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An X-ray transform

estimate in R"

Izabella Laba and Terence Tao

Abstract. We prove an x-ray estimate in general dimension which is
a stronger version of Wolff’s Kakeya estimate [12]. This generalizes the
estimate in [13], which dealt with the n = 3 case.

1. Introduction.

Let n > 3 be an integer. Let B"~1(0,1) be the unit ball in R",
and for all z,v € B"~1(0,1) define the line segment [(x,v) € R" by

lz,v)={(x+vt,t): t €[0,1]},

where we have parameterized R” as R*~! x R in the usual manner. Let
G be the set of all such line segments; this space is thus identified with
B"1(0,1) x B"1(0,1). If | € G, we write x(l) and v(l) for the values
of z and v respectively such that [ = I(x,v).

For any function f on R", define the z-ray transform X f on G by

Xf(l)zflf-

We consider the question of determining the exponents 1 < p,q,r < oo
and o > 0 such that we have the bound

(1) IXflleazy S 1A lzs
where LP is the Sobolev space (14 v —A)7“LP.
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376 1. LaBA AND T. TAO

From scaling considerations (or by letting f be a bump function
adapted to a small ball) we have the necessary condition

n—1 n
> - —«

(2) 1+ " »

Y

while if one lets f be adapted to a tubular neighbourhood of a line
segment [ € G, we obtain the condition

(3) + > .

From the Besicovitch set construction we have

(4) (r, @) # (00,0).

It was conjectured by Drury [7] and Christ [5] that these three necessary
conditions are in fact sufficient. In [5] this conjecture was shown to be
true when p < (n+1)/2.

By Holder, Sobolev, and interpolation with trivial estimates, the
full conjecture is equivalent (modulo endpoints) to the Kakeya conjec-
ture, which asserts that (1) holds for ¢ =n, r = o0, p=mn, and a = ¢
for arbitrarily s mall €.

Wolff [12] showed (1) was true when

(n—1)(n+2) n+ 2 n—2+
- b TZ%’ - b @ = 87
1 n P 2 n+2

this can of course be interpolated with the results in [5] to yield further
estimates. However, this is not the best one can do in the p = (n+2)/2
case. From (2) and (3) one expects to have (1) for

q:(n—l)(n+2) 7":(n—l)(n+2)
n ’ n—2 ’
(5)

n+2
2 )

p= a=0,

this would imply the results of [12] by Sobolev embedding in the v
variable. Although we are not able to get that sharp result, we are able
to obtain the following interpolant, which is our main result.
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Theorem 1.1. For any ¢ > 0, we have (1) for

q=(n_1)n(n+2)’ r=2(n+2),

n—+2 n—3 n
= = —mm— .
b= 2(n+2)

(6)

This result was obtained in the three dimensional case n = 3 by
Wolft [13], and the result is sharp up to endpoints for that value of n
and p. Our arguments shall be based on those in [13], with some mild
simplifications based on the bilinear approach in [10].

Theorem 1.1 can be stated in a discretized adjoint form, which is
more convenient for applications. Namely!:

Theorem 1.2. Lete >0,0<d < 1, and 1 < m < 61", Let &,

&' be d-separated subsets of B*~1(0,1), and let A C E xE C G be a
collection of line segments such that

(7) {le A: v(l) =v}| <m,

for allv e £. Then we have

(8) | IEZAXT, |

< (5—n/p+1—e ml/q—l/r ((571—1 |A|)1/q’
p’ ~ ?

where p,q,r are as in (6).

As observed in [12], an x-ray estimate of this form reveals some in-
formation on Besicovitch sets in R"™. Namely, such sets have Minkowski
dimension at least (n + 2)/2, and if the dimension is exactly (n + 2)/2
then the line segments w hich comprise the set must be “sticky” in a
certain sense. This observation was made rigorous in [8], where the re-
sults of [13] were applied (together with those of [3] and some additional
arguments) in the three-dimensional case to improve slightly upon the
Minkowski bound just stated. We will use Theorem 1.1 to achieve a
similar result in higher dimensions [9]. Fortunately, one does not need
a sharp value of r in (6) to obtain this type of observation, as long as
r is finite of course.

1 The notation in the theorem will be explained shortly.
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To illustrate the connection between x-ray estimates and Besicov-
itch sets, we note the following simple application of Theorem 1.2:

Corollary 1.3. Let 0 < a < n —1, and E be a bounded subset of R™
such that, for each direction w € S™~ ', E contains a family of unit line
segments parallel to w, whose union has Minkowsk: dimension « + 1.
Then the Minkowski dimension of E is at least (n+ 2)/2 + «/4.

The proof follows standard discretization arguments (see e.g. [1],
[2]) and will be omitted. A similar result holds when Minkowski di-
mension is replaced by Hausdorff. This corollary is stronger than the
corresponding corollary of the Kakeya estimate in [12], which covers
the o = 0 case. If one had an x-ray estimate for (5) then one would be
able to improve the /4 term to the optimal o (n —2)/(2n — 2).

2. Notation.

We use 0 < d < 1 and 0 < € < 1 to denote certain small numbers,
and N > 1 denotes a certain large integer. If [ is a line segment in
G, we use 1; to denote the d-neighbourhood of [, which is thus a § x 1
tube.

We write A S Bfor A< CB, A< Bfor A<C7'B,and AS B
for A < C(log(1/0))”B, and C, v are quantities which vary from line
to line and are allowed to depend on £ and N but not on §. We write
A~Bfor ASBSBand Ax Bfor A3 B S B.

Our argument will require the introduction of many quantities,
which measure various angles or cardinalities in a collection of tubes.
For purposes of visualizing the argument we recommend that one sets
the values of these quantities as follows

E] ~ [~ 87", JAl~ 8 T m,
A~fO~o~1, p~Pp; ~w,

for © = 1,2. The treatment of this case can be done while avoiding the
more technical tools in the argument such as the two-ends and bilinear
reductions, and most of the uniformization theory, while still capturing
the core ideas of the argument. To improve the value of r in (6) one
would probably start by considering this case.
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3. Derivation of Theorem 1.1 from Theorem 1.2.

Assume that Theorem 1.2 holds. In this section we shall see how
Theorem 1.1 follows. The argument is standard (c¢f. [1], [2], [12], [13],

[10]).
By a Littlewood-Paley decomposition, and giving up an epsilon in
the « index, one may assume that f has Fourier support in an annulus
{€: |€] ~ 671}, The case § = 1 is easy to handle, so we assume
henceforth that 0 < 0 < 1.
Fix 6. It is then well known that (1) follows from the variant

1 Xsfllparr S0~ fllp
where

Xsf()y=6""[ f.

T;

By duality this is equivalent to
15 Flly 5 6 1E ]y

for all F" on G, where XJ is the adjoint x-ray transform
X}F = 51—"/ F(1) X, da dv .
g

Let £, &' by any d-separated subsets of B"~1(0,1). By discretization it
suffices to show that

67> D Flw ) xq, Il

vEE xEE'!
<o (Y (0 3 pe o))

ve€ zel’

uniformly in &, £’.

Fix &, £'. By pigeonholing and positivity it suffices to verify this
when F' is a characteristic function F' = x , for some A C & x &', so
that we reduce to

I

leAw(l)e€

! ! 1/ !
é5<n—1)(1—1/r—1/q)—a(2|{1 e A: u(l) :U}|q/w> .
veE

pl
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By a further pigeonholing and refining of £, we may assume that there
exists 1 <m $ 6'~™ such that

9)

%§|{16A: o(l) = v} < m,

for all v € £. Our task is then to show that

Z XT,p

IEA(I)EE

é 5(n—1)(1—1/7’—1/q)—am1/7" |5|1/q' )

From (9) we then have |A| ~ m|£|. The claim then follows from The-
orem 1.2 and the fact that (2) is almost satisfied with equality.
It thus remains to prove Theorem 1.2.

4. A three-dimensional estimate.

For any collection A of line segments, we follow Wolff [13] (see also
[14]) and define the plate number p(A) by

{le A: T; C R}|
(10) p(A) = sup w ,
)
where R ranges over all rectangles of dimension CxC wxC dx---xC 4.
By considering the w ~ § case we see that p(A) 2 1 for any non-empty
A.

The purpose of this section is to prove the following distributional
estimate on a set E assuming that the directions of A are effectively
constrained to a two-dimensional slab, and the intersection of the tubes
T; with E satisfy a certain “two-ends” condition of the type used in [11],
[12]. This lemma will be key in the main argument, and also employs
several techniques, notably a hairbrush argument and a uniformization
argument (both due to Wolff), which will re-appear in slightly different
form in the sequel.

Lemma 4.1 ([13]). Let N > 1 be an integer, 6¢ S A < 1, E be a
subset of R, and let A C € x E" be a collection of lines satisfying (7)
which satisfy the uniform density estimate

(11) TyNE|~ X 6"t
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and the two-ends condition
(12) T, N E N B(x,6YN)| g o2V Aot

foralll € A,x € R". Suppose also that the set of directions {v(l): | €
A} is contained in a C x Cpx C6 x -+ x C6 box in B"1(0,1) for
some 0 S p S 1. Then, if 0 is sufficiently small depending on € and N,
we have

(13) |E| ; 5C/N)\2 |.A| m—1/2p—1/2 p(A)_1/2 6n_1/2 '

PrROOF. We repeat the argument in [13]. We may assume that A is
non-empty, and that F is contained in (J;c 4 17

For every | € A and dyadic 6 <o <1, 1 < pu < 079, we let
Y 0,4 C Ty N E denote the set

-}/I)M)U)A
(14)

={veninE: > X, (@)~ 3 g, (@) ~ i

I'EA: 5+|v(l)—v(l")|~o =y

In other words, Y} , 5,4 consists of those points x in 177 N X which lies
in about p tubes from A4, most of which make an angle of about o with
T;. From the pigeonhole principle we see that

(15) hnE= ) U Yiuou-

0<o<1 1<u<o—¢

We now prove a technical lemma which allows us to uniformize p and
o. This type of argument will also be used in the sequel. (For a more
general formulation of this type of argument, see [13]). A somewhat
similar lemma appears in [4].

Lemma 4.2. Let the notation be as above. Then there exist quantities
§<o<1,1<pu<07C and sets

AR c AW c A0 = 4
and for each i = 1,2, 1 € A®) there exists a set

vy cnnE
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such that

(16) AP~ | Al
(17) (AP
and

(18) v ¢ Y, ) o) A

for some set A® C A C AG=D gpd 1D o) satisfying
(19) 0N S p® <67y,
(20) N <o < §=C/Ng
The implicit constants may depend on N.
ProoF. The first stage shall be to construct sequences
A=Ay 2 A1 22 An2,
LNE=Y0DY 12 - 2Y N2,

and quantities py, oy for all 1 < k < N2 and | € Ay, such that

(21) |Ax| ~ | A,
(22) Yol ~ A0,
and

(23) }/lyk g )/l:#’kao'kyAkfl Y

for all 1 < k < NZ2.
To do this, suppose inductively that 0 < k < N2 is such that Ay
and Y ;, have been constructed for all I € Ay. From (15) we have

Yir C U U Yip,o4 -

0<o<1 1<uso—¢
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By the pigeonhole principle, for every [ € Ay one can thus find pgy1(0),
or+1(l) such that

Yo kq1] = Yk

Y

where
Yikt1 = Yie O Y u0 (0,000 (1), A -

By the pigeonhole principle again, there exists pg41, 0x+1 independent
of [ such that the set

A1 ={l € A+ pr1(l) = pr41, opy1(l) = opy1}

satisfies (21). It is clear that this construction gives the desired prop-
erties.

By the pigeonhole principle, there must exist 1 < k; < ky < N2
and o, p such that

0N < e, S 07N

and

0N Sop, SNo

for i = 1,2. The claim then follows by setting A®) = A, and Yl(i) =
Yi k-

K2

Let the notation be as in the above lemma. From (17) and (16) we
have

ORI AR v

le A

which we rewrite as

~ n—1
/E Z XY(z) ~AO |~A| .

leA® !

From (18), the nesting A® C AM, and (19), the integrand is bounded
by 6-¢/Nu. We thus see that A and p are naturally related by the
estimate

(24) Bl p % 69NN AL

One can reverse the inequality in (24), but we shall not need to do so
here.
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From (21), A® is non-empty. Let Iy be an arbitrary element of
A®). Consider the “hairbrush” AP defined by

Al = {1 € AW T,0Ty # 2,60 S 5+[o(lo)—v(1)| $ 57 Na}.

brus

From (18), (19), (20) we see that

> xp (@) 26Ny,

lEA'lborush
for all x € Ylgz). Integrating this using (17), we obtain

Z |Tlﬂleg2)| %(SC/N#/\(Sn_l.

From elementary geometry we see that

T NY,?| <N, S 6 Nsto!

0 ~

so we conclude that
(25) Al 126N urost.
We will shortly combine (25) with (17) and (12) to prove the estimate
(26) ‘ U Y(l)‘ > §C/N 1 \3g p(A)1om2.

lEA'lborush

Assuming this bound for the moment, let us complete the proof of (13).
From (18) and (20) we have

C/N
2 X, () 2 06,
VeA: 5+|v(l)—v(l")|<6-C/Ng

for all [ € Al poush and x € Y( ). From the definition of Ai? usp and the
triangle inequality we thus see that

> Xg,05(®) 2 6N,
1 EASHv () —v(lo)|S6-C/N o
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for all z in the set in (26). Integrating this and using (26), we thus
obtain

2 Ty 1 B| 2 09/N u2X30 p(A) 1572
VeA:s+|v(l")—v(lo)|S6~C/No

From (11) we thus have

{I'e A: 5+ [o(l') —v(lo)] S 67 Na}ron!
% 6C/N;L2)\30P(A)_15n_2 )

However, from (7) and the fact that v(I’) is constrained to a C' x Cp x
Cd x---x(C6 box, we see from elementary geometry that

{I'e A: 5+ [o(l') —v(lo)| S 67 Na | S Nops=m.
Combining these two estimates we obtain (after some algebra)
S §CIN pL/2 512\ =1 4)1/21/2

and the claim (13) follows after some algebra from this and (24).
It remains to prove (26). We first deal with a trivial case when
o < 6-C¢/N§. In this case we simply use the bound

‘ U }/’l(l)‘ > 1/[(1) > 5C/N)\ 6n—1
leAl

brush

from (17) and the fact from (25) that AP . is non-empty, and (26)
follows since p(A), p 2 1 and A S 1.

Now assume o > 6~¢/N§. To prove (26) we will in fact prove the
stronger bound

(27) B 2 /N i A 572 p(A)
where W
E= J v'na
l€“4g2ush

and
Q={zecR": §Ng < dist (z,lp) <67 No}.
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From (17), (12), and elementary geometry we have
ITyNE'|~ A",

for all [ € Abrush Summing this in [ we obtain

Z T N E'| % | Ay | A 0™
l€“4g2ush

which we rewrite as

n— 1
2: XT,mQ brush|/\(S
B lealo

brush

We now use Cérdoba’s argument (see e.g. [6]). From Cauchy-Schwarz
and the above we have

B2 3 Xy, & Ml 16"
€A

brush

From this and (25), suffices to show that

e | 3 e, S AL ),

1eAlo

brush

since (27) then follows from algebra.
To prove (28), we expand the left-hand side as

Z Z |,I’lﬂTl’ﬂQ|7

1eAo peplo

brush brush

which we break up further as

DS 3 AT N Q.

0STSlieAld | reAll TiNTnQ#£S 5+ |v(l)—v(l')|~T

brush*

From elementary geometry we have

|Tl ﬂTll| 5 onrt
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It thus suffices to show that

{l' € Ak

0
rush

L [iNTyNQ £ 2, 5+ o) —v(l)] ~ T} £ 6-Vp(A) <.,
for each [, 7.

Fix [, 7. The conditions ' € A%’msh and T; N Ty NQ # & force I
to lie in a 6~¢/N-neighbourhood of the 2-plane spanned by Iy and (a
slight translate of) I. Together with the condition § + |v(l) — v(l")| ~ T,
this constrains 7y to live in one of O(6=¢/N) boxes, each of dimension

CxCrxCdx---xCd. The claim then follows from (10).

5. The bilinear reduction.

We now begin the proof of Theorem 1.2.
Fix 0 < e < 1. For each 0 < § < 1, let A(0) = A:(J) denote the
best constant such that

(29) | Doxg |, <A@ sTrrImE b (A
leA

pl

for all choices of m, £, £ and A satisfying (7). Clearly A(J) is finite
for each 9; to prove Theorem 1.2, we need to show

(30) A S 1.

It will be convenient to denote the right-hand side of (29) as Q(J,.A),
thus

(31) Q(6,A) = A(8) 6 n/pHIme mt/amt/r (=t AP
By an inductive argument it suffices to prove (30) assuming that

(32) A) ~ sup A(®S).
5<8'<1

Fix ¢ so that (32) holds. We may find m, £, and A such that

(33) | >

leA: v(l)ee€

, Q(&A) :

p

The estimate (33) states that A is essentially an optimal configuration.
This has several consequences, at least heuristically. Firstly, it implies
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that the generic angle between two lines in A is ~ 1. Secondly, it implies
a “two-ends” condition, which roughly asserts that the contribution of
the generic tube T; to (33) is not concentrated on a short interval. We
make these claims rigorous in the following sections, together with a
technical uniformization reduction; these preliminaries will simplify the
ensuing argument. We remark that one needs € > 0 in order to obtain
these reductions.

We begin with the assertion that the generic angle between two
lines is ~ 1. This is accomplished by

Proposition 5.1. There exist subsets £1,E2 of £ such that

(34) diSt(g]_,gz) ~ 1
and
1/2
(X w)( X )]~
p'/2
leA:v(l)eér I'eA:v(l)EE,

Without (34), one could simply take & = & = & in the above
proposition. The point of this proposition is that it allows one to restrict
one’s attention to pairs of tubes which intersect at large angle. This
bilinear reduction allows us to avoid many (but not all) of the difficulties
involving small angle intersections, which we have already encountered
when managing the ¢ and 7 parameters in the previous section.

PROOF. By squaring (33) we have

(36) | > v

lLi'eA

~ Q((sv A)z :

p'/2

Now let 0 < ¢p < 1 be a small number to be chosen later, and consider
the quantity

(37) H > X, X1,

LUeA:|lv(l)—v(l")|<co

p/2

Cover £ by finitely overlapping sets £ = |J, €o where each &, has
diameter O(cp), and such that for every v,v" € £ with |[v —v'| < ¢
there exists an « such that v, v’ € £,. We thus have

Z X1, X, SZ(ZXT,)zv

LUeA: |v(l)—v(l)]|<co @ leAy
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where A, = {l € A: v(l) € £,}. Since p’'/2 < 1, we have the quasi-
triangle inequality

(38) H

= (s A = ()

(see e.g. [10]), and so we may estimate (37) by

2/p'
(39) O3 PO )
We now claim that

(40) | >,

To see this, first apply a mild affine map to make £, centered at the
origin, and apply the dilation (z, z,,) — (x/co, x,), and then apply (29)
to the result; cf. [10].

Since our choice of p, g satisfy the scaling condition ¢ = (n — 1) p/,
we may simplify (40) using (32) and (31) to

| 2 all, = (i) aw ).

—(n 1)/p' Q( ) .

Inserting this back into (37) and using the elementary inequality
|Aa|)p'/q' ( |Aa|)p'/q'
< <1,
YT = (04
which follows since p’ > ¢', we obtain

(37) < (5 Q(8,4))* .

Comparing this with (36) we see that

> Xz, Xr,

LUeA:|lv(l)—v(l')|>co

~ Q(& A)z

‘p’/Q

if we choose ¢y to be a sufficiently small number depending only on n
and € (so ¢p ~ 1).
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Now cover € by O(c5~™) balls of diameter cy/4. By the pigeonhole
principle and the above estimate we see that there must exist at least
one pair &1, & of such balls with dist (€1, &2) > ¢ /2 such that

| 2. Xa, X,

LU'€A:v(1)EE w(l')EE,

> £ Q(8,A4)2.
L p2 QA

The claim follows.

Note that the above argument is not restricted to this particular
choice of p,q,r. See [8], [10], [11] for variants of this argument. The
arguments in the next three sections are similarly not restricted to the
exponent choices in (6).

Henceforth &, £ will be fixed.

6. Uniformity of multiplicity and density.

Let A be a subset of £ x £’ satisfying (7), and let E be a subset of
R™. It would be convenient if we could ensure some uniformity on the
multiplicity function ), , X, and the density function |7; N E, as in
Lemma 4.2. This is achieved by

Lemma 6.1. Let A be a subset of € x & satisfying (7), and let E be a
subset of R™. Let A\, > 0 be quantities satisfying

(41) pl|E|=X6""Al.
and
(42) w|EIMT 2 Q(6, A).

Suppose E' C E, A" C A are such that

(43) |3 xg = nipl

leA

or equivalently that

(44) S LN E |~ A6 AL
leA!
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Then we have

(45) / S X (@) % B

eE’zEleA’ XTI (w)zﬂ' le A’
and

(46) > T, N E'| ~ A" | Al
leA:|TINE |~ 61

FEquivalently, we have

HxEE': ZXTl(x) %p,}‘ ~ |E|

le A

and
{lce A : [TINE |~ X"} ~ |A.

The condition (41) is quite natural; ¢f. (24). The condition (42)
is a variant of (33), and states that u|E|Y?" is essentially as large as
possible. Although this lemma is not phrased in a bilinear way, we will
be able to combine it with the bilinear reduction (and the two-ends
reduction in the next section) in Section 8.

ProOF. We first prove (45). Let B = (log(1/6))”, where v is a large
constant to be chosen later. We trivially have

/ S Xy (0) S Bl
T€EE":Y o a XTI (iE)éB—lu leA
We now claim that

an [ S xg (@) S B D

€LY e X, (ac);Bp, leA

the claim then follows by subtracting these two estimates from (43) and

choosing v suitably.
To prove (47), we first observe that the left-hand side is bounded

S B / (Zm)p’ -

leA

by
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By (29) and (42), this is bounded by
S (B (u|BMPP

and (47) follows.

Now we prove (46), which is a dual of (45); the last two claims in
the lemma then follow easily.

As before we have

> IT,NE'| < B A A
IEA|TINE |SB— A6 1

It suffices to show that

(48) > mnE| g BTN AL
leAIl

for all B’ > B, where
"={le A: |TiNE'|~B'Xé" 1},

by summing this for all dyadic B’ > B and using the exponential decay
of the B'~“™Y we can obtain the analogue of (47).
Fix B’. By definition of A” we have

L ¥ v = X mag = maea.
leAII leAIl

From Holder we thus have

‘ Z XTIH ’§B1A5n—1|AH|'
leAII p

(49) B[

From (29) we have

ISl <060,
IEA"
from (31) and (42) we thus have
VNG
| 3 ), < miEr (57)

l AII
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Inserting this into (49) and using (41) we obtain

.A”| 1/q'
)\671,—1 A |_ ZB}\(sn—l .A” 7
A() T 2 A”)
which simplifies to

|A”| é B/_q|./4|,

and (48) follows from the definition of A”.

7. The two ends reduction.

In order to apply Lemma 4.1 we need (among other things) to
obtain the conditions (11) and (12). The condition (11) can essentially
be guaranteed by Lemma 6.1, but this lemma does not give us the two-
ends condition (12). To obtain this we shall use the following lemma.

Lemma 7.1. Let N > 1, E be a subset of R", and let A be a subset
of € x &' satisfying (7), and such that for every | € A there exists an
x € R™ such that

T, N EN B(x,6YN)| 2 65N Ty n E|.
Then we have

(50) Y 1L N E| 5 6N |EMPQ(S, A) .
leA

The factor of 65/ in the above argument will allow us to conclude
that for most tubes, the set |T; N £ is not concentrated in a short end
of the tube. This type of “two-ends condition” first appears in [11],
[12].

PrOOF. Cover [0,1] by ~ 6~ /N finitely overlapping intervals I, of
width ~ 6%/N, and let S, denote the slab R*~1 x I,,. For each [ € A,
we can then find an a = a(l) such that

IT,NENS,| Z6*NTnE|.
It thus suffices to show that

(51) > > IinSanE| S 8N |EIYPQ(s, A),

a leAy
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where

Ao ={le A: a(l) =a}.

Partition £ into about 6(2=™/N refinements £, each of which is §1~1/V-
separated. We can split the left-hand side of (51) as

)3 AP D

SankE lEAL 3

where

={leAy: v(l) €&s}.
By Holder, we may estimate this by

(52) ZZ|5 nE|M” Z XTinSanE

lE.Aoc 8

The sets 73 N S, in the innermost sum can be rescaled to form a col-
lection of §1=1/N x 1 tubes which continue to satisfy (7). Also, the set
of directions £z satisfies the correct separation condition for the scale
§1=1/N, By a rescaled version of (29) and (31), we can therefore bound
the norm in (52) by

é (5n/NpIQ((51_1/N7~Aa ,8)7

’

which can be estimated using (31), (32) and algebra by

|~Aa6|)1/q .

< /N Q(s, A) o= /aN T

Inserting this back into (52), we may estimate the left-hand side of (51)
as

< 5 /NQ(s, A) Z S0 N B[P 6(n—1)/qNZ (|f|ljl,|g|>1/q |
a B

Since we have O(6(1=/N) @s we can use Holder to obtain

5(n—1)/quB: <|f|lz,|,3|)1/q’ < <||,ia|)1/q"
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We can thus bound the left-hand side of (51) as

@)Uq' .

S07MQE, A Y Isan Y (S

By Holder again, we bound this by
/N / 1/q
< 0NQE A (Y ISan Bl7)
Since ¢ > p, we can bound this by

< 5N Qs A)(Z 1S N E|) v :

«

and (51) follows.

8. Plate number uniformization.

We now combine the tools developed in the previous three sec-
tions to obtain the following technical uniformization lemma, which is
analogous to Lemma 4.2. We use A; o for : = 1,2 to denote the set

A@o = {l cA: ’U(l) € 81}
Lemma 8.1. Let the notation be as in the previous sections, and let

N > 1 be a large number. Then, if § is sufficiently small depending on
e and N, there exist numbers p, \,p;,Ps > 0 and sets

53) AP cAP cAV c AV =4, fori=1,2,
and

(54) E® cE® c E® c EO c R

such that

(55) [EOp=]AA0"1,
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and

(56) p|EQM ~ Q(s, A).
Furthermore, one has

(57) TN EV=Y ] = AT

(58) T, N BV~ N B(a, 6| 5 62N A T
forallle AV, i=1,2,j=1,2,3, 2 €R",

(59) Z XTI(JE)%;/J, forallz ¢ EV), i=1,2, j7=0,1,2,3,

and
(60) 09Np, S Pi(AY) £ 6 Np;,  fori=1,2, j=1,2,3.
The tmplicit constants in these estimates may depend on N.

PROOF. The first step is to find p and E(©).
Let 1, o range over all dyadic integers from 1 to 6~ ¢. Let
EO)(py, o) denote the set

E(O)(#’l #’2 { Z XT[ ~ for i = 172} .
leA; o

Clearly we have

1/p’
(61) left hand side of (35) ~ (ZZ#IJ /2 p/2 E(O)(N17N2)|> ! .

H1 o p2

Since the number of g1 and pe is &~ 1, we can use the pigeonhole
principle and conclude that there exist uq, po for which (56) holds with

EO = E(O)(m, p2) and p = (p1 #2)1/2-
Fix this choice of y;, p and E(®); this also fixes A\. By construction

we have
| 3 x

leA; o

1 0)1/p!
T, p,ZM|E()| P
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Combining this with (29) we have
i |[EQM < Q(6, A),

for i = 1,2. Combining this with (29) we see that

QA

Hi s -

From the definition of p we thus have u; ~ p. Since p < 7Y, we see
from (56), (55) that |[E(D)|, A > §¢.
We now produce sets

E(O):EoDElD"'DENz

and
AioDA1D--D Ai,N2

with the properties that

(62) |Ex| ~ |Eo|, forall0<k<N?,
(63) Ty N Eg—1| = AT,
(64) Ty N Ej_y N B(x, 6Y™)| S 65/2V a1,

foralll € A;p, i=1,2,1<k < N? z€R", and

(65) Z XTl(x)%p,, forallz € By, i=1,2, 0< k < N2,
leA; i

Clearly (62) and (65) hold for £ = 0. Now suppose inductively that
0 < k < N?is such that Ej, A; g, As . have been constructed satisfying
(65) and (62) for this value of k.

We perform a certain sequence of dance steps. From (62) and (65)

we have
|3 = nital,
E

kleAy k

which by (55) implies

> LN Ey| & A AT
lEAL &
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By Lemma 6.1 (noting that Q(9, A1 1) < Q(6,.A); we shall need similar
observations in the sequel), we thus have

(66) Y TN By~ |AAGT
leA] 4,

where A’l,k C Ay j, is the set
ll,k = {l € Al,k : |Tl N Ek| ~ /\571—1} .
Now define the set A; 4+1 C ‘A/l,k by
A17k+1 = {l € All,k : |Tl NE;N B(x, (51/N)|
< 66/2N|Tl N Eg| for all z € R"}.
From Lemma 7.1 we have

>, TN E| S0 B[P Q(6,A),
lEA’l,k\A1,k+1

by (56) and (55) we thus have

> TN Ey| £ 6PN A AT
lEA’Lk\Al,k+1

Combining this with (66) we obtain (if 0 is sufficiently small)

> TN Ey| &~ |A[ASTE
l€EAL k41
We may rewrite this using (55) as
[ @ ~nikl.
B I€EAL k41

By Lemma 6.1, we have
|Ex| ~ |Eol,

where E; C Ej, is the set

E,’C:{$6Ek: Z XTl(a:)%,u}.

€Al k1
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In particular, from (65) with ¢ = 2, we have

|3 oy Bl

klEAs 1

By (55), we may rewrite this as

> TN B ~ |A[X"E
leAy i

By Lemma 6.1 again, this implies

> ITNE ~ |AA"TY,
leA’Q,k

where
br=1l€ A TINEL|~ A6y

Defining

A27k+1 = {l € All,k : |Tl N Ek N B(x,él/N)|
< 6°/*N|Ty N Ey| for all z € R},
we apply Lemma 7.1, (56), (55) and the preceding estimate as before
to conclude

> LN By~ |AAST

l€A2 k11

By (55) again, we rewrite this as

/, Z X, () = | Eol.

k€A kt1
By Lemma 6.1 we have
|Ek41| ~ [Eol,

where

Ek+1:{$EE;CC Z XTI(:J:)%,u}.
I€EA2 k41

This completes the dance sequence. One can easily verify that (62),
(64) and (65) are all satisfied for k+1 and ¢ = 1, 2. One now replaces k



400 I. LaBa AND T. TAO

by k+1, and repeats the above dance. Of course, the implicit constants
in the bounds will depend on k£ and hence on V.

The quantities p;(A; i) are clearly monotone decreasing, and sat-
isfy the trivial estimates 1 < p;(A; k) < 07¢. By the pigeonhole prin-
ciple one can then find 1 < k¥ < N2 — 1 such that

p;(Airs2) > 0% Np.(Air), fori=1,2.

The lemma then follows by setting E() = Egij-1, Az(j) = Ai ktj—1,
and p; = p;(A;x) for j =1,2,3 and i = 1, 2.

This argument can be extended to create arbitrarily longer se-

quences than the ones in the above lemma, but we shall not need to do
so here.

9. Estimates for a slab.

Let the notation be as in Lemma 8.1. Define a #-slab to be a
6 /2-neighbourhood of a 2-plane in R™.

In the sequel we shall prove two propositions.

Proposition 9.1. Let § S0 S 1, and let S be a 0-slab. Then we have

(67) |E(1) N S| é 91/2)\7/2—n|A|(n—2)/(n—1) ml/(n—l) 51'1,—2 “—1 )

Proposition 9.2. There exists a 0 S0 S 1 and a 0-slab S such that

(68) |E(1) N S| ; (SC/N[I, /\7/2 m—1/2 91/2 5n—2 )

Suppose for the moment that both propositions were true. Then
we would have

6C/N}1, )\7/2 m—1/2 617,—2 é )\7/2—17, |A|(n—2)/(n—1) ml/(n—l) 617,—2 ,Lt_l )

If one uses (55) to eliminate A, this becomes (using (31), (6) and a lot
of algebra)

p|EO P < 5C/N 52 Q(s, A) A(5) "
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Comparing this with (56) one obtains (30) if N is chosen sufficiently
large depending on .
It remains to prove the Propositions.

10. Proof of Proposition 9.1.

We now prove Proposition 9.1. The estimate (67) is not best pos-
sible; it was chosen primarily so that it cancelled nicely against (68).
Accordingly, our techniques shall be quite crude.

Fix 0 and S. From (59) we have

We can rewrite the right-hand side as

p Y IEWnSnT <t > [EO NS,
leAlt 1eAlt)

For each [, let a(l) denote the quantity
a(l) =0+ <£(,5),

where Z(1,S) is the angle between [ and the plane in the middle of S.
From elementary geometry we have

[SNT S 0" 0a()™,
and so by (57) we have
IEO NSNS0 tTmin{0a(l)™} A} S 0mL0Y2 ()72 AV,
Combining all these estimates we obtain

|E(1) N S| < #—1671,—1 Z 91/2 a(l)_1/2 /\1/2.
1eAl”

From (57) we have A < 1, so that A2 S A7/27". It thus suffices to
show that

(69) Z a(l)~V/2 671 | A|m=D/(=1) 1/ (0=1)
1eAl”
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We can estimate the left-hand side of (69) by

(70) Yoo D> P Y a2 {le Ar al) ~ a}l,

0<aslicAia(l)~a 0<a<l

where « ranges over the dyadic numbers. From (7) and the J-separated
nature of £ we have

H{le A: a(l) ~a}| Sa™ 26" m.
Interpolating this with the trivial bound of | 4| we obtain
{le A: a(l) ~ a}| < an=2/(n=D) =1y t/n=1) ) g)(n=2)/(n=1)

Inserting this back into (70) we obtain (69) since (n—2)/(n—1) > 1/2.
This concludes the proof of Proposition 69.

It is clear that there is plenty of slack in the above estimate. Indeed,
the only time when (67) is efficient is when A\, «,0 = 1, and when
|| &~ §17™. These phenomena seems to be a typical consequence of the
two ends and bilinear reductions respectively.

11. Proof of Proposition 9.2.

We now prove Proposition 9.2. This shall be a modified version of
the hairbrush argument in [13].
By symmetry we may assume

(71) P; 2> Py .

Since p(A§3)) 2 09/Np, by (60), we see from (10) that one can find a
dSwSlandaC x Cwx C x -+ x Cy rectangle R such that

Ar

(72) 5 R

1>
where
Ar={le AY: T, c R}.

This rectangle R shall form the stem of a hairbrush in S N E!. Let
[r denote the line generated by the first direction of R, and 7w be the
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2-plane generated by the first two directions of R; thus R lies in the C')
neighbourhood of 7 and in the Cw-neighbourhood of /.

By refining Ap, slightly if necessary, we may assume that w < 6/%;
this may worsen the power of 6%V in (72), but is otherwise harmless.
From (34) we thus have

(73) lv(lg) —v(l)| ~1, forallle AP .

Since Af” C € x &', we have from elementary geometry that

4nl 5 (%)
Combining this with (72) we see that
(74) w >0 Np, 5.
From (57) we see that
(75) T, NE® |~ 6",
for all [ € Ar. From this we conclude the following:

Lemma 11.1. We have

(76) IE®) 0 R| 2 §C/N \3/2 1/? pi/z sn=3/2

PROOF. Firstly, from (72) and elementary geometry we see that Ag
must contain at least /N p, parallel lines, which with (75) and (71)
gives

IE@NR|Z69NAp, ont,

It thus suffices to show
IE® N R| Z 69NN | Ag|pr ot

since (76) follows by taking the geometric mean of these estimates and
then using (72).

To prove this estimate we invoke Coérdoba’s argument as in the
proof of (27). Summing (75) over all | € Ag we obtain

Y ITNE® | = A" | Ag|
leAR
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which we rewrite as

Lo 3 =2
E

GINR leAR

By the Cauchy-Schwarz inequality we thus have

B AR 3 x|, 2 A Axl.
l€EAR

It thus suffices to show that

2
(7 | 3 x|, 267 1Anl i m
leEAR

Repeating the derivation of (28), we may estimate the left-hand side by

2. 2 2 or

§<r<1IEAR I €ARTINT £, 5+ v(1)—v(l')|~T
and the claim follows from the observation
{l' e Ag: TINTy #2, 6+ |v(l) —v(l)| ~ 7} <6 CNo~trp,,
which follows from (10) and elementary geometry.

Thus E®) has a large intersection with R. We now wish to conclude

that there are many tubes from A§2) passing through R.
Combining (76) with (59) and (71) we have

Z Xr, (z) % )\3/2,uw1/2 p;/Z sn—3/2 :
LT
cAS
which we rewrite as

Z T, N R % )\3/2Mw1/2 p;/Z §n—3/2
1eA?

For each dyadic § <0 <1, let A? . denote the set

Agrush:{ZEAgz): ﬂﬂR#@, 6/w+él, 7TRNO}.



AN X-RAY TRANSFORM ESTIMATE IN R" 405
We thus have

> > LN RIZ N 2 pw2p,/? 632
S/wlo<11eAl -

brush

By the pigeonhole principle, there must therefore exist a §/w < 0 <1
such that
Z TN R|Z )\3/2#101/2 pé/2 §n—3/2
1Al

brush

Fix this . From (73) and the definition of A? . = we see from ele-
mentary geometry that |73 N R| < 6™ #~!. Combining this with the
previous, we see that

(78) (Al 2 X 2uw? py/? 057572
Thus to prove (68) it suffices to show that
|E(1) ns| % §C/N )2 |Agmsh| m—1/29=1/2,,~1/2 p2_1/2 sn—1/2
We will in fact show the slightly stronger
(79) [EMWNSNQ| Z 89NN Ay /20712 /2 p V2 g2

where  denotes the region Q@ = {z € R* : §/N < dist (v,lg) < 1}.
We now foliate the hairbrush into three-dimensional regions in order to
apply Lemma 4.1.

Let S™~3 denote the portion of the unit sphere S®~! in R® which
is orthogonal to mg, and let I' be a maximal C~!J-separated subset of
Sn=3, For each w € Z, let V,, denote the set

Vo =mr+Rw + B"(0,C9),

these sets are C d-neighbourhoods of 3-spaces. From elementary geom-
etry we may cover

2} o 0,w
‘AbI“USh - U ‘Abrush ’

wel

where Af)’r‘ﬁsh ={l e Af)msh : Ty C V,,}. The sets V,, N Q have an
overlap of at most O(§~%/Y) as w varies. Thus

IEWNSNnQl 2 6Ny IED NS, nQl.
wel
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To show (79), it thus suffices to show that

ED SNV, NQ|
(80) 2 §C/N \2 |AbmSh m—1/29-1/2 ,—1/2 p2—1/2 §-1/2.

for each w € T'.
Fix w. The region SNV, N is essentially a C' x C' x C'0 x C'd x
- x C'§ box. We cover this box by about w~=! smaller boxes B, of
dimensions C x C x Cwl x Cd x --+- x C'd such that [r is contained
in the plane generated by the first two directions of this box. Note
that w6 2 0 from the constructlon of #. From elementary geometry we
see that for each [ € Abrush there exists a box B, such that T; C B,.
Also, the boxes B, have an overlap of O(6~¢/Y). Thus, by the same
argument as before, it suffices to show that

(81) |E'(1) N B, | > 6C/N)\2 |A9w N —1/2 9—1/2 w—1/2 p2—1/2 6”'_1/2,

where A7 — (1 ¢ A%“ . T; C B,}. From (57), (58) and elemen-

tary geometry we note that
TN EDNB, [~ A6" ™, forallle A2

Also, from elementary geometry we see that the set of directions {v(l) :
e AP is contained ina CxCwOxC dx---xCd box in B*1(0,1).
The claim (81) now follows from Lemma 4.1, and we are done.
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