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Branching process associated
with 2d-Navier Stokes equation

Säıd Benachour, Bernard Roynette and Pierre Vallois

Abstract. Ω being a bounded open set in R
2, with regular bound-

ary, we associate with Navier-Stokes equation in Ω where the velocity
is null on ∂Ω, a non-linear branching process (Yt; t ≥ 0). More pre-
cisely: Eω0(〈h, Yt〉) = 〈ω, h〉, for any test function h, where ω = rotu,
u denotes the velocity solution of Navier-Stokes equation. The support
of the random measure Yt increases or decreases of one unit when the
underlying process hits ∂Ω; this stochastic phenomenon corresponds to
the creation-annihilation of vortex localized at the boundary of Ω.

0. Introduction.

We consider here the 2d-Navier-Stokes (N.S.) equation in a boun-
ded open set Ω of R

2. The aim is not the study of existence or unique-
ness for the solution, when the initial data or the boundary of Ω are
smooth enough. We suppose that there exists a unique smooth solution
u of the Navier-Stokes equation, and we represent u and the vorticity
(ω = rotu) through a stochastic model.

We firstly introduce two dual nonlinear differential systems. We
prove (see sections 2 and 3) that the (N.S.) equation is equivalent to
each of the former nonlinear reflected stochastic differential equations.
The nonlinear feature appears in two places:

• inside Ω, through the singular kernel of Biot and Savart, defining
the mean velocity of the stochastic particle, when it moves in Ω,
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• on the boundary of Ω, via the local time; this process governing
the local behaviour of the particle when it reaches ∂Ω.

Since Ω is a subset of R
2, the vorticity ω is a scalar function.

Roughly speaking ω(t, ·) is the “density” of one of the two previous
diffusion processes taken a time t. (Corollary 3.4).

Secondly we define a branching process Y , having again a double
non linearity. By definition, Yt is a linear and random combination of
Dirac measures. ω is expressed through Y as follows (cf. Theorem 4.5)

E [〈h, Yt〉] = E
[ ∫

Ω

h(x)Yt (dx)
]

=
∫

Ω

h(x) ω(t, x) dx ,

h being a test function.
ω(t, x) dx can be interpreted as the mean value at time t of the

number of particles associated with Y , lying in a infinitesimal box lo-
cated at x, with area dx. We heuristically describe the dynamic of
branching of Y :

• a single particle moves in Ω as a diffusion process introduced in
the first step, all the particles being alive are independent,

• no particle is created when all of them lie in Ω.

• Sometime (i.e. randomly), when a particle hits F ⊂ ∂Ω (respec-
tively F † ⊂ ∂Ω) the particle dies and give rise to two new independent
particles, (resp. the particle dies), where F ∪ F † = ∂Ω. The branching
mechanism taking on the boundary gives a stochastic interpretation of
the creation or disappearing of vorticity on ∂Ω.

We conjecture that the nonlinear branching process can be ap-
proximated by a system of interacting particles. Our algorithm does
not coincide with those intoduced by A. Chorin ([C.M]).

Let in briefly detail the organisation of the paper:

• In Section 1, we study the connections between the Navier-Stokes
equation and the equation verified by the vorticity ω.

• In sections 2 and 3, we prove the equivalence between the two re-
flected stochastic differential equations and the (N.S.) equation. More-
over we check that these diffusion processes are in duality.

• We detail in Section 4, the construction of the branching process
associated with the (N.S.) equation.

• We describe in Section 5, our open question concerning the simu-
lation of the nonlinear branching process through a system of particles.
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1. A first approach to the Navier Stokes equation.

1) In this paper, Ω will denote a simply connected, bounded open
subset of R

2. We assume that the boundary ∂Ω is smooth. The Navier
Stokes system in Ω, with velocity vanishing at ∂Ω, is

(N.S.)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i)
∂u

∂t
+ (u · ∇)u = νΔu−∇p ,

ii) divu = 0 ,

iii) u(0, ·) = u0(·) ,
iv) u(t, x) = 0 , for all t ≥ 0, for all x ∈ ∂Ω .

u = (u1, u2) is the velocity (u is a two-dimensional valued vector field),
u0 is the initial velocity, p denotes the pressure (p is a scalar function),
ν is the viscosity of the fluid (ν will be taken without loss of generality
equal to 1/2 in the sequel). As usual

∇p =
(∂p
∂x
,
∂p

∂y

)
,

divu =
∂u1

∂x
+
∂u2

∂y
,

Δu =
∂2u

∂x2
+
∂2u

∂y2
,

and
u · ∇ = u1

∂

∂x
+ u2

∂

∂y
.

Note that the first equation i) in the (N.S.) system has to be understood
as an equation in R

2. Condition ii), i.e. divu = 0, means that the fluid
is incompressible.

We know that, if u0 with divu0 = 0 and ∂Ω are smooth, then (N.S.)
has a unique smooth solution defined on R

+ ×Ω ([La], [Li], [C-F]) if u0

is C∞(Ω) and ([Ka], [Ko]) if u0 is analytic.

2) In a first step we weaken iv) and consider

(N.S.)′

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i)
∂u

∂t
+ (u · ∇)u =

1
2

Δu−∇p ,
ii) divu = 0 ,

iii) u(0, ·) = u0 ,

iv) u · n(t, x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω .
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where n(x) denotes the normalized outer normal vector at x ∈ ∂Ω.
Since iv) in (N.S.) is stronger than iv) in (N.S.)′ the solutions of (N.S.)′

are not unique.
If w : R

2 −→ R we set

(1.1) ∇⊥w =
(
− ∂w

∂y
,+

∂w

∂x

)
.

Let us introduce the following operator K (K is the Biot and Savart
kernel associated with Ω)

(1.2)

Kf(t, z) = ∇⊥
z

∫
Ω

G(z, z′) f(t, z′) dz′ ,

=

⎧⎪⎪⎨⎪⎪⎩
− ∂

∂y

∫
Ω

G((x, y), z′) f(t, z′) dz′ ,

+
∂

∂x

∫
Ω

G((x, y), z′) f(t, z′) dz′ ,

where z = (x, y) and G is the Green function of Δ on Ω, i.e.

Δz′G(z, z′) = δz (δz being the Dirac measure at z) ,

G(z, z′) = 0 , if z′ ∈ ∂Ω .(1.3)

G(z, z′) = G(z′, z) .(1.4)

It is classical to replace the two-dimensional equation i) in (N.S.) (or
(N.S.)′) by an equivalent equation where the unknown parameter will
be a real function ω. ω is called the vorticity associated with u and is
defined by

(1.5) ω = rotu :=
∂u2

∂x
− ∂u1

∂y
.

Recall that it is supposed that Ω is a bounded simply connected open
set.

Lemma 1.1. 1) Suppose u : Ω −→ R
2 being a smooth function i) and

ii) below are equivalent

i) divu = 0 in Ω, u · n = 0 in ∂Ω .(1.6)

ii) There exists ω : Ω −→ R such that u = Kω .(1.7)
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In this case ω = rotu.

2) a) Assume (u, p) is a solution of (N.S.)′, then ω = rotu solves
the vorticity equation

(1.8)

⎧⎨⎩ i)
∂ω

∂t
=

1
2

Δω −Kω · ∇ω , in ]0,+∞[×Ω ,

ii) ω(0, ·) = rotu0 := ω0 .

b) Suppose that ω is a solution of (1.8); then there exists p such
that (u, p) solves (N.S.)′ where u = Kω.

Proof. 1) Ω being a simply connected open set, the condition divu = 0
implies the existence of a function ψ (the stream function) such that,

(1.9) u = ∇⊥ψ .

Obviously ψ is defined up to an additive constant. If we take a parame-
trization of ∂Ω, we easily verify

(1.10)
u · n(t, x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω

if and only if ψ(t, x) = c , for all t ≥ 0 , for all x ∈ ∂Ω .

ψ is unique if we choose c = 0.
We set ω = rotu. By a straightforward calculation we obtain

(1.11) ω = Δψ .

Since ψ vanishes on ∂Ω, it can be expressed through ω, via the Green
function

(1.12) ψ(t, z) =
∫

Ω

G(z, z′)ω(t, z′) dz′ .

(1.9) implies that u = Kω.
We now analyze the converse. Suppose that u = Kω. This means

that u = ∇⊥ψ when ψ is defined by (1.12). Hence, divu = 0 in
[0,+∞[×Ω and ψ(t, x) = 0 for any (t, x) ∈ R+ × ∂Ω. Then the equiv-
alence (1.10) implies that u · n = 0.

2) a) For any smooth functions, w : R
2 −→ R

2, and q : R
2 −→ R,

we have,

(1.13) rot (∇q) = 0 , rot ((w ·∇)w) = w ·∇(rotw)+(divw) rotw .
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Let (u, p) be a solution of (N.S.)′. We take the rotational operator on
both sides of (N.S.)′ i), we easily obtain (1.8) i).

b) Let us suppose that ω solves (1.8). We set u = Kω. Then
divu = 0, and u · n(t, x) = 0 for any t ≥ 0 and x ∈ ∂Ω. The former
calculation tells us that

rot
(∂u
∂t

− (u · ∇)u− 1
2

Δu
)

= 0 .

Hence there exists a function p such that

∂u

∂t
− (u · ∇)u− 1

2
Δu = −∇p .

We have proved that u solves (N.S.)′.

We have now to characterize among the solutions ω of (1.8), the
unique function such that u = Kω solves (N.S.), i.e.

(1.14) Kω · τ(x) = 0 , for all t ≥ 0 , for all x ∈ ∂Ω ,

where τ(x) denotes the tangent vector at x ∈ ∂Ω.

Lemma 1.2. Let ω be a solution of (1.8) and u = Kω. The four
following assertions are equivalent :

a) u(t, x) = 0, for all t ≥ 0 , for all x ∈ ∂Ω.

b)
∂

∂n

∫
Ω

G(z, z′)ω(t, z′) dz′ = 0 , for all t ≥ 0 , for all z ∈ ∂Ω.

c)
∫

Ω

h(z)ω(t, z) dz = 0, for any bounded and harmonic function

h defined on Ω.

d)
∫

Ω

h(t, z)ω(t, z) dz = 0, for any h : R+ × Ω −→ R verifying

1
2

Δh±Kω · ∇h = 0.

Proof. 1) Recall that u = Kω verifies (N.S.)′. Moreover

u · τ = ∇⊥ψ · τ = ±∇ψ · n = ± ∂

∂n
ψ .
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Since ψ is given by (1.12), a) if and only if b) follows immediately.

2) Let h : R+ × Ω −→ R, such that Δh = αKω · ∇h in ]0,∞[×Ω,
where α is a constant.

The Stokes formula and (1.11) tell us∫
Ω

h(t, z)ω(t, z) dz

=
∫

Ω

h(t, z)Δψ(t, z) dz

=
∫

Ω

Δh(t, z)ψ(t, z) dz +
∫

∂Ω

h
∂ψ

∂n
−
∫

∂Ω

ψ
∂h

∂n

= α

∫
Ω

Kω · ∇h(t, z)ψ(t, z) dz +
∫

∂Ω

h
∂ψ

∂n
−
∫

∂Ω

ψ
∂h

∂n
.

We calculate the first integral by integrating by parts, we obtain,∫
Ω

(Kω · ∇h)(t, z)ψ(t, z) dz

= −
∫

Ω

(ψ h div (Kω))(t, z) dz −
∫

Ω

(h(Kω · ∇ψ))(t, z) dz .

But ψ = 0 on R+×∂Ω, divKω = divu = 0 and Kω ·∇ψ = ∇⊥ψ ·∇ψ =
0, as a result ∫

Ω

h(t, z)ω(t, z) dz =
∫

∂Ω

h(t, ·) ∂ψ
∂n

.

It is now clear that b) if and only if c) if and only if d).

We will say that u (or ω) is a solution of (N.S.) if,

u = Kω , ω solving the vorticity equation (1.8) ,(1.15)

and u verifies one of the four conditions of Lemma 1.2.(1.16)
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2. The vorticity equation as a Kolmogorov equation.

Let u be the solution of the Navier Stokes system (N.S.), ω denotes
the vorticity, ω = rotu.

The operator

L(f) =
1
2

Δf − u · ∇f

is the generator of a diffusion process D. If Ω = R
2, it is classical to

represent ω through ω0 and D, the crucial fact being that ω(t− s,Ds)
is a martingale.

Here Ω is an open, bounded, simply connected open set. We
suppose moreover that the boundary is smooth. Let us introduce
the following reflected stochastic differential equation driven by a two-
dimensional Brownian motion (Bt, t ≥ 0), started at 0, and defined on
a probability space (Ω0, (Ft)t≥0, P )

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X̃t,x
s = x+Bs −

∫ s

0

u(t− r, X̃t,x
r ) dr

−
∫ s

0

n(X̃t,x
r ) dÃt,x

r , 0 ≤ s ≤ t ,∫ s

0

1{ �Xt,x
r ∈∂Ω} dÃ

t,x
r = Ãt,x

s , for all s ∈ [0, t] ,

u being a smooth function and ∂Ω being of class at less C2, there exists
a unique strong solution (X̃t,x

s ; 0 ≤ s ≤ t) of (2.1), taking its values in
Ω, for any t > 0 and x ∈ Ω (cf. [P] or [SV]). Recall that n(x) is the
normalized outer normal vector at x ∈ ∂Ω.

The solution of (2.1) is denoted X̃, because we will see in Section
3 that there exists a process X such that X and X̃ are dual processes.

The drift coefficient −u corresponds to the mean velocity of X̃; if
Ω = R

2, it is easy to check that

(2.2) u(t− s, x0) = − lim
h→0+

E
[X̃t,x

s+h − X̃t,x
s

h

∣∣∣Fs

]
, 0 ≤ s ≤ t .

Recall that if u is a solution of (N.S.)′ (the weak form of (N.S.)), then
u · n = 0 on R+ × ∂Ω, and u solves (N.S.) if u · τ = 0 on R+ × ∂Ω. If
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Ω = R× ]0,+∞[ (Ω is not bounded), then ∂Ω = {(x1, x2) : x2 = 0}.
We choose ρ0(x1, x2) = x1. The analog of (2.2) would be

(2.3) (u · τ)(t− s, x0) = lim
h→0

E
[ρ0(X̃

t,x
s+h) − ρ0(X̃t,x

s )
h

∣∣∣Fs

]
,

where 0 ≤ s ≤ t, x ∈ ∂Ω. Our situation is more complicated. The
function ρ0 is replaced by the set V of velocity test functions. ρ : Ω −→
R belongs to V, if ρ is of class C∞ and

∂ρ

∂n
(z) = 0 , for all z ∈ ∂Ω ,(2.4)

∂ρ

∂τ
�= 0 almost sure on ∂Ω ,(2.5)

Δρ = 0 on {z ∈ Ω : d(z, ∂Ω) ≤ ε} , for some ε > 0 .(2.6)

We note that it is not possible to choose ρ such that (∂ρ/∂τ)(z) �= 0 for
all z ∈ ∂Ω. If (∂ρ/∂τ) never vanishes on ∂Ω, ∂ρ/∂τ being continuous we
suppose without loss of generality that ∂ρ/∂τ > 0. Let γ : [0, 1] −→ ∂Ω
be a parametrization of ∂Ω. Since t −→ ρ(γ(t)) is increasing, then
ρ(γ(0)) < ρ(γ(1)), this generates a contradiction with γ(0) = γ(1).

Two objects play a crucial role in our approach. The first one is

(2.7) ϕc(s, x) =

∂ω

∂n
ω + c

(s, x) , s ≥ 0 , x ∈ ∂Ω ,

where c is a positive constant such that ω + c > 0.
The second one is the stochastic process

(2.8) Z̃t,x
c (s) =

(
ω(t− s, X̃t,x

s ) + c
)
exp

(∫ s

0

ϕc(t− r, X̃t,x
r ) dÃt,x

r

)
,

where 0 ≤ s ≤ t.
We are now ready to state the martingale property concerning ω.

Proposition 2.1. Suppose t > 0, x ∈ Ω and ω is the vorticity solution
of (1.8).

1) a) (Z̃t,x
0 (s ∧ ξ̃) ; 0 ≤ s ≤ t) is a continuous local martingale

where

(2.9) ξ̃ = inf {s ≤ t : X̃t,x
s ∈ ∂Ω and ω(t− s ; X̃t,x

s ) = 0} ∧ t .
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(We assume the convention inf φ = +∞).

b) If c is large enough (i.e. c > Ct,Ω), (Z̃t,x
c (s) ; 0 ≤ s ≤ t) is a

square integrable continuous martingale, Ct,Ω being defined as

(2.10) Ct,Ω = −min {ω(s, x) : 0 ≤ s ≤ t , x ∈ Ω} .

2) For any positive t, x in Ω and velocity test function ρ,

(2.11)
1
h
E
[
ρ
(
X̃t,x

(�T+h)∧t
− ρ(X̃t,x

�T
) | F

�T

] a.s.−→
h→0

0 ,

with,

(2.12) T̃ = inf {s ≤ t : X̃t,x
s ∈ ∂Ω} ∧ t .

Proof. 1) t and x being fixed, we denote for simplicity X̃ = X̃t,x and
Ã = Ãt,x.

We apply the Itô formula

ω(t− s, X̃s) = ω(t, x)+
∫ s

0

∇ω(t− r, X̃r) dBr −
∫ s

0

∂ω

∂n
(t− r, X̃r) dÃr

+
∫ s

0

(
− ∂ω

∂t
− u · ∇ω +

1
2

Δω
)
(t− r, X̃r) dr ,

where 0 ≤ s ≤ t. ω solves (1.8), therefore,

(2.13)
ω(t− s, X̃s) = ω(t, x) +

∫ s

0

∇ω(t− r, X̃r) dBr

−
∫ s

0

∂ω

∂n
(t− r, X̃r) dÃr .

Let us introduce, for all integer n ≥ 1

(2.14) ξ̃n = inf
{
s ≤ t : |ω(t− s, X̃s)| ≤ 1

n
and X̃s ∈ ∂Ω

}
∧ t .

{ξ̃n}n≥1 is an increasing sequence of stopping times converging to ξ̃.
We set

(2.15) M̃c(s) = exp
(∫ s

0

ϕc(t− r, X̃r) dÃr

)
.
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Using again the Itô formula we get,

ω(t− s ∧ ξ̃n, X̃(s ∧ ξ̃n)) M̃0(s ∧ ξ̃n)

= ω(t, x) +
∫ s∧�ξn

0

M̃0(r)∇ω(t− r, X̃r) dBr

+
∫ s∧�ξn

0

(
− M̃0(r)

∂ω

∂n
(t− r, X̃r) + M̃0(r) (ω ϕ0) (t− r, X̃r)

)
dÃr .

But ∂ω/∂n− ω ϕ0 = 0, then

(2.16) Z̃t,x
0 (s ∧ ξ̃n) = ω(t, x) +

∫ s∧�ξn

0

M̃0(r)∇ω(t− r, X̃r) dBr .

Part 1) a) follows immediately.
We note that (ω+ c)(s, y) ≥ α > 0 for any (s, y) ∈ [0, t]×Ω, ω+ c

solves (1.8) and
∂(ω + c)
∂n

− (ω + c)ϕc = 0 ,

the former proof tells us that (Z̃t,x
c (s) ; 0 ≤ s ≤ t) is a local martingale

and

(2.17) Z̃t,x
c (s) = ω(t, x) + c+

∫ s

0

M̃c(r)∇ω(t− r, X̃r) dBr .

We write
∇ω = (ω + c)

∇ω
ω + c

.

The function ∇ω/(ω + c) being bounded on [0, t] × Ω, making use of
localization we have

E [(Z̃t,x
c (s))2] ≤ (ω(t, x) + c)2 +K

∫ s

0

E[(Z̃t,x
c (r))2] dr .

Gronwall lemma implies E [(Z̃t,x
c (s))2] ≤ (ω(t, x) + c)2eKs, 0 ≤ s ≤ t.

This shows 1) b).

2) Let ρ be a function of class C∞ verifying (2.4)-(2.6) (i.e. ρ is a
velocity test function). We apply the Itô formula to ρ

ρ(X̃t,x
s ) = ρ(x) +

∫ s

0

∇ρ(X̃t,x
r ) dBr

−
∫ s

0

(u(t− r, X̃t,x
r ) · ∇ρ(X̃t,x

r ) − 1
2

Δρ(X̃t,x
r )) dr .
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Consequently (for simplicity we write T for T̃ ).

ρ(X̃t,x
(T+h)∧t) − ρ(X̃t,x

T )

=
∫ (T+h)∧t

T

∇ρ(X̃t,x
r ) dBr

−
∫ (T+h)∧t

T

(
u(t− r, X̃t,x

r ) · ∇ρ(X̃t,x
r ) − 1

2
Δρ(X̃t,x

r )
)
dr ,

1
h
E [ρ(X̃t,x

(T+h)∧t) − ρ(X̃t,x
T ) | FT ]

= − 1
h
E
[ ∫ (T+h)∧t

T

(
u(t− r, X̃t,x

r ) · ∇ρ(X̃t,x
r )

(2.18)

− 1
2

Δρ(X̃t,x
r ) dr

)∣∣∣FT

]
.

On {T = t} ∈ FT , the integral is equal to 0, therefore the limit is
0. Suppose {T < t}. Recall that Δρ = 0 in a neighbourhood of ∂Ω,
u and ∇ρ are continuous functions, then the almost sure limit of the
right-hand side of (2.18) is −u(t−T, X̃t,x

T ) ·∇ρ(X̃t,x
T ). But on {T < t},

X̃t,x
T ∈ ∂Ω then u(t− T, X̃t,x

T ) = 0.

Applying the stopping theorem we get:

Corollary 2.2. Recall that ξ̃n is the stopping time defined by (2.14).
Then

ω(t, x) = E
[
ω(t− s ∧ ξ̃n, X̃t,x(s ∧ ξ̃n))

· exp
(∫ s∧�ξn

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

)]
,

(2.19)

ω(t, x) + c = E
[
(ω(t− s, X̃t,x

s ) + c)

· exp
(∫ s

0

ϕc(t− r, X̃t,x
r ) dÃt,x

r

)]
,

(2.20)

c being larger than Ct,Ω.
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We would like to define a self-contained nonlinear stochastic system
–we call it the Stochastic Navier Stokes system (S.N.S.)– equivalent to
the Navier Stokes system. Proposition 2.1, tells us that X̃ is a good
candidate concerning the stochastic part. It remains to express the drift
term Kω through the underlying process X̃.

Let us detail the (S.N.S.) system and its three conditions (S.N.S.1),
(S.N.S.2) and (S.N.S.3). The unknown parameters are ω, {(X̃t,x

s ; 0 ≤
s ≤ t), (Ãt,x

s ; 0 ≤ s ≤ t), t ≥ 0, x ∈ Ω}.

(S.N.S.1) For any positive t and x in Ω, consider the following reflected
stochastic differential equation

X̃t,x
s = x+Bs −

∫ s

0

Kω(t− r, X̃t,x
r ) dr

−
∫ s

0

n(X̃t,x
r ) dÃt,x

r , 0 ≤ s ≤ t ,

(2.21)

∫ s

0

1{ �Xt,x
r ∈∂Ω} dÃ

t,x
r = Ãt,x

s , for all s ∈ [0, t] .(2.22)

(Ãt,x
s ; 0 ≤ s ≤ t) is the local time of X̃t,x on the boundary.

Recall that Kω is the function defined by (1.2).

(S.N.S.2) The process (ω(t − s ∧ T̃ , X̃t,x(s ∧ T̃ ))) is a martingale, for
any t > 0 and x ∈ Ω, where T̃ is the first hitting time of the boundary

T̃ = inf {s ≤ t : X̃t,x(s) ∈ ∂Ω} .

(S.N.S.3) For any t > 0 and velocity test function ρ

1
h
E [ρ(X̃t,x

�T+h
) − ρ(X̃t,x

�T
) | F

�T ] a.s.−→
h→0

0 ,

for any x in Ω.

We just now state the converse of Proposition 2.1.

Proposition 2.3. Suppose that (S.N.S.) has a unique solution

(ω, {X̃t,x
s , Ãt,x

s ; 0 ≤ s ≤ t}, t ≥ 0 , x ∈ Ω) ,
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where ω is smooth. Then u = Kω is a solution of (N.S.) equation (i.e.
verifies (1.15) and (1.16)).

Proof. 1) ω is bounded on [0, t] × Ω, therefore (ω(t− s ∧ T̃ , X̃t,x(s ∧
T̃ ) ; 0 ≤ s ≤ t)) is a bounded martingale. By the stopping theorem,

(2.23) ω(t, x) = E [ω(t− s ∧ T̃ , X̃t,x(s ∧ T̃ ))] , 0 ≤ s ≤ t .

The infinitesimal generator of ((t− s ; X̃t,x
s ) ; 0 ≤ s ≤ t) is L, with

Lf(s, x) =
(
− ∂f

∂s
+

1
2

Δf − u · ∇f
)
(t− s, x) .

(2.23) implies that ω is the solution to the Dirichlet problem in [0, t]×Ω
associated with L. Consequently ω solves the vorticity equation (1.8).

2) Let ρ be a velocity test function (recall that ρ is of class C∞

and solves (2.4)-(2.6)). We are allowed to use relation (2.18)

1
h
E [ρ(X̃t,x

�T+h
) − ρ(X̃t,x

�T
) | F

�T ]

= − 1
h
E
[ ∫ �T+h

�T

Kω(t− r, X̃t,x
r ) · ∇ρ(X̃t,x

r ) dr
∣∣∣F

�T

]
,

since for h small enough Δρ(X̃t,x
r ) = 0, T̃ ≤ r ≤ T̃ + h.

We take the limit h → 0+, the functions Kω and ∇ρ being boun-
ded, we have

(2.24) Kω(t− T̃ , X̃t,x
�T

) · ∇ρ(X̃t,x
�T

) = 0 , almost sure .

From part 1) of Lemma 1.1, we know that (Kω) · n = 0 on [0, t] × ∂Ω.
Consequently (2.24) is equivalent to

∂Kω

∂n
(t− T̃ , X̃t,x

�T
)
∂ρ

∂n
(X̃t,x

�T
) = 0 , almost sure .

Since x belongs to Ω, conditionnally to {T̃ < t}, the distribution of
(T̃ , X̃t,x

�T
) is absolutely continuous with respect to (1[0,t](u) du)⊗ λ̃(dv),

where λ̃ denotes the Lebesgue measure on ∂Ω. Assumption (2.5) implies

∂Kω

∂n
(t− s, y) = 0 , for almost every (s, y) ∈ [0, t] × ∂Ω .
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∂Kω/∂n being a continuous function, the former condition is equivalent
to (∂Kω/∂n) (s, y) = 0 for any s ∈ [0, t] and y ∈ ∂Ω. u is a solution of
the (N.S.) equation because Kω vanishes on R+ × ∂Ω.

Remarks 2.4. 1) (S.N.S.2) reveals the nonlinearity of X̃ inside Ω.
Indeed, (2.21) shows that X̃ depends on ω; and the martingale property
(S.N.S.2) involving ω depends on X̃.

2) (S.N.S.3) implies that the tangential component u ·τ of u = Kω
is equal to 0 on the boundary of Ω.

3) A priori, 1) a) of Proposition 2.1 seems a stronger condition
than (S.N.S.2). We claim that these two conditions are equivalent.

We remark that Z̃t,x
0 (t ∧ T̃ ) = ω(t − s ∧ T̃ , X̃t,x

s∧�T
), where T̃ is

the first hitting time of ∂Ω, and T̃ ≤ ξ̃ and ξ̃ is the stopping time
defined by (2.9). Therefore if ω solves the vorticity equation (1.8),
(Z̃t,x

0 (s ∧ ξ̃) ; 0 ≤ s ≤ t) is a local martingale, then (S.N.S.2) holds.
Let us analyze the converse. Suppose that the (S.N.S.) system has

a solution. Hence ω solves (1.8). Applying the Itô formula we have,

ω(t− s, X̃t,x
s ) = ω(t, x) +

∫ s

0

∇ω(t− r, X̃t,x
r ) dBr

−
∫ s

0

∂ω

∂n
(t− r, X̃t,x

r ) dÃt,x
r .

Recall that
ϕ0 =

1
ω

∂ω

∂n
,

using again the Itô formula we obtain,

Z̃t,x
0 (s) = ω(t− s, X̃t,s

s ) exp
∫ s

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

= ω(t, x) +
∫ s

0

∇ω(t− u, X̃t,x
u )

· exp
(∫ u

0

ϕ0(t− r, X̃t,x
r ) dÃt,x

r

)
dBu ,

s belonging to the stochastic interval [0, ξ̃].
This proves that (Z̃t,x

0 (s∧ ξ̃) ; 0 ≤ s ≤ ξ̃) is a local martingale (i.e.
1) a) of Proposition 2.1 holds).
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We analyze the integrability of Ãt,x. This plays an important role
in Lemma 4.2.

Proposition 2.5. For any θ > 0, t > 0 and x ∈ Ω,

(2.25) E [exp (θÃt,x
t )] <∞ .

Moreover, for any k,

lim
u→0

sup
0≤t≤k

x∈Ω

E [Ãt,x
u ] = 0 .

Remarks. 1) In dimension 1, for the reflected Brownian motion, recall

that the local time at 0, L0
t , has exponential moments, since L0

t

(d)
=√

t |N |, whereN is a centered, unit variance, Gaussian random variable.

2) A similar estimation can be found in [S.V.].

Proof of Proposition 2.5. 1) Let λ > 0 be fixed.
We choose γ : Ω −→ R, a function of class C2 such that,

γ(x) ≥ 1 , for all x ∈ Ω .(2.27)

i)
∂γ

∂n
(x) = 2λ ,

ii) γ(x) = 2 , for any x ∈ ∂Ω .
(2.28)

A straightforward calculation based on the Itô formula and (2.28) shows
that (Us ; 0 ≤ s ≤ t) is a bounded martingale, where X̃s = X̃t,x

s ,
Ãs = Ãt,x

s and

Us = γ(X̃s) exp (λÃs) −
∫ s

0

H(r) exp (λÃr) dr ,(2.29)

H(r) =
1
2

Δγ(X̃r) − u(t− r, X̃r)∇γ(X̃r) .

γ being of class C2, H(r) is a bounded process, then there exists a
positive constant k such that |H(r)| ≤ k for any r in [0, t]. (2.27)
implies that

H(r) ≤ |H(r)| ≤ k γ(X̃r) , for all r ∈ [0, t] .
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Let {Tn}n≥1 be a increasing sequence of stopping times, converging to
t such that Ãt∧Tn

≤ n.
We replace s by s ∧ Tn in (2.29) and we take the expectation, we

easily obtain the following inequality

γ(x) = E [Us∧Tn
]

≥ E [γ(X̃s∧Tn
) exp (λÃs∧Tn

)] − kE
[ ∫ s∧Tn

0

γ(X̃r) exp (λ Ãr) dr
]
.

We set αn(s) = E [γ(X̃s∧Tn
) exp (λÃs∧Tn

)]. The former inequality is
equivalent to

αn(s) ≤ γ(x) + k

∫ s

0

αn(u) du , for all s ∈ [0, t] .

Using the Gronwall lemma and (2.27) we conclude that

E [expλ Ãs∧Tn
] ≤ γ(x) eks .

We take the limit n going to infinity,

E[expλ Ãs] ≤ γ(x) eks .

2) As for (2.26), we take γ0 : Ω −→ R of class C2, such that

∂γ0

∂n
(x) = 1 , for all x ∈ ∂Ω .

We apply the Itô formula and we take the expectation

E [Ãt,x
s ] = E [γ0(x) − γ0(X̃t,x

s )] +
∫ s

0

h(r) dr ,

h(r) = E
[1
2

Δγ0(X̃t,x
r ) − u(t− r, X̃t,x

r )∇γ0(X̃t,x
r )
]
.

Since γ0 is of class C2, h is bounded, moreover the continuity of (t, x, s)
−→ X̃t,x

s implies that (2.26) is verified.

Before ending this section we prove some properties concerning
the distribution of X̃t,x

s (respectively
∫ t

0
H(r, X̃t

r) dÃ
t
r) when X̃t

0 is uni-
formly distributed on Ω.
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Notations. 1) λ is the normalized Lebesgue measure on Ω: λ is pro-
portional to the Lebesgue measure on Ω and λ(Ω) = 1.

2) Let h : Ω −→ R and F : C([0, t]) −→ R, we set

(2.30)
Eh·λ[F (X̃t

s ; 0 ≤ s ≤ t)]

=
∫

Ω

E [F (X̃t,x
s ; 0 ≤ s ≤ t)]h(x)λ(dx) .

(2.30) is meaningfull if for instance h and F are positive.

Proposition 2.6. 1) Suppose f : Ω −→ R and F : [0, t] × ∂Ω −→ R,
H : [0, t] × ∂Ω −→ R are bounded Borel functions. Then, for any s in
[0, t],

Eλ[f(X̃t
s)] =

∫
Ω

f(x) (dx) ,(2.31)

Eλ

[ ∫ s

0

H(r, X̃t
r)dÃ

t
r

]
=

1
2

∫ s

0

(∫
∂Ω

H(r, x) dx
)
dr .(2.32)

Proof of Proposition 2.6. 1) The first identity is classical. Let L̃
be the infinitesimal generator of X̃ and L

L(f) =
1
2

Δf + u · ∇f .

L and L̃ are symmetric with respect to the probability measure λ (see
Section 3), therefore λ is the invariant probability measure of X̃.

2) We analyze (2.32). Let g : [0, t] × Ω −→ R be of class C2. We
apply the Itô formula and we take the expectation

Eλ[g(s, X̃t
s)]

=
∫

Ω

g(0, x) dλ(x) −Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r

]
+Eλ

[ ∫ s

0

(1
2
Δg(r, ·) − u(t− r, ·)∇g(r, ·) +

∂g

∂t
(r, ·)

)
(X̃t

r) dr
]
.

We use the former identity (2.31)

Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r)
]

= A1 +A2 ,
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where

A1 =
∫

Ω

g(0, x) dλ(x) −
∫

Ω

g(s, x) dλ(x) +
∫ s

0

(∫
Ω

∂g

∂t
(r, x)λ(dx)

)
dr ,

A2 =
∫ s

0

(∫
Ω

(1
2

Δg(r, x) − u(t− r, x)∇g(t, x)
)
λ(dx)

)
dr .

It is obvious that A1 = 0.
We transform A2 through Stokes formula, and an integration by

parts, ∫
Ω

Δg(r, x)λ(dx) =
∫

∂Ω

∂g

∂n
(r, x) dx ,

∫
Ω

u(t− r, x)∇g(r, x)λ(dx) = −
∫

Ω

g(r, x) div u(t− r, x)λ(dx) = 0 .

(Recall that divu = 0). Therefore

Eλ

[ ∫ s

0

∂g

∂n
(r, X̃t

r) dÃ
t
r

]
=

1
2

∫ s

0

(∫
∂Ω

∂g

∂n
(r, x) dx

)
dr .

For any g, of class C2. (2.32) is a direct consequence of the monotone
class theorem.

3. Fokker-Planck interpretation of the vorticity equation.

Let ω be the vorticity associated with u, u being the velocity solving
the Navier Stokes system. Recall that ω solves (1.8).

We know that if D is a diffusion process with drift term b, and
coefficient of diffusion identically equal to 1, the density ϕ of D verifies
the Fokker-Planck equation

(3.1)
∂ϕ

∂t
=

1
2

Δϕ− b∇ϕ− (div b)ϕ , t > 0 , x ∈ Ω .

Since divu = 0, if we choose u = b, we note that the vorticity equation
can be written as a Fokker-Planck equation.

If Ω is equal to the whole space R
2, ω is the “density” of D, D

starting with initial distribution ω0(x) dx

(3.2)
∫

R2
h(x)ω(t, x) dx =

∫
R2
ω0(x)E [h(Dx

t )] dx ,
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where Dx solves,

(3.3) Dx
t = x+Bt +

∫ t

0

u(s,Dx
s ) ds .

B being a two-dimensional Brownian motion, B0 = 0.
In our context we guess that the underlying process associated with

ω (or u) has to stay in Ω. It is a well-known problem solved by adding
a local time process in the right-hand side of (3.3).

More precisely let X = ((Xt,x
s ; s ≥ 0), x ∈ Ω, t ≥ 0) be the family

of diffusions, with normal reflection

(3.4)

⎧⎪⎪⎨⎪⎪⎩
Xt,x

s = x+Bs +
∫ s

0

u(t+ r,Xt,x
r ) dr −

∫ s

0

n(Xt,x
r ) dAt,x

r ,

At,x
s =

∫ s

0

1{Xt,x
r ∈∂Ω} dA

t,x
r ,

n(y) is the normalized outer normal vector at y ∈ ∂Ω, (At,x
s ; s ≥ 0)

is the local time process corresponding to a normal reflection at the
boundary. We know that Xt,x

s belongs to Ω for any (s, t, x) in R
2
+ ×Ω.

The aim of this section is double. We prove that X and X̃ are in
duality, X̃ = ((X̃t,x

s ; 0 ≤ s ≤ t) ; (t, x) ∈ R+ × Ω) being the family
of stochastic processes introduced in Section 2, and especially in (2.1).
We also come back to the interpretation of ω as a “density” function.

We keep the same notation we have introduced in (2.30)

Eh·λ[F (X̃t
s ; 0 ≤ s ≤ t)]

=
∫

Ω

E [F (X̃t,x
s ; 0 ≤ s ≤ t)]h(x)λ(dx) ,

(3.5)

Eh·λ[F (Xt
s ; s ≥ 0)] =

∫
Ω

E [F (Xt,x
s ; s ≥ 0)]h(x)λ(dx) ,(3.6)

where h : Ω −→ R and F : C(R+) −→ R are Borel functions. λ denotes
the normalized Lebesgue measure on Ω.

We begin with the duality between X and X̃ .

Proposition 3.1. i) Suppose t > 0 and F : C([0, t]) → R be a Borel
bounded function, then

(3.7) Eλ[F (X0
s ; 0 ≤ s ≤ t)] = Eλ[F (X̃t

t−s ; 0 ≤ s ≤ t)] .
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ii) In particular if 0 = s0 < s1 < · · · < sn ≤ t and f0, . . . , fn : Ω −→ R

are bounded Borel functions we have

(3.8)
Eλ[f0(X0

s0
) f1(X0

s1
) · · · fn(X0

sn
)]

= Eλ[f0(X̃t
t−s0

) f1(X̃t
t−s1

) · · · fn(X̃t
t−sn

)] .

Proof. The result is well-known if X or X̃ are homogeneous Markov
processes. Here they are not, therefore we briefly indicate the main
steps of the proof. The monotone class theorem implies that it is suffi-
cient to verify (3.8). Using the Markov property and induction we can
reduce to n = 1. We set

δ = Eλ[f0(X0
s0

) f1(X0
s1

)] ,

δ̃ = Eλ[f0(X̃t
t−s0

) f1(X̃t
t−s1

)] ,

0 = s0 < s1 ≤ t .

Let (∧r,s)0≤r<s (respectively (∧̃t
r,s)0<r<s≤t) be the non homogeneous

semigroup associated with X (respectively X̃t).
We denote by Lr and L̃t

r the infinitesimal generators of ∧ and ∧̃

Lrf(x) =
1
2

Δf(x) + u(r, x)∇f(x) ,

L̃t
rf(x) =

1
2

Δf(x) − u(t− r, x)∇f(x) ,

for any f of class C2 in Ω, and verifying

∂f

∂n
= 0 , on ∂Ω .

1) We claim that

(3.9) 〈g, Lrf〉λ = 〈f, L̃t
t−rg〉λ , 0 < r < t ,

where f and g are of class C2,

∂f

∂n
=
∂g

∂n
= 0
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and

(3.10) 〈f, g〉λ =
∫

Ω

f(x) g(x)λ(dx) .

We integrate by part, making use of Stokes formula∫
Ω

g(x)Lrf(x) dx =
1
2

(∫
Ω

f(x)Δg(x) dx+
∫

∂Ω

g
∂f

∂n
−
∫

∂Ω

f
∂g

∂n

)
−
∫

Ω

g(x) f(x) div u(r, x) dx

−
∫

Ω

f(x) (u(r, x)∇g(x)) dx +
∫

∂Ω

u g f .

Since ∂f/∂n, ∂g/∂n, u|∂Ω and divu cancel, we obtain (3.9).

2) In this second step, we prove

(3.11) 〈f, ∧̃t
t−s,t−rg〉λ = 〈∧r,sf, g〉λ , 0 ≤ r ≤ s ≤ t ,

for any f and g of class C2, ∂f/∂n = ∂g/∂n = 0.
We set

α(h) = 〈∧r,hf, ∧̃t
t−s,t−hg〉λ , h ∈ [r, s] .

We take the derivative of α

α′(h) = 〈Lh ∧r,h f, ∧̃t
t−s,t−hg〉λ − 〈∧r,hf, L̃t−h∧̃t

t−s,t−hg〉λ ,

because

∂

∂h
∧r,h f = Lh ∧r,h f and

∂

∂h
∧̃t

t−s,t−h = −L̃t−h∧̃t
t−s,t−h .

(3.9) implies that α′(h) = 0, for all h ∈ [r, s]. Hence α is constant

α(r) = 〈f, ∧̃t
t−s,t−rg〉λ = α(s) = 〈∧r,sf, g〉λ .

3) We come back to δ and δ̃. We have

δ = 〈f0,∧0,s1f1〉λ ,

δ̃ = Eλ[f1(X̃t
t−s1

)∧̃t
t−s1,t f0(X̃

t
t−s1

)] = 〈1, ∧̃t
0,t−s1

(f1(∧̃t
t−s1,t f0))〉λ .
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We apply twice (3.11),

δ̃ = 〈1, f1∧̃t
t−s1,tf0〉λ = 〈f1, ∧̃t

t−s1,tf0〉λ = 〈∧0,s1f1, f0〉λ = δ .

Propositions 2.5 and 2.6 admit a dual version.

Proposition 3.2. 1) Let f : Ω −→ R and H : [0, t] × ∂Ω −→ R two
Borel bounded functions then,

Eλ[f(X0
t )] =

∫
Ω

f(x)λ(dx) ,(3.12)

Eλ

[ ∫ t

0

H(r,X0
r ) dA0

r

]
=

1
2

∫ t

0

(∫
∂Ω

H(r, x) dx
)
dr ,(3.13)

Eλ[exp (θA0
t )] <∞ , for any θ > 0 ,(3.14)

lim
u→0+

sup
x∈Ω

0≤t≤k

E [At,x
u ] = 0 , (cf. (2.26)) .(3.15)

We omit the proof of the Proposition 3.2.
Before stating the analog of Proposition 2.1, let us introduce

(Ht
u)0≤u≤t the natural filtration generated by (Xt−u ; 0 ≤ u ≤ t)

(3.16) Ht
u = σ(Xv ; t− u ≤ v ≤ t) , Ht

u =
⋂
v<u

Ht
v .

Proposition 3.3. Suppose that t > 0 and ω is a solution of (1.8).

1) a) For any h : Ω −→ R Borel bounded function,

(3.17)

(
h(X0

t )ω(t− s ∧ ξ,X0(t− s ∧ ξ))

· exp
(∫ t

t−s∧ξ

ϕ0(r,X0
r ) dAr

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) continuous local martingale, where ϕc is defined by (2.7)
and,

(3.18) ξ = inf {s ≤ t : ω(t−s,X0(t−s)) = 0 and X0(t−s) ∈ ∂Ω}∧t .
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b) If c > Ct,Ω (Ct,Ω is defined by (2.10)),

(3.19)

(
h(Xt) (ω(t − s,X0(t− s)) + c)

· exp
(∫ t

t−s

ϕc(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) square integrable continuous martingale.

2) The tangential component of the velocity of X0 vanishes on the
boundary.

Let ρ be a velocity test function, then

(3.20)
1
h
Eλ[ρ(X0

T+h) − ρ(X0
T ) | Ht

T ] a.s.−→
h→0+

0 ,

where T is the Ht-stopping time,

(3.21) T = inf {s ≤ t : X0(t− s) ∈ ∂Ω} ∧ t .

Proof. For simplicity we write Xt instead of X0
t . We set, for any

c ≥ 0

Zc(s) = h(Xt) (ω(t− s,Xt−s) + c)

· exp
(∫ t

t−s

ϕc(r,Xr) dAr

)
, 0 ≤ s ≤ t ,

(3.22)

ξn = inf
{
s ≤ t : ω(t− s)X(t− s) ≤ 1

n

and X(t− s) ∈ ∂Ω
}
∧ t , n ∈ N .

(3.23)

{ξn}n≥1 is an increasing sequence of Ht-stopping times converging, as
n goes to infinity, to ξ.

Let 0 ≤ u0 < u1 ≤ t, 0 ≤ s0 < s1 < · · · < sn ≤ u0, Γ0,Γ1, . . . ,Γn

Borel subsets of R and

A = {Xt−s0 ∈ Γ0,Xt−s1 ∈ Γ1, . . . ,Xt−sn
∈ Γn} .

Using the duality property (3.7) we obtain

Eλ[Zc(u1 ∧ ξn)1A] = Eλ[Z̃t
c(u1 ∧ ξ̃n)1

�A]
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with Ã = {X̃t
s0

∈ Γ0, X̃
t
s1

∈ Γ1, . . . , X̃
t
sn

∈ Γn}. Recall that Z̃t
c and ξ̃n

were introduced in (2.8), respectively (2.14).
We apply 1) a) of Proposition 2.1

Eλ[Z̃t
c(u1 ∧ ξ̃n)1

�A] = Eλ[Z̃t
c(u0 ∧ ξ̃n)1

�A] .

The duality property implies (3.17).
A similar approach and (2.18) estimate prove (3.19). As for (3.20)

we mimic the proof of (2.11).
Recall that {ξn}n≥1 is the increasing sequence of stopping time,

converging to ξ. Using the stopping theorem and (3.12) we obtain:

Corollary 3.4. For any bounded Borel function h, t > 0 and n ≥ 1,
we have

〈h, ω(t, ·)〉λ =
∫

Ω

h(x)ω(t, x) dλ(x)

= Eλ

[
h(X0

t )ω(t− ξn,X
0(t− ξn))

· exp
(∫ t

t−ξn

ϕ0(t,X0
r ) dA0

r

)]
,

(3.24)

〈h, (ω(t, ·) + c)〉λ =
∫

Ω

h(x) (ω(t, x) + c)λ(dx)

= Eλ

[
ω0(X0

0 )h(X0
t ) exp

(∫ t

0

ϕc(r,X0
r ) dA0

r

)]
.(3.25)

Remark 3.5. 1) A priori we are not allowed to drop ξn in (3.24) since
we do not know if

(Z0(s) ; 0 ≤ s ≤ t)

=
(
h(X0

t )ω(t− s,X0(t− s)) exp
(∫ t

t−s

ϕ0(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht)-martingale.

We note that if ω0 is analytic, ω is also an analytic function defined
on R+ ×Ω ([Ko]). Therefore {(t, x) ∈ R+ ×∂Ω : ω(t, x) = 0} is a finite
union of C∞ curves. X being a nice diffusion process, it does not visit
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this set: for any t > 0, almost surely, ω(t,Xr) �= 0 for all r ∈ [0, t].
Hence,

(3.26)
∫ r

0

|ϕ0(r,Xr)| dAr < +∞ , almost sure .

We conjecture that

(3.27) 〈h, ω(t, ·)〉λ = Eλ

[
ω0(X0

0 )h(X0
t ) exp

(∫ t

0

ϕ0(r,X0
r ) dAr

)]
.

2) Following the convention (3.6) we rather write the former iden-
tity

(3.28) 〈h, ω(t, ·)〉λ = Eω0·λ
[
h(X0

t ) exp
(∫ t

0

ϕ0(r,X0
r ) dAr

)]
.

Recall (see Lemma 1.1) that u can be expressed through ω via an inte-
gral

u(t, x) = Kω(t, x) =
∫

Ω

∇⊥
x G(x, z)ω(t, z) dz ,

G being the Green function of Δ on Ω. Therefore we have the formal
expression of u

(3.29) u(t, x) = Eω0·λ
[
∇⊥

x G(x,Xt) exp
(∫ t

0

ϕ0(r,Xr) dAr

)]
.

We point out that the right-hand side of (3.29) is a double integral with
respect the probability measure λ⊗ P . It seems difficult to check that
this integral is convergent in some sense.

Let us define the stochastic differential system (S.N.S*.) based on
x:

(S.N.S*.1) Suppose x ∈ Ω. Let us consider the following reflected
stochastic differential equation in Ω,

X0,x
s = x+Bs +

∫ s

0

Kω(r,X0,x
r ) dr

−
∫ s

0

n(X0,x
r ) dA0,x

r , s ≥ 0 ,
(3.30)

∫ s

0

1{X0,x
r ∈∂Ω} dA

0,x
r = A0,x

s , s ≥ 0 .(3.31)
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Kω being defined by (1.2).

(S.N.S*.2) For any h : Ω −→ R Borel bounded function,(
(h(X0

t )ω(t−s∧ξ, X0(t−s∧ξ)) exp
(∫ t

t−s∧ξ

ϕ0(r,X0
r ) dA0

r

)
; 0 ≤ s ≤ t

)
is a (Pλ,Ht) continuous local martingale, where ϕc is defined by (2.7)
and ξ by (3.18).

(S.N.S*.3) Let ρ be a velocity test function,

1
h
Eλ[ρ(X0

T+h) − ρ(X0
T ) |Ht

T ] a.s.−→
h→0+

0 ,

where T is defined by (3.21).
We are able to state a second stochastic system equivalent to the

(N.S.) one.

Proposition 3.6. Suppose that (S.N.S*.) (= (S.N.S*.1)+(S.N.S*.2)+
(S.N.S*.3)) has a solution (ω, {(Xt,x

s ; 0 ≤ s ≤ t), (At,x
s ; 0 ≤ s ≤

t) ; t ≥ 0, x ∈ Ω} ω being a smooth function ; then u = Kω is a solution
of the (N.S.) equation. Conversly if u = Kω solves the (N.S.) equation,
then the (S.N.S*.) system has a unique solution.

Proof. It is a direct consequence of duality (Proposition 3.1) and
Proposition 2.3.

4. Branching particle system associated with the Navier-
Stokes equation.

1) Heuristically (see the Remark 3.5) ω(t, ·) can be interpreted as
a density function

〈h, ω(t, ·)〉λ = Eω0·λ
[
h(Xt) exp

(∫ t

0

ϕ0(r,Xr) dAr

)]
.

If the sign of ϕ0 is constant and negative, ω(t, ·) is truly the density
of Xt, starting with initial “distribution” ω0 · dλ, and killed with the
multiplicative functional(

exp
∫ t

0

ϕ0(r,Xr) dAr ; t ≥ 0
)
.
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Here ϕ0 is not negative. To take into account the sign of ϕ0, a branching
particule system Y is very adapted. We keep in mind that ϕ0 < 0 (re-
spectively ϕ0 > 0) corresponds to disappearing (respectively creation)
of mass.

More precisely we know that Y takes its values in the set of finite
linear combinations of Dirac measures

(4.1) Yt =
Nt∑
i=1

αi
t δY i

t
,

where αi
t belongs to N, Y i

t is an element of Ω.
Then if h : Ω −→ R is a bounded Borel function, we set

(4.2) 〈h, Yt〉 =
∫

Ω

h(x) dYt(x) =
Nt∑
i=1

αi
t h(Y

i
t ) .

The aim of this section is the construction of a branching particle system
Y such that

(4.3) 〈h, ω(t, ·)〉λ = E[〈h, Yt〉] .
ω appears as the mean value of the density of particles (Y i

t ) associated
with Y .

2) We follow the introduction of branching particle system given by
Dynkin [D] and we adapt directly the general definitions to our context.
Such a system is based on three ingredients:

a) a Markov process ((Xx,t
s ; s ≥ 0), x ∈ Ω, t ≥ 0) coming from

(3.4),

b) a positive continuous additive functional C of X,

c) an offspring distribution p = (pn(t, x) ; t ≥ 0, x ∈ Ω)n≥1 on N,
indexed by R+ ×Ω: for any n, pn is a non negative Borel function and

(4.4)
∑
n≥0

pn(t, x) = 1 .

We denote by α the generating function associated with (pn(t, x) ; t ≥
0, x ∈ Ω)

(4.5) α(t, x, u) =
∑
n≥0

pn(t, x)un , u ∈ [0, 1] .
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It is supposed, that

(4.6) β(t, x) =
∑
n≥0

n pn(t, x) is bounded .

The description of the branching particle system Y with parameters X,
C and p (we note for simplicity Y = (X,C, p)) is easy to understand.
Suppose that the system starts with on particle located at x ∈ Ω. We
choose ξ1 an exponential random variable with parameter one, inde-
pendent of X. The dynamic of the initial particle is given by X up to
the first branching time U1 = inf {s ≥ 0 : Cs > ξ1}. At time U1, the
particle dies and a random number NU1 of new particles spring from the
ancestor particle, according to p. The conditional distribution of NU1

given the past up to time U1, is (pn(U1,XU1) ; n ≥ 0). The NU1 parti-
cles move independently off each other, as X, up to a second branching
stopping time. A new branching occurs, and so on.

3) Let X, C and p be the parameters of Y .
We denote by (Y t,x

s ; s ≥ 0) the branching particle system starting
with one particle at x ∈ Ω, with dynamic (Xt,x

s ; s ≥ 0) and offspring
distribution (pn(t+ s, x) ; s ≥ 0, x ∈ Ω)n≥1 and

(4.7) W (t, x ; s) = E [exp (−〈h, Y t,x
s 〉)] ,

for any (s, x) ∈ R+ ×Ω, h : Ω −→ R+ Borel positive bounded function.
W solves the basic equation (see [D, (1.5)])

(4.8)
W (t, x; s) = E

[ ∫ s

0

α(t+ r,Xt,x
r ,W (u,Xt,x

r ; s− r)) dCr

]
+E[exp−h(Xt,x

s )] , s ≥ 0 ,

where

(4.9) α(t, x;u) = α(t, x;u) − u =
∑
n≥0

pn(t, x)un − u ,

where t ≥ 0, x ∈ Ω, u ∈ [0, 1].

4) We are interested by

(4.10) v(t, x; s) = E[〈h, Y t,x
s 〉] , s ≥ 0 ,
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h being a positive and bounded Borel function.
Obviously 〈h, Y t,x

s 〉 ≥ 0, however we do not know if this positive
random variable has a finite expectation. We are interested by branch-
ing processes Y such that,

(4.11) sup
x,0≤s≤t

E[〈h, Y t,x
s 〉] < +∞ ,

for all h Borel positive bounded functions. It is clear that previous
assumption is equivalent to

(4.12) sup
x,0≤s≤t

E[〈1, Y t,x
s 〉] < +∞ .

We remark that 〈1, Y t,x
s 〉 is the number of particles still living at time

s.

Proposition 4.1. Let Y be a branching process with parameters
(X,C, p). We suppose that (4.11) holds. Then the function v defined
by (4.10) solves the “integral ” equation

(4.13)
v(t, x; s) = E

[ ∫ s

0

(β(t+ r,Xt,x
r ) − 1) v(t,Xt,x

r ; s− r) dCr

]
+ E [h(Xt,x

s )] ,

where h is a positive and bounded Borel function and β defined by

(4.14) β(s, x) =
∑
k≥0

k pk(s, x) < +∞ ,

and verify

(4.15) sup
x,s≤t

β(s, x) < +∞ .

Proof of Proposition 4.1. Since t > 0 and x ∈ Ω are supposed
to be fixed we write X (respectively Y, v) instead of Xt,x (respectively
Y t,x, v(t, x; ·)). Let a be a positive number, and W the function defined
by (4.7), where h is replaced by ah

W (s) = E [exp−a 〈h, Ys〉] .
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Applying the dominated convergence theorem and (4.11), we have,

∂

∂a
W (s)|a=0 = −E [〈h, Ys〉] .

On the other hand, (4.15) and (4.11) imply,

sup
x,u,r≤s

∣∣∣∂ α
∂u

(t+ r, x, u)
∣∣∣ ≤ 1 + sup

x,r≤t+s
β(r, x) < +∞ ,

sup
x,r≤s

∣∣∣∂W
∂a

(r)
∣∣∣ ≤ sup

x,r≤s
E [〈h, Ys〉] < +∞ .

Since W solves (4.8), we are allowed to take the partial derivative with
respect to a, in (4.8). If we choose a = 0, we obtain immediately (4.13).

Lemma 4.2. Let (X,C, p) be the parameters of a branching process Y .
We suppose,

(4.16) Ex,t[exp (θ Cs)] < +∞ ,

for any x ∈ Ω, s, t ≥ 0, and θ > 0, and

(4.17) pk(s, x) = 0 , if k ≥ 3 .

Then (4.11) holds.

Proof of Lemma 4.2. 1) Let τ be the right inverse of C: τt = inf {s >
0, Cs > t}. By a changing of time,

(4.18) 〈1, Y t,x
τs

〉 = 〈1, Y t,x

s 〉 , s ≥ 0 ,

where Y is the branching process associated with (Xτ ·, t, p).
Assumption (4.17) tells us that

(4.19) 〈1, Y t,x

s 〉 ≤ ρs .

Where (ρs ; s ≥ 0) is the Yule process (each particle lives an expo-
nential time and then splits into two particles). It is well know ([AN,
p. 109]) that ρs is geometrically distributed with parameter ebs, b being
a positive constant

P (ρs = k + 1) = e−bs (1 − e−bs)k , k ≥ 0 .
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Therefore

(4.20) E(ρ2
s) ≤ 2 e2bs .

2) We set Ns = 〈1, Y t,x
τs

〉.
We have,

E(Ns) =
∑
n≥0

E [Ns1{τn≤s<τn+1}] .

Moreover,

E(Ns 1{τn≤s≤τn+1}]≤E (Nτn+1 1{s≥τn})≤(E [(Nτn+1)
2]P (s ≥ τn))1/2 .

On the one hand, (4.18), (4.19) and (4.20) imply

E [(Nτn+1)
2] ≤ E [ρ2

n+1] ≤ 2 e2b(n+1) .

On the other hand,

P (s≥τn)=P (Cs≥n)=P (eθCs ≥eθn)≤e−θnE[eθCS ]≤e−θnE(eθCt) ,

θ being a positive number.
Let us take θ = 3 b, making use of (4.16), we obtain

P (s ≥ τn) ≤ C e−3bn .

As a result
sup

x,s≤t
E (Ns) ≤ C′

(∑
n≥0

e−b(n/2)
)
<∞ ,

(4.12) (or (4.11)) follows immediately.
We now investigate uniqueness in (4.13).

Lemma 4.3. Let t > 0, and h be a bounded and positive Borel function.
We suppose that (4.15) holds and

(4.21) lim
s→0+

sup
x∈Ω

Ex,t(Cs) = 0 .

Then there exists at most one bounded function v solving (4.13).
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Proof of Lemma 4.3. Suppose that v1 and v2 are two bounded
solutions of (4.13). We set v = v1 − v2. Then

(4.22) v(t, x; s) = E
[ ∫ s

0

(β(t+ r,Xt,x
r ) − 1) v(t,Xt,r

r , s− r) dCr

]
,

(4.15) implies that,

λ := 1 + sup
x,s≤t

β(s, x) < +∞ .

Consequently, (4.21) implies that, there exists 0 < t0 ≤ t such that

sup
x∈Ω

Ex,t(Cs) ≤ 1
2λ

, for any s ≤ t0 .

We come back to (4.22)

sup
x,s≤to

|v(t, x; s)| ≤ λ
(

sup
x,s≤t0

|v(t, x; s)|) 1
2λ

.

Since v is bounded, the former inequality says that v(t, x; ·) vanishes on
[0, t0].

By the same way, v(t, x; ·) = 0 on [t0, 2 t0] ∩ [0, t].
This shows by induction that v(x, t; ·) = 0 on [0, t].

5) Let ((Xt,x
s ; s ≥ 0) , x ∈ Ω , t ≥ 0) be a diffusion process,

taking its values in Ω, and C be a continuous, non-decreasing additive
functional, vanishing at 0 verifying (4.16) and (4.21).

We introduce a new additive functional based on a Borel function
a : R+ × Ω −→ R

(4.23) C(a)(s) =
∫ s

0

|a(t+ r,Xt,x
r )| dCr , s ≥ 0 .

It is supposed

(4.24) sup
x,s≤t

|a(x, s)| < +∞ .

Consequently,

(4.25) C(a)(s) ≤ λt Cs , for all s ≤ t ,
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where λt is a positive constant, independent of x. We define the off-
spring distribution p(a) associated with a

(4.26)

p
(a)
k (t, x) = 0 , if k �= 0 or k �= 2 ,

p
(a)
0 (t, x) = 1 , if a(t, x) < 0 ,

p
(a)
2 (t, x) = 1 , if a(t, x) ≥ 0 .

In other words,

(4.27) p
(a)
· (t, x) = 1{a(t,x)<0} δ0 + 1{a(t,x)≥0} δ2 .

Theorem 4.4. Let Y be the branching process, Y = (X,C(a), p(a)).
We suppose that (4.16) and (4.21) hold. Then for any t ≥ 0, x ∈ Ω, h
Borel, positive, bounded function

(4.28) E
[
h(Xt,x

s ) exp
(∫ s

0

a(t+ r,Xt,x
r ) dCr

)]
= E[〈h, Y t,x

s 〉] .

Proof of Theorem 4.4. 1) Let t ≥ 0, x ∈ Ω and h ≥ 0 be fixed. We
set

(4.29) ṽ(t, x; s) = E
[
h(Xt,x

s ) exp
(∫ s

0

a(t+ r,Xt,x
r ) dCr

)]
and

(4.30) v(t, x; s) = E [〈h, Y t,x
s 〉] .

(4.16) and (4.25) imply that C(a) also verifie (4.16).
Obviously (4.17) is realized, therefore Lemma 4.2 tells us that Y

verifies (4.11). Applying Proposition 4.1, v solves

(4.31)

v(t, x; s) = E
[ ∫ s

0

(β(a)(t+ r,Xt,x
r ) − 1)

· v(t,Xt,x
r ; s− r) dC(a)

r

]
+E [h(Xt,x

s )] ,

β(a)(s, x) =
∑
k≥0

k p
(a)
k (s, x) .
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but

β(a)(s, x) − 1 = 2 · 1{a(s,x)≥0} − 1 = sgn (a(s, x)) ,

dC(a)
r = |a(t+ r,Xt,x

r )| dCr ,

(4.31) can be reduced as follows,

(4.32)
v(t, x; s) = E

[ ∫ s

0

a(t+ r,Xt,x
r ) v(t,Xt,x

r ; s− r) dCr

]
+ E [h(Xt,x

s )] .

2) Suppose that ṽ solves (4.32).
We have already remarked that Y verifies (4.11), then ṽ is bounded.
C(a) has the property (4.21) (it is an easy consequence of (4.25)

and (4.21)).
Applying Lemma 4.3, we can conclude that v = ṽ. This means

that (4.28) is verified.

3) We have to prove that ṽ solves (4.32).
We set

ρ = E
[ ∫ s

o

a(t+ r,Xt,x
r ) ṽ(t,Xt,x

r , s− r) dCr

]
.

Using the definition of ṽ, and Markovian notations,

ρ = E
[ ∫ s

0

a(t+ r,Xt,x
r )

·Et,Xt,x
r

[
h(Xs−r) exp

(∫ s−r

0

a(t+ u,Xu) dCu

)]
dCr

]
.

A straightforward application of the Markov property gives

ρ = E
[ ∫ s

0

a(t+ r,Xt,x
r )h(Xt,x

s )

·
(

exp
(∫ s−r

0

a(t+ r + u,Xt,x
u+r) dCu+r

))
dCr

]
.

It is convenient to introduce the following multiplicative functional,

Mr = exp
(∫ r

0

a(t+ u,Xt,x
u ) dCu

)
.
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We have

Ms = Mr exp
(∫ s

r

a(t+ u,Xt,x
u ) dCu

)
= Mr exp

(∫ s−r

0

a(t+ r + u,Xt,x
u+r) dCu+r

)
, r ≤ s ,

dMr = a(t+ r,Xt,x
r )Mr dCr .

Hence

ρ = E
[
Msh(Xt,x

s )
(∫ s

0

1
(Mr)2

dMr

)]
,

ρ = E
[
Msh(Xt,x

s )
(
1 − 1

Ms

)]
= E [Msh(Xt,x

s )] −E [h(Xt,x
s )] .

But ṽ(t, x; s) = E [Msh(Xt,x
s )], then ṽ verifies (4.32).

We are now able to prove that ω+c can be interpreted as the “den-
sity” of a branching process Yc, ω denoting the solution of the (N.S.)
equation. We apply the Theorem 4.4. We have to define the underlying
process and the functions a, p and C.

6) Let ((Xt,x
s ; s ≥ 0) ; x ∈ Ω , t ≥ 0) be the family of diffusions

defined by (3.4).

• c denotes a constant, c > Ct,Ω. (Recall that Ct,Ω is defined by
(2.10) and ω(s, x) + c > 0 for any s ∈ [0, t] and x ∈ Ω).

• We define the function a as follows

(4.33) a(s, x) =

( ∂ω

∂n
ω + c

)
(s, x)1{x∈∂Ω} .

• p is the offspring distribution based on a (cf. (4.26)),

pk(s, x) = 0 , if k �= 0 or k �= 2 or x �∈ ∂Ω ,(4.34)

p0(t, x) = 1 , if
∂ω

∂n
(t, x) < 0 and x ∈ ∂Ω ,(4.35)

p2(t, x) = 1 , if
∂ω

∂n
(t, x) ≥ 0 and x ∈ ∂Ω .(4.36)
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We will say that (s, x) is a annihilation (respectively creation) point
of the vortex if x ∈ ∂Ω and (∂ω/∂n) (s, x) < 0 (respectively (∂ω/∂n)
(s, x) ≥ 0).

• C(a) coincides with A(a), where A is the local time process asso-
ciated with X (see (3.4)), namely

(4.37) C(a)
s =

∫ s

0

∣∣∣∂ω
∂n

(r,Xt,x
r )
∣∣∣ 1
ω(r,Xt,x

r ) + c
dAt,x

r ,

Before stating the main result of this paper, we recall a notation (see
for instance (2.30))

(4.38) Eh·λ[〈f, Ys〉] =
∫

Ω

h(x)E [〈f, Y x
s 〉]λ(dx) ,

where h and f are two Borel and positive functions, λ is the normalized
Lebesgue measure on Ω, (Y x

s ; s ≥ 0) is the branching process starting
at δx associated with X0,x

· , C, and p).

Theorem 4.5. Let t > 0, c > Ct,Ω, ω be the vorticity solution of the
(1.8) system. Then

(4.39) E(ω0+c)·λ[〈h, Ys〉] =
∫

Ω

h(x) (ω(s, x) + c)λ(dx) ,

for any s ≤ t, and h Borel and positive function.

Proof of Theorem 4.5. We apply Theorem 4.4

E [h(X0,x
s )Ms] = E [〈h, Y 0,x

s 〉] , s ≤ t ,

where h ≥ 0 and

Ms = exp
(∫ s

0

( 1
ω + c

∂ω

∂n

)
(r,X0,x

r ) dA0,x
r

)
.

We multiply the former equality by (ω0(x)+c), we integrate with respect
to λ(dx), ω0 + c being non-negative, we have

E(ω0+c)·λ[〈h, Y 0
s 〉] = E(ω0+c)·λ[h(X0

s )Ms] .
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Let γ be equal to the right hand-side of the previous identity. Using
duality (cf. Proposition 3.1), we have

γ = Eλ[(ω0 + c) (X0
0 )h(X0

s )Ms] =
∫

Ω

h(x)E[(ω0 + c) (X̃0,x
s ) M̃s]λ(dx) .

Obviously M̃s = Ms, M̃s(ω0 + c) (Xx
s ) = Z̃s,x

c (s), (Z̃s,x
c (r), 0 ≤ r ≤ s)

being the process defined by (2.8), then

γ =
∫

Ω

h(x)E [Z̃s,x
c (s)]λ(dx) .

But (Z̃s,x
c (r) ; 0 ≤ r ≤ s) is a martingale (cf. 1) b)), Proposition 2.1),

therefore,
E [Z̃s,x

c (s)] = E (Z̃s,x
c (0)) = ω(s, x) .

This achieves the proof of (4.38).

Remark 4.6. We have proved,

(4.40)

E(ω0+c)·λ[〈h, Ys〉]

= E(ω0+c)·λ
[
h(X0

s ) exp
(∫ s

0

ϕc(r,X0
r ) dAr

)]
,

where
ϕc =

1
ω + c

∂ω

∂n
.

5. The particle algorithm associated with the branching pro-
cess.

In sections 3 and 4, we suppose that the solution u (or ω) of the
(N.S.) system is given, and then we defined two nonlinear stochastic
processes X and X̃, and a branching process Y . We proved that u and
ω can be expressed through X, X̃ and Y . In this nonlinear context, it is
classical [McK] to introduce a particle algorithm having the propagation
of chaos property. Our closed formulas allow us to guess the dynamic of
the particle system associated with the (N.S.) equations. Unfortunately
we are not able to check the convergence. We are convince that is it
interesting to write it out, it will appear as a program.
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1) Let N ≥ 1 be a fixed integer (N will go to infinity later). Recall
that u0 is the initial data in (N.S.), and ω0 = rotu0.

a) X1
0 , . . . ,X

N
0 denote N independent and equidistributed random

variables taking its values in Ω with common density

1∫
Ω

(ω0(x) + γ) dx
(ω0 + γ) ,

where γ is a constant, supposed to be large enough. In particular
ω0(x) + γ > 0, for all x ∈ Ω.

b) We define the underlying system of particles, up to the first
branching time in the McKean’s sens.

X = (Xi,N
t ; t ≥ 0 ; 1 ≤ i ≤ N) is the Ω

N
-values diffusion solving

the (linear) reflected stochastic differential equation

(5.1)

Xi,N
t = Xi

0 +Bi
t +

∫ t

0

uN (s,Xi,N
s ) ds

−
∫ t

0

n(XN
s ) dAN

s , 0 ≤ i ≤ N, t ≥ 0 ,

AN
t =

∫ t

0

1{XN
s ∈∂ΩN} dA

N
s , t ≥ 0 .

n denotes the outer normal of ∂ΩN , (Bi ; 1 ≤ i ≤ N) are N indepen-
dent two dimensional Brownian motions and Bi

0 = 0, independant of
(Xi

0 ; 1 ≤ i ≤ N).
The function uN will be defined in c). It corresponds to some

approximation of u.

c) Let μN be the empirical measure,

(5.2) μN (t) =
1
N

N∑
i=1

δXt
i,N ,

Recall (Lemma 1.1) that

(5.3) u(t, z) =
∫

Ω

�⊥
z G(z, z′)ω(t, z′) dz′ ,
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G being the Green function of Ω (see (1.3)).
If t is small (lower than the first branching time) the branching

process Yt reduces to δXt, therefore μN (t) is a good candidate to ap-
proximate ω(t, x) dx.

We set

(5.4)

ũN (t, z) = E
[ ∫

Ω

�⊥
z G(z, z′)μN (t, dz′)

]
=

1
N

N∑
i=1

E [�⊥
z G(z,Xi,N

t )] .

Unfortunately z −→ �⊥
z G(z, z′) has a singularity at z = z′, therefore

we regularize ũN , by replacing ũN by ũN ∗ VN , where VN (z) dz con-
verges (in R

2) to δ0 (choose for instance, VN (z) = N2 V (Nz), V ≥ 0,∫
R2 V (x) dx = 1, V of class C∞, with compact support)

(5.5) uN (t, z) = VN ∗ ũN (t, ·)(z) =
1
N

N∑
i=1

E [VN ∗ �⊥
· G(·,Xi,N

t )(z)] .

Hence uN is C∞, and x → uN (t, x) is of class C1, therefore the 2N -
dimensional stochastic differential equation (5.1) has a unique and
strong solution. It is meaningful to set

(5.6) ωN = rotuN .

2) The first branching time.

a) Let ξ1, ξ2, . . . , ξN be N independent, and exponential random
variable (with unit parameter), independent of the previous system of
particles. The first branching time T is defined as follows

T = inf {Ti : 1 ≤ i ≤ N} ,(5.7)

Ti = inf
{
t ≥ 0 :

∫ t

0

( 1
ωN + γ

∣∣∣∂ωN

∂n

∣∣∣)(s,Xi
s) dA

N
s ≥ ξi

}
.(5.8)

b) Suppose that T = Ti0 . Then Xi0,N
T ∈ ∂Ω. We have the alterna-

tive

aN (T,Xi0,N
T ) < 0 ,(5.9)−

aN (T,Xi0,N
T ) > 0 ,(5.9)+
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where

(5.10) aN (s, x) =
( 1
ωN + γ

∂ωN

∂n

)
(s, x) ,

aN is some approximation of a, a being defined by (4.33).

i) In the negative case (5.9)− according to (4.34)-(4.35), the par-
ticle i0 is killed at time T = Ti0 . The N − 1 remaining particles start
afresh

(X1,N
T , . . . ,Xi0−1,N

T ,Xi0+1,N
T , . . . ,XN,N

T )

and move as (5.1) with drift coefficient u(1)
N ,

(5.11) u
(1)
N (t, z) =

1
N

N∑
i=1
i
=i0

E [VN ∗ �⊥G(·,X1,i,N
t )(z)] .

u
(1)
N is associated with the empirical measure

μ
(1)
N (t, ·) =

1
N

N∑
i=1
i
=i0

δX1,i,N
t

.

Note that the factor of normalization is 1/N and not 1/(N − 1).
We define as in (5.2) the second branching time and the branching

dynamic.

ii) If (5.9)+ holds, the particle i0 dies and has two descendants.
Then the N + 1 processes move after T , as previously.

After having generatedN−1 or N+1 particles, a second branching
time is defined by the same way.

3) Conjectures. We claim that the offsprings of one particle (for
example, the first one), YN coming from the former procedure converges
in law, as N goes to infinity, to the branching process Y .

Another open question is : can we take γ = 0? In this situation we
introduce in the algorithm signed particles. Particle i is said positive
(respectively negative) if ω0(X

i,N
0 ) > 0 (respectively ω0(X

i,N
0 > 0), the

density of Xi,N
0 being equal to

|ω0(x)|∫
Ω

|ω0(x)| dx
.
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The sign ξi,N
0 of Xi,N

t remains constant, for any time t. μN is replaced
by the signed measure,

μN (t, ·) =
1
N

N∑
i=1

ξi,N
0 δXi,N

t
.

When Ω = R
2, Marchioro and Pulverenti [MP] has introduced signed

particles in order to take into account the non-positivity of ω.
If γ = 0, is this algorithm converging?
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Ann. Inst. H. Poincaré IV (1968), 193-253.

[R] Raviart, P. A., An analysis of particle methods. Lecture Notes in Math.

1127 (1985), 243-324. Springer Verlag.



Branching process associated with 2d-Navier Stokes equation 373

[S.V] Stroock, D. W., Varadhan, S. R. S., Diffusion process with boundary

conditions. Comm. Pure Appl. Math. XXIV (1971), 147-226.

[T] Teman, R., Navier Stokes equations: theory and numerical analysis.

North Holland, 1977.

Recibido: 2 de septiembre de 1.999
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