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Endpoint multiplier theorems

of Marcinkiewicz type

Terence Tao and James Wright

Abstract� We establish sharp �H�� L��q� and local �L logr L�L��q�
mapping properties for rough one�dimensional multipliers� In partic�
ular� we show that the multipliers in the Marcinkiewicz multiplier the�
orem map H� to L��� and L log���L to L���� and that these estimates
are sharp�

�� Introduction�

Let m be a bounded function on R� and let Tm be the associated
multiplier dTmf��� � m��� bf��� �

There are many multiplier theorems which give conditions under which
Tm is an Lp multiplier� We will be interested in the mapping behaviour
of Tm near L�� Speci�cally� we address the following questions	

� For which 
 � q � � does Tm map the Hardy space H� to the
Lorentz space L��q�

� We say that Tm locally maps the Orlicz space L logr L to L��q if

kTmfkL��q�K� � CK kfkL logr L�K� �

for all compact sets K and all functions f on K� For which r � � and

 � q � � does Tm locally map L logr L to L��q�

���
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Standard interpolation theory �see e�g� 

�� shows that if Tm locally

maps L logr L to L��q� then it locally maps L loger to L��eq whenever eq � q
and er � r � 
�eq � 
�q� Also� extrapolation theory �

��� 

��� shows
that Tm maps L logr L to L� if and only if the Lp operator norm of Tm
grows like O��p� 
��r��� as p �� 
�

Here and in the sequel� � is an even bump function adapted to
�

��� �� which equals 
 on �
���� ���

De�nition ���� If m is a symbol and j is an integer� we de�ne the jth

frequency component mj of m to be the function

mj��� � ����m��j �� �

We say that Tm is a H�ormander multiplier if the frequency com�
ponents mj are in the Sobolev space L�

���� uniformly in j� These

multipliers are Calder�on�Zygmund operators and hence map H� to L�

�and even to H��� and L� to L���� see e�g� 


�� By interpolation one
then sees that Tm locally maps L logr L to L��q whenever r � 
�q�

We now consider multipliers not covered by the H�ormander theory�
We say that Tm is a Marcinkiewicz multiplier if the frequency compo�
nents mj have bounded variation uniformly in j� The Marcinkiewicz
multiplier theorem �see e�g� 


�� shows that Tm is bounded on Lp�

Our �rst result characterizes the endpoint behaviour of Marcinkie�
wicz multipliers	

Theorem ���� Marcinkiewicz multipliers map H� to L���� and locally

map L logr L to L��q whenever r � 
�� � 
�q� Conversely� there exist

Marcinkiewicz multipliers which do not map H� to L��q for any q ���

and do not locally map L logr L to L��q for any r � 
�� � 
�q�

We can generalize the notion of a Marcinkiewicz multiplier as fol�
lows�

De�nition ��� �
���� Let X denote the set of all functions of the form

m �
X
I

c
I
�
I
�

where I ranges over a collection of disjoint intervals in �

��� ��� and
the cI are square summable coe�cients

�
�
�X

I

jcI j�
����

� 
 �
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Let X denote the Banach space generated by using the elements of X
as atoms� note that this space includes all functions of bounded varia�

tion on �

��� ��� We say that Tm is a R� multiplier if the frequency

components mj are in X uniformly in j�

This class is more general than the Marcinkiewicz and H�ormander
classes� In 
�� it was established that R� multipliers are bounded on all
Lp� 
 � p ���

We can extend the positive results of Theorem 
�� as follows�

Theorem ���� All the statements in Theorem 
�� continue to hold for

R� multipliers�

One can also show the Lp norms of these multipliers grow like
maxfp� p�g��� by converse extrapolation theorems �see 

���� This is
sharp� Theorem 
�� also has an easy corollary to multipliers of bounded
s�variation as studied in 
��� we detail this in Section ��

We now consider another multiplier class which is slightly smoother
than the R� multiplier class�

De�nition ��� �
���� Let X � denote the set of all functions of the form

m �
X
I

c
I
	
I
�

where I� cI are as in the de�nition of X� and the 	I are C�� bump

functions adapted to I� Let X � be the atomic Banach space generated

by X �� We say that m is in R�
����� if

��� k	m���j ��kX� � 
 �

for all integers j� where 	 is a bump function adapted to �

��� �� which
equals 	 on �

� ��� We say that Tm is a R�

����� multiplier if the fre�

quency components mj are in X � uniformly in j�

This class was �rst studied in 
��� it contains the H�ormander class�
is contained in the R� class� and is not comparable with the Marcinkie�
wicz class� In 
�� Theorem ���� the R�

����� multipliers were shown to

map H� to L���� we can improve this to
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Theorem ��	� R�
����� multipliers map H� to L���� and locally map

L logr L to L��q whenever r � maxf
��� 
�qg� Conversely� there exist

R�
����� multipliers which do not map H� to L��q for any q � �� and do

not map L logr L to L��q whenever r � max f
��� 
�qg�

The converse extrapolation theorem in 

�� thus shows that these
operators have an Lp operator norm of O�max fp� p�g�� and this is sharp�

Thus� to summarize our main results� R� multipliers map both H�

and L logL��� to L���� while the smoother R�
����� multipliers map both

H� and L logL��� to L���� with all exponents being best possible�
From the classical study 
�� of the multipliers

��� m��� �
eij�j

�

�
 � j�j�����

it is known that the condition �
� cannot be replaced with a weaker lq

condition� q 
 �� if the intervals I are the same size� However� even if
the intervals are di�erent sizes� one still cannot relax this condition� as
the following result shows�

De�nition ��
 �
���� For any 
 � q � �� let X �
q be de�ned as in X �

but with �
� replaced by

�X
k

� X
I�jIj��k

c�I

�q�����q
� 
 �

Let X �
q be the atomic Banach space generated by X �

q� We say that Tm is

a R�
����q multiplier if the frequency components mj are in X �

q uniformly

in j�

Theorem ���� For any q 
 �� there exist R�
����q multipliers which are

unbounded on Lp for j
�� � 
�pj 
 
�q� In particular� there are no

mapping properties near L��

One can obtain positive �Lp� Lp� or �Lp� Lp��� mapping results
when � � q � � for these operators by complex interpolation be�
tween Theorem 
�� and trivial L� estimates �cf� 
���� but we shall not
do so here�

The space H� has of course appeared countless times in endpoint
multiplier theory� but the appearance of the Orlicz space L log��� L
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space is more unusual� This space �rst appeared in work of Zygmund


��� who showed the inequality

���
� �X
j�	

j bf��j�j�
����

� kfkL log��� L �

for all f on the unit circle S�� This inequality can be viewed as a rudi�
mentary prototype of the multiplier theorems described above �indeed�
one can derive ��� from either of the above theorems by transplanting
the results to the circle� and considering multipliers supported on the
dyadic frequencies �j�� As we shall see in Section �� the space L log��� L
is in fact very similar to the Hardy space H� in that it has an associated
square function which is integrable�

The space L��� has appeared in recent work of Seeger and Tao 

��
Very roughly speaking� just as the space L��� is natural for maximal
functions and L� is natural for sums� the space L��� is natural for certain
square functions� A concrete version of this principle appears in Lemma
��
�

This paper is organized as follows� After some notational prelimi�
naries we detail the negative results to the above Theorems in Section
�� In Section � and the Appendix we show how both H� and L log��� L
functions are associated with an integrable square function� In Sec�
tions �� �� � we then show how control of this square function leads to
L��� and L��� multiplier estimates� Finally� we discuss the Vq class in
Section ��

�� Notation�

We use C to denote various constants� and A � B� A � O�B�� or
�B majorizes A� to denote the estimate A � CB� We use A 	 B to
denote the estimate A � B � A�

Here and in the sequel� �j denotes the Littlewood�Paley multiplier
with symbol ����j ��� where � is as in the introduction� For integers j�
we use �j to denote the weight function

��� �j�x� � �j �
 � ��j jxj�����
 �

Similarly� for intervals I we use �I to denote the weight

��� �I�x� � jIj �
 � jIj� jxj�����
 �
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These weights are thus smooth and decay like jxj���� at in�nity� Many
quantities in our argument will be controlled using the �j � �I � the reason
why the decay is so weak is because we are forced at one point to use the
Haar wavelet system� which has very poor moment conditions� �The
exact choice of ��� has no signi�cance� any exponent strictly between

 and � would have su�ced��

�� Negative results�

In this section we detail the counter�examples which yield the neg�
ative results stated in the introduction� In all of these examples N
is a large integer which will eventually be sent to in�nity� fejgj�Z is
the standard basis of l��Z�� and 	 is a non�negative even bump func�
tion supported on fj�j 
 
g which equals 
 at the origin and has a
non�negative Fourier transform� Some of our counter�examples will be
vector�valued� but one can obtain scalar�valued substitutes by replacing
ej with randomized signs �j � �
 and using the Lorentz�space version
of Khinchin s inequality� we omit the details�

���� Marcinkiewicz multipliers and R� multipliers need not

map H� to L��q for any q ���

Consider the symbol

��� m	��� � �
�����

���	��� 
� �

The convolution kernel cm	 of this function is bounded for jxj � 
� and
can be estimated via stationary phase as

��� cm	�x� �
e��ix

x
� O�jxj��� �

for jxj � 
� If we then test this multiplier against a bump function f

with bf��� � � and bf�
� �� �� we see that f is in H�� but jTm�
f�x�j 	 
�x

as jxj �� �� so Tm�
f is not in L��q for any q ���
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���� Marcinkiewicz multipliers and R� multipliers need not

locally map L logr L to L��q for any r � 
�� � 
�q�

De�ne the vector�valued multiplier

mN ��� �
NX
j�	

ejm	

� �
�j

�
�

where m	 is de�ned in ���� this multiplier satis�es the requirements of
both Theorems�

By testing TmN
against a function f whose Fourier transform is a

bump function which equals 
 on 
��N � �N � and is adapted to a slight
dilate of this interval� �so that kfkL logr L 	 N��r� we see that we must
have

kdmNkL��q��	���� � N��r

in order for TmN
to locally� map L logr L to L��q� However� by ��� we

have

jdmN �x�j 	 log �
�jxj����
jxj

for �N 
 jxj 
 
� and the necessary condition r � 
�� � 
�q follows
by a routine computation�

���� R
�����
� multipliers need not map H� to L��q for any q � ��

We use the multiplier

m�
N ��� � N����

NX
j�	

	��j �� � 
�� 
� �

This multiplier is in the class of Theorem 
��� Now suppose for contra�
diction that Tm�

N
mapped H� to L��q� Since m�

N is supported in a single
dyadic scale� we may factor Tm�

N
� Tm�

N
S	 where S	 is a Littlewood�

Paley projection to frequencies j�j 	 
� From the Littlewood�Paley
square�function characterization we see that S	 maps H� to L�� hence

�
Strictly speaking
 f is not quite compactly supported
 but the error incurred be�

cause of this is extremely rapidly decreasing in N and can be easily dealt with�
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Tm�

N
maps L� to L��q� In particular� the kernel dm�

N must be in L��q�
However� a computation shows that

jdm�
N �x�j � N����

jxj �

for 
 
 jxj 
 �N � which contradicts the assumption that q � ��

���� R�
����� multipliers need not locally map L logr L to L��q for

any r � 
���

We consider the vector�valued multiplier

m��
N ��� �

NX
j�	

ej 	�� � �j� �

this is a multiplier in the class of Theorem 
��� By repeating the argu�
ment with the mN multipliers� we must have

kdm��
NkL��q��	���� � N��r �

However� a computation shows that

jdm��
N �x�j 	

p
N �

for jxj 
 
� and this contradicts the assumption r � 
���

���� R�
����� multipliers need not locally map L logr L to L��q for

any r � 
�q�

We consider the Hilbert transform H� which of course is of the
class in Theorem 
��� and test it against the function f � �N �

�	���N �
�

Clearly f has a L logr L norm of Nr but the Hilbert transform of this
function has a local L��q norm of about N��q� hence the claim�
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��	� R�
����q multipliers need not be bounded on Lp for j
��

�
�pj 
 
�q�

By duality it su�ces to show unboundedness when 
�p�
�� 
 
�q�
We de�ne the vector�valued multiplier

m���
N ��� � N���q

N��	X
j�N��		

ej 	
�

�j
�
� � j

N

��
�

This multiplier is in the class of Theorem 
��� We test this against the
function

f�x� �
X

jkj��N

	�x�Nk� �

We expand

Tm���

N
f�x�

� N��q

N��	X
j�N��		

ej
X

jkj��N

Z
	�x� y �Nk� e��ijy�N ��j b	���jy� dy �

Making the change of variables y �� y �Nk� this becomes

N��q

N��	X
j�N��		

ej
X

jkj��N

Z
	�x� y� e��ijy�N ��j b	���j�y � Nk�� dy �

The function e��ijy�N has real part bounded away from zero� so

jTm���

N
f�x�j

	 N���q
� N��	X
j�N��		

�Z
	�x� y� ��j

X
jkj�K

b	���j �y�Nk�� dy
������

�

If jxj 
 �N � then jyj 
 �N and the inner sum is 	 �j�N �note that
N �N � �j � N�� Thus we have

jTm���

N
f�x�j 	 N��q

� N��	X
j�N��		

� Z
N��	�x� y� dy

������
	 N���q���� �
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for jxj 
 �N � Thus

kTm���

N
fkp � N���q���� �N�p �

On the other hand� an easy computation shows

kfkp 	 N���p �N�p �

which demonstrates unboundedness when 
�p� 
�� 
 
�q�

�� The spaces H� and L log��� L�

Our positive results involve the spaces H� and L log��� L� As is well
known� L log��� L functions are in general not in H� and thus do not
have an integrable Littlewood�Paley square function� However� there
is a substitute square function for these functions which are indeed
integrable� which is why all our results for H� also extend to L log��� L�
More precisely	

Proposition ���� Let f be a function which is either in the unit ball

H��R�� or in the unit ball of L log��� L�
�C�C�� and with mean zero�

Then there exists non�negative functions Fj for each integer j such that

we have the pointwise estimate

��� j�jf�x�j � Fj 
 �j�x� �

for all j � Z and x � R� and the square function estimate

�
��
����X

j

jFj j�
�������

�
� 
 �

This proposition is easy to prove when f is in H�� Indeed� one
simply chooses Fj � je�jf j� where e�j is a slight enlargement of �j

such that �j � �j
e�j � The claim ��� follows from pointwise control on

the kernel of �j � while �
�� follows from the square function character�
ization of H��

The corresponding claim for L log��� L is much more delicate� We
remark that this claim implies Zygmund s inequality ���� To see this� we
�rst observe that we may assume f satis�es the conditions of the above
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Proposition� in which case bf��j� can be estimated by k�jfk� � kFjk��
The claim then follows from �
�� and the Minkowski inequality

�X
j

kFjk��
����

�
����X

j

jFj j�
�������

�
�

The same argument shows that L logL��� cannot be replaced by any
weaker Orlicz norm� However� the Proposition is substantially stronger
than Zygmund s inequality�

As an example of the Proposition� let f � �NN����	N � where N
is a large integer and 	N is a bump function of mean zero adapted
to the interval 
���N � ��N �� This function is normalized in L log��� L

and has mean zero� but is not in L�� Indeed� if one lets Fj � je�jf j as
before� then for each 
 
 j 
 N � Fj is comparable to �jN����	j on the
interval 
���j � ��j�� and is rapidly decreasing outside of this interval�
From this we see that the left hand side of �
�� is too large �about
N����� The problem here is that the functions Fj have very di�erent
supports� and so their contributions to �
�� add up in l� rather than
l�� To get around thi s we can redistribute the mass of the Fj � setting
Fj � �NN�����

����N ���N �
for each 
 
 j 
 N � one veri�es that ��� is

still satis�ed� and that �
�� is now satis�ed because the Fj are summing
in l� rather than l�� �The frequencies j � 
 or j � N can be handled
by the original assignment Fj � j�jf j without di�culty��

To handle the general case we shall follow a similar philosophy�
namely that each Fj shall be a redistribution of j�jf j� whose supports
overlap so much that their contributions to �
�� are summed in l� rather
than l�� To do this for general functions f we will use a delicate recursive
algorithm� In order to control the error terms in this algorithm we shall
be forced to move to the dyadic �Haar wavelet� setting� and also to
reduce f to a characteristic function�

The argument is somewhat lengthy� and the methods used are not
needed anywhere else in the paper� Because of this� we defer the argu�
ment to an Appendix� and proceed to the key estimate in the proofs of
Theorems 
��� 
�� in the next section�

�� Positive results� the main estimate�

In this section we summarize the main estimate we will need to
prove in order to achieve the positive results in theorems 
�� and 
���
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�The positive results in Theorem 
�� follow immediately from those in
Theorem 
����

By interpolation with the trivial L� boundedness results coming
from Plancherel s theorem� it su�ces to show that the operators in
Theorem 
�� map H� and L log��� L to L���� and the operators in
Theorem 
�� map H� and L log��� L to L����

We will use two key results to obtain these boundedness properties�
The �rst is the square function estimate obtained above in Proposition
��
� The second is an endpoint multiplier result associated to an arbi�
trary collection of intervals� which we now state�

Proposition ���� Let N � 
 be an integer� and let fIg be a collection

of intervals in R which overlap at most N times in the sense that

�

�
���X

I

�
I

���
�
� N �

For each I� we assign a function fI � a non�negative function FI � and a

multiplier TmI
with the following properties�

� For each I� mI is supported on I� there exists a �I � I such that

the symbol mI �� � �I� is a standard symbol of order � in the sense of

e�g� 


��

� For any I � I and x � R we have the pointwise estimate

�
�� jfI�x�j � FI�x� 
 �I�x� �

where �I was de�ned in ����

Then we have

�
��
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI j�
�������

�
�

If we strengthen the condition on mI and assume that the mI are actu�

ally bump functions adapted to I uniformly in I� then we may strengthen

�
�� to

�
��
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI j�
�������

�
�
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We will prove this proposition in sections �� �� For now� we see
how this proposition and Proposition ��
 imply the desired mapping
properties on R� and R�

����� multipliers�
Let us �rst make the preliminary reduction that to prove the

L log��� L local mapping properties on Tm it su�ces to prove global es�
timates on Tmf assuming that f is supported in 
�� 
�� is normalized in

L log��� L� and has mean zero� The normalization to 
�� 
� follows from
dilation and translation invariance� the mean zero assumption comes
by subtracting o� a bump function and observing from the L� theory
that Tm applied to a bump function is locally in L�� hence locally in
L��� and L����

Our task is now to show that any f satisfying either of the condi�
tions in Proposition ��
� we have

�
�� kTmfkL��� � 
 �

for R� multipliers and

�
�� kTmfkL��� � 
 �

for R�
����� multipliers�

Fix f � and let Fj be as in Proposition ��
� We �rst prove �
���
We may assume without loss of generality that m is supported inS
j even
�j � �j��� �The case of odd j is similar and is omitted�� By a

limiting argument we may assume that only �nitely many of the fre�
quency components mj are non�zero for even j� By a further limiting
argument we may assume that each mj for even j is a rational linear

combination of elements in X� e�g� mj �
PNj

i�� 
j�imj�i where the mj�i

are uniformly in X and the 
j�i are non�negative rational numbers� By
placing the rational 
j�i under a common denominator N � and repeating
each mj�i with a multiplicity equal to N
j�i� we may thus write

m �



N

NX
i��

m�i� �

where the frequency components m
�i�
j are uniformly in X for even j� In

particular� this implies that

m �
X
I

c
I
�
I
�
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where each interval I belongs to 
�jI � �jI��� for some even jI � the inter�
vals I satisfy �

�� and

�
��
X
I�jI�j

c�I � N�� �

for each j� We may assume that jIj 
 �jI for all I� We split �
I

as

�
�� �
I
��� � 	I 	

l
I H�� � �lI� � 	I 	

r
I H��rI � �� �

where H � �
�	���

is the Heaviside function� �lI and �rI are the left and

right endpoints of I� and 	lI � 	
r
I � 	I are bump functions adapted to


�l � jIj� �l � jIj�� 
�r � jIj� �r � jIj�� and �I respectively�
We thus need to prove���X

I

c
I
T�I T�lIH����lI �

f
���
L���

� 
 �

together with the analogous estimate with the l index replaced by r�
We show the displayed estimate only� as the other estimate is proven
similarly�

Write mI � 	lIH�� � �lI�� �I � �lI � fI � cI T�If � and FI �
jcI jFjI � The estimate �
�� follows from eqreffj�support� the identity
T�I � T�I�jI and kernel estimates on T�I � Applying �
�� we thus see
that

���X
I

c
I
T�I T�lIH����lI �

f
���
L���

� N���
����X

I

jFI j�
�������

�
�

The claim then follows from the de�nition of FI � �
��� and �
��� This
proves �
���

The proof of �
�� is similar� but with �
I

replaced by a bump func�

tion e	I adapted to I� The only change is that the splitting �
�� is

replaced by e	I � 	I e	I � where 	I is a bump function adapted to �I
which equals 
 on I� and that �
�� is used instead of �
���

It remains only to prove �
�� and �
��� This shall be done in the
next two sections�



Endpoint multiplier theorems of Marcinkiewicz type ���

	� Proof of �
���

Fix I� N � fI � FI � mI � we may assume by limiting arguments that
the collection of I is �nite� From �
�� we can �nd bounded functions
aI for each I � I such that

fI � aI �FI 
 �I� �
Our task is then to show that���n���X

I

TmI
�aI�FI 
 �I��

��� � 

o��� � 
��N���kFk� �

where F denotes the vector F � �FI�I�fIg�
We now perform a standard vector�valued Calder�on�Zygmund de�

composition on F at height N����
 as

F � g �
X
J

bJ �

where g � �gI�I�I satis�es the L� estimate

�
�� kgk�� � N����
kFk� �
while the bad functions bJ are supported on J � satisfy the moment
condition

R
J
bJ � �� and the L� estimate

kbJk� � N����
 jJ j �
Finally� the intervals J satisfyX

J

jJ j � 
��N���kFk� �

Consider the contribution of the good function g� By Chebyshev� it
su�ces to prove the L� estimate

����
���X

I

TmI
�aI�gI 
 �I��

����
�
� 
N���

����X
I

jFI j�
�������

�
�

From Plancherel� the overlap condition on the I� and Cauchy�Schwarz�
we have the basic inequality

��
�
���X

I

TmI
hI

����
�
� N

X
I

kTmI
hIk�� �
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for any hI � We may thus estimate the left�hand side of ���� by

N
X
I

kTmI
�aI�gI 
 �I��k�� � N

X
I

kaI�gI 
 �I�k��

� N
X
I

kgI 
 �Ik��

� N
X
I

kgIk��

� NN����

����X

I

jFI j�
�������

�

as desired�
It remains to deal with the bad functions bJ � It su�ces to show

that ���n���X
I

X
J

TmI
�aI�bJ�I 
 �I��

��� � 

o��� �X

J

jJ j �

From uncertainty principle heuristics we expect the contribution of the
case jIj jJ j � 
 to be easy� Indeed� this case can be treated almost
exactly like the good function g� As before� it su�ces to show the L�

estimate ��� X
I�J �jIjjJj��

TmI
�aI�bJ�I 
 �I��

����
�
� 
�

X
J

jJ j �

By repeating the previous calculation� the left�hand side is majorized
by

N
X
I

��� X
J �jIjjJj��

bJ�I 
 �I
����
�
�

From the triangle inequality� it thus su�ces to show that

X
I

��� X
J �jIjjJj���m

bJ�I 
 �I
����
�
� ���mN��
�

X
J

jJ j �

for all m � �� This in turn follows if we can show

����
X

I�jIj���m�j

��� X
J �jJj��j

bJ�I 
 �I
����
�
� ���mN��
�

X
J �jJj��j

jJ j �
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for all m � � and j � Z�
Fix m� j� and observe from ��� that �I � ��m�j � By moving the I

summation inside the norm� we can estimate the left�hand side of ����
by ��� X

J �jJj��j

bJ 
 ��m�j
����
�
�

where 
 is now a vector�valued convolution� From the normalization
and moment condition on bJ we have

bJ 
 ��m�j � N����
�
J

 ��m�j �

Inserting this into the previous� the claim then follows from Young s
inequality and the L� normalization of the ��m�j �

It remains to treat the case jIj jJ j 
 
� We split

bJ�I 
 �I � �
�J

�bJ�I 
 �I� � �
� �
�J

� �bJ�I 
 �I� �

The contribution of the latter terms can be dealt with in a manner
similar to that of the jIj jJ j � 
 case� As before� it su�ces to show the
L� estimate��� X

I�J �jIjjJj��

TmI
�aI�
� �

�J
� �bJ�I 
 �I��

����
�
� 
�

X
J

jJ j �

As before� the left�hand side is majorized by

���� N
X
I

��� X
J �jIjjJj��

�
� �
�J

� �bJ�I 
 �I�
����
�
�

A computation shows the pointwise estimate

j�
� �
�J

� �bJ�I 
 �I�j � kbJ�Ik� jJ j�� �M�
J

���� �

�In fact there is an additional decay if jIjjJ j is large� but we shall
not exploit this�� Inserting this estimate into ���� and moving the I
summation back inside� we can majorize ���� by

N
����X

I

���X
J

kbJ�Ik� jJ j���M�
J

����
������������

�
�
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Using the triangle inequality for l� we may move the I square�summa�
tion inside the J summation� If one then applies Minkowski s inequality

����
�X

I

kbJ�Ik��
����

� kbJk� � N����
jJ j

we can thus majorize ���� by


�
���X

J

�M�
J

����
����
�
�

The claim then follows from the Fe�erman�Stein vector�valued maximal
inequality 
���

It remains to show that

����
���n��� X

I�J �jIjjJj��

TmI
BJ�I

��� � 

o��� �X

J

jJ j �

where
BJ�I � aI ��J �bJ�I 
 �I� �

For future reference we note from ���� that the BJ�I are supported on
�J and satisfy

����
X
I

kBJ�Ik�� � N��
� jJ j� �

for all J �
For each I� J in ����� let PJ�I be a multiplier whose symbol is a

bump function which equals 
 on the interval 
�I � jJ j��� �I � jJ j����
and is adapted to a dilate of this interval� We split

TI � TIPJ�I � QJ�I �

where QJ�I � TI �
�PJ�I�� The point is that even though the kernel of
TI decays very slowly� the operators PJ�I and QJ�I have kernels which
are essentially supported on an interval of width jJ j�

We �rst consider the contribution of the TIPJ�I � It su�ces as before
to prove an L� estimate

����
��� X
I�J �jIjjJj��

TmI
PJ�IBJ�I

����
�
� 
�

X
J

jJ j �
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By ��
� again� the left�hand side of ���� is majorized by

N
X
I

��� X
J �jIjjJj��

PJ�IBJ�I

����
�
�

From kernel estimates on PI�J we have the pointwise estimates

jPJ�IBJ�I j � kBJ�Ik� jJ j���M�
J

���� �

The contribution of the TIPJ�I is thus acceptable by repeating the ar�
guments used to treat ����� and using ���� instead of �����

It remains to consider the contribution of the QJ�I � For this �nal
contribution we will not use L� estimates� but the more standard L�

estimates outside an exceptional set

��� X
I�J �jIjjJj��

QJ�IBJ�I

���
L���

S
J CJ�

c�
� 


X
J

jJ j �

By the triangle inequality it su�ces to prove this for each J separately

��� X
I�jIjjJj��

QJ�IBJ�I

���
L���CJ�c�

� 
jJ j �

By translation and scale invariance we may set J � 
�� 
�� Let � denote
a bump function which equals 
 on 
�
� 
� and is adapted to 
��� ���
Let rI denote the symbol

rI � qJ�I � qJ�I 
 � �

where qJ�I is the symbol of QJ�I � Observe that QJ�IBJ�I � TrIBJ�I

outside of CJ � Thus it su�ces to show that��� X
I�jIj��

TrIBJ�I

���
L���CJ�c�

� 
 �

By H�older s inequality it su�ces to show the global weighted L� esti�
mate ���x X

I�jIj��

TrIBJ�I�x�
���
�
� 
 �
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By Plancherel� this becomes��� X
I�jIj��

�rI dBJ�I�
�
���
�
� 
 �

where the prime denotes di�erentiation�
The function dBJ�I is very smooth� in fact it satis�es the estimates

kdBJ�IkC� � kBJ�Ik� �

for all I� A computation using the construction of QJ�I and rI shows
that the symbol rI satis�es the estimates

jrI���j� jr�I���j � �
 � j� � �I j���	 �

Combining these two estimates we see the pointwise estimate

j�rI dBJ�I�
�j � kBJ�Ik��M�

��I����I���
�� �

From the Fe�erman�Stein vector�valued maximal inequality 
�� it thus
su�ces to show that��� X

I�jIj��

kBJ�Ik� ���I����I���

���
�
� 
 �

However from �

� and the hypothesis jIj 
 
 we see that the charac�
teristic functions �

��I����I���
overlap at most O�N� times at any given

point� The claim then follows from Cauchy�Schwarz and ����� This
completes the proof of �
���

We remark that the one can modify this argument so that one does
not need the full power of Proposition ��
 in the L log��� L case� using
a rescaled version of Zygmund s estimate ��� �for arbitrary lacunary
frequencies� not just the powers of �� as a substitute� we omit the

details� On the other hand� the �L log��� L�L���� result in Proposition

�� seems to require the full strength of Proposition ��
�
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� Proof of �
���

We now prove �
��� As before we �x I� N � mI � fI � FI � and assume
that the collection of I is �nite� We may also assume that the functions
FI are smooth�

To prove �
�� it su�ces to prove the stronger estimate

����
���X

I

TmI
fI

���
L���

� N���
����X

I

jFI 
 �I j�
�������

L���
�

This is because of the following lemma� which illustrates the natural
role of the Lorentz space L����

Lemma 
��� Let I be an arbitrary collection of intervals� and FI an

arbitrary collection of non�negative functions� Then

����X
I

jFI 
 �I j�
�������

L���
�
����X

I

jFI j�
�������

�
�

Proof� The desired estimate is the p � � case of the more general
estimate ����X

I

jFI 
 �I jp
���p���

L��p
�
����X

I

jFI jp
���p���

�
�

This estimate is trivial for p � 
 by Young s inequality and the integra�
bility of the �I � For p � � the claim follows from the Hardy�Littlewood
maximal inequality and the pointwise estimates

jFI 
 �I �x�j �MFI�x� �M�sup
I
FI��x� �

The complex interpolation theorem of Sagher 
�� for Lorentz spaces
then allows one to obtain the p � � estimate� Alternatively� one can
interpolate manually by writing FI � jF jaI � where jF j � �

P
I jFI j������

and exploiting the Cauchy�Schwarz inequality

jFI 
 �I�x�j� � ��Fa�j� 
 �j�x�� �jF j 
 �j�x�� � jF ja�I 
 �I�x�M jF j�x�

and the H�older inequality for Lorentz spaces 
��

k�fg����kL��� � kfk���� kgk���L��� �
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We omit the details�

It remains to prove ����� Let G denote the square function

G �
�X

I

jFI 
 �I j�
����

�

Note that G is continuous from our a priori assumptions� It would be
nice if the distributional estimate���n���X

I

TmI
fI

��� 	 �j
o��� � jfG 	 N�����jgj

held for all j� as this easily implies ����� While this is not quite true�
we are able to prove the substitute

����
���n���X

I

TmI
fI

��� � �j
o��� � ���jN kmin fG�N�����jgk�� �

for all j� Indeed� if ���� held� then we have

�j
���n���X

I

TmI
fI

��� 	 �j
o���

� N���
X
s

��jsjN���� �j�s jfG 	 N�����j�sgj �

the claim then follows by square�summing this in j� using the estimate

kFkL��� 	
�X

j

��j jfF 	 �jgj��
����

and using Young s inequality�
It remains to prove ����� Fix j� and consider the set ! � fG 


N���� �jg� Since G is continuous� ! is an open set� and we may de�
compose it into intervals ! �

S
J J such that G�x� � N���� �j on the

endpoints of J � Note that

����
X
J

jJ j � j!j � ���jN kmin fG�N�����jgk� �
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We can therefore split

��
�

X
I

TmI
fI �

X
I

TmI
�fI ��c � �

X
I�J �jIjjJj��

TmI
�fI �J �

�
X

I�J �jIjjJj��

TmI
�fI �J � �

To treat the contribution of the �rst term in ��
� we use L� estimates�
By Chebyshev it su�ces to show that

���X
I

TmI
�fI ��c �

����
�
� N kminfG�N���� �jgk�� �

However� by ��
� the left�hand side is majorized by

N
X
I

kfI ��ck�� � N
����X

I

jfI j�
����

�
�c

����
�

� N
����X

I

jFI 
 �I j�
����

�
�c

����
�

� N kmin fG�N����jgk�� �

as desired�
To treat the second term in ��
� we also use L� estimates� As

before� it su�ces to show

����
���X

I

TmI

� X
J �jIjjJj��

fI �J

�����
�
� N kminfG�N�����jgk�� �

Using ��
� as before� we can majorize the left�hand side of ���� by

N
X
I

��� X
J �jIjjJj��

�FI 
 �I��J
����
�
�

Since the J are all disjoint� we may re�arrange this as

N
X
J

X
I�jIjjJj��

kFI 
 �Ik�L��J� �
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For each J let xrJ be the right endpoint of J � so that G�xrJ � � N���� �j�
Now we exploit the assumption jIj jJ j � 
 to observe that

jFI 
 �I �x�j � jFI 
 �I�xrJ�j �

for all x � J � Applying this to the previous� we can thus majorize ����
by

N
X
J

jJ j
X
I

jFI 
 �I�xrJ �j� � N
X
J

jJ jG�xrJ�� � ��j
X
J

jJ j �

The claim then follows from �����
It remains to treat the third term in ��
�� By Chebyshev and ����

it su�ces to prove an L� estimate outside the exceptional set
S
J CJ��� X

I�J �jIjjJj��

TmI
�fI �J �

���
L���

S
J CJ�

c�
� �j

X
J

jJ j �

By the triangle inequality it su�ces to prove this for each J separately��� X
I�jIjjJj��

TmI
�fI �J �

���
L��CJc�

� �j jJ j �

We now adapt the arguments in the previous section� By dilation and
translation invariance we may set J � 
�� 
�� De�ne � as before� and
let rI be the multipliers

rI � mI �mI 
 � �

Then we have TmI
�fI �J � � TrI �fI �J � on �CJ�c� and it su�ces to

show that ��� X
I�jIj��

TrI �fI �J �
���
L��CJc�

� �j �

By H�older as before� it su�ces to show the global weighted L� estimate���x X
I�jIj��

TrI �fI �J ��x�
���
�
� �j �

By Plancherel� this becomes

����
��� X
I�jIj��

�rI�fI �J ��
���
�
� �j �
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The multipliers rI can be estimated as

jrI���j� jr�I���j � jIj�	 �M �
��I����I���

��	 �

The functions�fI �J can similarly be estimated as

k�fI �J kC� � kfI �J k� � kFI 
 �IkL���	���� �

From the positivity of FI we have

FI 
 �I�x� � jIj��	FI 
 �I���

and so we thus have

k�fI �J kC� � jIj��	�FI 
 �I���� �

We can thus majorize the left�hand side of ���� by��� X
I�jIj��

�FI 
 �I���� �M �
��I����I���

��	
���
�
�

By the Fe�erman�Stein vector�valued maximal inequality 
��� �

�� and
Cauchy�Schwarz as in the previous section� this is majorized by

N���
�X

I

�FI 
 �I�����
����

� N���G��� � �j �

as desired� This completes the proof of ���� and hence �
���

�� Remarks on multipliers of bounded s
variation�

Let 
 � s ��� For any function f supported on an interval 
a� b��
we de�ne the s�variation of f to be the supremum of the quantity

� NX
i�	

jf�ai���� f�ai�js
���s

�

where a � a	 � a� � � � � � aN � b ranges over all partitions of 
a� b� of
arbitrary length� We say that a multiplier Tm is a Vs multiplier if the
frequency component mj have bounded s�variation uniformly in j�
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Clearly the Marcinkiewicz class is the same as the V� class� but for
s 
 
 the Vs class contains multipliers not covered by the Marcinkiewicz
multiplier theorem�

In 
�� it was shown that the Vs class was contained in the R� class
for s � �� In particular� they showed that Vs multipliers were bounded
on Lp for 
 � p � � and s � �� From Theorem 
�� and Theorem 
��
we have the sharp endpoint version of this result when s � �

Corollary ���� Let 
 � s � �� Then the statements of Theorem 
��
�both positive and negative� continue to hold when the Marcinkiewicz

class is replaced by the Vs class�

Now consider the case s 
 �� By complex interpolation it was
shown in 
�� �see also earlier work in 
��� that Vs multipliers were
bounded in Lp when ���


�
� 


p

��� � 


s
�

From the study 
�� of the multipliers ��� it is known that this restric�
tion on p is sharp up to endpoints� However� the endpoint problem
remains unresolved� The most interesting case is when s � �� From
the counterexamples in Section � we see that negative results in Theo�
rem 
�� hold for V� multipliers� and so one may conjecture that these
multipliers also map both H� and L log���L locally to L���� If this
were true� th en for s 
 � the Vs multiplier class would map Lp to Lp�p

�

when 
�p � 
�s � 
�� by complex interpolation �cf� 
���� However� we
have been unable to prove these estimates using the techniques in this
paper� A natural model case would be when the frequency components
mj not only have bounded ��variation� but have the stronger property
of H�older continuity of order 
�� uniformly in j� �In 
�� it was shown
that a general function of bounded ��variation can be transformed into
a H�older continuous function of order 
�� by a change of variables��

In 
�� V� multipliers were shown to be bounded on Lp for all 
 �
p � �� By going through their argument carefully one can show that
the Lp operator norm grows like O�
��p� 
�C� for some constant C as
p �� �� so by extrapolation they map L logC L to L� locally for some
su�ciently large C� However these results are far from best possible�
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�� Appendix� proof of Proposition ����

We now prove Proposition ��
 when f is in L log��� L�
�C�C�� and
has mean zero�

It will be convenient to move to the dyadic setting� as we will need
to perform a delicate induction shortly� Accordingly� we introduce the
Haar wavelet system

	I � jIj���� ��
Il
� �

Ir
�

de�ned for all dyadic intervals I in 
�� 
�� where Il� Ir are the left and
right halves of I respectively�

The dyadic analogue of Proposition ��
 is

Proposition ���� Let f be a function on 
�� 
� such that

Z
jf j log����� � jf j� � 
 �

Then for each integer j � � we may �nd a non�negative function fj
supported on 
�� 
� such that

���� jhf� 	Iij � jIj����

Z
I

fj �

for all j � � and dyadic intervals I � 
�� 
� of length ��j� and that

����
����X

j�	

jfjj�
�������

�
� 
 �

We now show that Proposition ��
 implies Proposition ��
� The
idea is to use an averaging over translations to smooth out the dyadic
singularities of the Haar wavelet system�

Let f be as in Proposition ��
� we may assume that f is supported
on the interval 

��� ����� For negative j� we de�ne Fj � je�jf j as in the
H� theory� so that ��� holds as before� From the mean zero condition
of f we see that kFjk� � �j � so the contribution of these j to �
�� is
acceptable�

�
We remark that Zygmund�s original proof of �
� also proceeded via a dyadic model�
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For all �
�� � � � 
��� let f	 denote the translated function
f	�x� � f�x���� These functions all satisfy the requirements of Propo�
sition ��
� with the associated functions f	j � We now de�ne Fj for j � �
by

Fj�x� �
X
k�	

��jj�kj��
Z ���

����

f	k �x � �� d� �

We now verify ���� Fix x � 
�� 
� and j � �� We say that a number
�
�� � � � 
�� is normal with respect to x and j if

dist�x � �� ��k Z� � 



��
��jj�kj��	 ��k �

for all integers � � k � j�
Let "x�j denote the set of all normal �� it is easy to see that

j"x�j j 	 
� Let � be any element of "x�j � We compute

j�jf�x�j � j�jf
	�x � ��j

�
���X

I

hf	� 	Ii�j 	I�x � ��
���

�
X
k

X
I�jIj���k

�Z
I

f	k

�
jIj���� j�j	I�x � ��j �

If k � j� then a computation shows that

jIj���� j�j	I�x� ��j � ��j�k �
 � �k dist�x � �� I����		

� ��jk�jj�� �j �
 � �j dist�x � �� I������

and thus thatX
I�jIj���k

�Z
I

f	j

�
jIj����j�j 	I�x � ��j � ��jk�jj�� f	k 
 �j �

Now suppose that k � j� A computation using the normality of � shows
that

jIj���� j�j 	I�x � ��j � ���		jk�jj �j �
 � �j dist�x � �� I����		

and hence thatX
I�jIj���k

�Z
I

f	j

�
jIj���� j�j 	I�x � ��j � ��jk�jj�� f	k 
 �j �
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Combining these estimates and then averaging over "x�j we obtain ���
as desired�

Now we show �
�� for the non�negative j� From Young s inequality
and Minkowski s inequality we see the pointwise estimate

�X
j

jFj�x�j�
����

�
�X

k

��� Z ���

����

f	k �x � ��� d�
��������

�
Z ���

����

�X
k

f	k �x � ���
����

d� �

The claim then follows from Fubini s theorem and �����
It remains to prove Proposition ��
� To do this� we �rst reduce to

the case when f is a characteristic function� More precisely� we shall
show

Proposition ���� Let N � � be an integer� I	 be a dyadic interval�

and let I	 be the collection of all dyadic intervals in I	 of side�length

at least ��N jI	j� Let E be the union of some intervals in I� Then for

each dyadic interval I � I	 of length at least ��N jI	j� we may �nd a

non�negative function fI supported on I such that

���� jh�
E
� 	Iij � jIj���� kfIk� �

for all such I� and that�

����
���� X

I�I�

jfI j�
�������

�
� A jEj log

�
� �

jI	j
jEj
����

�

for some absolute constant A�

Indeed� by setting I	 � 
�� 
� and N ���� we see that Proposition

��� immediately implies Proposition ��
 for the L log��� L�normalized
functions jEj�� log�
�jEj������

E
for any set E with measure � � jEj 



� A general L log��� L function can be written as a convex linear
combination of such functions �see e�g� 

���� so the general case of
Proposition ��
 obtains �observing that the L��l�� space appearing in
���� is a Banach space��

�
If jEj�	
 we adopt the convention that jEj log���jI�j�jEj�

����	�
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It remains to prove Proposition ���� This shall be done by in�
duction on N � Clearly the claim is true for N � � simply by setting
fI� � �

E
� We warn the reader in advance that the inductive nature of

the argument will require some delicate estimates in which one cannot
a�ord to lose constant factors in the main terms�

Now �x N 
 �� m 
 �� I	� E� and suppose the claim holds for all
smaller values of N � We may rescale I	 to be the unit interval 
�� 
��

Let � � �
 
 be a small absolute constant to be chosen later� We
�rst prove the claim in the easy case jEj � �� In this case we set

fI � jIj���� jh�
E
� 	Iij�I �

The estimate ���� is trivial� To verify ����� we use H�older s inequality
and the orthonormal nature of the Haar basis���� X

I�I�

jfI j�
�������

�
�
���� X

I�I�

jfI j�
�������

�

�
� X
I�I�

jh�
E
� 	Iij�

����

� k�
E
k�

� jEj log
�

� �



jEj
����

�

as desired �if A is su�ciently large depending on ���
Now suppose jEj � �� Let I denote the set of all intervals I � I	

such that

���� � jEj jIj � jE � Ij � � jEj jIj �
holds� where � � �
 
 is an absolute constant to be chosen later� Let
J denote the set of all intervals not in I which are maximal with respect
to set inclusion� From our assumptions on E we see that J is a partition
of 
�� 
� into disjoint intervals� and each interval J � J satis�es

��N � jJ j � 
 �

Let J be any element of J� From the induction hypothesis we can
associate a function fI to each I � I	� I � J such that

h�
E
� 	Ii � h�

E	J
� 	Ii � jIj����

Z
I

fI �
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for all such I� and

���� kFJk� � A jE � J j log
�

� �
jJ j

jE � J j
����

�

where we have written FJ for the function

FJ �
� X
I�I��I
J

jfI j�
����

�

We have now de�ned the fI for all intervals contained in one of the
intervals J � J� It remains to assign functions fI to the intervals I in
I�

Let I� denote those intervals I in I such that jE � Ij 
 �� We will
set fI � � for all I � InI�� note that ���� holds vacuously for these I�
For I � I�� we de�ne fI by the formula

fI � jIj��� jh�
E
� 	Iij

X
J�J�J�I

jE � J j
jE � Ij

FJ
kFJk� �

Since I is the union of the intervals J � J contained inside it� we see
that

kfIk� � jIj��� jh�
E
� 	Iij

X
J�J�J�I

jE � J j
jE � Ij � jIj��� jh�

E
� 	Iij �

so that ���� holds for these I�
We now verify ����� For any J � J and x � J � we haveX

I�I�

jfI�x�j� �
� X
I�I��I
J

jfI�x�j� �
X

I�I��I
J

jfI�x�j�
����

� FJ�x�� �
X

I�I��I
J

jIj jh�
E
� 	Iij� jE � J j�

jE � Ij�
F �
J �x�

kFJk��

�
FJ �x��

kFJk��
�
kFJk�� �

X
I�I��I
J

jIj jE � J j�
jE � Ij� jh�E � 	Iij

�
�
�

Taking the square root of this and integrating� we obtain

����

���� X
I�I�

jfI j�
�������

�

�
X
J�J

�
kFJk�� �

X
I�I��I
J

jIj jE � J j�
jE � Ij� jh�E � 	Iij

�
����

�
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Now de�ne the function

g �
X
J�J

jE � J j �JjJ j �

For all I � I� we see that 	I is constant on intervals in J� and hence
that hg� 	Ii � h�

E
� 	Ii� Thus

��
� ���� �
X
J�J

�
kFJk�� �

X
I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

For future reference we observe from the construction of J and g that
kgk� � jEj and kgk� � � jEj� hence

����
X
I�I�

jhg� 	Iij� � kgk�� � kgk� kgk� � jEj� �

To estimate ��
�� we de�ne

J� � fJ � J 	 � jEj jJ j � jE � J j � � jEj jJ jg �
J� � fJ � J 	 jEj�	jJ j � jE � J j � � jEj jJ jg �

J� � fJ � J 	 jE � J j � jJ j jEj�	g �
note from ���� and the construction of J that J � J� � J� � J�� Thus
���� is the sum of

����
X

J�J��J�

�
kFJk�� �

X
I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

and

����
X
J�J�

�
kFJk�� �

X
I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

We �rst consider ����� the contribution of the very sparsely occupied
intervals� In this case we use crude estimates� From the estimate �a� �
b���� � a� b��� we have

���� �
X
J�J�

kFJk� �
X
J�J�

� X
I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�
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To estimate the �rst term� we observe from ���� that

kFJk� � A jEj�	 jJ j log
� 


jEj
����

and so X
J�J�

kFJk� � A jEj�	 log
� 


jEj
����

� A jEj�

since we of course have

����
X
J�J�

jJ j � 
 �

To estimate the second term� we use Cauchy�Schwarz and ����� to ob�
tain

���� � C A jEj� �
� X
J�J�

jJ j��
X

I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�

Using the estimate jJ j�� jE � J j � jEj�	� and then interchanging sum�
mations� we obtain

���� � C A jEj� �
� X
I�I�

X
J�J�J�I

jEj�	 jIj jE � J j
jE � Ij� jhg� 	Iij

�
����

�

Performing the J summation� this becomes

���� � C A jEj� � jEj�
� X
I�I�

jIj
jE � Ij jhg� 	Iij

�
����

�

Applying ���� and then ���� we thus obtain

���� ���� � C A jEj� � jEj� �jEj��jEj����� � A jEj� �

Now we turn to the more interesting term ����� From ���� we have

���� �
X

J�J��J�

��
A jE � J j log

�
� �

jJ j
jE � J j

������

�
X

I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

�
����

�
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Using the inequality

p
a� � b �

r
a� � b �

b�

� a�
� a�

b

� a
�

for a� b 
 �� we thus have

���� � ���� � ���� �

where ���� and ���� are given by

����
X

J�J��J�

A jE � J j log
�

� �
jJ j

jE � J j
����

and

����

X
J�J��J�




�A jE � J j log
�

� �
jJ j

jE � J j
����

�
X

I�I��I
J

jIj jE � J j�
jE � Ij� jhg� 	Iij

� �

Let us �rst estimate the error term ����� Since J � J��J�� we see that

log
�

� �
jJ j

jE � J j
����

	 log
� 


jEj
����

�

Applying this� re�arranging the summation� and simplifying� we obtain

���� � log
� 


jEj
����� X

I�I�

X
J�J�J�I

jIj jE � J j
jE � Ij� jhg� 	Iij

� �

Performing the J summation� we obtain

���� � log
� 


jEj
����� X

I�I�

jIj
jE � Ij jhg� 	Iij

� �

From ���� and ���� we thus have

���� ���� � jEj log
� 


jEj
�����

�
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It remains to treat ����� which is the main term� We split this as
���� � ����� ��
� � ����� where ����� ��
�� ���� are given by

X
J�J��J�

A jE � J j log
�

� �



jEj
����

�����

X
J�J�

A jE � J j
�

log�� �



jEj
����

� log
�

� �
jJ j

jE � J j
�����

��
�

X
J�J�

A jE � J j
�

log
�

� �
jJ j

jE � J j
����

� log
�

� �



jEj
�����

�����

Note that ����� ��
�� ���� are all non�negative� We can estimate ����
by

���� � A jEj log
�

� �



jEj
����

�

which is exactly the quantity needed for the induction hypothesis� Col�
lecting all the terms and using ����� ���� we see that we have to show
that

���� ��
� � ���� � C A jEj� � C jEj log
� 


jEj
�����

�

We thus seek good lower bounds on ��
� and good upper bounds on
�����

We �rst deal with ��
�� We may write this as

��
� � A
X
J�J�

jE � J j log �� � 
�jEj�� log �� � jJ j�jE � J j�
�log �� � 
�jEj���� � log �� � jJ j�jE � J j���� �

Both terms in the denominator are comparable to log �
�jEj����� while
the numerator is bounded from below by

log
�

� �



jEj
�
� log

�
� �




� jEj
�
	 
 �

Thus we have

��
� 	 A log
� 


jEj
���� X

J�J�

jE � J j �
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To obtain lower bounds for this� we observe thatX
J�J�

jE � J j � jEj �
X

J�J��J�

jE � J j

and X
J�J��J�

jE � J j �
X
J�J

�jEj jJ j � � jEj �

Thus

��
� � A jEj log
� 


jEj
�����

�

Now we attend to ����� As before� we may write

���� � A
X
J�J�

jE � J j log �� � jJ j�jE � J j�� log �� � 
�jEj�
�log �� � 
�jEj���� � log �� � jJ j�jE � J j���� �

Again� the denominator is comparable to log �
�jEj����� while the nu�
merator is comparable to log �jEj jJ j�jE � J j�� Thus

���� � A log
� 


jEj
����� X

J�J�jE	Jj�
jEjjJj

jE � J j log
� jEj jJ j
jE � J j

�
�

We estimate this dyadically as

���� � A log
� 


jEj
�����

�
X

k���k�


X
J�J�jE	Jj���kjEjjJj

jE � J j log
� jEj jJ j
jE � J j

�

� A log
� 


jEj
����� X

k���k�


X
J�J

��k jEj jJ j k

� A jEj log
� 


jEj
����� X

k���k�


��k k

� A jEj log
� 


jEj
����� X

k���k�


��k��

� A���� jEj log
� 


jEj
�����

�
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Thus ���� resolves to

C��A jEj log
� 


jEj
�����

� C A���� jEj log
� 


jEj
�����

� C A jEj� � C jEj log
� 


jEj
�����

�

and this is achieved if � is chosen su�ciently small �recall that jEj � ���
and then A is chosen su�ciently large depending on ��
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