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Non-symmetric hitting
distributions on the hyperbolic
half-plane and

subordinated perpetuities

Paolo Baldi, Enrico Casadio Tarabusi,
Alessandro Figa-Talamanca and Marc Yor

Abstract. We study the law of functionals whose prototype is
f0+oo B dWs(“ ), where B®), W) are independent Brownian motions
with drift. These functionals appear naturally in risk theory as well as in
the study of invariant diffusions on the hyperbolic half-plane. Emphasis
is put on the fact that the results are obtained in two independent, very
different fashions (invariant diffusions on the hyperbolic half-plane and
Bessel processes).

1. Introduction.
Let W}, B; be two independent one-dimensional Brownian motions,

and set
W =w,—put, BY =B, —uvt,

where v > 0 and p € R. In this paper we prove some results concerning
the distribution of the random variable.

T L)
(1.1) / B dw
0
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First we prove that it has a density given by

6_2“ arctan

(1.2) f(@)=cuu W ,
which belongs to the type IV family of Pearson distributions. The
functional (1.1) has been much studied because it appears in risk theory.
The density (1.2) was derived in [P, Example 3.1], with a proof for
v > 1 only; easy derivations for » > 0 in the particular case y = 0
can be found in [BCF, Remark 4.1] (if, in addition, v is a half integer
see also [AG, p. 32]). Interestingly, random variables as in (1.1) also
appear in connection with invariant diffusions on the hyperbolic half-
plane [l = {z € C: Imz > 0}.

On 1I consider the diffusion process associated to the infinitesimal
generator ,

Y 0 1 0
L= a-nyg —(v=3)vg

where the real coefficients  and v —1/2 measure the horizontal, respec-
tively vertical component of the drift (positive for leftward and down-
ward drift, negative for rightward and upward drift). The differential
operator L is invariant under the orientation-preserving isometries of
I that fix the point at infinity oo, that is, under the real affine trans-
formations z — a2z + b with a > 0 and b € R. The diffusion process
associated to L corresponds to the stochastic differential equation

dX¢y =Yy dWy — p Yy dt,

(1.3) 1
dY, = Y, dB, — (1/— §>Ytdt,

where, as before, W;, B; are independent one-dimensional Brownian
motions. The solution of (1.3) with starting point iy = (0,y) is

Y:‘, - yeBéu) )
1.4 t
- X :/ yeBgu) AW
0

Consider the hitting distribution of the diffusion associated to L and
starting at « 414y on any horizontal line H, = {Imz = a} with 0 < a <
y. For a = 0 the line H, is the boundary portion 0II\ {co} (in this case
the expression “hitting distribution” is a slight abuse of terminology),
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while for a > 0 it is a horocycle through co. Thus the law of the random
variable (1.1) is the hitting distribution of the diffusion associated to L
in Hy and starting at . If @ > 0 the hitting distribution is given by the
law of the random variable

/Ta y B AW |
0

where 7, = inf {t > 0: Y; = a} is the hitting time on H,.

In this paper we prove (1.2) and compute the characteristic func-
tion of f in two different fashions.

One is based on a computation of the Poisson kernel of the infinites-
imal generator associated to the process. Exploiting the invariance, this
kernel can be written in terms of a single function of one real variable
that satisfies a second-order linear ordinary differential equation and
is determined explicitly. Conjugating by the inverse Fourier transform
another second-order linear ordinary differential equation is obtained
whose solution is a confluent hypergeometric function and the char-
acteristic function of the hitting distribution. This is done in Section
2.

The second method uses probabilistic techniques (mostly classical
properties of Bessel processes) and is the object of Section 4. It is based
on the representation formulae (1.3), (1.4), and uncovers interesting re-
lations between Brownian exponential functionals and previous work of
Ph. Biane, J. Pitman, and the fourth-named author on Bessel processes
(see [PY1], [PY2], and the references therein).

In Section 3 we discuss an alternate derivation of the ordinary
differential equation satisfied by the characteristic function, by means
of the Feynman-Kac formula.

In Section 5 we prove that, as the parameters p, v as well as the co-
ordinates of the starting point of the process take their admissible values
(namely p € R, v > 0 and Im z > 0), the corresponding hitting distribu-
tions belong to the domain of attraction (extended domain of attraction
for v = 1) of nearly all stable laws with exponent a = min {2,2 v}, for
O0<a<2.

Finally, Section 6 is devoted to the study of the hitting distribution
on H, for y > a > 0. Using the invariance properties of the diffusion
process and the strong Markov property it is possible to derive an ex-
pression for the characteristic function of this distribution, and to prove
that it still belongs to the domain of attraction of a stable law with ex-
ponent o« = 2 v. However, in this case we are not able to give an explicit
expression for the density.
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2. The hitting distribution on H, and its characteristic func-
tion.

We perform computations both on the hyperbolic half-plane II and
the Poincaré disk D. They are isomorphic via the Cayley map z =
i(l1 —w)/(1+ w) (where z € Il and w € D), which corresponds to
¢ = tan(¢/2) on the boundaries, with £ € RU {co} = 01l and {e'® :
—m<¢<m}=0D.

The density P(&,z) at & of the hitting distribution on R of the
process associated to the operator L and starting at z € II is called
the Poisson kernel of L in the domain II, and satisfies the following
conditions:

1) Ly yP(§,x+iy) =0 for all { € R;

2) P(&,2z) > 0 for all ¢ € R and z € II;

3) Jg P(& 2)dé =1 for all z € II;

4) limy,_,o+ P({,z+iy) =0if £ # 2z and {,z € R.

Since L is invariant under the maps z — a z + b, then so is the
measure P (¢, z) d¢ on R for the diagonal action of the same maps, that
is, P(&,z) = aP(aé+b,az+0b). Setting f(x) = P(z,i), we therefore
have
1) Peatin=—P(S0) =120,

) Yy ) Yy
In other words, the hitting distribution with arbitrary starting point is
obtained, by a simple rescaling, from the one starting at .

The differential operator on D corresponding to L is invariant un-
der the maps w — (1 +a+ib)w+ (1 —a+1ib))/((l —a—ib)w+
(14+a—1ib)). Its Poisson kernel @ satisfies

a(l + tan? %)

1+ (atan% -l-b)2

Q¢ w) =

(1+a+ib)w+(1—a+ib)>

¢
-Q(2arctan (atan§+b>, (I1—a—ib)w+ (14+a—1ibd)

so that, if g(¢) = Q(¢,0), then

1— |w|? |1+w|2tan§—21mw
Q(p,w) = o P g<2 arctan e ) .
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Furthermore f(z) = 2g(2arctanx)/(1+ x?).

Condition 1) can be translated for f using (2.1), then setting & = 0
(since L is autonomous in z this may also be done beforehand) and y =
1. The result is the second-order linear ordinary differential equation

Mf =0, with

oy MO L2 i)+ (et (v+ D)) @) + (v + 2) 1)
2.2
= (@) + (a+ (v - 3)2) @),

proportional to

% ((g’(¢) + <,u + (1/ — %) tan g)g(qﬁ)) cos? %)

if ¢ = 2arctanx. The first-order linear equation obtained by equating
the expression in square brackets to a constant multiple of cos™2 (¢/2)
is solved by

¢
9(¢) = (g +7€/ el cosT2 L 5 d¢>6_”¢ cos?’ 1 g , with ¢,k € R.
0

Since P, whence f, @, g, must be positive by condition 2) and since for
¢ € (—m,m) the above integral takes arbitrarily large values of either
sign because v > 0, then k = 0 and f is given by (1.2).

Since ffwg = 1 as a consequence of condition 3), then by [GR,
3.892.2 and 8.384.1] and the basic properties of the Euler Gamma func-
tion we have

C=cCuy

— 2(/_7r e M cog? L 9 d¢)_1

22'/—1‘?(1 tv—i )‘2
2 H
B ' (2v)

In particular, by [GR, 8.332.2-3]

Cu,1/2 = Cu,l =~ 73—
w2 Gnhpr Ho coshpm’
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and, more generally,
v—1/2

[T @G+u®,  ifv=

=0

( 22V—1

Y Y VR

)
2

DN | =
| W

(2v — 1) psinh p

Cp,p =
22u—1

v—1
|+ = if v=1,2,3,...
\ (2V—1)!cosh,u7rj1;[0((j+2> +PJ>’ HV=HE0 -

as can also be checked by elementary means from the integral expression
of ¢,,,. On the other hand, for y = 0 from [GR, 8.335.1] we have

r (% + l/)
T TUETW)
We now compute the characteristic function of the hitting distribution.
Again by invariance, the expression for an arbitrary starting point x +
ty € 1l can be derived from the special case of starting point ¢. Indeed,
if u = F~1f is the inverse Fourier transform of f, then by (2.1) the
required characteristic function is F~1P(-,z +iy) = e u(Ay).

We have u(—)) = u(X) because f is real-valued, and u(0) = 1
by condition 3). Moreover, for k = 0,1,2 the function x*f®*)(z) is
integrable, whence Afu(*¥)(\) (exists and) is continuous, and vanishes
at infinity; in particular, w is continuous on R and twice continuously
differentiable outside 0, and vanishes at infinity. Thus u is in the kernel
of the operator N = F~1MF, given by

A2 1 A2

(24)  Nu() = S u'() - (y - 5)M/(A) - (7 -I—z'pJ/\)u()\).

With the change of variables v(w) = e*/2 u(w/2) the equation Nu = 0
becomes

wo" (w) + (b —w) v (w) —av(w) =0,

1
2.5 - - _ ;
( ) where{a 5 Vo,
b=1-2v.

This is a confluent hypergeometric equation in one of its standard forms
[EMOT, Chapter VI}, [T], and its solutions are called confluent hyper-
geometric functions. One solution for w > 0 is the Tricomi V-function,
defined as in [EMOT, 6.11.(13)] by

21-0T(1 — a) e®/?
m

U(a,b;w)=

/2
/ cos(gtan9+(2a—b) 9)cos_b9d9.
0 2
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For this formula to hold it is required that Reb < 1 and a is not
a positive integer, both of which hold for a,b given in (2.5). Since
U(a,b;w) has a finite non-zero limit for w — 07 and since

lim e /2 (a,b;w) =0

w—+0o0

[EMOT, 6.13.(1)], then the solution of Nu = 0 we are looking for is, for
A > 0, a multiple of e=*W¥(a,b;2 ). After some obvious manipulations
(2.3) gives

1

2¢cuu

w/2
= / cos (24 pn6) cos* =10 do ,
0
so that
1 .
\I!<§ —l/+2;1,,1—21/;0)

1
22”I‘(§ +v— z';z) /2
= / cos (24 1 0) cos* =1 0 db
0

T
1 1
(i)
2eu,m 2+V a

I'(2v)

: .
r<§+u+w)

We summarize the results of this section:

Proposition 2.1. For everyv > 0 and p € R, as t — +oo the dis-
tribution of Xy with starting point i converges to the probability defined
by the density (1.2). Its characteristic function is

I‘(%-I-l/-i-iy)
I'(2v)

1
(2.6) e_A\If(i—V+iu,1—2u;2)\),

where V is the Tricomi V-function.
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3. Use of the Feynman-Kac formula.

We now prove in a different way that the characteristic function
of Xo with starting point (Xo, Yp) = (0,1), i.e., thanks to (1.1), the
function

u(A) = Eg [ =] = E[exp(i)\/ooo B dW§u))] ,

is in the kernel of the ordinary differential operator (2.4). Hence-
forth we denote by P, , the law of the diffusion with starting point
(Xo0,Yy) = (z,y) and by E, , the corresponding expectation. Since the
Y -component is independent from W, then

u(\) = Eo,l[exp(m/oooygdws —w/\/OOOYSds)]

2

= Eoyl[exp(—%/ooo Yszds—ip,)\/ooostsﬂ

:E[exp/ooo—<w+i,u)\63§u))ds]

~Boafexp [ G(v.)as].

where G(y) = —y?/2 —ipy.

Proposition 3.1. Let N be given by (2.4), and let u(\) be a solution
for A >0 of Nu =0 such that

lim u(A) =1,
A—=0+
lim u(A) =0.
A—o00

Extend u to the negative half-line by setting u(\) = u(—A) for A < 0.
Then u(\) = Eg 1[e?*X=].

(Unlike in the previous section, we require limy_ oo AFu(X) = 0
only for k =0.)
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PRrOOF. For 0 < a <1 let
. 1
aa:mf{tZO: Yt:aorYt:—}
a

be the exit time of Y; from the interval (a,1/a). Then the Feynman-Kac
formula gives

u(A) = Bo,u [u(¥y, ) exp /0 "G ds].

As a — 0 we have 0, — +o00 and u(Y,,) — u(0) = 1 almost surely.

4. A probabilistic computation of the hitting distribution.

We shall now compute again the law of fooo B dWs(“), as a con-

sequence of the following three simple observations.

1) For a fixed real number x (the starting point), consider the two
processes

¢
Xt(u’y) = eBt(V)x + / B dWs(“) ;
0

t
Xt(u,u) = Bt )<:1: +/0 e B dWs(“)> :

Then X", X{**) have the same law for every fixed ¢ (although the
two processes do not have the same law). More generally this holds
whenever B, W are independent Lévy processes [CPY, Lemma 2.3].

2) The process ()~(t(” V) > 0) is a diffusion process with generator

= g (e ()

the adjoint of the operator M given in (2.2).

3) The distribution at time ¢ of this diffusion process converges to
the invariant distribution, whose density f(x) is given in (1.2).
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PROOF OF 2). By It6’s formula
> (,v o (p,v v dt v)o _ B\
dXt(H: ) — Xt(l% )<dB1£ )+ 5) +€B§ )6 Bt( ) th(H)
_ W) 4B 4 aw 1\ )
= ¢ t —+ t— Y + v — 5 Xt dt,

from which one derives easily that X)) is a diffusion process with a
generator as stated.

PrOOF OF 3). From 1), )A(:t(“’y) converges in law as ¢ — +o00, since

~ 1 .

X x ) and X XU Tt is easy to see that the
limit distribution is invariant, that is, it is annihilated by M, whence it
necessarily coincides with f.

As remarked in Section 3, the hitting distribution on Hy under P ,
is the law of the random variable fooo Y B dWS(“ ). If we set

oo oo
AY) = / e2B:” ds, AL = / B ds,
0 0
then X, can be written in the form of a subordinated perpetuity as
Xoo =7y = ALY,

where 7 is a Brownian motion independent of B, W. It is thus clear
that the law of X, is the same as that of

A A((;é) - NAC(>’</D,1) ’

where Z is an N(0,1) random variable, independent of B, W. If h is
any bounded Borel function on R, then

E[h(X.)] = E[h(z AY MAS;’U)]
[ Bl - )]
= E[ /R 7:7(3&? e (aHHALY)? [ (2AL) dx] _
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Since h is arbitrary, this yields a representation formula for the density
fof X

Theorem 4.1. We have

1 v,1)\2 v
fx) = E| o—(@+nAL /A |
\/ 27TA£Z)

Next comes a representation formula of the density f in terms of Bessel
processes. The main tool is Lamperti’s representation formula for the
geometric Brownian motion [RY, Exercise 11.1.28], which states that

(v) v
(4.1) P =R

where R(=") is a Bessel process with index —v. Taking s — +oo in

this relation, since the left-hand side tends to 0 one has R:(,l,')) =0, so

that A% coincides with the first passage time To(R(=Y)) of RG=) by
0. Moreover one can write

wy _ [T B® © gAY e gAY pHET) gy,
A= BT e Ty 7 pE i
0 0o ebBs o R 0 ¢
A

This can be summarized by stating that

" To(R(™))
42) AL ¥ (e, [T )
0 (=v)

Theorem 4.2. Denote by P") the law of the transient Bessel process
(Rq(f), u > 0) with dimension d =2 (v + 1) starting at 0, and define

e / R

¥) (@RS +uH1)? /2
fla) = \ﬁ E [R()e .

1

Then

In the particular case v = 1/2 we have that (Rgf),u > 0) is the
3-dimensional Bessel process starting at 0.
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ProoOF. Recall D. Williams’ time reversal result, which states that
_ 1
(Rl (hiery—gr 8 < To(RT) = (R u < Li(RY)),

where the right-hand side denotes the Bessel process with index v start-
ing from 0, and L, its last passage time by 1. Thus (4.2) may be written

Ll(R(")) d
(v) A(v,1)) 1By (v) _ou
(AQ. L) 2 (1a(r), [ )

It is now sufficient to use a result of absolute continuity between the

laws of
R(V)

uL1
,u§1>
(\/Ll

and of (R&V),u < 1), a transient Bessel process starting at 0 [BLY,
Théoreme 3|, [Y, sections 2 and 4].

Techniques based on Bessel processes give also an alternative proof
of expression (2.6) for the characteristic function of the hitting distri-
bution.

We assume y = 1. Lamperti’s representation formula (4.1) implies

also that A%) = T, (R(=")), where we denote by 7, the hitting time in =

of V; = B and T, (R(")) the hitting time in z of the Bessel process
R(=%). The same arguments leading to (4.2) give

Tz(R(_”))
(A(u) A(V,l)) 12‘7 (T (R(—u)) / di) .
Tz ) Tx z ’ 0 R’((,(,_V)

Thus for § € R, using [PY1, Proposition 12.2; p. 363] (see [PY2] for
more information) and the expression of the density of the law of a
Bessel process with index —v with respect to the law of a Bessel process
with index 0 (see, e.g., [RY, Exercise 11.1.18]), we have

E[e%m] = E[exp(z’@/ B dys — z'9,u/ B ds)]
0 0

92 Tz v Tz v
=E|exp|—— eZBg)ds—wu B ds
2 Jo 0

=g{™ [exp(—g T, (R) - w“/OTﬁ(R(_U)) %)]
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:.T—V+1/2 W—iN:V(z 9)
W_iu,y(29$) ’

where W. . denotes the Whittaker functions. This gives the character-
istic function of the hitting distribution on H,. Recalling the relation
between the Whittaker and Tricomi W-functions [T, 2.4.(5)]

Wi (2) = 2 H1/2 e=#/2 \I/(% +v—Fk 142y z)
and a functional property of the ¥ function [T, 2.3.(9)]
U(a—c+1,2—c2)=21V(a,c2),
we get
W_in(20) = (20)/F1/2 =" W(% +v+ipl+2v 29)
= (29)_’”“1/26_9\1/(% —v4ipl— 21/;29) ,
so that

1
(29)_V+1/26_9\I/(§ —1/+ip,,1—21/;29>

E[eieXTz :.T_U+1/2 .
(20x)—vtl/2 -0z \11(5 —v+ipl— 21/;29:1:)

1
e‘e\lf(i—u+iu,1—2y;29)

i )
e‘ew\lf(i—y+iu,1—2y;29x>

This gives the characteristic function of the hitting distribution on the
horocycle H,. Taking z — 0T one gets easily

1
' 6_9\11(——1/+ip,,1—21/;29>
E[ezGXoo]: 2

Y

1
\I/(§—V+iu,1—2y;0>

which is consistent with Proposition 2.1.
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5. Hitting distributions and stable laws.

The definitions and the theorem below are taken from [H, sec-
tions 5.18 and 5.25].

Definition 5.1. A probability distribution is stable if and only if its

characteristic function ¢ is of the following form S(z,c, , )

( exp(z’zt+c|t|°‘<1 + i ysgn(t) tan%)) :
f0<a<2anda#1,

2

exp(izt + c|t|a<1 + iysgn(t) —log|t|>) ,
T

\ ifa=1,

where c > 0,1 <~v <1, and z € R.

Definition 5.2. A probability law mg is said to belong to the domain of
attraction of a stable law m if there exist two sequences of real numbers

{an}tn, {bn}n such that

Xt ot Ko —bp taw
an

m, as n —» 00,

where { X, }n is a sequence of independent and identically distributed
random vartables with common law equal to my.

Define

—F(—a)cosﬂ, if0<a<2and a#1,
2
Clo) =4
=, ifa=1.
2
Note that C(«) > 0 whenever 0 < a < 2.

Theorem 5.3. Let {X,,},, be a sequence of independent and identically
distributed random variables and assume that

lim z*P(X; > z) =a, lim z*P(X; < —z) =0,

T—>00 T—>00
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where 0 < a < 2, and a,b >0 with a +b > 0. Set
0, fo<a<l,
My, = nE[Sin(%Xl)], ifa=1,
E[X,], ifl<a<?2,
c=ala+b)C(a),

_b—a
Cb+a

v

Then
X1+"'+Xn_nmn law
——m, asn — oo,
nl/a

where m is S(0, ¢, a,7y).

We have determined in the previous sections that the density f
of the random variable X, is given by (1.2) if the starting point is
i = (0,1). If the starting point is (0, y), then the hitting distribution is
the same as the law of yZ where Z is distributed according to f. We
now check that such a distribution belongs to the domain of attraction
of a stable law, of which we determine the parameters.

Assume first that 0 < v < 1. We have

. Cuv _ . Cu,v
lim 2?"P(Z > z) = LY emh7 lim 2?"P(Z < —x) = 2 ebm
T—00 14 T—00 v

so that, if the starting point is iy = (0, y), then

c y2u

. v —

a= lim 2% Py, (Xo > 1) = L2 e™HT
T— 00 ’ 2v

2v
I B 2v . _ Cu,vy 7%y
b= mlggom Py y(Xoo < —z) = —, ¢
Thus the assumption of Theorem 5.3 is satisfied and this density belongs
to the domain of attraction of the stable law S(0,¢,2v, 7).
Let us investigate the possible values of the parameters ¢, y. Clearly

c=2c,,y**C(2v)coshur, v = tanh (—p ).

Thus the parameter v can take all the values in the range (—1,1), that
is, all possible values except the extremal ones £1. Finally, by tuning
the value of y, one can make ¢ take any positive value.
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It is clear that if ¥ > 1 then the hitting distribution, having a
finite second order moment, belongs to the domain of attraction of a
Gaussian law. If ¥ = 1 then a finite second moment does not exist, but
it is known [GK, Theorem 35.1] that a probability law p belongs to the
extended domain of attraction of a Gaussian distribution if and only if

x2<1 - /_x u(dy)>

lim — =0

T— 400
/ y? u(dy)

—T

It is immediate to check that the above condition is satisfied for the
density (1.2) with » = 1. This means that there exist two sequences
{an}ns {bn}n of real numbers, with a,, > 0, such that if {X,}, is a
sequence of independent, identically distributed random variables with
density (1.2) for v = 1, then

X, 4+ X, w
e i TR N G ST

Qn

(although a,, is not necessarily equal to n'/®).

6. The case a > 0.

Recall that we denote by 7, the first hitting time of the diffusion
associated to L on the horocycle H,, with a > 0. We now show how
the characteristic function of the hitting distribution on H, can be
derived from that of X,,. This will allow us to prove that the hitting
distribution on H, is still in the domain of attraction of a stable law
with exponent 2 v, but we are not able to give its density. Denote by
K the Fourier transform of the hitting distribution on Hy with starting
point ¢, that is, with the notation of Section 5, the distribution of X,
under P ;. Then the characteristic function with starting point 7y is
t — K(yt). By conditioning with respect to the o-algebra F,, and
using the strong Markov property, for a < y one has

K(yt) = E[exp(it/0+oo yeBgu) dWs(“)ﬂ

= Eo,, [exp (z t 0+00 Y, dWS(M)>]
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+o0

~ B exp i1 /0 "y aw () |Bo[exp(it [ voaw(®)]

0

- E[exp(it/OTay B dWs(“))]E[exp<it/0+°°a B deFu))]

= E[exp(it/ yeBgu) dWS(“)>]K(at) .
0
Thus, if we denote by K, , the characteristic function of the hitting

distribution on H,, starting at ¢y, then

_ K(y?)
) = Rlar)

We already know that there exist sequences {ay, }n,, {by} of real num-
bers, with a,, > 0, such that

e K ()" s (),

G, n—>00

where ¢ is the characteristic function of a stable law, as described at
the beginning of Section 5. Thus we have

e—ibnytK<y_t> "

e_i(y_a)bntK“’y(i)n N e—ibnatK<@>n - zgzg '
Qp

It is easy to check now that, if ¢ is the characteristic function of a stable
law S(z,¢,a,7), then t — ¢(yt)/d(at) is the characteristic function
of a stable law

{S(Z(y—a),C(ya—aa),a7"y), lfa%l,
S(z(y —a) +cy(ylogly| — aloglal),c(y — a),1,7), ifa=1.
Thus the law of X, is still in the domain of attraction of a stable law
with exponent « = 2. More precisely, if v < 1, if {X,,},, is a sequence

of independent, identically distributed random variables with the same
law as X, , and if m,, is defined as in Theorem 5.3, then

}(1++;(n_nmn law
=
nl/e

m, as n —» 00,
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where m is a stable law S(0, ¢, o, y) with

a =min{2,2v},
c=2c,,(y* —a*)C(2v)coshpu,

v = tanh (—p ).

We omit the, otherwise obvious, statement for v = 1.
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