largest jump of x� Then we have the following estimate on the di�erence

of the two jumps

k!yi �!zik� � K j!xij
	 �

where the constant K depends on kfkLip����

Proof� Parametrise the path x so that it traverses its discontinuity
in unit time	 Solve geometrically over this interval with the solution
having initial point a	 Note that the forward jump is the �rst order
Taylor approximation to the geometric jump	 Then

����

y��a� � y��a� �
dys�a�

ds

			
s��

�
�



d	ys�a�

ds	

			
s�


� z��a� �
�



d	ys�a�

ds	

			
s�


�

for some � � � � �	 We estimate the second order term by

����

����


d	ys�a�

ds	

���
�

�
����


d

ds
f�ys�a���!xi�

���
�

�
�


krfk� kfk� j!xij

	

�
�


kfk	Lip��� j!xij

	 �

Both krfk� and kfk� are �nite because f is Lip��� for some � � p �
�	



��
 D� R� E� Williams

Theorem ��	� Let x be a c�adl�ag path with �nite p�variation� Let f be

in Lip��� for some � � p� Then there exists a unique forward solution

to the following di�erential equation

��� dzt � f�zt� dxt � z� � a �

Proof� By Theorem �	� there exists a unique homeomorphism y which
solves

dyt � f�yt� dxt � y� � a �

in a geometric sense	
Label the jumps of x by jx � fjig

�
i�� according to their decreasing

size	 Let zn denote the path made by replacing the geometric jumps of
y corresponding to fjig

n
i�� by the forward jumps ff��� �!xi�g

n
i��	 We

show that the fzngn�� have a uniform limit	
We order the corrected jumps chronologically
 say ftig

n
i��	 Then

we estimate the following term using Lemma �	� and the uniform bound
on the growth of y given in ���

����

jzns �a�� ys�a�j �
nX
i��

jyti�s�z
n
ti
�a��� yti�s�yti���ti�z

n
ti��

�a���j

� C�T �
nX
i��

jznti�a�� yti���ti�z
n
ti��

�a��j

� C	�T �K
�X
i��

j!xij
	 �

So we have the uniform estimate
����

kzn � yk� � K�C
�T �� kfkLip����
�X
i��

j!xij
	 �� � for all n � � �

We use an analogous bound to get Cauchy convergence of fzngn��	 Let
m� r � �	

kzm � zm�rk� � K�C�T� zm�� kfkLip����
�X

i�m��

j!xij
	 �
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One notes that fC�T� zm�g are uniformly bounded
 because of the
boundedness of C�T � � C�T� y� and the Lipschitz condition on f 	
Therefore we have the following estimate

kzm � zm�rk� � L
�X

i�m��

j!xij
	 �

This implies that fzng are Cauchy in the supremum norm because x
has �nite p�variation �p � � which implies that

P�
m�� j!xij

	 tends to
zero as m increases	

Remark� Theorems �	� and �	 combine to prove Theorem �	�	

Corollary ���� With the above notation� z has �nite p�variation�

Proof� Let s � t � ��� T �	

jzt � zsj � j�zt � zs�� �yt � ys�j� jyt � ysj �

where �yt� ys� is the increment of the geometric solution starting from
zs driven by the path xt on the interval �s� T �	 Then

j�zt� zs�� �yt� ys�j � C
X

jxj�s�t�

j!xij
	 and jyt� ysj � kxkp��s�t� �

which implies that

jzt � zsj
p � p��

�
Cp
� X
jxj�s�t�

j!xij
	
�p

� kxkpp��s�t�

�
�

hence

kzkp����T � � �p����p
�
Cp
� X
jxj���T �

j!xij
	
�p

� kxkpp����T �

���p
�� �

���� p
variation of L�evy processes�

In this subsection we apply Theorem �	� to L�evy processes which
have �nite p�variation
 almost surely	
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L�evy processes are the class of processes with stationary
 indepen�
dent increments which are continuous in probability	 The class includes
Brownian motion
 although this process is atypical due to its continu�
ous sample paths	 Typically a L�evy process will be a combination of a
deterministic drift
 a Gaussian process and a jump process	 For further
information on L�evy processes we direct the reader to ���	

The regularity of the sample paths of a L�evy process has been
studied intensively	 In the �� ��s several people worked on the question
of characterising the sample path p�variation	 The following theorem

due to Monroe
 gives the characterisation�

Theorem ��� ����
 Theorem ��� Let �Xt�t�� be a L
evy process in R
n

without a Gaussian part� Let � be the L
evy measure� Let � denote the

index of Xt� that is

���� � � inf
n
� � � �

Z
jyj��

jyj� ��dy� ��
o
�

and suppose that � � � � � If  � � then

�� � P �kXk� ��� � � �

where the �variation is considered over any compact interval�

Remark� Note that all L�evy processes with a Gaussian part only have
�nite p�variation for p � 	

Corollary ���� Let �Xt�t�� be a L
evy process with index � �  and

no Gaussian part� Let f be a vector �eld in Lip��� for some � � p�
Then� almost surely� the following stochastic di�erential equation has a

unique forward and a unique geometric solution

dYt � f�Yt� dXt � Y� � a �

Proof� The corollary follows immediately from Theorems �	� and �	�	

�� Discontinuous processes � p � �

The goal of this section is to extend �Corollary �	� to let any L�evy
process be the integrator of ���	
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One problem we have is that the Young integral is no longer useful
because we use a Picard iteration scheme which fails condition �� when
p � 	 However
 we can use the method from ���	 To de�ne the integral
we need to provide more information about the sample path	 We do
this by de�ning an area process of the L�evy process	 Then we prove
that the enhanced process �path and area� has �nite p�variation
 cf�
De�nition A	�	

We parametrise the enhanced process in an analogous manner to
��� �adding �ctitious time�	 Then we solve ��� in a geometric sense
using the method for continuous paths �p � � given in ���	 Finally

forward solutions are obtained by jump correction as before	

Before enhancing �Xt�t�� we give an example which shows that
there exist L�evy measures with index two	 So a L�evy process does not
need a Gaussian part to have
 almost surely
 �nite p�variation only for
p � 	

Example ���� One can de�ne the following measures on R

�k �dx� � jxj�
���k dx � jxj � ��k � ���
�k���� k�
k� � Jk

�m�dx� �
mX
k��

�k�dx 	 Jk 	 ��Jk�� �

We show that � � limm�� �m is a L�evy measure	 The integrability
condition

����

Z
jxj��

jxj	 ��dx� �� �

must be satis�ed	Z
jxj��

jxj	 �m�dx� � 

Z �

�

mX
k��

x�����k�
Jk
�x� dx

� 
mX
k��

�k x��k�k
��k

�k������k���

� 
mX
k��

k �k�
 � �k � ���
�����k��

� 
mX
k��

k �k�
 � �
�����k�k�
�����k��
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� 
mX
k��

k�	 ��� �
�����k�k�
�k�

� C
�X
k��

k�	

�� �

where C is some suitable constant	 We take the limit as m tends to
in�nity on the left hand side to prove ����	

Now we show that

����

Z
jxj��

jxj� ��dx� �� �

for all � � 	 Fix � � 	 De�ne the following number

m��� � inf
n
k � ��

�

k
� 
o
�� � as � �  �

Let m � m���	 ThenZ
jxj��

jxj� �m�dx�

� 
mX

k�m���

�

��� ��k � �
�k�
k�����k�	� � �k � ���
�k��������k�	��

� 
mX

k�m���

�

�� ��� ��k��
��k � ���
�k��������k�	� � k�
k�����k�	��

�


� �

mX
m���

��k � ��
�k����	������k�� � k
k�	������k���

��� � as m ��� �

This proves that the index � of � equals two	 Theorem �	� implies that
the pure jump process associated to the L�evy measure � almost surely
has �nite p�variation for p �  only	

The following theorem gives a construction of the L�evy area of the
L�evy process �Xt�t��	 The L�evy area process and the L�evy process
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form the enhanced process which we need in order to use the method
of Lyons ���	

Theorem ���� The d�dimensional L
evy process �Xt�t�� has an anti�

symmetric area process

�As�t�
ij
�

�



Z t

s

Xi
u� 
 dX

j
u�Xj

u� 
 dX
i
u � i� j � �� � almost surely �

The proof is deferred to Section �	

Theorem ���� The L
evy area of the L
evy process �Xt�t��� almost

surely� has �nite �p���variation for p � � That is

sup
�

�X
�

jAtk���tk j
p�	
�	�p

�� � almost surely �

where the supremum is taken over all �nite partitions � of ��� T ��

The proof is deferred to Section �	
Now we parametrise the sample paths of �Xt�t�� as before ���	

Proposition ���� Parametrising the process �Xt�t�� does not a�ect

the area process� �p���variation�

Proof� The proof is similar to the proof of Proposition �	�	 One can
show that if � lies in a jump segment then

jAs�	j
�p�	� � jA	�tj

�p�	� � s � � � t �

is maximised when � is moved to one of the endpoints of the jump
segment	

With the parametrisation of the path and the area we can de�ne the
integral in the sense of Lyons ���	 Consequently we have the following
theorem�

Theorem ���� Let �Xt�t�� be a L
evy process with �nite p�variation
for some p � � Let f be in Lip��� for some � � p� Then there exists�
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with probability one� a unique geometric and a unique forward solution

to the following integral equation

���� Yt � Y� �

Z t

�

f�Yt� dXt � Y� � a � R
d �

Remark� When constructing the forward solution it is necessary that
the sum

�X
n��

j!Xnj
	

remains �nite	 This is guaranteed by the requirement on L�evy measures
to satisfy Z

jxj��

�jxj	 � �� ��dx� �� �

�� Proofs of Theorem ��� and Theorem ����

For clarity
 throughout this section we assume that the L�evy pro�
cess �Xt�t�� is two dimensional and takes the following form

��� Xt � Bt �

Z
jxj��

x �Nt�dx�� t ��dx�� �

That is
 �Xt�t�� is a Gaussian process with a compensated pure jump
process
 whose L�evy measure is supported on �x � R

	 � jxj � ��	

Proposition ���� The d�dimensional L
evy process �Xt�t�� has an

anti�symmetric area process

�As�t�
ij
�

�



Z t

s

Xi
u� 
dX

j
u�Xj

u� 
dX
i
u � i� j � ��  � almost surely �

For �xed s � t we obtain the area process by the following limiting

procedure

�As�t�
ij � lim

n��

nX
m��

	m��X
k��
odd

Ai�j
k�m � almost surely �
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where Aij
k�m is the area of the �ij��projected triangle with vertices

X�u�k����	�m���� X�u�k����	�m���� X�uk�m� �

where uk�m � s� k �m �t� s�� Also we have the second order moment

estimate

��� E ��Aij
s�t�

	� � C��� �t� s�	 �

Proof� We de�ne As�t�n�

As�t�n� �
�



	n��X
k��

�X����uk�n��X����s�� �X�	��uk���n��X�	��uk�n��

� �X�	��uk�n��X�	��s�� �X����uk���n��X����uk�n��

�
	n��X
k��

Bk�n �

where Bk�n is the �signed� area of the triangle with vertices

X�s�� X�uk�n�� X�uk���n� �

By considering the di�erence between As�t�n� and As�t�n � �� we see
that

B	k�n�� � B	k���n�� � Bk�n

is the area of the triangle with vertices

X�uk�n�� X�uk���n�� X�u	k���n��� �

which we denote by Ak�n	 We re�order As�t�n�

As�t�n� �
�



nX
m��

	m��X
k��
odd

�X�uk�m�� dk�m�

� �X�u�k����	�m����X�u�k����	�m����

�
�



nX
m��

	m��X
k��
odd

Ak�m �
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where dk�m � ���� �X�u�k����	�m��� �X�u�k����	�m����	 The conver�
gence to the area process is completed using martingale methods	

Let Fn � ��X�uk�n� � k � �� � � � � n�	 Then

Lemma ����

�� E �X�uk�m� jFm��� � dk�m � almost surely �

Proof� For ease of presentation we let

U� � X�uk�m��X�u�k����	�m��� �

U	 � X��u�k����	�m����X�uk�m� �

Then

E �X�uk�m�� dk�m jFm���

� E �X�uk�m�� dk�m jX�u�k����	�m���� X�u�k����	�m����

�
�


E �U� � U	 jX�u�k����	�m���� X�u�k����	�m���� �

Using the stationarity and the independence of the increments of X we
see that U� and U	 are exchangeable
 that is

P �U� � A� U	 � B� � P �U	 � A� U� � B� � for all A�B � B�R	� �

The exchangeability extends to the random variables

�Ui jX�u�k����	�m���� X�u�k����	�m���� � i � ��  �

We deduce that

E �U� � U	 jX�u�k����	�m���� X�u�k����	�m���� � � �
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Returning to the proof of Proposition �	�
 we compute the variance
of Ak�m	 This will be used to show that

sup
n��

E �As�t�n�
	� �� �

E �A	
k�m�

� E ���X����uk�m�� d
���
k�m� �U

�	�
� � U

�	�
	 �

� �X�	��uk�m�� d
�	�
k�m� �U

���
� � U

���
	 ��	�

�
�

�
E ���U

���
� � U

���
	 � �U

�	�
� � U

�	�
	 �� �U

�	�
� � U

�	�
	 � �U

���
� � U

���
	 ��	�

�
�

�
E ��U

���
� U

�	�
	 �	 � U

���
� U

�	�
	 U

���
	 U

�	�
� � �U

���
	 U

�	�
� �	�

� ��� � �� � ��� �

We use the independence of the increments and It"o�s formula for dis�
continuous semi�martingales to compute ���� �� and ���	

��� � E ��U
���
� U

�	�
	 �	� � E ��U

���
� �	� E ��U

�	�
	 �	� �

By applying It"o�s formula and using the stationarity of the L�evy process
we �nd that

��� � ��� � �	m �t� s�	
Z
jxj��

jx�j
	 ��dx�

Z
jxj��

jx	j
	 ��dx� �

Another application of It"o�s formula gives

�� � � E �U
���
� U

�	�
	 U

���
	 U

�	�
� �

� � E �U
���
� U

�	�
� � E �U

�	�
	 U

���
	 �

� ��	m�� �t� s�	
� Z

jxj��

x� x	 ��dx�
�	

�

Collecting the terms together we have the following expression

E �A	
k�m � � C���� 

�	m�� �t� s�	 �

where

C���� �
�Z

jxj��

jx�j
	 ��dx�

Z
jxj��

jx	j
	 ��dx��

�Z
jxj��

x� x	 ��dx�
�	�

�
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Now we estimate the following term

E �A	
s�t�n�� � E

h� nX
m��

	m��X
k��
odd

Ak�m

�	i
�

which through conditioning and independence arguments equals

� E

h nX
m��

	m��X
k��
odd

A	
k�m

i

� C����
nX

m��

	m��X
k��
odd

�	m�� �t� s�	

� C����
�X

m��

	m��X
k��
odd

�	m�� �t� s�	

� C��� �t� s�	 �

We use the martingale convergence theorem to deduce that
 almost
surely
 there is a unique limit of As�t�n�	 Furthermore the last calcula�
tion implies that there is a moment estimate of the area process given
by

E �A	
s�t � � C��� �t� s�	 �

We note that there is another way that one could de�ne an area
process of a L�evy process	 One could de�ne the area process for the
truncated L�evy processes and look for a limit as the small �compen�
sated� jumps are put in	 Using the above construction one can de�ne
A�
s�t for a �xed pair of times
 corresponding to the L�evy process X�	

With the ���elds �G���� de�ned by

G�
� ��X� � 
 � �� � for � � � �

we have the following proposition�

Proposition ���� �A�
s�t��� form a �G���martingale�
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Proof� Let � � � � �	 By considering the construction of the area
given above for the truncated processes X� and X� we look at the
di�erence at the level of the triangles A�

k�n and A�
k�n	

E �A�
k�n �A�

k�n jG
��

� E �A���
k�n � �X���

k�n � d���k�n�� �X�
�k����	�n�� �X�

�k����	�n���

� �X�
k�n � d�k�n�� �X���

�k����	�n�� �X���
�k����	�n��� jG

�� �

where the superscript �� � signi�es that the process is generated by the
part of the L�evy measure whose support is ��� ��	 Using the spatial
independence of the underlying L�evy process we have

� E �A���
k�n � � E ��X���

k�n � d���k�n��� �X�
�k����	�n�� �X�

�k����	�n���

� �X�
k�n � d�k�n�� E ��X���

�k����	�n�� �X���
�k����	�n����

� � �

With the uniform control on the second moment of the martingale

E ��A�
s�t�

	� � C��� �t� s�	 � for all � � � �

we conclude that A�
s�t converges almost surely as � �� �	

The algebraic identity

��� As�u � As�t �At�u �
�


�Xs�t� Xt�u� � s � t � u �

for the anti�symmetric area process A generated by a piecewise smooth
path X extends to the area process of the L�evy process	 This is due to
��� holding for the area processes A� of the truncated L�evy processes
X�	

Proposition ���� The L
evy area of the L
evy process �Xt�t�� has �nite
�p���variation for p � � almost surely� That is

sup
�

�X
�

jAtk���tk j
p�	
�	�p

�� � almost surely �

where the supremum is taken over all �nite partitions � of ��� T ��
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Proof� In Proposition �	� we constructed the area process for a pair
of times
 almost surely	 This can be extended to a countable collection
of pairs of times
 almost surely	 In the proof below we assume that the
area process has been de�ned for the times

k �nT� �k � �� �n T � k � �� �� � � � � n � �� n � � �

The proof follows the method of estimation used in � �	 To estimate
the area process for two arbitrary times u � v we split up the interval
�u� v� in the following manner�

We select the largest dyadic interval ��k� �� �nT� k �n� which is
contained within �u� v�	 Then we add dyadic intervals to either side of
the initial interval
 which are chosen maximally with respect to inclusion
in the interval �u� v�	 Continuing in this fashion we label the partition
according to the lengths of the dyadics	 We note that there are at most
two dyadics of the same length in the partition which we label �l��k� r��k�
and �l	�k� r	�k� where r��k � l	�k	 Then

�u� v� �
�

k��



i���	

�li�k� ri�k� �

We estimate Au�v using the algebraic formula ���	

Al��m�r	�m

�
mX
k��

X
i���	

Ali�k�ri�k�
�



X
��a�b�	

X
��j�k�m

�Xra�k�Xla�k � Xrb�j�Xlb�j � �

Noting thatX
��a�b�	

X
��j�k�m

j�Xra�k �Xla�k � Xrb�j �Xlb�j �j

�
X

��a�b�	

X
��j�k�m

j�Xra�k �Xla�k�� �Xrb�j �Xlb�j �

� �Xrb�j �Xlb�j �� �Xra�k �Xla�k�j

�
X

��a�b�	

X
��j�k�m

jXra�k �Xla�k j jXrb�j �Xlb�j j

�
� mX
k��

X
i���	

jXri�k �Xli�k j
�	

�
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we have the estimate

���

jAu�vj
p�	 � �p�	���

�� �X
k��

X
i���	

jAli�k�ri�k j
�p�	

�
�



� �X
k��

X
i���	

jXri�k �Xli�k j
�p�

�

Using H#older�s inequality
 with p �  and  � p� �
 we have

jAu�vj
p�	

� �p�	���
�� �X

n��

n�����p�	����
��p�	��� �X

n��

n�
� X
i���	

jAli�k�ri�k j
�p�	

�
�



� �X
n��

n����p���
�p�� �X

n��

n�
� X
i���	

jXri�k �Xli�k j
�p����

� C��p� �
�X
n��

n�
X
i���	

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
X
i���	

jXri�k �Xli�k j
p �

One can uniformly bound jAu�vj
p�	 for any pair of times u � v � ��� T �

by extending the estimate in ��� over all the dyadic intervals at each
level n
 that is


jAu�vj
p�	 � C��p� �

�X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
	nX
i��

jXri�k �Xli�k j
p �

If the right hand side is �nite
 almost surely
 then the area can be
de�ned for any pair of times	

The �p���variation of the L�evy area can be estimated by the same



�	� D� R� E� Williams

bound	

� �

sup
�

X
�

jAu�vj
p�	 � C��p� �

�X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	

� C	�p� �
�X
n��

n�
	nX
i��

jXri�k �Xli�k j
p �

We use ��� to control the �rst sum

E �jAs�t j
p�	� � C �t� s�p�	 � for p � � �

So we have

E

h �X
n��

n�
	nX
i��

jAli�k�ri�k j
p�	
i
� C

�X
n��

n�
	nX
i��

��n T �p�	

� C
�X
n��

n� �n��p�	����

�� � for p �  �

This implies that the �rst term in the right hand side of � � is almost
surely �nite	 Now we consider the second term of � �	

Lemma ����

�X
n��

n�
	n��X
k��

jX�k���	�nT �Xk	�nT j
p �� � almost surely �

Before proving the lemma we recall a result of Monroe
 �� �	

De�nition ���� Let Bt be a Brownian motion de�ned on a probability

space �$�F�P�� A stopping time T is said to be minimal if for any

stopping time S � T � B�T �
�d�
� B�S� implies that� almost surely� S � T �

Theorem ��� �� 
 Theorem ���� Let �Mt�t�� be a right continuous

martingale� Then there is a Brownian motion �$�Gt� Bt� and a family

�Tt� of Gt�stopping times such that the process BTt has the same �nite

distributions as Mt� The family Tt is right continuous� increasing� and
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for each t� Tt is minimal� Moreover� if Mt has stationary independent

increments then so does Tt�

Remark� It should be noted that the stopping times Tt are not gen�
erally independent of Bt	 However
 in the case of ��stable processes
� � � �  one can use subordination to gain independence of the
stopping times
 ��	

Proof of Lemma ���� Let ��t�t�� denote the collection of minimal
stopping times for which

Xt
�d�
� B�t �

The proof will be completed once it has been shown that

���
�X
n��

n�
	n��X
k��

jB���k���	�nT � �B��k	�nT �j
p �� � almost surely �

The following inequality holds because Brownian motion is ���p���H#ol�
der continuous
 almost surely
 for p� � 

��� jB��tk���n� � B��tk�n�j
p � C j��tk���n�� ��tk�n�j

p�p� �

for all k � �� � � � � n � �
 and for all n � �
 almost surely
 where tk�n �
k �n T and  � p� � p	

���
 Theorem �� shows that the index of the process ��s� is half
that of the L�evy process	 Therefore
 with probability one
 ��s� has
�nite �� � 
��variation for all 
 � �	

Theorem ���� If � is a minimal stopping time and E �B� � � �� then
E ��� � E �B	

� ��

Consequently the process ��t�t�� can be controlled in the following
way

��� E ��t � � E �B	
�t
� � E �X	

t � � t

Z
jxj��

jxj	 ��dx� �

where � is the L�evy measure corresponding to the process Xt	 From
��� and Theorem �	� we note that the process �t is a L�evy process
whose L�evy measure
 say �
 satis�es the followingZ �

�

x��dx� �� �



��� D� R� E� Williams

From this result we deduce that the process �t
 almost surely
 has
bounded variation	 From ���
 Theorem �� we note that there is a posi�
tive constant A such that

P ��t � A t � for all t � �� � � �

From the above bound and using the fact that � has stationary inde�
pendent increments one can show

P ���tk���n�� ��tk�n� � A�tk���n � tk�n� � A �n j ��tk�n�� � � �

P

� �
n��

	n���
k��

�j��tk���n�� ��tk�n�j � A �n�
�
� � �

Returning to ��� we see that

jB��tk���n� �B��tk�n�j
p � C j��tk���n�� ��tk�n�j

p�p� � CA �n�p�p
�� �

which implies that

�X
n��

n�
	n��X
k��

jB���k���	�nT ��B��k	�nT �j
p � C A

�X
n��

n��n�p�p
���� �� �

due to p� being chosen in the interval �� p�	
This lemma concludes the proof that the bound in � � is �nite


which shows that the area process
 almost surely
 has �nite �p���
variation	

In this section we have proved that the area process exists and has
�nite �p���variation when �Xt�t�� has the form ��� To prove theorems
	�
 	 we note that a general L�evy process has the form

Xt � a t�Bt � Lt �
X

��s�t

j�Xsj��

!Xs � almost surely �

So
 we need to add area corresponding to the drift vector and the jumps
of size greater than one	 However
 this part of the L�evy process has
bounded variation and is piecewise smooth so there is no problem de�n�
ing its area	 Similarly
 it has
 almost surely
 �nite �p���variation	
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A� Homeomorphic ows�

In this section we give a proof that the solutions
 generated by ���
as the initial condition is varied
 form a �ow of homeomorphisms when
the integrator is a continuous function	 The proof modi�es the one
given in ��� for the existence and uniqueness of solution to ���	 The
main idea is that one uniformly bounds a sequence of iterated maps
which have projections giving the convergence of the solutions with
two di�erent initial points and bounding the di�erence of the solutions	

First
 we need some notation	

De�nition A��� Let T �n��Rd� denote the truncated tensor algebra of

length n over Rd � That is

T �n��Rd� �
nM
i��

�Rd�	i �

where �Rd�	� � R and T ����Rd� denotes the tensor algebra over Rd �

Let ! � ��� T � ��� T �� A map X � ! �� T �n��Rd� will be called

a multiplicative functional of size n if for all times s � t � u in ��� T �
the following relation holds in T �n��Rd�

Xst �Xtu � Xsu

and X
���
st � ��

A map X � ! �� T �n��Rd� is called a classical multiplicative func�

tional if t �� Xt � X
���
�t is continuous and piecewise smooth and

���� X
�i�
st �

ZZ
s�u��


�ui�t

dXu� � � �dXui �

where the right hand side is a Lebesgue�Stieltjes integral� We denote the

set of all classical multiplicative functionals in T �n��Rd � by S�n��Rd��

De�nition A��� We call a continuous function � � ! �� R
� a control

function if it is super�additive and regular� that is�

��s� t� � ��t� u� � ��s� u� � for all s � t � u � ��� T � �

��s� s� � � � for all s � ��� T � �
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Let X be a path of strong �nite p�variation� Then we can de�ne the

following control function

��s� t� � kXkpp��s�t� �

De�nition A��� A functional X � ��� X���� � � � � X�n�� de�ned on

T �n��Rd � where n � �p� is said to have �nite p�variation if there is

a control function � such that

���� jX
�i�
st j �

��s� t�i�p

�
� i
p

�
%

� for all �s� t� � ! � i � �� � � � � n �

for some su�ciently large � and x% � &�x� ���

Theorem A�� ���
 Theorem 		���� Let X�n� be a multiplicative

functional of degree n which has �nite p�variation� with n � �p� ��p�
denotes the integer part of p�� Then for m � n there is a unique

multiplicative extension X�m� in T �m��Rd� which has �nite p�variation�

Remark� The above theorem shows that once a su�cient number of
low order integrals associated to a path Xt have been de�ned
 then the
remaining iterated integrals of Xt are de�ned	

De�nition A�	� We call a multiplicative functional X �!��T �n��Rd�
geometric if there is a control function � such that for any positive

� there exists a classical multiplicative functional Y ��� which approxi�

mates X in the following way

j�Xst � Yst����
�i�j � � ��s� t�i�p � i � �� � � � � n � �p� �

We denote the class of geometric multiplicative functionals with �nite

p�variation by $G�Rd�p�

Example A��� Let Wt be an R
d �valued Brownian motion	 Then the

following functional W de�ned on T �	��Rd � belongs to $G�Rd�p for any
p � 	

��� Wst �

�
��Wt �Ws�

ZZ
s�u��u	�t


dWu� 
 dWu	

�
�
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where 
dWu denotes the Stratonovich integral	 It should be noted
that if one replaced the Stratonovich di�erential in ���� by the It"o
di�erential then one would not get an element of $G�Rd �p	 This is due
to the quadratic variation term which occurs in the symmetric part of
the area process

W
�	�
st �

ZZ
s�u��u	�t

dWu� dWu	 �

It was shown in ���� that one had su�cient control of the above func�
tional to generate path�wise solutions to stochastic di�erential equa�
tions driven by a Brownian motion	 This control was derived from
a moment condition in the same spirit as Kolmogorov�s criterion for
H#older continuous paths	 The moment condition was veri�ed for the
above area by the use of known stochastic integral results
 though one
could also derive it from a construction depending on the linearly in�
terpolated Brownian motion	

There are two stages to de�ning the integral against a geometric
multiplicative functional	 The �rst gives a functional which is almost
multiplicative �see ��� for de�nition�	 The second associates
 uniquely

a multiplicative functional to the almost multiplicative functional	

Theorem A��� There is a unique geometric multiplicative functional

Y which we call the integral of the ��form � against the geometric mul�

tiplicative functional X� We denote this by

Yst �

Z t

s

��Xu� 
X �

Corollary A��� One has the following control on the p�variation of Y

����
			� Z t

s

��Xu� 
X
��i�			 � �C ��s� t��i�p

�
� i
p

�
%

� i � �� � � � � �p� �

where C depends on p� k�kLip���� � �� �� L and �p��

The estimate is derived from estimating both the almost multi�
plicative functional and the di�erence of it from the integral	

We now state two lemmas which help prove that the solutions of
��� are homeomorphic �ows when the initial condition is varied	
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Lemma A��� Let X be in $G�Rd�p controlled by a regular ��� Let

f � Rn �� hom�Rd �Rn � be a Lip�� map for some  � p� Let Y
�i�
st �

i � ��  denote the element in $G�Rn�p which solves the rough integral

equation

Y
�i�
st �

Z t

s

f�Y �i�� 
X �

with initial condition Y
�i�
� � ai� i � �� � Let Wst be the multiplicative

functional which records the di�erence in the multiplicative functionals

Y
���
st and Y

�	�
st � Then

���� jW
�i�
st j � �i

��s� t��i�p�

�
� i
p

�
%

� for all i � � �

where � � ja� � a	j� � � C ��� the constant C depends on p� kfkLip����

�� � The bound holds for all times s � t on the interval J � fu �
� ��� u� � �g�

Lemma A��� With the assumptions of Lemma A	� one can estimate

the di�erence of the increments of Y
���
st and Y

�	�
st for any pair of times

� � s � t which satisfy ��s� t� � � as follows

jY
���
st � Y

�	�
st j � � exp

�
�

�
��
p

�
%
�� ��� s� � � ��� s����p��


��s� t����p�

�
��
p

�
%

�

In particular for any t � � one has

���� jY
���
t � Y

�	�
t j � ja� � a	jC�t� �

Now we can prove that the solutions form a �ow of homeomor�
phisms as the initial condition is varied	

Proof of Theorem ���� The continuity of solutions follows from
Lemma A		 It remains to show that the inverse map exists and is con�
tinuous	 This can be checked by repeating all the previous arguments
using the reversed path �Xt�s���s�t as the integrator	

The induction part of the proof of Lemma A	 will require the
following lemma about rescaling�
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Lemma A�� ������ Let X be a multiplicative functional in T ��p���Rd�
which is of �nite p�variation controlled by �� Let �X�Y � be an extension

of X to T ��p���Rd � R
n� of �nite p�variation controlled by K�� Then

�X��Y � is controlled by

max f�� �kp�iK � � � k � i � �p�g� �

where � � R� In particular� if � � K��p��p � � then �X��Y � is

controlled by ��

Proof of Lemma A��� We set up an iteration scheme of multiplicative
functionals which we will bound uniformly
 by induction	 A projection
of the sequence proves that a Picard iteration scheme converges to the
solutions of ��� starting from a� and a		 Another projection shows that
the di�erence of these solutions is bounded	

Let � � � and � � �	 Let V
���
st be the geometric multiplicative

functional given by

V
���
st � �Z

������
st � Y

������
st � Y

������
st � Z

�	����
st � Y

�	����
st � Y

�	����
st �W

���
st � ���Xst�

�
�Z t

s

f�a�� 
X � a��

Z t

s

f�a�� 
X� a��

Z t

s

f�a	� 
X � a	�Z t

s

f�a	� 
X� a	�

Z t

s

f�a��� f�a	� 
X� �
��Xst

�
�

The iteration step is a two stage process	 Given V �m� we set

eV �m��� �

Z
km
 �V �m�� 
V �m� �

where km
 is the ��form on ��Rn��� � R
d� given by

km
 �a�� � � � � a� �dA�� � � � � dA�

� �a� g�a	� a
� dA� dA
 � ��mdA�� dA	� a� g�a�� a�� dA�

dA� � ��mdA�� dA�� �
�� g�a	� a�� dA� dA� �

g�x� y� is the ��form appearing in ���
 Lemma �	� which satis�es the
following relation with respect to f

f i�x�� f i�y� �
X
j

�x� y�jgij�x� y� �
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eV �m��� is well de�ned because g and km
 are both Lip�� for some
 � p� �	

We de�ne V �m��� to be the geometric multiplicative functional
obtained by rescaling the �rst and fourth components of eV �m��� by � �
and the seventh component by �	

The uniform bound on the iterates �V �m��m�� will be obtained by
induction	 X is controlled by a regular �� so there exists a constant C
such that V ��� is controlled by � � C ��	 Suppose that V �k� �k � m�
are controlled by �	 From �Corollary A	�� there is a constant C� such

that eV �m��� is controlled by C� �	 If we choose � � �
 � � � such that

� � C
��p��p
� and � � � C

��p��p
� 
 then Lemma A	� implies that V �m��� is

controlled by �
 completing the induction step	
The uniform control on the iterates V �m� ensures the convergence

of fY �i��m�gm�� to the solutions of

dY
�i�
t � f�Y

�i�
t � dXt � Y

�i�
� � ai � i � ��  �

Through the de�nition of f
W �m�gm��
 the sequence at the level of
the paths will converge to the scaled di�erence of the two solutions
����Y �	� � Y ����	 For s� t in J one has

j
W
�i�
st j �

��s� t�i�p

�
� i
p

�
%

� i � �� � � � � �p� �

which implies that

jW
�i�
st j � �i

��s� t�i�p

�
� i
p

�
%

� i � �� � � � � �p� �

Proof of Lemma A��� We de�ne the following set of times

�� � t� � � and tj � inf fu � tj�� � ��tj��� u� � �g �

for all j � f�� � � � � n�s�g
 where n�s� � max fj � tj � sg and tn�s��� � s	
We solve the di�erential equation starting from s and use ���� to

show that

jW k
stj � K�s�k

��s� t��k�p�

�
�k
p

�
%

�
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where K�s� is an upper bound on the supremum over all the possible

di�erences of the paths jY
���
s � Y

�	�
s j � at time s	 The bound K�s� is

derived recursively by considering the analogous upper bound for the
di�erence of the solutions to the di�erential equation over the time
interval �ti��� ti� given below

jY
���
ti � Y

�	�
ti j � jY

���
ti��

� Y
�	�
ti��

j� jWti�� ti j

� jY
���
ti��

� Y
�	�
ti��

j

�
� �

��ti��� ti�
���p�

�
��
p

�
%


�

which implies that

K�tj� � K�tj���

�
� �

��tj��� tj�
���p�

�
��
p

�
%


� j � �� � � � � n�s� � � �

Therefore

jW k
stj � K�t��

k

n�s���Y
j��

�
� �

� �tj��� tj�
���p�

�
��
p

�
%

k
��s� t��k�p�

�
�k
p

�
%

� �k exp

�
k

�
n�s�X
j��

��tj��� tj�
���p�

�
��
p

�
%

�
� �tn�s�� s�

���p�

�
��
p

�
%



�
��s� t��k�p�

�
�k
p

�
%

�

noting that ��tj��� tj� � � and using the sub�additivity of � we obtain

� �k exp

�
k

�
��
p

�
%
�� ��� s� � � ��� s����p��


��s� t��k�p�

�
�k
p

�
%

�

By considering the above bound at the level of the paths �k � �� and
repeatedly using the triangle inequality one deduces ����	
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