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Dynamical instability

of symmetric vortices

Luis Almeida and Yan Guo

Abstract. Using the Maxwell-Higgs model, we prove that linearly
unstable symmetric vortices in the Ginzburg-Landau theory are dy-
namically unstable in the H! norm (which is the natural norm for the
problem).

In this work we study the dynamic instability of the radial solutions
of the Ginzburg-Landau equations in R?,

cur12A+£(5D¢>—q5Dq5) =0,
(1) :
A
—D2¢+5(|¢>|2—1)¢:0-

where ¢ : R?2 — C is the Higgs field, or condensed wave function
(|¢]? is proportional to the local density of Cooper pairs), and A is the
gauge potential 1-form (it can also be seen as the vector potential of
the magnetic field). The covariant derivative is D¢ = V¢ — iA¢, with
i = v/—1. The electric field is absent in the stationary model, and
H = curl A is the magnetic field. The dimensionless coupling constant
A is positive, A < 1 corresponding to superconductors of type I and
A > 1 to those of type II.

Solutions of (1) are critical points of the Helmholtz free energy
associated to the Ginzburg-Landau model, which we may write as

1 1 A
@) e= (glewl AP+ 5IDgP + 5 (o - 1)?).
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There is a vortex number (charge) associated with every finite energy
solution of (1). It can be defined as

1 1
= — H=— lim Adx.
21 R2 2T N—oo lz|=N

n:
This number, which is always an integer, has a topological meaning —
it is the winding number of the Higgs field ¢ (see, for instance, [7]).

In the early seventies, Nielson and Olesen ([8]) interpreted the finite
energy solutions of (1) as string-like field configurations and, soon after,
a family of topologically non-trivial solutions (one for every integer
value of the topological degree n and positive real value of the parameter
A) was constructed mathematically by Berger and Chen ([2]) and Plohr
([9]). In polar coordinates (r,6) € R? these radial solutions (a,n) are
of the form

(3)  a(r,) =aidry +axdrs =nS(r)do, n(r,0) = R(r)e™? ,

where n € Z and A > 0 are arbitrary. Here r = (/(z1)2 + (22)2 and
0 = tan=1(z2/xt).

For studying the dynamics, one should consider the action on the
Minkowski space-time R**2 (we add the time coordinate, ¢, which will
also be denoted by z°), with a metric g", p, v = 0,1, 2, with signature
(—,+,+). The action is then given by (see [7, 1.9.a) and b)])

1 2 A
A= [ (il = 10w #3059 V) + 5 (17 =17)
(1

1

= —/ (979" FuFj + 97 Dis D + (0P - 1?),
2 R1+2 4

where, in the last expression we used the Einstein convention for sum-
ming over repeated indices (we will continue to do so below). Here,
A is now the electro-magnetic potential — it has also an electric po-
tential component Ag. We denote partial derivatives by 0,, = Oy« for
p=0,1,2. Then, since F,, = 0,A, — 0, A,, for 0 < p, v < 2, the elec-
tric field is given by Fy;, j = 1,2, and —F» is the magnetic field. We
denoted covariant derivatives with respect to space or time variables
by D, = 0, —1A,. As usual, we will raise and lower indices by using
the metric g. For instance, D' := g D;, and thus D° = —Dy, while
D' = D;.
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Dynamical stability is then investigated using the Maxwell-Higgs
system, which can be written as

8NF;U/ = _jl/ ’

(5) A
DuD"¢ + 5 (IpP? —1)p=0.

The charge and current densities are given by

i

jl/ =1Im (¢D—I/¢5) = 5 (¢DV¢ - aDV ¢),

for p = 0,1,2, and the conserved energy is

1

A
_ 2 2 A 2 9 1 N
2/R? (|FW| + D + 5 (6” = 1) )da: da? |

The Maxwell-Higgs model is invariant under a gauge transformation

Ay — Ay +0ux,
¢ — eX .

We will work under the temporal gauge condition Ay = 0, and thus we
just need to consider the variations of the spatial components of A (we
will be back to working with a 2-dimensional A, with real components
Aj and As, and a C ~ R? valued Higgs field ¢). Let v = (W, )T € R*
be a perturbation of the radially symmetric vortex (a,n), where W =
A—a and ¢ = ¢ —n. The full nonlinear Maxwell-Higgs system, in
terms of v, can be written as

O (LW + 0. W3) — %31:(77@— ny) = % (v Op — Y D)),

d*v
7z +E&"(amv=N(v).

(6)

Here, £, ;) denotes the second order variation of (2) around the vor-
tices (a,n), and the nonlinear term N (v) is equal to

= (6 O — P O)) = Wie lp[2 = Wi (0% +77%) — ax |92,
—1 Wj 837# - Z(%(Wﬂﬁ) - Wf@b - 2(lj Wj w ’
A
—n Wi =5 (WP (¢ +2m) +4°7)
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where 1 < k < 2, and we have an implicit sum over 1 < 5 < 2.

Ever since the construction of these stationary radially symmet-
ric vortices, their stability against initial perturbations with the same
charge has been an interesting problem for both mathematicians and
physicists. In a classical paper of [3], the question of stability was
addressed by numerical and formal analysis. The study of the linear
operator £"(, ,) indicates that for A <1 and all charges n the vortices
are linearly stable. On the other hand, for A > 1 and |n| > 2, the vor-
tices are linearly unstable. Unlike in the finite dimensional dynamical
system, the passage form linear growing modes to a genuine nonlinear
instability in an infinite dimensional partial differential equation is quite
delicate. This is due to the possible presence of the continuous spec-
trum for the linearized operator and to severe high order perturbations
arising from the nonlinearity.

In previous works ([4] and [1]), the dynamical instability of vortices
with large coupling constant A was proven in the norm

1fllx = [1f e @2y + [ flloo -

The || - ||oo was needed to control the H? growth estimate.

In this work, we improve the passage from linear instability to non-
linear dynamical instability in the more natural H' norm by a refined
bootstrap argument. Let the initial perturbation be of the order 4.
Within a time-interval of the order of |Ind| we can estimate the H2
norm of the perturbation only by its H! norm (without any extra as-
sumptions on its L norm). A similar argument has also been used in
[5].

In fact, in Theorem 1, we show that if the linear operator £",
has a negative direction, then the vortex is dynamically unstable in H*
norm.

For given positive constants {2 and g¢, and for any small parameter
§ > 0, we define the associated escape time T° by

(7) 5T = o .
For a fixed appropriately chosen ¢, as § — 0 the dynamical instability
will occur within 0 < t < T9.

Lemma 1. Let v(t) be a solution of the full Maxwell-Higgs system (6).
Assume

(8) [0(0) |2 + [0 (0)[[ 2 < Co 6,

(9) @l + lloe(®)]]2 < Coe s,
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for 0 <t < T, where Q > 0 and Cy is independent of t. Then, there
exist C1,e09 > 0 such that if 0 <t < min {T,T°} then

(10) [o(®)lla= + [[ve(®)|la < Cre™ < Creo,
where T° is defined in (7).

PROOF. We shall estimate ||v||g2 in terms of ||v||g: by energy type es-
timates. Taking one spatial derivative 9; = 0,1 through both equations
in (6) we obtain

f

i _
0t (010, W1 + 020,W3) — 3 Or(n oy — o)

a4 = L 0O T~ 0mY) + £ AP OT ~ T o).

d2
| 52 0) — L(0w) = La(0) + 0N (o).

Here Ly (v) is

7 _ _
2 (O Oktp + 4 Ol — 017 Oxtp — 4 Oram)

—Oar (Y +MY) — ax (O + ) — Wi di|n|?,
—Zialaj (9]7# — Zin ajﬂ] — i8jo 8[7] — 8l (|a|2 + )\|T]|2) w

A —
—2W; di(a;n) = 5 0(n*) ¥

Define y(t) := ||v(t)||32 + ||ve(¢)]|3:. Using estimate (3.18) in [4] with
sufficiently small e, we have that

y(0) < (O (Jollx + el}) +22) / yir)dr

(12) e f (lol3 + lloel3) dr

+C (@) lFn + C (lv(0)[[F + [lve (0)[[F) -

We notice that due to typographical errors, the square was omitted in
(3.18) for both ||v(t)||g: and the initial data ||v(0)|| gz + ||ve(0)| g -
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Since [[v]lx < C [[v]| sz,

)< (0l + i)+ 55) [ ey ar

(13) e f ()2 + luel13) dr

FO 0@ +C (OB + o))
We now define
T* = sup {t : for all s € [0,¢],
o) =+ (o) e < min { =1}

For 0 <t < min{T,T*}, since ||v(t)||gz < 1, we have

(14)

. Q
C(llollz + llollz=) < 7 -

Moreover, from (9),

CQ/O (vl + llvell2) dr + C llo(®) I

t
< CQ/ (Cod )2 dr + C 6% e
0

< 8229
Therefore, using (8), we obtain from (13)
9] t
(15) y(t) < 5 / y(T)dr + C 62 ¥
0

Now, proceeding as in the proof of the Gronwall inequality, we deduce
that

t
(e—(Q/2)t/ y(r) dT)l < 052 2U—(1/D9 _ (1 52 o(3/2)28
0
Integrating over ¢, we obtain

t t
e~ (@/2)t / y(1)dr < C 62 / e(3/2)%s g — 0§23/
0 0
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Therefore,
¢
/ y(r)dr < C 62 e,
0

And plugging this into (15) yields
(16) o) |22 + llve() | < Cro e,

for 0 <t < min{T,T*}, where C is some fixed constant which depends
on €2 and Cy, but is independent of 9.
We now define T° as in (7), choosing &y such that

(17) Cleo<min{%,1}.

Then, if 7% < min{T,T*}, clearly the lemma follows. On the other
hand, if T° > min {T, T*}, we claim that T < T*. It thus follows that
min {7, T*} = T and, once more, the lemma follows easily.

To prove T' < T, we argue by contradiction. If not, we would have
T > T* and therefore min {7, 7*} = T™*. Letting ¢t = 7™ in (16) would
yield

[o(T*) a2 + Joe(T*) ||z < C1 8™ < C1 8T = e

by the definition of 7°. However, this is impossible by the choice (17)
since it would contradict the definition of T in (14).

Now, we may prove our main result.

Theorem 1. Let (a,n) be a vortex such that

(18) <€”(a,n)(vl)7vl> < 07

for some v; € HY(R?). Then, there erist constants g > 0, C > 0,
so that for any small § > 0 there exists a family of solutions v°(t) of
the Mazwell-Higgs system (6) such that the vortex number of W°(0) is
zero, and

[0° () |z + [0 (0) || < C'6,

but

€0
sup ([0’ ()]l + [0 ()| 22 > 5 -
{0<t<C |In 4|}
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PrRoOOF. By [4, Theorem 1.3], there exists a dominant growing mode

v e*? of the linearized Maxwell-Higgs system with w > 0 and vy €

H?(R?). We normalize vy such that
(19) [vollr + [lwvollz2 = 1.
Moreover, we assume that
lvoll 2 + [lwvol[grr =1 < o0
Now we solve the Maxwell-Higgs system with a family of initial data
V|t=0 = d vp and v¢|t—¢p = J w vg. Notice that the vortex number (charge)

of a + W is the same as that of a. We denote the corresponding H?
solutions by v?(¢). They can be written as

(20) VO (t) = de*t vy + /t Lt —T1)N (@) dr,

where L is the solution operator for the linearized Maxwell-Higgs sys-
tem, and

N = (5 8 805~ 5°00%), N ).
Let w < Q < 2w, and
T = sup {s : for all t € [0, s],
(21) |00 (t) — 6 wo et g1 + [[v2 () — w S vg |2 < %(SGWt} .
Using the triangle inequality, we see that for 0 <t < T,

[o° ()l zrr + llog (B)ll2 < (15 v0 €[l + [|lw S v e* |2

+ |[00 (£) = 6 wo et || + |[v () — w b vg e?|2

IN

(22 2 56 (ool + llowollo)

e“ts.

[\LN VN

For any ¢ > 0, from the sharp linear estimate for £ as in [4, Theo-
rems 1.3 and 1.5], we know that the solutions of the linearized Ginzburg-
Landau equation grow no faster than e+t By Lemma 1 with Q = w,
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Cy = max{3/2,r}, there exist constants C7,e9 > 0 such that for
0 <t < min{T,T°},

[0 (@) |2 + (] (B)[|l2 < Cr e < Creg
From the Sobolev embedding,
100 (8)||oo < C ||0°(t)|| 52 < C6e¥t < CCheg,

for 0 < t < min{7T,7T°}, where §evT’ = €9. From the linearized
estimate (20) together with the linear estimate in [4, Theorem 1.5], for
0 <t < min{T,T°},

[v° () = 0 e vollgrr + |07 () — S w e o2

t .
<c [ et (|2 oo -5 0|+ IN@O)a) dr
0
t
<C [ e (08 (o) [0 (1) s + 108 (DI [0 z) dr
0

t
<C / eB/2(t=7) |18 (2)[| o [[0® (7) | grr dr
(23) "
t
<C [ ) 0 (56 dr
0

t
_ 82 e(s/z)m/ L(1/2wr g
0

S 02 (5ewt)2 :

where Cy is a constant.

Notice that both Lemma 1 and (23) remain valid with the same
constants C7 and Cy, respectively, for all smaller g, as long as we take
the corresponding T in (7). In particular, if necessary we can fix ey
sufficiently small so that

—

(24) Cz €0 S 5 .

Now, clearly 7% < T. Otherwise, we would have T < T°, and from
(19), (23), (22) and (24) it would follow that

3
[0 (@) + [0 (D)2 < 567 + (C26e°™ ) 5T < S5
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which would contradict the definition of 7" in (21).
Once we know T° < T, using (7), (19) and (23) again, we see that
é
[0 (T) |z + log (T°)]l2 = 6 ™ (lvollz + [lwwoll2)
—[[0*(T?) — S vp ™" ||

6
— [0 (T°) = wdwo e ||2

v

5T’ — Coepd T’
€o
2
>0,

v

and the proof is complete.

REMARK. In [4] and [1], we had already proved that when |n| > 1,
such negative directions exist for large A. Very recently, Gustafson and
Sigal ([6]) proved that for all A > 1 and |n| > 1, there exists a v;
such that (£” (4 ) (v1),v1) < 0. Thus, we obtain as an easy corollary of

Theorem 1, the dynamic instability of symmetric vortices when |n| > 1
and A > 1.

Corollary 1. For all A\ > 1, radially symmetric solutions (a,n) of
Ginzburg-Landau equations (i.e. solutions of (1) of the form (3)) with
In| > 1, are dynamically unstable in H* norm, in the sense of Theorem
1.
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