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Dynamical instability

of symmetric vortices

Lu��s Almeida and Yan Guo

Abstract� Using the Maxwell�Higgs model� we prove that linearly
unstable symmetric vortices in the Ginzburg�Landau theory are dy�
namically unstable in the H� norm �which is the natural norm for the
problem��

In this work we study the dynamic instability of the radial solutions
of the Ginzburg�Landau equations in R� �
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where � � R� �� C is the Higgs eld� or condensed wave function
�j�j� is proportional to the local density of Cooper pairs�� and A is the
gauge potential ��form �it can also be seen as the vector potential of
the magnetic eld�� The covariant derivative is D� 
 r� � iA�� with
i 


p��� The electric eld is absent in the stationary model� and
H 
 curlA is the magnetic eld� The dimensionless coupling constant
� is positive� � � � corresponding to superconductors of type I and
� � � to those of type II�

Solutions of ��� are critical points of the Helmholtz free energy
associated to the Ginzburg�Landau model� which we may write as
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There is a vortex number �charge� associated with every nite energy
solution of ���� It can be dened as
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This number� which is always an integer� has a topological meaning �
it is the winding number of the Higgs eld � �see� for instance� �����

In the early seventies� Nielson and Olesen ����� interpreted the nite
energy solutions of ��� as string�like eld congurations and� soon after�
a family of topologically non�trivial solutions �one for every integer
value of the topological degree n and positive real value of the parameter
�� was constructed mathematically by Berger and Chen ��	�� and Plohr
������ In polar coordinates �r� 	� � R� these radial solutions �a� 
� are
of the form

��� a�r� 	� 
 a� dx� � a� dx� 
 nS�r� d	 � 
�r� 	� 
 R�r� ein� �

where n � Z and � � � are arbitrary� Here r 

p
�x��� � �x��� and

	 
 tan���x��x���
For studying the dynamics� one should consider the action on the

Minkowski space�time R��� �we add the time coordinate� t� which will
also be denoted by x��� with a metric g�� � ��  
 �� �� 	� with signature
�������� The action is then given by �see ��� ����a� and b���
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where� in the last expression we used the Einstein convention for sum�
ming over repeated indices �we will continue to do so below�� Here�
A is now the electro�magnetic potential � it has also an electric po�
tential component A�� We denote partial derivatives by �� 
 �x� � for
� 
 �� �� 	� Then� since F�� 
 ��A� � ��A�� for � � ��  � 	� the elec�
tric eld is given by F�j � j 
 �� 	� and �F�� is the magnetic eld� We
denoted covariant derivatives with respect to space or time variables
by D� 
 �� � iA�� As usual� we will raise and lower indices by using
the metric g� For instance� Di �
 gijDj � and thus D� 
 �D�� while
D� 
 D��
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Dynamical stability is then investigated using the Maxwell�Higgs
system� which can be written as
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The charge and current densities are given by
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 �� �� 	� and the conserved energy is
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The Maxwell�Higgs model is invariant under a gauge transformation�
A� �� A� � ��� �

�� ei� � �

We will work under the temporal gauge condition A� � �� and thus we
just need to consider the variations of the spatial components of A �we
will be back to working with a 	�dimensional A� with real components
A� and A�� and a C � R� valued Higgs eld ��� Let v 
 �W���T � R

�

be a perturbation of the radially symmetric vortex �a� 
�� where W 

A � a and � 
 � � 
� The full nonlinear Maxwell�Higgs system� in
terms of v� can be written as
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Here� E ���a��� denotes the second order variation of �	� around the vor�
tices �a� 
�� and the nonlinear term N�v� is equal to
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where � � k � 	� and we have an implicit sum over � � j � 	�
Ever since the construction of these stationary radially symmet�

ric vortices� their stability against initial perturbations with the same

charge has been an interesting problem for both mathematicians and
physicists� In a classical paper of ���� the question of stability was
addressed by numerical and formal analysis� The study of the linear
operator E ���a��� indicates that for � � � and all charges n the vortices
are linearly stable� On the other hand� for � � � and jnj � 	� the vor�
tices are linearly unstable� Unlike in the nite dimensional dynamical
system� the passage form linear growing modes to a genuine nonlinear
instability in an innite dimensional partial di�erential equation is quite
delicate� This is due to the possible presence of the continuous spec�
trum for the linearized operator and to severe high order perturbations
arising from the nonlinearity�

In previous works ���� and ����� the dynamical instability of vortices
with large coupling constant � was proven in the norm

kfkX 
 kfkH��R�� � kfk� �

The k � k� was needed to control the H� growth estimate�
In this work� we improve the passage from linear instability to non�

linear dynamical instability in the more natural H� norm by a rened
bootstrap argument� Let the initial perturbation be of the order ��
Within a time�interval of the order of j ln �j we can estimate the H�

norm of the perturbation only by its H� norm �without any extra as�
sumptions on its L� norm�� A similar argument has also been used in
����

In fact� in Theorem �� we show that if the linear operator E ���a���
has a negative direction� then the vortex is dynamically unstable in H�

norm�
For given positive constants � and ��� and for any small parameter

� � �� we dene the associated escape time T � by

��� � e	T
�


 �� �

For a xed appropriately chosen ��� as � �� � the dynamical instability
will occur within � � t � T ��

Lemma �� Let v�t� be a solution of the full Maxwell�Higgs system ����
Assume

kv���kH� � kvt���kH� � C� � ����

kv�t�kH� � kvt�t�k� � C� e
	t � ����



Dynamical instability of symmetric vortices ���

for � � t � T � where � � � and C� is independent of t� Then� there

exist C�� �� � � such that if � � t � min fT� T �g then

���� kv�t�kH� � kvt�t�kH� � C� � e
	t � C� �� �

where T � is de�ned in ����

Proof� We shall estimate kvkH� in terms of kvkH� by energy type es�
timates� Taking one spatial derivative �l 
 �xl through both equations
in ��� we obtain
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Dene y�t� �
 kv�t�k�H� � kvt�t�k�H� � Using estimate ������ in ��� with
su�ciently small �� we have that
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We notice that due to typographical errors� the square was omitted in
������ for both kv�t�kH� and the initial data kv���kH� � kvt���kH� �
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Since kvkX � C kvkH� �
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Therefore� using ���� we obtain from ����
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Now� proceeding as in the proof of the Gronwall inequality� we deduce
that �
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Therefore� Z t

�
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And plugging this into ���� yields

���� kv�t�kH� � kvt�t�kH� � C� � e
	t �

for � � t � min fT� T �g� where C� is some xed constant which depends
on � and C�� but is independent of ��

We now dene T � as in ���� choosing �� such that

���� C� �� � min
n �

�C
� �
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Then� if T � � min fT� T �g� clearly the lemma follows� On the other
hand� if T � � min fT� T �g� we claim that T � T �� It thus follows that
min fT� T �g 
 T and� once more� the lemma follows easily�

To prove T � T �� we argue by contradiction� If not� we would have
T � T � and therefore min fT� T �g 
 T �� Letting t 
 T � in ���� would
yield

kv�T ��kH� � kvt�T ��kH� � C� � e
	T�

� C� � e
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 C� ��

by the denition of T �� However� this is impossible by the choice ����
since it would contradict the denition of T � in �����

Now� we may prove our main result�

Theorem �� Let �a� 
� be a vortex such that

���� hE ���a����v��� v�i � � �

for some v� � H��R��� Then� there exist constants �� � �� C � ��
so that for any small � � � there exists a family of solutions v��t� of

the Maxwell�Higgs system ��� such that the vortex number of W ���� is
zero� and

kv����kH� � kv�t ���kH� � C � �

but

sup
f��t�C j ln �jg

kv��t�kH� � kv�t �t�kL� �
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Proof� By ��� Theorem ����� there exists a dominant growing mode
v� e

�t of the linearized Maxwell�Higgs system with � � � and v� �
H��R��� We normalize v� such that

���� kv�kH� � k� v�kL� 
 � �

Moreover� we assume that

kv�kH� � k� v�kH� 
 r �	 �

Now we solve the Maxwell�Higgs system with a family of initial data
vjt�� 
 � v� and vtjt�� 
 � � v�� Notice that the vortex number �charge�
of a �W is the same as that of a� We denote the corresponding H�

solutions by v��t�� They can be written as
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Using the triangle inequality� we see that for � � t � T �

kv��t�kH� � kv�t �t�k� � k� v� e�tkH� � k� � v� e�tk�
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For any � � �� from the sharp linear estimate for L as in ��� Theo�
rems ��� and ����� we know that the solutions of the linearized Ginzburg�
Landau equation grow no faster than e�����t� By Lemma � with � 
 ��
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C� 
 maxf��	� rg� there exist constants C�� �� � � such that for
� � t � min fT� T �g�
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From the Sobolev embedding�

kv��t�k� � C kv��t�kH� � C � e�t � C C� �� �

for � � t � min fT� T �g� where � e�T
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 ��� From the linearized
estimate �	�� together with the linear estimate in ��� Theorem ����� for
� � t � min fT� T �g�
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where C� is a constant�
Notice that both Lemma � and �	�� remain valid with the same

constants C� and C�� respectively� for all smaller ��� as long as we take
the corresponding T � in ���� In particular� if necessary we can x ��
su�ciently small so that

�	�� C� �� � �
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Now� clearly T � � T � Otherwise� we would have T � T �� and from
����� �	��� �		� and �	�� it would follow that
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which would contradict the denition of T in �	���
Once we know T � � T � using ���� ���� and �	�� again� we see that

kv��T ��kH� � kv�t �T ��k� � � e�T
�

�kv�kH� � k�v�k��
� kv��T ��� � v� e

�T �kH�

� kv�t �T ��� � � v� e
�T �k�

� � e�T
� � C� �� � e

�T �

� ��
	

� � �

and the proof is complete�

Remark� In ��� and ���� we had already proved that when jnj � ��
such negative directions exist for large �� Very recently� Gustafson and
Sigal ����� proved that for all � � � and jnj � �� there exists a v�
such that hE ���a����v��� v�i � �� Thus� we obtain as an easy corollary of
Theorem �� the dynamic instability of symmetric vortices when jnj � �
and � � ��

Corollary �� For all � � �� radially symmetric solutions �a� 
� of

Ginzburg�Landau equations �i�e� solutions of ��� of the form ���� with
jnj � �� are dynamically unstable in H� norm� in the sense of Theorem

��
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