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Parabolic equations involving

0™ and 1™
order terms with L  data

Thierry Goudon and Mazen Saad

Abstract. This paper is devoted to general parabolic equations in-
volving 0" and 1% order terms, in linear and nonlinear expressions,
while the data only belong to L. Existence and entropic-uniqueness of
solutions are proved.

1. Introduction.

In this paper, we are concerned with the following general parabolic
equation

Owu — V- (A(t,z)Vu)
+B(t,z,u,Vu)=f, in (0,T) x Q,
Ujg=0 = Uo , in €2,
u=0, on (0,7) x 082,
where Q is a regular open bounded set in R¥ and B involves the un-

known u and its first derivatives. Precisely, B splits into terms which
are linear with respect to © and Vu and a nonlinear term as follows

(1.2) B(t,z,u,Vu) =b(t,z)- Vu+d(t,z)u+ g(t,z,u, Vu).
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434 T. GOoUuDON AND M. SAAD

Here, A,b and d are given functions defined on Q = (0,7) x  with
values in RY x RY RN and R, respectively. Our basic requirement on
A,b,dis

(1.3) A€ (L=(Q)N M, de L™(Q),
(1.4) be (L=(Q)V, V-be L®(Q).

As usual, we also assume that there exists a > 0 such that the matrix
A satisfies

(1.5) A(t,z) €€ > algl?,

for almost every (t,z) € @ and for all £ € RY. The function g :
QxRxRY — R is measurable on Q for all A € R, ¢ € RY, continuous
with respect to A € R, & € RY | almost everywhere in (). Furthermore,
g is required to satisfy both a sign condition and a growth condition
with respect to the gradient variable since we suppose that

(1.6) Ag(t,z, A\, &) >0,
there exists 0 < o < 2 such that

(1.7) lg(t; 2, X, §) < h(JA]) (v(2, ) + [€]7)

holds for all A € R, ¢ € RY, and almost everywhere in @, with v €
LY(Q); h being a non decreasing function on RT. Main difficulties in
this work arise from the fact that we consider data which only belong
to L, namely

(1.8) w € LY(Q),  feLYQ).

Many physicals models lead to elliptic and parabolic problems with
L'-data. For instance, in [10] the authors study the modelling of an
electronical device. The derived elliptic system coupled the temperature
(denoted w) and the electronical potential (denoted ®). The temper-
ature equation is considered as an elliptic equation where the second
member f = |V®|? belongs to L'(2). In [11], a Fokker-Planck equa-
tion arising in populations dynamics is studied. The initial density of
individuals, i.e. ug, is considered to be positive and belongs to L(£2).

Models of turbulent flows in oceanography and climatology also
lead to such kind of problems (see [14] and the references therein).
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Consider an incompressible flow described by a velocity field u(t,z) =
u + u’ where @ is the mean field and u' is related to some fluctuations.
Let k = |u/|2. For small Reynolds number, the following academic
model can be used as a simplification of more general (k,e) models

Ok + T - Vok — divy (v + 1) Vek) + k%2 = 1, |V, 0+ V1|2,

where 14 can depend on k. It is quite natural to expect that the right
hand side lies in L*(Q) and, for given v, v; and u, the above equation can
be considered as a simplified version of (1.1). In [14] more complicated
and coupled models are dealt with.

In ([16, p. 110]), the author studies the Navier-Stokes equations
completed by an equation for the temperature (v = T'). In this case,
if we denote by v the velocity of the fluid, then the temperature equa-
tion reduces to (1.1) with b = v, d = div(v) = 0, g = 0 and f =
(030 +0jv;)* € L*(Q). Note that for compressible flows the divergence
of the velocity does not vanish, and the temperature equation can be
considered with linear terms having the form b - Vu + du. These lin-
ear terms introduce new difficulties in the sense that the compactness
results developped in [3], [4], [16] do not apply directly to (1.1) which
needs further technical investigations.

Assuming B = 0, existence results for such parabolic problems
with non regular data are established in [4] (see also [3], [10]) while
uniqueness questions, in the sense of entropic or renormalized formula-
tions, are considered in [17], [1]. Existence-uniqueness of renormalized
solution for a linear parabolic equation involving a first order term with
a free divergence coefficient is discussed in [16]. Taking into account the
g term, the corresponding elliptic problem, with an integrable source
term, is treated in [9] when o < 2 and the critical case 0 = 2 is dealt
with in [5]. In [6], the ¢ term appears in (1.1), still neglecting the linear
terms involving b and d, with the restriction that g does not vanish for
large value of u, which induces some regularizing effects in the equa-
tion. Note that in view of the quoted papers, our results extend to
more general Leray-Lions operators ; however, to avoid technical com-
plications and to emphasize the influence of the term B we restrict our
attention on a simple operator satisfying (1.2). Let us now introduce
some definitions and give the statement of our main results.

For the sake of clarity, we dropped the dependence on ¢,z of A,b,d
and g. When no confusion can arise, we will follow this convention in
the sequel.
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Definition 1. By weak solution of (1.1) we shall mean any function
w € L0, T; Wy d(Q)) N CO0,T; LY()) such that g(u, Vu) belongs to
LY(Q) and satisfying

/u¢(T,x) dx—/uo #(0, z) dx—/ w0y (t, x) da dt

Q Q Q

(1.9) -I—/ AVu-Vquxdt-l—/(g(u,Vu)-i—b-Vu-l—du)qﬁdxdt
Q Q

=/Qf¢dacdt,

for all T > 0, ¢ € C°(0,T; Wol’q’(Q)) N CY0,T; LY () and for all g
such that 1 < g < (N+2)/(N+1) and 1/qg+1/¢ = 1.

All terms in (1.9) are clearly defined (by duality L9, Lq’), except
those involving g(u, Vu). However, since 1 < ¢ < (N + 2)/(N + 1), we
have ¢’ = ¢/(qg— 1) > N and by Sobolev’s embedding the test function
¢ actually lies in L°°(Q) so that the integral of g(u, Vu)¢ makes sense.

Theorem 1. Assume that (1.3)-(1.8) hold. Then, there ezists a weak
solution of (1.1), in the sense of Definition 1.

Let us recall the definition of the truncated function 13. Let k €
Rt. We set

z, if|z| <k,
(1.10) T(z) =4 k, ifz>k,
Kk, ifz<—k,

and we denote Sy (z) = [, Tx(7) dr.
Definition 2. Let ¢ = 0. We say that u is a entropic solution of (1.1)

if u e CY0,T; LY(Q)) satisfies T(u) € L2(0,T; HY(Q)) for all k > 0,
Vu € LY(Q) and

/st(u—@b)(T)dx—/sk(uo—w(o,-»da:

Q

T
0 0

(1.11) -l—/ AVu - V(T (u — ))dzdt
Q
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+ / (du+bVu) T (uw— ) de dt
Q
S/ fTe(u— ) dudt
Q

for all k >0 and ¢ € L?(0,T; H}(2)) N L>=(Q) N C°(0,T; LY(Q)) with
Opp € L2(0,T; H1(Q)).

Obviously, Ty (u—1)) lies in L*°(Q) and Sy, is k—Lipschitzian; hence
with the requirements Vu € L'(Q) and Ty (u — ) € L*(0,T; H3()),
both term in (1.11) clearly makes sense except the product AVu -
V(T (u—1))). Remark now that V(Tj(u—1)) = X|u_w|<kV(u—¢) can

be estimated by Xl <kt l| oo (Vu| + VY| = [V Tiq ) oo (0)] + [V

which belongs to L? since one chooses the test function ¢ in L*(Q).
Therefore AVu - V(T (u — 1)) is integrable.

Theorem 2. Let g = 0. Assume that (1.3)-(1.8) hold. Then, there
exists a unique entropic solution of (1.1).

The strategy we adopt is rather close to those introduced in [4].
However, new difficulties arise essentially related to the influence of the
linear 0** and 1% order terms. Then, this paper is organized as follows.
First, Section 2 is devoted to an independent preliminary result which
will be used to derive a bound in L? on the gradient of the solutions,
in despite of the perturbation induced by the additional terms of lower
order. In Section 3, we deal with sequences u. of approximate solutions.
We establish some a priori estimates on these solutions and we translate
the obtained bounds in terms of compactness properties. Then, we
explain how we can pass to the limit as ¢ — 0 in the weak formulation
satisfied by u.. In Section 4, we are concerned with the uniqueness of
entropic solution. Finally, in Section 5, we slightly weaken the regularity
assumption concerning the coefficient b.

2. A preliminary result.

The main idea in the proof of Theorem 1 consists in deriving a
L9(0,T; W, %(£2)) estimate on the solutions depending only on the L'
norm of the data f and wg. Such an estimate will appear as a conse-
quence of the following lemma.
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Lemma 1. Let u € L?(0,T; H3(2)) satisfy

(2.1) sup /Q lu| dz < 3,

te(0,T)

and

(2.2) /|Vu|2da:dt§00+01/ \Vu|dzdt,  foralln €N,
B, E

n

where
By ={(t2) € Q: n < Jult,)] < n+1},

and
E,={(t,z)eQ: |u(t,z)] >n+1}.

Then, for all1 < q < (N +2)/(N + 1), there exists C > 0, depending
on 3, Cy, C1, ||, T, and q such that

(2.3) [

L0, 7w 9 (2))

PRrOOF. In [4], [10] inequality (2.2) appears with C; = 0 and is used to
derive (2.3). Here, the additional term is related to the influence of the
first order term b- Vu in the equation as we shall see in next section (see
Proposition 1). However, exploiting carefully the fact that the integral
in the right hand side is only taken over the large values of the unknow,
we can obtain (2.3) as a consequence of (2.2).

Let 1 < ¢ < 2. From (2.2), we first notice that

1/
/ IVulzdxdtSchl(/ Vuftdr) |, 6D/
(2.4) B, E,

< (70 + (71||‘714|LQ(Q)|15n|(q__1)/q

holds by using Holder’s inequality. Thus, applying again Holder’s in-
equality, we obtain

/2
/|Vu|qudt§|Bn|(2_q)/2(/ |Vu|2da:dt>q
B,

n

(2.5) < |Bn|(2_Q)/2(Cg/2+Clq/2 ||Vu||q/2 |En|(q_1)/2>

L9(Q)
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by (2.4) and the elementary inequality (a 4 0)%/2? < a?/2 + b9/2. Let
r > 0 to be chosen later. Clearly, one has

1
Bal < o [ ful dae,
n?"

(2.6)

1 1
Bo| < — [ |uf dedt < — ||ul", .
n" Jg nr LT(Q)

Hence, (2.5) becomes

/ |Vu|?dx dt
By

< Cg/2<%)r(2—®/2(/ |u|’"da:dt> (2—a)/2
B,

42| gyla/2 |yl ra-Drz( L)
+ G2 ||vul| 42, ul (=)

L9(Q) L™(Q)

. (/ lu|" dx dt) (Q_q)/2.
B

n

Let K € N to be determined. We split [[Vu|[?,  as follows

K o)
(2.8) /|Vu|qudt:Z/ Vultdedi+ Y / V|t de dt
Q@ n=0"Bn n=K+1"7Bn

Since |By,| < T'|Q] and |E,| < T ||, we simply evaluate the first term
in the right hand side of (2.8) as follows

K
(2.9) ZO/B |Vul?dz dt < KCy (1 + HV“”%?QJ ’

by (2.5), where Cy = max {C¥/*(T |Q)2=9/2 C4/*(T |Q|)1/2}. Thus,
by using Young’s inequality in (2.8)-(2.9), we get

(2.10) IV, <CK)+ ZK: /B Vul? da dt
n=K+1 n

where C(K) tends to infinity as K becomes large. It remains to proceed
to the study of the series which appears in the right hand side.
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Applying Holder’s inequality on the series with exponents 2/(2—q)
and 2/q and using (2.7), we have

2: /‘|Vuﬁdxﬁ

n=K+1
< Cy ( Z nT(2 Q)/q Z / ul dxd
n=K+1 n=K+1
) o > 1 \a/2
+c¥ IIVuII%fQ)||U||L(TC’(Q)1)/2< > nr/q)
(2.11) e
(2—(1)/2
Z / |u|’"dxdt
n=K+1
o 1 qa/2
q/2 - r(2—q)/2
<Cq ( Z n?"(Z—q)/q> el
n=K+1
) § &0 1 \4/2
+ Ci2 ||vu)2r2 ||u||/if'@( > nr/q) '
n=K+1

Note that the conditions

2_
991 and Ls1

2.12 r
(2.12) . .

ensure the convergence of the series which appear in the right hand
side of (2.11). Consequently, these terms become arbitrarily small when
choosing K large enough as soon as (2.12) is fulfilled.

With the convention that 6(K) denotes quantities which tend to 0
as K goes to oo, by combining (2.10) with (2.11), we get

(2.13) ||Vul/“

L1(Q) L™(Q) L2(Q) L™(Q)

< C(K) + 0(K) (Jullr 2o 0/ + [ Ful| 22, [luf7/2, )

Therefore, by using Young’s inequality on the last term in the right
side, it follows that

L™(Q)

(2.14) Hvumﬂw)_cxK)+5uQ<WMMzﬂvz+HMh”m>

where we keep the notation C(K), §(K) while the value of these terms
may have changed, still with the meaning that C'(K) — o0, 0(K) —
0 when K becomes large.
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We denote by ¢, = Ngq/(IN — q) the Sobolev conjugate of q. The
Sobolev imbedding theorem implies that

r a/q«
(2.15) / (/ |0+ da;) dt < 0/ Vu|?de dt .
0 Q Q

Assume now 1 <7 < ¢, and set 1/r =0+ (1 —0)/q¢* with 0 < 0 < 1.
For almost everywere ¢t € (0,7), one has

(2.16) [t < Nult I e )5

L7 () L) L% (Q)

Integrating (2.16) with respect to time and recalling the bound (2.1) in
L*°(0,T,LY(Q)) yield

T r(1-6)/q.
T 7‘9 *
(2.17) el ., <8 /0 (/Q|“|q i) dt

Choose now r = ¢ (N + 1)/N, noting that the convergence condition
(2.12) is fulfilled as soon as 1 < ¢ < (N + 2)/(/N + 1). Combining
(2.14)-(2.17) with Young’s inequality (since (2 — ¢)/2 < 1) leads to

[ e as)™" a
SC(K)+6(K)<(/OT (/Q|u|q* dx)q/‘h dt><2—q)/z
+/0T (/Q|u|q* dx)q/q* dt)

< C(K) + §(K) /OT (/Q ] da;)q/q*dt.

We fix K > 0 so that, for instance, 1 — (K ) > 1/2. Hence, we deduce
from (2.18) that

(2.18)

(2.19) il <C

L4(0,T,L3* ()

holds, and the asserted estimate (2.3) follows easily from (2.17) and
(2.14).
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3. Proof of Theorem 1.
The proof falls naturally into several steps and we detail each of
them separetely.
3.1. Approximate solutions.

We introduce the following smooth approximations of the data

(3.1) Upe € Cse (), fe € C§° (),

' uge — ug in LY(Q), fo — fin LY(Q),
with
(3:2) Mol < Mol Mfelliig < IFIL g, -

Moreover, we regularize the function g as follows

g9(u, Vu)
1+e¢elg(u, Vu)|

(3.3) ge(u, Vu) =

Note that g. belongs in L°°((Q)) and satisfy the sign condition (1.6) and
the growth condition in (1.7). Then, classical results, see e.g. [15],
[12], [7], (or, in the linear case, use a Galerkin method), provide the
existence of a sequence u. € C°(0,T; L*(2)) N L?(0,T; H}(£2)), with
Owue € L%(0,T; H-1(Q)), of solutions of (1.1) where ug, f and g are
replaced by wug ¢, fo and g respectively. We have

(Opue, ¢>H*1(Q),H1(Q) +/ AVu, -V dx
(3.4) ’ @

+/Q(g€(u5,Vu5)+b-Vu€+du6)q5dx:/Qfeqﬁda;,

for all T > 0 and ¢ € L?(0,T; Hi(Q)).

3.2. A priori estimates.

In this section, we are concerned with a priori estimates satisfied
by the sequence u. of solutions of (3.4) which lead to compactness
properties essential to the proof.
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Proposition 1. Let A,b,d,g satisfy (1.3)-(1.7). Then, there exist
B > 0, Cy and Cy depending only on ||u0||L1(Q), ||f||L1(Q), ||b||Loo(Q),
Al ooy > 12| and T' such that the sequence ue of solutions of (3.4)
satisfies

(3.5) sup ue(@)]l,, ., <6
e>0
te(0,T)
and
(3.6) / \Vue|? dedt < Co + 01/ |Vue| dx dt .
B, En

In view of Lemma 1, we deduce immediately the following

Corollary 1. Let A,b,d,g satisfy (1.3)-(1.7). Let 1 < q < (N +
2)/(N +1). Then, there ezists C > 0 depending only on the data, such
that

(3.7) sup |Juel|
e>0

L0, T;W 9 (0))

PROOF OF PROPOSITION 1. Since T} is a Lipschitz function and u. €
L2(0,T; H}(S2)), one has Ty (ue) € L2(0,T; H}(S2)), see [19], [20], with,
moreover,

VT (ue) Vug ,

= Xju <k

where Xju. 1<k denotes the characteristic function of the set {(¢,z) € @ :

lue(t,z)| < k}. Thus, we choose ¢ = Ty (uc) as test function in (3.4).
Writing b - Vue, = V - (bue) — (V - b) ue, one gets

d
%/st(ue) d$+/QX|uE|§kAV“’€'V“’€ dz
+/Tk(ue)g€(ueavu€) dx

Q
:/QfeTk(U'e)dx-i-/QXWE'Skusb-VU,E da

+/Q((V-b)—d) Ty (ue) da
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By using Holder’s and Young’s inequalities, one obtains

‘/QXWE'SkuEb-VuEd:E

= 2
<5 | Xuan Vel ot 5B, |, el o

Moreover, u.Tj(ue) is non negative and we assume that d and V - b
belong to L>(Q). Hence, after integration of (3.8) with respect to ¢
and using (1.5), we are led to

/Sk ue)( dx+/ /Tk Ue)ge dx ds
+2 Vul? ded
2/, QX|u5|§k uaras
t
(3.10) < / / T (u.) | das ds + / Sk (.. d
0 Q Q
t
2
e ey [ g el o

t
+wwm@+wwquAA%n%MMa

where, by the sign assumption (1.6) and the definition of Sk, all the
terms in the left hand side of (3.10) are non negative. Next, we observe
that

(3.9)

0< 2% <4
< z2Tk(2)
(3.11) :Z2X|z|§k +k|z|X|z|>k
< g + QR - )0,
=2Sk(2),
which yields

A&MMWM§KAMﬂme®+A&%QM

(3.12) +Cb, d) /Ot/QSk(us)dxds,
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where C'(b, d) stands for
1
2 (ldll e gy + 11V - bll e ) + — Ibll e g -

We set z(t) = [, Sk(ue)(t) de. Thus, dropping non negative terms, we
have

0§z(t)§z(0)+/0 L|f5||Tk(u€)|dxds+C(b,d)/0 z(s)ds

and we apply Gronwall’s lemma to deduce that
(3.13) Z(t) < eC(b,d)T(/ Sk(uo,s) da;—i—/ |f5| |Tk(u,€)| dx dt)
Q Q

holds.
We set £ = 1 in (3.13). Remarking that |T7(z)] < 1 and 0 <

S1(z) < |z| leads to

/Q $1(ue) (1) do < CENT (ugll, o+ 11711,

by (3.2). Therefore, we end the proof of (3.5) with the following obser-

vation
/|u€|dx:/ |u€|daﬂ+/ |ue |dx
Q lue <1 |ue|>1

1
g/ dx+/ Si(ue) + = ) dx
lue| <1 lue|>1 ( 2>

3

= 3.

To achieve the proof of Proposition 1, we are left with the task of
showing that (3.6) holds. According to [4], we introduce the function

ifz>n+1,

z—k, ifn<z<n+1,
(3.14) dn(z) =1 0, it —n<z<mn,
z+k, if —n—-1<2z2<-—n,

. —1, ifz<—-n-1,
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and we set U, fo ¢n(7T) dT. We note that ¢,, is a Lipschitz func-
tion. Thus, we have b (ue) e L?(0,T; H}(S2)), see [19], [20] with

V¢n(u€) = Xp, Vue
X, denoting the characteristic function of the set B, = {(t,z) € Q :

n < |us(t, )| < n+ 1}. Then, taking ¢ = ¢p(ue) € L2(0,T; H}(Q)) as
test function in (3.4) gives

d
— | Y, (ue)dx + / Xp AVue - Vue dx + / g(ue, Vue) ¢ (ue) da
dt Jo Q on Q

:‘/Qfs(én(ue)dx_Ldus¢n(u€)dx_Lb'vus¢n(u€)dx

Thus, integrating the above equation with respect to ¢, we have

/\If (ue)(t d:):+/ /XB AVu, - Vug dx dt

// (e, Vo) (112 it

(3.15) /\IJ (wo,e) dac+/ /fgqﬁn ue) dz dt

/ /dusqﬁn we) di di
_/0 /Qb-Vusqﬁn(ue)dedt-

Since |¢n(z)] < 1, and taking into account the estimate (3.5) we have

(3.16) [ ducbutuc) da] < Bl

Furthermore, we remark that uc ¢, (u:) > 0. Then, the third term in
the left side is non negative. From the coercivity of A (see (1.5)), the
positivity of ¥, (-) and (3.15) we deduce that

g/ |Vu5|2dxdt§/ |q5n(u6)f€|da:dt+/\I/n(uo,s)dx
B, Q Q

+ B ldll oo q) +||b||Lm(Q)/QIVUeII%(us)Idxdt

(3.17) S Al 1 gy + luoll 1 gy + Bl oo g

ST, /Q V| [ (1) der d
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Let us split the last integral in (3.17) as follows

/|Vu5||¢n(u5)|da:dt:/ |Vu€||¢n(u€)|da:dt+/ V| da dt
Q By

Ey

(3.18) g/ |Vu€|dxdt+/ V| de dt,
B E,

n

since |¢p,(ue)] = 1 on E, = {(t,z) € Q : |u(t,z)] > n + 1} and
b (ue) = 0 if |ue(t, z)| < n.

Using the fact 0 < U,,(2) < |z| and (3.18), we deduce from (3.17)
that

o [ (Fufdedt <17l + ol + Bl

+||b||Loo(Q)(/B |Vu5|d:1:dt+/E |Vu5|dxdt>.

By using Holder’s and Young’s inequalities, we have

Q/ |Vue|? do dt
Bn

a 2 1 2
§C+5/Bn V| dxdt+ﬁ||b||Loo(Q>T|Ql+[En |Vue| dx dt

where C' = [[fl,.,, + llwoll .1, + Blldll ~y,- This finishes the proof
of (3.6) with Cy and C; depending on ||f||
1Al oo gy » @ [€2], T and the bound f3.

Now, we are interested in the nonlinear term g.. We have

L1(Q)’ ||U’0||L1(Q)’ ||b||L°°(Q)7

Lemma 2. Suppose A,b,d, g satisfy (1.3)-(1.7) and let u. be a sequence
of solutions of (3.4). Then, there exists C > 0 depending only on the
data such that the sequence g.(ue, Vue) satisfies

(3.19) Sup 19e (e, Vue)ll 1 o, < C

(3.20) lim sup/ |ge (ue, Vue)|dedt = 0.
|ue| >k

k—00 >0
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PROOF. It is clear that

/ |ge (e, Vue)| dx dt = / On(te) ge(ue, Vue) dx dt
|ue |>n+1 |ue |>n+1
(3.21) g/ G (te) ge(te, Vue) dz dt

Q

since we recall that |¢,(2)] = 1 when |z| > n + 1 and ¢, (uc) ge is non
negative by the sign condition (1.6). In the sequel, we will often write
ge = ge(ue, Vue) when no confusion can arise. From the positivity of
the first and the second terms in (3.15), we obtain

03/ P (ue) ge dz dt
Q
<| [ gntve) o] +] [ o)

(3.22) + ‘ /Q d P (te) ue dx dt‘ + ‘ /Q On(ue)b - Vue dz dt‘

<Iell o, + ol + 1l ey /Q | de dt

ST /Q V| da dt

since |¢n(2)] < 1and 0 < ¥, (2) < |z|. By (3.2), (3.5) and the estimate
(3.7) with ¢ = 1, we deduce

(3.23) / 19 (e, V)| da dt < C.
|ue | >n+1

It remains to evaluate the integral over {|ue| < n + 1}. Assumption
(1.6) yields

[ eV do
|ue|<n+1
(3.24)

<h(n+1) / (|Vuel” +~(t,x)) de dt,
|lue |<n+1
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where we estimate as follows

/ |Vu€|"d:1:dt:Z/ |Vue|” da dt
|ue |[<n+1 j=0 B;

n o/2
<Y |B;|t7/? / Vu|*dedt) = .
g i (BJ_| ue|? do dt)

(3.25)

By using (3.6), (3.7) and Holder’s inequality, we get

/ |Vu|? d dt
|us|<n+1
(3.26) n 9

o/
< (T |Q|)1_0/2Z (CO + 01 /Q |VU€| dx dt) < C.

=0

Combining (3.26) with (3.24) and (3.23), we conclude that g. is bounded
in L'(Q) uniformly in €.
We turn to the proof of (3.20). Obviously, one has

1
(3.27) / |ge| dz dt < —/ Tk (ue) ge dz dt .
jus | >k kg

Similarly, replacing ¢, (uc) by Tj(ue) in (3.15) we obtain, similarly to
(3.22), that

Og/Tk(us)gedxdt
Q

S/ |f€Tk(Us)|d$dt+/ Sk (uo <) dx:
Q Q
(3.28)
o / Ty (ue) ue da dt
Q

ST /Q To(ue)| Ve der

holds. Let M > 0. According to [16], we use the following trick

0< Sk(z) < M?+k |Z|X|z|>M ,
(3.29)
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which gives

M
gelddr < Mz +/ \fel de dt
/Iua|>k k O Jua>m

dx

M2
M el / juo,
k £ Ll(Q) |u0,E|>M €

M
(3.30) o el g et 1 g + /|u5|>M e do dt

M
# g Wl 90l g+ [ [Vl

by (3.28) and (3.29). Since, on the one hand, u. is bounded in L?(0, T,
Wol’q(Q)) for some ¢ > 1 and f., ug . are convergent sequences in L' (Q)
LY(€) respectively, and, on the other hand,

Y

1 3T
t v |ue (8, M} < — c —
ili%)me%{( ) € Q: |ue(t,x)| > M} < Mﬁg}gﬂu I i

<
L@ —

tends to 0 as M goes to oo, we can choose M large enough so that the
terms

sup/ |fe| dx dt,
e>0 Jju | >M
sup/ [ug | d
e>0 |u075|>M
sup/ |ue| dx dt ,
e>0 J|u |>M

sup/ |Vue|dxdt,
e>0J |u |>M

are arbitrarily smalls, which, achieves the proof of (3.20).

Let the assumptions of Proposition 1 be fulfilled. Then, u. is
bounded in L4(0,T; W,%(Q)), g is bounded in L'(Q) which imply,
in view of the equation satisfied by u. that d;u. is bounded in L(0, T’;
W=14(Q)) + L1(Q). Therefore, possibly at the cost of extracting sub-
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sequences, see e.g. [18], [20] we can assume that

(3.31)

<

(U — U,

strongly in L7(Q)

and almost everywhere in @),

lue(t,z)| < T'(t,z), almost everywhere in @,

\ Vu, — Vu,

with T' € L9(Q) ,
weakly in LI(Q) .

3.3. Convergence almost everywhere of the gradients.

451

The weak convergence of the gradients is clearly insufficient to pass
to the limit when € — 0 in nonlinear terms. Then, we claim

Lemma 3. Let the assumptions of Proposition 1 be fulfilled and let
ue satisfy (3.31). Then, the sequence {Vuc}. converges to Vu almost

everywhere as € goes to zero.

PRrROOF. It suffices to show that {Vu,}. is a Cauchy sequence in mea-

sure, see [8], i.e. for all 4 > 0

(3.32)

meas{(t,z) € Q: |Vue — Vue| > p} — 0,

as €/, — 0. Let us denote by A the subset of @ involved in (3.32).
Let £ > 0 and 6 > 0. Following [17], we remark that

(3.33)

where

(3.34)

ACAUAUA3U Ay,

Ay ={(t,x) € Q

Ay = {(t,x)

Az = {(t,x)
(¢, )

2 | Vue| >k},
o | Vue| >k},
D |ue — uer| >0},

: | Vue — Vue | > p: |Vue| <k,

|Vuer | <k, |ue —uer| <6}

By Corollary 1 and (3.31), we conclude easily for the three first sets.
Indeed, one has

1
|AL| < % |Vuel|

C
< =
~ k

L)
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and an analoguous estimate holds for A;. Hence, by choosing k large
enough, |A;| + |Az| is arbitrarily small. Similarly, one gets

1
A < 5 e = el g,

which, for § > 0 fixed, tends to 0 when €,¢’ — 0 since, by (3.31), u. is
a Cauchy sequence in L!(Q). Then, the proof is completed by choosing
d so that |A4] is given arbitrarily small, uniformly with respect to €,¢’.
To this end, we shall use the equations satisfied by u. and u. . Indeed,
we observe that

1
|A4| < E/ |Vu, — Vue|? do dt
Ay

1
(3.35) < — |Vue — Ve |* do dt
H |[ue—u r|<d

1
_ —2/ IV (T (e — uer))[? da dt
K= JQ

Substracting the relations obtained with ¢ = T5(ue —ue) as test funtion
in equation (3.4) satisfied successively by u. and u. leads to

d
— | Ss(ue — uer) dx + / A(Vue — Vue ) VTs(ue — uer) do

:/(fs_fe’)Tts(uS_ue')dl.
(3.36)
— | (e = ) =6 Ve = ) Tyt = o) da

- / (gé‘ _ge’)T5(us - Ug')dl'.
Q

Since |T5(z)| < 0 and 0 < Ss5(z) < J |z, integrating (3.36) with respect
to t and using the coercivity of A (see (1.5)) yield

g/ IV (T (e — uer)) 2 da dt
Q

(3.37) S 5 (||f€ - fEIHLl(Q) + HUO,E - U’O,E’HL]_(Q)

Fldll oo ) 1te = uerll 1 g + 10l oo () IV (e = uer)

Ll(Q) HLl(Q)

+ ch‘: - gE?’HLl(Q)) °
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Therefore, by using (3.2) and the bounds (3.7), uniform in e, on

||u5||L1(Q)7 IVuel| ., and on ||ge|l we deduce from (3.37) that

() L@’

0 /Q IV (Ty(e — ue )P dodt <25 (1f,4, + ol )
(3.38) + 200 (14 bl yoo ) + Al oo q) 5

goes to zero as 0 goes to zero, uniformly in €,¢’. This completes the
proof of Lemma, 3.

Having disposed of the proof of Lemma 3, let us consider the be-
haviour of g. as € goes to 0, when it is assumed that 0 < o < 2.

Corollary 2. Let the assumptions of Proposition 1 be fulfilled and let u.
satisfy (3.31). Then, (up to subsequences) the sequence {g.(ue, Vue)}e
converges to g(u, Vu) almost everywhere in Q and strongly in L'(Q).

PrOOF. This result is similar to those obtained in [9] in the context

of elliptic problems. For the sake of completeness, we sketch the proof.
By combining Lemma 3 and (3.31), it is clear that

9e(te, Vue) — g(u, Vu)
almost everywhere in () as € tends to 0, since g(¢, z, A, {) is a continuous
function with respect to A € R, & € RY. Thus, by classical results, see
e.g. [8], the sequence g. will be actually strongly convergent in L!(Q)
if one shows that g. lies in weakly compact set in L!(Q). This property

follows from (3.20) since 0 < o < 2. Indeed, let A be a measurable set
in Q. We split

(3.39) /|gs|dxdt:/ |g€|da:dt+/ |ge| dz dt
A AN{Ju |[<k} An{|uc|>k}

where it is clear that

/ |gs|dxdt§/ |ge| dx dt
An{|u:|>k} |ue | >k

tends to 0, uniformly in € as K — oo, by (3.20). Moreover, the growth



454 T. GOoUDON AND M. SAAD

condition (1.6) and Holder’s inequality yield

/ |ge| dx dt
An{juc |<k}

< h(k)(/ |Vu,€|"dxdt+/ y(t, @) da;dt)
AN{Juc|<k} AN{Ju| <k}
(3.40)

o/2
< h(k)( Ve | da dt) A=/ 4 (k) [ ~(t, ) do dt
lue |<K A

< h(R)CHl A2 4 h(k) / (¢, ) da dt
A

by using (3.6) and (3.7) as in (3.26). Since 0 < 2 and v € L(Q),
the right hand side of this last inequality goes to 0 as |A] — 0. We
conclude that

lim sup/ lge| dzdt =0,
|A[—=0e>0 A

which completes the proof of Corollary 2.
3.4. Cauchy property in C°(0,7;L'(Q)) and passage to the
limit.

We end our review of the properties of the sequence u. with the
following result.

Lemma 4. Let the assumptions of Proposition 1 be fulfilled. We as-
sume that the sequence {u}. satisfies (3.31). Then, {uc}c is a Cauchy
sequence in C°(0,T; LY(Q)).

PrOOF. We set We g = Ug — Ug/, Fs,s’ = fa — fs’ and Gs,s’ = 0e — Gg'.

We multiply the equations (3.4) satisfied respectively by wu. and uc by
Ty (we er). Substracting the obtained relations yields

d
7, / S]. (w€;€’) d./L' + / Avweael ’ Vwevel daj
dt Jo w, |<1
(341) = / F5751T1 (wsyel) dx — / GE,E’Tl (we,e’) dx
Q2 Q

_/(b-Vwe,ef + dwe,er) T (we o) d
Q
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Since 0 < 2T (z) = 22 X T2 X s < 22 X T 212 = 1) X0, =
2 S1(we 1), one gets

| [ dweo i) d| < 2 dlmig, [ Si(we)da,
Q Q

Moreover, one has |T7(we )| < 1. Then, integrating (3.41) between 0
and ¢ and from the positivity of A, it follows

[ Siturcias

t t
§/Sl(w2€,)daﬂ+/ / |F€7€:|da;ds+/ /|G5,5:|dajds
Q ’ 0o Ja 0 Jo

(3.42)
t t
+||b||Loo(Q)/ /|Vw6,5:|da:ds+2||d||mo(@)/ /Sl(we,e,)dg;ds,
0 Q 0 Q

where wg o = Ug,e — Ug . Hence, Gronwall’s lemma implies that

(343) / Sl(weyef) dx S (],6,6/ ,
Q

where a. o stands for
e =T ( [ Suulo)dot [ [Pl dod
Q Q

+/ G r| d dt-l-/ V. o| dz dt)
Q Q
S eCT (||U’0;€ - U'O;e’”Ll(Q) + ||f€ - fEIHLl(Q)

llge = gerll 2 g, + IVt — Vil ) )
since S1(z) < |2|. By (3.1), uwp, and f. are convergent sequences in
LY(Q) and L'(Q), respectively and by Corollary 2, g. is a convergent
sequence in L!(Q). Furthermore, by Corollary 1 and Lemma 3, Vu, is
both bounded in L?(Q) and almost everywhere in () convergent, which
implies that Vu, is actually strongly convergent in LP(Q) for 1 < p < ¢,
and in particular in L'(Q). Hence, it is clear that a. . tends to 0 as
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g, — 0. Finally, by Holder’s inequality, we have

/ |we ¢ | dz
Q

= / |we e | dz + / |we o | dz
|w5,5’|sl |w5,5’|>1

) 1/2 1/2
< (/ |We e | dx) (/ 1d$> +/ \we | dx
|lw, <1 |lw, <1 |lw, o |>1

1/2
< |Q| (/ |<1251(w67€:)dx) +/ 281(we,6’)d$7

€, |w5,5’|>1

e ol -1
VA A VA
?X|z\>1 < (7 + 92 >X|z\>1 = Sl(wf,f')x\z|>1

and
2|2
9 Xizi<1 = 51(2) X2 <1 -

By (3.43), we deduce that
/ |ue — uer| dz = / [We | dr < /2 |Q| /e ot + 2 ac o
Q Q
tends to 0 as €,/ — 0 which proves that u. is a Cauchy sequence in
C(0,T; LYQ))-

Finally, we achieve the proof of Theorem 1 by passing easily to the
limit € — 0 in the following weak formulation

/Que¢5(t) dx—/uo,s¢(0,x) dx

Q

t ¢
—/ /u€0t¢dxdt+/ /AVue-Vqﬁdxdt
0 Ja 0 JQ

t
+/ / (b-Vu€+du5+g5(u5,Vu€))¢dxdt
0 JQ

:/Ot/Qf€¢dxdt,

with ¢ € €0, T, W' (Q)) N C1(0,T, LY (), obtaining in this way
that the limit u is a solution of (1.1) in the sense of (1.9).

(3.44)
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REMARK 1. We point out the fact that the assumption on the deriva-
tives of the coefficient b is useful uniquely to obtain the uniform bound
(3.5) in L>(0,T; L1(£2)).

REMARK 2. A similar existence result may be obtained if the strong
convergences in (3.1) are replaced by weak L! convergences.

4. Entropic solutions: End of proof of Theorem 2.

In this Section, we assume g = 0. First, we prove that, besides
the weak “natural” formulation (1.9), the limit u of the sequence of ap-
proximate solutions u. also satisfies the entropic relation (1.11). Having
disposed of the existence of such a solution, we show that « is unique
in the class of entropic solutions.

4.1. Existence of entropic solution.

Let us recall the convergence properties obtained in Section 3 on
the sequence u., after suitable extraction of subsequences. First, u.
converges to u strongly in LI(Q), with 1 < ¢ < (N 4+ 2)/(N + 1), in
C°0,T; LY(Q)), almost everywhere in @) and is dominated. Moreover,
Vue is bounded in L?(Q) and converges almost everywhere in @ to
Vu; thus, the convergence actually holds strongly in LP(Q), for 1 <
p < ¢ and in particular in L'(Q). We can also assume that Vu. is
dominated. Let & > 0. Since T} is continuous and bounded by k,
Tk (ue) converges almost everywhere in ) and, by Lebesgue’s theorem,
strongly in L?(Q) to Ty (u). Furthermore, from (3.10) it is easy to see
that VT (ue) is bounded in L?(Q) (uniformly in ¢, the bound depending
on k). Therefore, we may suppose that VTIj(u.) —= VTj(u) weakly in
12(Q).

Fix k > 0 and let ¢ € L?(0,T; H} () N L>(Q) with 9y €
L2(0,T; H71(€2)). We set P = ||¢]| It is clear that | Ty (ue — )| <
k and

Leo(Q) "

(4'1) |VTk(u€ _¢)| = X|u57¢|§k |V(U€ _¢)| < X|u5|§k+P |V’U,5| + |V¢| ’

which implies that Ty (ue — %) belongs to (a bounded set in) L?(0,T;
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HY(Q)). Then, plugging ¢ = Ty (ue — ) in (3.4) gives
[ Sutuc =)@y ds ~ [ Silune— 9(0,) ds
Q Q
T
+ / (Op), Ti,(ue — 4)) ds
0
(4.2) + / AVu VT (ue — ) dzds
Q
+ / (b Vue + due) Ti(ue — ) dx ds

Q
= [ feTk(ue — ) dxds.
Q

We shall study the behaviour of (4.2) when we let ¢ go to 0. Since Sk
is k-Lipschitz, one has

‘/QSk(us—tb)—Sk(u—gb)dx‘ gk/9|u€_u|d$,

for all t € [0, T'] where the right hand side tends to 0 as € — 0. Next,
since we have assumed that dy1 lies in L2(0,T; H~1(Q)), we have to
prove that

(4.3) Tro(ue — ) — Ti(u — 1), in L?(0,T; H}(Q)) .

Obviously, this convergence holds in L?(Q) since u. converges to u al-
most everywhere in () and T} is continuous and bounded by k. Derivat-
ing Tk (ue — 1) leads to

VT (ue — ) = VI (Tt p(ue) — )

(4.4)
= X1y p (o) =l <h (VIitp(ue) — Vi),

where, by the above mentioned convergences, VTj4p(u.) converges
weakly in L2(Q) to VTj,p(u) which proves (4.3). We also deal easily
with the terms involving b, d and f. since it appears in these integrals
a product of the sequence Ty (u. — 1) which converges almost everywh-
were in () and is bounded in L*°(Q) with a sequence which converges
at least weakly in L'(Q). Finally, it remains to show that

(4.5) /AVu-VTk(u—@b) dxdsgliminf/ AVu.-VTi(ue—1)) dxds.
Q Q

e—0
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By using (4.4), we split the integral in the right hand side as follows
/ AVue - VT (ue — ) dx ds
Q
= /Q X|Tk+P<u5>f¢|5kAV“e - VTkyp(ue)dads

- /Q X|Tk+P(uE),¢‘SkAVu€ -Vipdxds
— A. - B, ,

where, by the same argument as above, we have

lim B, = /QX|Tk+P(u)¢|SkAvu -Vipdrds.

e—0

Therefore (4.5) is a consequence of Fatou’s lemma, applied by combin-
ing (4.3) with Ty p and the positiveness property (1.5). Finally, letting
e — 0 in (4.2), one gets (1.11).

4.2. Uniqueness.

Let v be an entropic solution. To obtain the uniqueness, we will
show that v = u, u still being the solution obtained by approximation.
To this end, it would be natural to choose T} (uc) as test function 1
in (1.11). However, as pointed out in [17], T} is not regular enough
which leads to difficulties in order to write the term involving the time
derivative of the test function. Then, it is necessary to regularize the
truncation. Let v > 0. We introduce T/ € C*(R, R) satisfying

(T) () =0, if |z >,
(4.6) (T?)(2) =1, if 2| <h—v,
0<(Ty)(2) < (Th)'(2) <1

Note that [T}/ (z)| < |Th(2)|, and (T})”(2) = 0 when |z| > h or |z]| <
h—v.
In the sequel, let us denote

L(f,uy=f—-b-Vu—du.
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We take ¢ = T}/ (uc) as test function in the entropic formulation (1.11)
satisfied by v, we have

[/st(v — T (u.)) ]

0

b [ @, (23 (w0 Titw — T () s
(4.7) °

t
-l-/ /AVUVTk(U—T,’;(ue))dxds
0 JQ

< [ [ B @) ) Tl = T 00 deds.

By using (3.4), we write the term involving the time derivative of the
test function as follows

(4.8) /Ot (Dytic, B) ds:/t/ (L(f., u)$ — AVUV ) da ds,

where ¢ = (T})(ue) T, (v — T} (ue)) and, consequently,
Vo = Ve (T5)" (ue) T (v — Tj; (ue)) + (T7) (ue) V(Ti(v — T (ue))) -
By (4.8), the entropic formulation (4.7) is equivalent to

[/st(v _ TV (u2)) da Z

+/ / A(Vo — (T) (ue) Vu) VT (v — T} (u0)) da ds
(4.9)

/ / AV UV (TV) (u2) T(v — T (u2)) da ds

< [ [ 00 = Do) @0 0 Tl = T ) .

Now, according to [17], let successively v — 0, ¢ — 0 and h — oc.
Difficulties only arise from the third integal in the left hand, denoted by
I,, which involves the second derivative of T}; the remaining integrals
being treated by using the Lebesgue theorem. Indeed, it is clear that

1Sk (v — Tp (ue))| < K Jv| + kB,
[Ty (v = Ty (ue))| < ks

|(T5) (ue) Te(v = T (ue))| < &,
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and
VT (v — T (ue))| < (IVTktn ()] + [VIR(ue))) -
[

Next, we wish to obtain an estimate on [,. Following [17] (see also
[2]), we define another C? function RY, satisfying for z > 0: (RY)'(z) =
L= (TP (2), RE(0) = 0, BY(~2) — R (2)

Take (R})'(uc) as test function in (3.4). By using the positivity
of R} and the fact that (R})"(2) = |(T}/)"(#)|, we obtain according to
[17] the following estimate

t
L) gk/ /|L(f€,u€)|xu5|>hu dar ds
(4.10) 0 7%

+ k dx.
Q

By Lebesgue’s theorem, we can pass to the limit ¥ — 0 in the right
hand side of (4.10), obtaining without difficulties

t
limsup |1,,| < k/ / |L(fer tue)[ X uson dxds-i—k/ dx .
0 Jo Q

v—0

Collecting these results, we get from (4.9) the following estimate

[/st(u—Th(ua))dx]z

/ / AV (v — Th(ue)) VT (v — Th(ue)) dx ds
(4.11)

/ / (f,v) = L(fe, ue) (Th) (ue)) T (v — Tp, (ue)) da ds

+k/ /|L(f€,u€)|xu5|>hd:rds+k/|u075|xlu05|>hdx.
0o Ja Q ’

The assumptions on the sequence of data and the properties of u. re-
called above allow us to apply the Lebesgue theorem to pass to the limit
as € — 0 in the first term of the left hand side as well as in the right
hand side. In addition, the coercivity of A (see (1.5)) and the following
almost everywhere convergence

VTi(v—Th(ue)) = Vo — X\us\ghvus)

X\v—Th<us>|5k(

T Xju—1y (u) <k (Vo =X, V),
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permit us to apply Fatou’s lemma on the second term in the left hand
side.

It remains to deal with h — oo in the following relation

t

[/QSk(v—Th(u))da:

0

(4.12) +/ / AVTy(v — Ty (u)) VT (v — Th(u)) da ds

// (£,v) yu)(Th)' (w)) Ti(v — Ty (u)) dw ds
+kO(h

where O(h) stands for

t
/0 /Q 71+ 10l oo IV] + N1y [1]) X ez dis

+ / |uo Xlug|>h dx
Q

which goes to 0 as h — oo because f,u, Vu belong to L'(Q).

We search for another expression of the integral in the right hand
side of (4.12). We write, on the one hand,

L(f,v) = L(f,u)(Th)' (u)
(4.13) =f—b-Vo—dv—(f—b-Vu—du) (Tp)"(u)

= L(f,u) (1= (Th)'(u)) =b- V(v —u) —d (v —u)

and, on the other hand

/Ot /Q (b-V(v—u)) Ti(v—Th(u)) deds

(4.14) //U_ub VT (v — Th(u))
(V-

b)(v —u) T (v — Th(u))dxds.
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By (4.13)-(4.14), inequality (4.12) becomes
[/st(v ~ Ty(u) da ;
+ /(; /Q AVTi(v — Th(u))VTk(v — Th(u)) deds

(4.15) S/0 /Q|(“_“)b'VTk(U—Th(U))Idﬂst

+/ /|(d—(V-b))(v—u)Tk(v—Th(u))|dxds

/ /|L fru) (1= (Th) (w)Tk(v — Th(u))| dxds

+kO(h

We remark that 1 — (7},)'(u) tends to 0 as h — oo, and by Lebegue’s
theorem the third term of the right hand side can be included in the
general expression kO(h) which tends to 0 as h — oo.

Proceeding as in Section 4 leads to

/Q Sk (v — Ty (w)) (1) da
+%/Ot/Q|VTk(v—Th(u))|2dxds

< / Sk(v — Th(u))(0) dz
Q
(4.16) | t
+ = HbHLOO(Q)/ / X|v—T}, (u)|<k lv — u|2 dx ds
a 0 Jo

+ (ldllz=@) + IV - bll= (@)
/ /|v—u T (v — Ty ()| dz ds
+kO(h

In classical way, by Lebesgue’s theorem and Fatou’s lemma, letting A go
to 0o, we are led to inequality (4.16) where T} (u) is replaced by u and



464 T. GOUDON AND M. SAAD

the last term in the right hand side vanishes. By using 0 < 2T (z) <
28k(2), 0 < 2% x,. <, <28k(2), we deduce as in Section 2 that

(4.17) /QSk(U —undr %/Ot/QWTk(v —u)|* dw ds

g/QSk(v—u)(O)da:-l—C(b,d)/Ot/QSk(v—u)dxds,

where

1
Cb,d) = 2[[Vbl| gy + 2 lldll 1o q) + Il o) -

Therefore, it suffices to apply Gronwall’s lemma to deduce that

/ Sk(v—u)(t)de =0,
Q

since vy = ug, which gives v = u.

5. Lower regularity requirement on b.

Our aim in this section is to weaken the regularity requirement on
b, replacing the L*°(Q) condition by b € L*(Q) for s > ¢'; precisely one
has

Theorem 3. Let A,d, g satisfy (1.3)-(1.5) and let b € L*(Q) with s >
¢ =q/(q—1) (recall that 1 < q < (N+2)/(N+1)) and V-b € L*=(Q).
Then, there exists a weak solution of (1.1) in the sense of Definition 1.

PROOF. The outline of the proof is the same of Theorem 1. Consider
the approximate solution of (3.4). In the first step, we show, according
to (3.5), that

(5.1) u is uniformly bounded in L*°(0,T; L*(Q2)).

Reproducing the proof of Proposition 1, we take ¢ = Ty (uc) as test
function in (3.4), and we find (3.8). All terms are treated as above
except those involving ucb - VT (u.) which becomes

‘ / weh - VTi(ue) d dt‘
Q

a 1
< §/Q|VTk(u5)|2da:dt+ E/Qxl%lgk|bus|2dxdt,
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by using Holder’s and Young’s inequalities. Since s > 2 the last integral

is bounded by (1/2a) k* (T |Q))*/¢=2[|b]7. o). Then, from (3.12), we
deduce that

/st(us)(t) dr < ap+ a1 /Ot/QSk(ue) dx ds

holds where ag depends on || f||z1(), |uollzr (@) and [|b||Ls(q) and oy
depends on ||d||L~(@), [|Vb||L=(g). Gronwall’s Lemma permits us to
conclude as in Proposition 1 and leads to (5.1).

To establish an estimate on the solutions in L2(0, T, W, '%(2)), we
follow step by step the proofs of estimate (3.6) and of Lemma 1 which
need to be adapted. For that, take ¢ = ¢, (uc) in (3.4). We deduce
from (3.15)

@/ |Vu5|2dxdt§/ |¢n(u5)f5|dxdt+/\yn(uo,e)dx
B, Q Q

+ Bl oo ) -l-/ |b- Vue| |pn(ue)| dx dt
E,
SNl i, + lluoll i, + BNl L

+ (/En G da:dt)l/ql(/Q |Vu6|Qda:dt>1/q

Since s > ¢', using Holder’s inequality, with exponents s/¢’ and s/(s —
q'), yields the following substitute to (3.6)

(5.2) / Ve | da dt < Co + C1||Vue|| paggy [Bn] 7067
Bn
where C| stands for

1
Fl gy + lwoll 1) + Bl L))

IS |

and Cl = “bHLS(Q)
Recall that ¢ < 2. Therefore, Holder’s inequality yields

/2
/ |Vu€|qda:dt§|Bn|(2_q)/2(/ |Vu5|2dxdt>q
B, B,

(5.3) < |Bn|(2—Q)/2
. (03/2 + 011/2 |Vue||9/2 | E,|(s=4)/(sa))(a/2)y

LI(Q)



466 T. GOUDON AND M. SAAD

Let r and K as in Lemma 1. By using (2.6), one gets

/ |Vue|? dz dt
B,

gr 1 N
= Go n”(2—Q)/2(/B juc|" do de)

+ C1q/2 ||Vu€||q/2 ||u€||7’((s—q')/(SQ’))(q/2)

L9(Q) L™(Q)

1 AN
'nr<<s—q'>/(sq'>>(q/2>+r<2_q>/2(/Bn |ue|" du ) :

Repeated use of Holder’s inequality, as in (2.11), implies

Z / |Vue|? dz dt
B,

n=K+1
e 1 q/2
q/2 r(2—q)/2
<Co ( Z n”(2—q)/q> HUEHLT(CDq
K+1

n=K+
2 r(((s—q')/(sq’' —
(5.4) + C1q/ ||VU6||%?Q) ||Us||L(r(((Q) 1)/(sq'))(a/2)+(2-q)/2)
> 1 a/2
' ( > nr(((s—q')/(sq'>>+(2—q>/q>) '
n=K+1
The conditions
2 — —q 2-
(5.5) T 151 and r(s /q + q> > 1
q sq q

ensure the convergence of the series. As in Section 2, we deduce from
(2.8), that
||VU5||zq(Q)
< C(K)
+ 8(K) (el [0 4 1Vl 5%, e |75/ e D2+ E=ar)
holds where §(K) tends to zero as K goes to infinity. Therefore, Young’s
inequality yields

[Vuell?, ,, < CK)
(5.6)

- 8(8) (el 2507+ |70 0D ar2-0)
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If we choose r = ¢ (N 4+ 1)/N, estimate (2.17) becomes

||u6||rLT(Q) < CHUquLq(O’T;Lq*(Q)) )

Using Sobolev’s theorem, as in Section 2, we derive the following esti-
mate on u, in L1(0,T; L9 (Q))

lellZa 0,720 ()

2—q)/2 s—q')/(sq" ) q+2—
< O(K) + 0(K) (l[uell 5o Far cyy + Iaelhsomas oy ™)
Since (2—¢q)/2 <1l and g(s—¢')/(s¢")+2—q < 1, we can use again
Young’s inequality which, choosing K large enough, leads to a bound
on ue in L9(0,T; L7 (Q)) and, thus, in L4(0,T; Wy %(Q)). Finally, let
us verify the compatibility of conditions (5.5). For

N+1
U B
the first condition is equivalent to

N +2
N+1

1<g<

and the second condition means that

!/
o> (N+1)q
¢ =1
which is clearly satisfied since it is yet required s > ¢'.
Finally, one can easily verify that Lemma 2, Lemma 3, Corollary
2 and Lemma 4 are valid in the context of Theorem 3 and the proof
follows.
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