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(Quasicircles modulo

bilipschitz maps

Steffen Rohde

Abstract. We give an explicit construction of all quasicircles, mod-
ulo bilipschitz maps. More precisely, we construct a class S of planar
Jordan curves, using a process similar to the construction of the van
Koch snowflake curve. These snowflake-like curves are easily seen to be
quasicircles. We prove that for every quasicircle I' there is a bilipschitz
homeomorphism f of the plane and a snowflake-like curve S € S with
I' = f(S). In the same fashion we obtain a construction of all bilipschitz-
homogeneous Jordan curves, modulo bilipschitz maps, and determine
all dimension functions occuring for such curves. As a tool, we con-
struct a variant of the Konyagin-Volberg uniformly doubling measure
on I'.

1. Introduction.

Quasicircles are images of circles under quasiconformal maps of the
plane, see Section 2 for definitions and basic properties. They appear
in many different settings in analysis, for instance as Julia sets of some
rational maps, as limit sets of some Kleinian groups, or as boundaries
of those domains for which every BMO-function extends. There are a
large number of characterizations of quasicircles, see [G]. In this pa-
per we present a simple construction of Jordan curves that yields all
quasicircles, up to applying a bilipschitz map of the plane.

To give a rough description of our snowflake-like curves S, proceed
as in the inductive construction of the standard van-Koch snowflake,
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644 S. ROHDE

with the main difference that there are two replacement options instead
of just one: Each of the 4™ line segments of the n-th generation can be
replaced by a rescaled and rotated copy of one of the two polygonal arcs
of Figure 1.1. The sidelength p of the first alternative is a parameter
that is fixed throughout the construction of each individual S. See
Section 3 for a more precise description. Denote S the collection of all
curves S obtained in this way.

D D ]M.]M.]M.M

Figure 1.1. The two polygonal arcs allowed
in forming a snowflake-like curve.

Theorem 1.1. A Jordan curve I' C R? is a quasicircle if and only if
there are S € S and a bilipschitz map f of R? such that

I = ().

If T is a K-quasicircle, then there is p = p(K) and a bilipschitz f
with I' = f(S). If in addition diamI" = 1, then the bilipschitz norm of
f depends on K only.

As a possible application, consider a domain property that is in-
variant under bilipschitz maps. To decide if such a property holds for
all quasidiscs (domains bounded by quasicircles), it is sufficient to test
all snowflake-like curves. To illustrate what we have in mind, notice
that the domains bounded by our snowflake-like curves are easily seen
to be John domains (every point z in the boundary can be joined to
an interior point xy by a curve v such that for every point y € v, the
distance of y to the boundary is comparable to the diameter of the arc
of v between x and y). Since this John property is obviously preserved
under bilipschitz maps, we conclude from Theorem 1.1 the (well-known)
fact that quasidiscs are John-domains.

The proof of Theorem 1.1 is based on the construction of a uni-
formly doubling measure p on I' which, in a scaling invariant way, is
bounded above resp. below by 1-dimensional respectively a-dimensio-
nal Hausdorff content, where o < 2. More specifically, we prove
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Theorem 1.2. Let I' be a K -quasicircle. Then there are a probability

measure (1 on I' and constants C' > 0, o < 2 depending only on K such
that

o-17 < wBx,r) _ C(f)"‘

s~ w(B(w,s) = \s/ '

forall s <r <diamI'=1 and all x € T'.

Measures satisfying the upper bound have been constructed in ar-
bitrary metric spaces by Konyagin and Volberg [KV], with any exponent
larger than the Assouad dimension of the space. A simpler construc-
tion for arbitrary compact sets in R” was given by Wu [W]. It is clear
that measures having the lower bound do not exist in such generality,
a minimal (though not sufficient) requirement being that the Hausdorff
dimension of I is 1.

A PROBLEM. Our construction of the measure of Theorem 1.2 is not
canonical. Natural measures such as harmonic measure or Hausdorff
measures don’t work in general. Is there a natural (for instance Mdbius
invariant) construction?

The idea of the proof of Theorem 1.1 is as follows: Given I' and
i as above, we obtain a quasisymmetric homeomorphism f : T —
[’ such that |I| < p(f(I)) for all arcs I C T, where T is the unit
circle and |I| denotes normalized length. Here and in what follows we
write a < b if the ratio a/b is bounded above and below away from
zero. We construct a snowflake-like curve S together with a natural
parametrization g : T — S satisfying || < u(g(I)). Then we use the
trivial but useful observation that quasiconformal maps are determined
by their Jacobian determinant, up to composition by bilipschitz maps,
Lemma 2.1 below. Applied to extensions of f and g this shows that
f og~1!is a bilipschitz homeomorphism mapping S to I'.

The same idea can be applied to bilipschitz-homogeneous curves. A
Jordan curve I' is called bilipschitz-homogeneous if there is a constant
L such that for every pair of points a,b € I' there is a L-bilipschitz
homeomorphism f : I' — T satisfying f(a) = b. These curves have
been extensively studied by Mayer [M], Ghamsari and Herron [GH],
[HM]. Recently Bishop [B] succeeded in proving that they are always
quasicircles. Now consider the class HS of homogeneous snowflake-like
curves S defined by requiring that during the construction of S all of
the 4™ line segments of the n-th generation are replaced by the same



646 S. ROoHDE

(rescaled and rotated) polygonal arc of Figure 1.1. Our next theorem
says that these curves are precisely the bilipschitz-homogeneous curves,
modulo bilipschitz maps.

Theorem 1.3. Let I' C R? be a Jordan curve. Then the following
statements are equivalent:

i) I' is bilipschitz-homogeneous.

ii) There is S € HS and a bilipschitz map f of R? such that I' =
F(S).

iii) There is a quasiconformal map F of R?> with T = F(T) such
that the Jacobian determinant JF' satisfies

JF(w) — |2\
TF(2) SC(;—M) )

for some constants C >0, 0 < a <1 and all z,w € D with |z| < |w|.

c1l<

iv) There is a quasiconformal map F of R?> with T = F(T) such
that JF is almost radial (i.e. JF(z) < JF(|z|) for all z € R?).

It is an open problem to characterize Jacobian determinants of
quasiconformal maps (up to a bounded factor, say). David and Semmes
conjectured that a weight w : R2 — RT is comparable to a Jacobian
determinant if and only if w is a strong A°°-weight. In this context, part
iv) of Theorem 1.3 can be viewed as a characterization of sufficiently
regular almost radial Jacobian determinants of quasiconformal maps:

Corollary 1.4. Let w : [0,1) — R be non-decreasing. There is a
quasiconformal map F of R? with JF(z) < w(|z]) in D if and only if

o< =e(i=)"

for some C >0, a<1and all0 <r <s<1.

For a compact set A C R?, denote N4(r) the minimal number of
discs of radius 7 needed to cover A. Then 6(r) = N4(r)~! is a canonical
choice of a dimension function in order to obtain a Hausdorff measure
supported on A. Part iii) of Theorem 1.3 solves the problem posed in
[HM] about characterizing the dimension functions § : [0,1] — [0, 1]
that can occur for bilipschitz homogeneous curves:
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Corollary 1.5. Let 0 : [0,1] — [0, 1] be non-decreasing. Then § is
comparable to Nrp(r)~t for a bilipschitz homogeneous curve I' if and

only if 55 N
5 = ¢ (;)

for some C >0, <2 and all0 <r <s< 1.

Organization of the paper. Section 2 provides the (well-known)
background concerning quasiconformal maps. The snowflake-like curves
and their parametrizations are described in Section 3. Section 4 con-
tains the construction of the doubling measure and is independent from
the rest of the paper. Theorem 1.1 is proved in Section 5. Section 6 is
devoted to bilipschitz homogeneous curves. There we prove Theorem
1.4 and the corollaries.

2. Quasiconformal maps and their Jacobians.

In this section we collect the facts about quasiconformal maps
needed throughout the rest of the paper. The expert may safely skip
it. Let K > 1 and consider an orientation preserving homeomorphism
f: R — R%. Then f is K-quasiconformal if f € Wo? (first order
distributional derivatives being locally square-integrable) and if the in-
equality |Df(z)|? < KJf(x) between the operator-norm of the deriva-
tive Df and the Jacobian determinant Jf holds almost everywhere.
We have K > 1 unless f is conformal. The standard references to the
basic theory are [A] and [LV].

Recall that homeomorphisms f of R? are called L-bilipschitz if

Tle =yl < 1) = F) < Ll —l,

for all z,y € R%. The smallest such L is refered to as the bilipschitz
norm of f. It is clear that bilipschitz maps are quasiconformal, whereas
the converse is false in general.

Quasiconformal maps are quasisymmetric (if |z —y| = |« — z|, then
|f(z) — f(y)| < C|f(x) — f(2)]) and vice versa. If f : T — f(T) is
quasisymmetric, then there is a quasiconformal extension f : R? — R?
such that

(2.1) diam f(I) < [I[ [Df(x)],
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for every arc I C T and every point z € R? for which dist (z,T) =<
dist (z, I) =< |I|. We may further assume that [Df(x)| <1 for |z| > 2.

Lemma 2.1. If f, g are quasiconformal homeomorphisms of R? and if
Jf(z) < Jg(x), almost everywhere ,

then
F=fog™

15 bilipschitz.

PROOF. By the chainrule JF(z) < 1 almost everywhere. Since F is

quasiconformal, we obtain |[DF| < 1 almost everywhere. The lemma
follows from F € W2

loc -

The images of circles under quasiconformal maps of the plane are
called quasicircles. A simple closed curve (Jordan curve) I' is a quasi-
circle if and only if

diam[I’
(2.2) sqp TemTlz.y)
x,y€Tl |$ - y|

where I'(x,y) denotes the subarc between = and y of smaller diameter.
This is the Ahlfors three-point condition.

3. Snowflake-like curves.

To describe the construction, fix a parameter 1/4 < p < 1/2 defin-
ing the first arc v of Figure 1.1. Denote by 7' the second arc (the line
segment) of Figure 1.1. Inductively define polygons S,, consisting of 4™
line segments as follows: Denote the unit square by S;. To pass from
Sn to Sp41, for each of the 4™ edges [x,y] of S, replace [z,y] by a
scaled copy of v or v'. Here we assume that z follows y in the positive
orientation of S,,, that the scaling map is orientation preserving, and
that it maps the left endpoint of v respectively v’ onto z. See Figure
3.1 for a possible Ss.
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Figure 3.1. A possible Ss3.

For a given S, there are 2%" possibilities for choosing Sp+1- It is
clear that each sequence S,, thus obtained converges (geometrically)
to a closed limit curve S. Below we will show that these limit curves
are quasicircles, in particular they are Jordan curves. Denote S(p) the
collection of all limit curves S, and set

s= U sw.

1/4<p<1/2

Next, consider the class

Hs= J #HSW

1/4<p<1/2

of homogeneous snowflake-like curves defined as follows: A curve S €
S(p) belongs to HS(p) if and only if the approximating curve Sy, 41 is
formed from §S,, by replacing all edges of S,, by a scaled copy of the
same arc 7 or 7. Hence there are only two choices of S, 11 for a given
Sh-

Lemma 3.1. Every curve S € S(p) is a K-quasicircle, with K depend-
ing on p only.

PROOF. For an edge I of some S,,, denote T'(I) the isosceles triangle
with base I and height \/p — 1/4 |I|. So T'(I) is the convex hull of the
rescaled arc . Then the (smaller) arc S(I) of S with the same endpoints



650 S. ROHDE

as I is contained in T'([). If J is another edge (of some Sy,), one easily
proves by induction that either I NJ # @ or

dist (T'(), T(J)) > ¢, min{diamT'(I),diamT'(J)} .
Using the Ahlfors three-point condition (2.2), the lemma easily follows.

Next we will describe a one to one correspondence between S(p)
and certain labelled graphs. Let G = (V| E) be the infinite planar graph
depicted in Figure 3.2. It is obtained from a rooted homogeneous tree
of degree 7 by cyclically joining the 4™ vertices v € V of graph-distance
d(v) = d(v,vg) = n from the root vy.

Figure 3.2. The graph G.

The correspondence between a vertex v and an arc S(v) of S is
characterized by the following four properties:

i) S(vo) = S.
ii) If d(v) = n, then S(v) is an arc obtained from an edge of S,,.

iii) If d(v) = d(v') = n and if v,v" are adjacent in G, then S(v)
and S(v’) have a common endpoint.

iv) If v’ is a descendent of v (i.e. d(v,v') = d(v') — d(v)) then
S(v") c S(v).

Define the labelling £5 : V — Ry by

(3.1) ls(v) = diam S(v'),
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where v’ is any child of v (that is d(v,v") = d(v") — d(v) = 1).
This process of passing from S to £ clearly is reversible: If £ : V —
Ry is given and has the property that

(3:2) i((f},)) «{r %}

whenever v is a child of v, then there is a curve S = Sy € S(p), unique
up to rotation, such that £ = /g.

Given S € S(p), there is a canonical homeomorphism ¢g : S —
S, where S is the unit square. It is the map that sends a four-adic
interval S7(v) on S; onto the corresponding arc S(v). More formally,
the labelling #;(v) = 474" satisfies the above assumption (3.2) and
obviously yields S; = Sy,. With this interpretation, ¢g is given by

(3-3) ¢s(51(v)) = S(v),

for every v € V.
The next lemma can be proved in the same way as Lemma 3.1.

Lemma 3.2. Given S € S(p), the homeomorphism
¢s: ST — S

1s quasisymmetric if and only if there is C' such that

<C,

for all adjacent vertices v,v' € V.

Notice that for every S € S(p) there exists a quasisymmetric
parametrization ¢ : S; — S. But the natural parametrization de-
scribed above need not be quasisymmetric.

4. The doubling measure.

This section is devoted to the proof of Theorem 1.2. Throughout
this section I' is a K- quasicircle. We are first going to show that the
uniform metric dimension (Assouad dimension) of I' is bounded away
from 2, depending only on K. More precisely, we have
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Lemma 4.1. There are constants C(K) > 0 and a(K) < 2 such that,
for every q > 0, every arc I CI' contains at most

C
né—a
q

disjoint subarcs I+, ..., I, of diameters d,, > qdiam1I.

PRroOOF. It is well-known (and easily follows from quasisymmetry) that
quasicircles are porous: There is a constant ¢(K) such that for every
disc D(z,r) there is a disc D(y,cr) C D(z,r) \ I'. Let S be a square
of sidelength [, subdivided into k2 subsquares S; with sidelength [/k.
Then porosity and induction shows that I' meets at most C'k® of the
S, where a < 2 depends only on c. Setting [ = diam ] and k = [1/¢],
the lemma follows from the fact that only a bounded number of the
arcs I,,, can meet a fixed S;, by the three-point property.

PROOF OF THEOREM 1.2. We may assume diamI' = 1. Let a be the
constant from Lemma 4.1, pick any a < b < 2 and choose a sufficiently
small number ¢ < 1, specified during the course of the proof.

First choose a sequence Z,, = {I,, ;} of subdivisions of I' into dis-
joint half-open arcs I, ; with the following two properties:

a) ¢" <diamlI, ; < 2¢" for all n,j.

b) For I € Z,, and J € Z,41, either J C I (in this case we write
J<I),orJNI=ga.

Such a sequence is easy to find by successive “bisection” of arcs.
Next, define a sequence pu,, of probability measures on I' by specifying
por,(In, ;) for each n,j. Our measure p will be the weak limit of p,,. The
14, will have the following properties:

1) For all n and all pairs of adjacent arcs 1,1’ € Z,,,

3 /
1 < por (1) dl'amI <10
10 = pp(I") diaml —

2) For all n and all arcs I € Z,,, the mass p,([) is distributed over
its “children” J < I, i.e. no mass from I is transported away from [

S (D) = (D).

J<I
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3) For all n, all arcs I € Z,, and all arcs J < I we have

d.iaml< /I'n(I) < —b.
diam J ~ ppy1(J) T

It is immediate from 2) and a) above that u, weakly converges to a
measure i on I'. Before we proceed with the construction of pu,,, let
us show that p will have the required properties. To this end, consider
z€land 0 <r < R <1. By a) and b) there are arcs I € Z,, and
J eI, withz € JCIanddiaml xR =< q" , diamJ <xr < ¢™. It
easily follows from the three-point property, together with 1) and (2),
that pu(B(xz, R)) < u(I) and p(B(z,r)) < p(J). Now 3) implies

] b
d.1amI < p(I) < g bm=n) — (E) ,
diamJ — u(J) r

proving the theorem.

Now we describe the inductive construction of p,,. Set

1
pi(l ;) = T,

for all j, where # denotes cardinality. Then 1) is clear from a), and 2),
3) are void.

To obtain pi,+1 from pu,, let I € Z,, and let Jy, ..., J, denote the
children of I (i.e. J; < I), where r = r(I) is the number of children.
We assume the labeling is such that J; and J;4; are adjacent for all [.
A first attempt is to set

diam J,
my = m(Jy) = pn(I) = l

Z diam Jj,
k=1

and to try p,41(J;) = my. Notice that my; < p, (I)/r so that we would
roughly equidistribute the mass of I over its children. But then there is
no reason for the ratio in 1) to remain bounded after some generations.
To fix this, we proceed similarly to [W] and define

P41 (J1) = wymy

with weights w; = w(.J;) described below.
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Let us denote I~ and I™ the two arcs of Z,, adjacent to I, and by
Jo < I, J.y1 < IT the arcs of Z,, 1 adjacent to J; respectively J,.. Set
mo = m(Jo) and m,. 41 = m(J,41). Notice that mo =< p,(I7)/r(I7) <
pn(1)/r(17).

We first define w; and w,: Set
m(J) diam J’
J, J) =
QULT) m(J') diam J

and let wy = 1 if Q(Jy,Jo) > 1/10, and wy = 1/(10Q(J1,Jy)) if
Q(J1,Jy) < 1/10. In the same way define w, = 1if Q(J,, Jr4+1) > 1/10,
else w, = 1/(10Q(J, Jy4+1)). This definition applies to all those J €
Z,,+1 that have an endpoint in common with their parent J < I € Z,,.
In particular we have defined wy and wy41.

Notice that w; > 1, and that wyg = 1 if wy > 1 since Q(Jo, J1) =

Q(J1, o)7L Next, set wy = +-+ =w,_; = 1 if w; = w, = 1. Otherwise
we may assume wi > w, and choose a sequence ws, ..., w,_1 in such a
way that

(4.1) ij mj = pn(I),

]

(4.2) % < Wit <2,

and that

(4.3) e<w; Swy,

for y = 1,...,7 — 1 and some universal constant €. The existence of

such a sequence is easy to establish if ¢ is sufficiently small: Indeed,
from Lemma 4.1 we have wy < r(I)/r(I7) < Cqt7® < C'r(I)*1L.
Hence wymy < wy (1)~ p,(I) = o(pun(I)) as ¢ — 0. Now define
wj = 279wy for j = 1,2,..., jo, let the w; have a constant value w
for jo+1 < j < j; and finally set w; = 29—y, for j;+1< j < r(I).
It is clear that jp,j1 and w can be chosen so that (4.1) and (4.2) are
fulfilled. Since the contribution to 7, w;m; from 1 < j < jo and
from j; < j <riso(un(I)) as q decreases, w is bounded away from 0
and we have (4.3).

It remains to verify that p,1(J;) = w; my; satisfies 1)-3) above. To
see 1) for the pair (Jo,J1), just notice that

;Ln+1(J1) diamJo . w1 1

= —Q(J1,Jo) = 7 Ji, J 10
pns1(Jo) diamJy  wq Q(J1,Jo) 10’ Q(J1,Jo) or 10,
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if Q(Jy,Jo) < 1/10,€ [1/10,10] or greater to 10 respectively. Similarly,
1) holds for (J,, J,+1). For the pairs (Jg, Jg4+1) with 1 <k <r —1, the
ratio in 1) equals wg/wg41 which is bounded above and below by 1/2
and 2.

Property 2) is immediate from (4.1).

To check the lower bound of 3), let us begin with J = Jy: If
wy = 1 (the case Q(J1,Jo) > 1/10) this follows at once from the
triangle inequality diam ]l < Zg diam J;. Otherwise we have w; =
1/(10Q(J1,Jy)) > 1 and wy = 1 Hence we have the lower estimate of
3) for Jy,

diam I~ fin11(Jo)

<1.
diamJy pn(I7) —
Using property 1) for Z,,, we obtain
oy (1 1 10 diam Jy
u) pn (1)

,un+1(J1) - diamJ1 mo
S 1 10diam Jy g, (I7) diam I
- diamJ1 ,un+1(J0) 10diam I~

diam I

— diamJ;

To prove the lower bound of 3) for J; with 2 <1 < r, use w; < w; to
obtain

pon (1) S pn(I)  pp(I) diam.J; S diam
pni1(J1) — wimy  ppe1(Jr) diamJ; T diamJ;

The upper bound of 3) easily follows from Lemma 4.1 if ¢ is small
enough, since the w; are bounded below (independently of ¢) by (4.3).

5. The proof of Theorem 1.1.

PrOOF OF THEOREM 1.1. Given a quasicircle I', apply Theorem 1.2
to obtain the probability measure p on I'. Use p to define a homeomor-
phism

q5 : Sl — T

between the unit square S; and I' in such a way that the push-forward
under ¢ of length on S; is p : Fix points a € S; and b € T', and for
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x € Sy define ¢(x) to be the unique point on I' such that the (oriented)
arc ['(¢(z)) from b to ¢(x) has

p(T(p(x))) = %T&s(f)

where Sp(z) is the arc from a to z.
From ¢ we obtain a function (labelling) £: V' — Ry in the canon-
ical way, compare (3.1) and (3.3): For vertices v € V set

L(v) = diam ¢(S1(v)) .
We first observe that
(5.1) Lv) < L(v'),

if v and v’ are adjacent. To see this, just notice that the arcs I'(v) =
¢(S1(v)) and I'(v’) have measure < 4-%%) that I' is a quasicircle, and
use the doubling property of p (no uniformity is needed yet).

Next, let o < 2 be the exponent from Theorem 1.2, set

A=4Y>> 2
and observe that for all v € V and all descendents v’ of v we have

(5.2) C—1g—dv") < < C AU

To see this, observe that the four-adic interval S;(v’) is contained in
S1(v) and has length S;(v') = 4~%length Si(v), where d = d(v,v').
Then (5.2) is obtained from Theorem 1.2, applied to any = € ¢(S(v")),
by choosing r, s comparable to the diameters of ¢(S(v)) and ¢(S(v')).

For every labelling £ satisfying (5.1) and (5.2) there is a labelling

(5.3) U=/
(that is £'(v) < £(v) for all v € V) satisfying (3.2) with p = A71: Just
set £'(vp) = 1 and inductively define
1 :
1 U(v), ifl(v)>4L(v),
(5.4) () =

1 / : /
Zﬁ(v), if ¢/(v) < £(v).
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if v is a child of v. Then (3.2) is obvious and ¢ < { is easy.

From (3.2) we obtain a snowflake-like curve S with £g = ¢'. Now
ls =< £ together with (5.1) and Lemma 3.2 imply that both ¢ : S — T
and ¢g : S1 — S are quasisymmetric. Let ®, respectively &g be
quasiconformal extensions to the plane satisfying (2.1) with T replaced
by S; (the disc in (2.1) can be replaced by any chord-arc domain, as
can be seen by applying a bilipschitz homeomorphism of the plane).
Then (2.1) together with (5.3) implies |D®(z)| < |D®s(z)| in R?, and
the theorem follows from Lemma 2.1.

6. Bilipschitz homogeneous curves.

PrROOF OF THEOREM 1.3. By [HM]| and [B], our definition of bilip-
schitz-homogeneity coincides with the one used in [M] (existence of a
bilipschitz group acting transitively on I'.) To prove i) implies ii) we
use [M, Theorem 1.1]. Hence there is a parametrization h : T — T
satisfying
h(z) = h(y)| < C'|h(u) — h(v)|

whenever |z — y| < |u — v]|. Set

an, = min{|h(z) = h(y)| : | —y|=47"}
and consider the labelled graph (G, V) of Figure 3.2 with [(v) = a,, if
d(v) = n. We proceed as in the proof of Theorem 1.1. First we claim
that there is a labelling ¢/ < /¢ satisfying (3.2). Now |h(z) — h(y)| <
N(r)~1, where N(r) is the minimal number of discs of radius r needed
to cover I'. So (5.2) follows from Lemma 4.1, and ¢’ can be constructed
by (5.4) as in the proof of Theorem 1.1. Since ¢'(v) = ¢'(v’") whenever
d(v) = d(v"), the curve S € § with g = ¢ belongs to HS. As in the
proof of Theorem 1.1 we observe that the Jacobian determinant of the
extension of h is comparable to J®g and we obtain ii).

Now we show ii) implies iii). Let S € HS(p). By Lemma 3.2,
the canonical homeomorphism ®g : S; — S constructed in Section
3 is quasisymmetric. Denote its quasiconformal extension satisfying
(2.1) for x € D by ®g, too. Given z,w € D with |z| < |w]|, consider
the four-adic intervals I, J with 1 — |z| < dist(z,I) < |I| < 47™ and
1 — |w| < dist(w, J) < |J| < 47™. It follows from (2.1) that

1

c7(3)" (=12 ID@s(2)] < (1 - Jw]) [DPs(w)

S COp™ " (1= [2]) |[D®s(2)] -
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We obtain iii) with o = log (4p)/log2 < 1.
Since iii) trivially implies iv), it remains to show iv) implies 1).
Pick two points 2,y on I' and let R denote the rotation

By assumption we have JF < J(FoR), and by Lemma 2.1 FoR™loF~!
is bilipschitz, fixing I' and sending z to y.

PrROOF OF COROLLARY 1.4. First, let w as in the Corollary be given.
Define n(s) = sw(l — s)/2 for 0 < s < 1. Similar to the proof of
i) implies ii) above, set a, = n(4™") and consider the labelled graph
(G,V) of Fig. 3.2 with l(v) = a,, if d(v) = n. Then

< C4—(1—0¢/2)d(1},1}') )

Proceeding as above (c¢f. (5.2)), we obtain a quasiconformal map ®g
onto a bilipschitz-homogeneous curve S € HS(p) with p = 4%/2=1 such
that J®g < w in D.

The converse easily follows from Lemma 4.1.

PrOOF OF COROLLARY 1.5. Given a bilipschitz-homogeneous I', let
F be the quasiconformal parametrization from Theorem 1.3 (iii) and
set w(s) = JF(s) for 0 < s < 1. From (1 — s) w(s)/? < dist (F(s),T)
(quasisymmetry and (2.1)) we conclude

if and only if (1 —s)w(s)Y2=<p.

Thus the Corollary follows from Corollary 1.4.

Acknowledgement. I would like to thank Mario Bonk and Juha
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