Two endpoint bounds for generalized Radon transforms in the plane

Jong-Guk Bak, Daniel M. Oberlin and Andreas Seeger

1. Introduction

The purpose of this note is to prove $L^p \to L^q$ inequalities for averaging operators in the plane (also known as generalized Radon transforms). To describe our setup let Ω_L and Ω_R be open sets in \mathbb{R}^2 and let \mathcal{M} be a submanifold in $\Omega_L \times \Omega_R$ which will contain the singular support of the kernel of our operator. We assume that the projections $\mathcal{M} \to \Omega_L$ and $\mathcal{M} \to \Omega_R$ have surjective differential; thus the varieties

(1.1)
$$\mathcal{M}_{x} = \{ y \in \Omega_{R}; (x, y) \in \mathcal{M} \}$$
$$\mathcal{M}_{y} = \{ x \in \Omega_{L}; (x, y) \in \mathcal{M} \}$$

are smooth immersed curves in Ω_L and Ω_R , respectively.

Let $\chi \in C^{\infty}(\Omega_L \times \Omega_R)$ be compactly supported. We consider the operator

(1.2)
$$\mathcal{R}f(x) = \int_{\mathcal{M}_x} \chi(x, y) f(y) \, d\sigma_x(y);$$

where $d\sigma_x$ is a smooth density on \mathcal{M}_x depending smoothly on $x \in \Omega_L$.

The regularity properties of \mathcal{R} depend on certain finite type conditions, formulated in [15]. We recall that a vector field V on \mathcal{M} is of type (1,0) on an open subset U of \mathcal{M} if for every $P \in U$ we have $V_P \in T_P \mathcal{M} \cap (T_P \Omega_L \times \{0\})$. V is of type (0,1) on U if $V_P \in T_P \mathcal{M} \cap (\{0\} \times T_P \Omega_R\})$ for every $P \in U$. The $C^{\infty}(U)$ modules of vector fields of type (1,0) and (0,1) on U are denoted by $\mathcal{V}^{1,0}(U)$ and $\mathcal{V}^{0,1}(U)$, respectively. Since \mathcal{M} is three-dimensional there is a nonvanishing one-form ω which annihilates (1,0) and (0,1) vectors. If X and Y are nonvanishing vector fields of type (1,0) and (0,1), respectively, then

2000 Mathematics Subject Classification: 35S30, 42B99.

Keywords: Generalized Radon transforms, averaging operators.

the quantity $\langle \omega, [X, Y] \rangle$ is comparable to the rotational curvature introduced by Phong and Stein. In fact if \mathcal{M} is given by the equation $\Phi(x, y) = 0$ with $\Phi_x \neq 0$, $\Phi_y \neq 0$ and if we choose $X = \Phi_{x_2}\partial_{x_1} - \Phi_{x_1}\partial_{x_2}$, $Y = \Phi_{y_2}\partial_{y_1} - \Phi_{y_1}\partial_{y_2}$ and $\omega = \Phi_x dx - \Phi_y dy$, then $\langle \omega, [X, Y] \rangle / 2$ is equal to

$$J = \det \left(\begin{array}{cc} \Phi_{xy} & \Phi_x^t \\ \Phi_y & 0 \end{array} \right) ,$$

the rotational curvature. The generalized Radon transform \mathcal{R} is a Fourier integral operator of class $I^{-1/2}(\Omega_L, \Omega_R; N^*\mathcal{M}')$ in the sense of [5], and $N^*\mathcal{M}'$ is a local canonical graph if and only if J does not vanish.

We now recall the notion of finite type (μ, ν) . We write $\operatorname{ad}V(W) = [V, W]$ for the commutator of V and W and for integers $\mu \geq 1$, $\nu \geq 1$, we let $\mathcal{V}^{\mu,\nu}(U)$ denote the $C^{\infty}(U)$ -module generated by all vector fields in $\mathcal{V}^{1,0}(U) \cup \mathcal{V}^{0,1}(U)$ and all vector fields of the form $g \operatorname{ad}V_1 \cdots \operatorname{ad}V_{n-1}(V_n)$, where g is smooth, $V_i \in \mathcal{V}^{1,0}(U) \cup \mathcal{V}^{0,1}(U)$, at most μ of the V_i are in $\mathcal{V}^{1,0}(U)$ and at most ν of the V_i are in $\mathcal{V}^{0,1}(U)$. We say that \mathcal{M} is of type (μ, ν) at P if there is an open neighborhood U and a vector field $V \in \mathcal{V}^{\mu,\nu}(U)$ so that $\langle \omega_P, V_P \rangle \neq 0$ but $\langle \omega_P, W_P \rangle = 0$ for all $W \in \mathcal{V}^{\mu-1,\nu}(U) \cup \mathcal{V}^{\mu,\nu-1}(U)$. Thus type (1,1) corresponds to the nondegenerate situation of nonvanishing rotational curvature.

Let $n \geq 2$, $m \geq 2$. Following [14] we also say that \mathcal{M} satisfies a left finite type condition of degree n in U if \mathcal{M} is of finite type (1, k) for some k with $k \in \{1, \ldots, n-1\}$, for every $P \in U$. We note (see [15]) that \mathcal{M} satisfies this condition if only if for all $(x_0, y_0) \in \mathcal{U}$ the quantity $J(x_0, y)$ when restricted to the curve \mathcal{M}_{x_0} vanishes of order at most n-2 at $y=y_0$. Likewise \mathcal{M} satisfies a right finite type condition of degree m in U if \mathcal{M} is of finite type (j, 1) at P for some $j \in \{1, \ldots, m-1\}$, for every $P \in U$. Again an equivalent formulation is that for all $P_0 = (x_0, y_0) \in \mathcal{U}$ the quantity $J(x, y_0)$ when restricted to the curve \mathcal{M}^{y_0} vanishes of order at most m-2 at $x=x_0$.

We now state an endpoint $L^p \to L^q$ estimate for two-sided finite type conditions. In fact a sharper statement can be obtained by working with Lorentz-spaces $L^{p,q}$; note that $L^p \subset L^{p,r}$, if $r \geq p$, with continuous embedding.

Theorem 1.1. Suppose that \mathcal{M} satisfies a left finite type condition of degree n and a right finite type condition of degree m.

(i) Suppose that (1/p, 1/q) belongs to the closed trapezoid $\mathcal{T}(m, n)$ with corners (0,0), (1,1), $(\frac{m}{m+1}, \frac{m-1}{m+1})$, $(\frac{2}{n+1}, \frac{1}{n+1})$. Then \mathcal{R} maps L^p boundedly to L^q .

- ii) \mathcal{R} maps $L^{\frac{n+1}{2},n+1}$ to L^{n+1} and $L^{\frac{m+1}{m}}$ to $L^{\frac{m+1}{m-1},\frac{m+1}{m}}$.
- (iii) If there is a point P such that $\chi(P) \neq 0$ and \mathcal{M} is of type (1, n-1) at P then \mathcal{R} does not map $L^{\frac{n+1}{2},r}$ to L^{n+1} if r > n+1. If there is a point P such that $\chi(P) \neq 0$ and \mathcal{M} is of type (m-1,1) at P then \mathcal{R} does not map $L^{\frac{m+1}{m}}$ to $L^{\frac{m+1}{m-1},s}$ for s < (m+1)/m.

Remarks:

- (a) Let $\mathcal{G}(P)$ be the graph connecting (0,0) and (1,1) with the points $(\frac{\mu+1}{\mu+\nu+1}, \frac{\mu}{\mu+\nu+1})$ for which \mathcal{M} is of type (μ, ν) at P and suppose that (1/p, 1/q) lies above $\mathcal{G}(P)$. Then a result in [15] states that \mathcal{R} maps L^p to L^q provided that the cutoff function has sufficiently small support close to P; see also Phong-Stein [6], [7] for sharp endpoint bounds in several model cases. If (1/p, 1/q) lies below $\mathcal{G}(P)$ and $\chi(P) \neq 0$ then $L^p \to L^q$ boundedness fails ([15]). In the present situation this implies the following: If there is a point P with $\chi(P) \neq 0$ such that \mathcal{M} is of type (1, n-1) and of type (m-1, 1) and if \mathcal{M} is not of type (μ, ν) at P for all (μ, ν) with $(\frac{\mu+1}{\mu+\nu+1}, \frac{\mu}{\mu+\nu+1}) \notin \mathcal{T}(m, n)$ then the result in part (i) of Theorem 1.1 is sharp. In particular, the $L^{(n+1)/2,n+1} \to L^{n+1}$ estimate is best possible if \mathcal{M} is of type (1, n-1) and of type (m-1, 1) for some m.
- (b) The sharp bounds for p > (n+1)/2, q = 2p, and p < m/(m-1), 1/q = 2/p 1 are in [14], [15]. The $L^{(n+1)/2,n+1} \to L^{n+1}$ endpoint inequality for polynomial surfaces of the form $\mathcal{M} = \{(x,y) : y_2 = x_2 + \sum_{j+k \le n} a_{j,k} x_1^j y_1^k \}$, with $a_{1,n-1} \ne 0$ was obtained by the first author in [1] based on multilinear arguments in [3], [11]; our proofs of Theorem 1.1 and Theorem 1.2 below rely on this technique as well.
- (c) Let \mathcal{M} be defined by a polynomial as in (b). Then \mathcal{M} is of type (μ, ν) at the origin if $a_{\mu,\nu} \neq 0$ but $a_{j,k} = 0$ whenever $j \leq \mu$ and $k \leq \nu 1$ or $j \leq \mu 1, k \leq \nu$.

Our second result concerns weighted Radon transforms which incorporate the rotational curvature J as an improving factor (see e.g. [16]), namely for $\gamma > 0$ one defines

$$\mathcal{R}_{\gamma}f(x) = \int_{\mathcal{M}_x} \chi(x,y) |J(x,y)|^{\gamma} f(y) \, d\sigma_x(y).$$

It is known ([15]) that \mathcal{R}_{γ} maps L^2 into the Sobolev space $L^2_{1/2}$, provided that $\gamma > 1/2$. By standard arguments combining Littlewood-Paley theory

and (complex) interpolation (cf. [2]) one can see that $\mathcal{R}_{\gamma}: L^p \to L^{p'}_{\alpha}$ if $\alpha \leq 2-3/p, \ \gamma > 1/p'$ and $1 , in particular it maps <math>L^{3/2} \to L^3$ for $\gamma > 1/3$. In various cases the endpoint bounds for $\gamma = 1/3$ are known. If \mathcal{M} is given by the equation $y_2 = x_2 + S(x_1, y_1)$ then $J = S_{x_1y_1}$ and for real analytic S the endpoint $L^{3/2} \to L^3$ estimate can be deduced from the endpoint L^2 estimates for damped oscillatory integrals in Phong-Stein [9]. We shall prove an $L^{3/2} \to L^3$ endpoint estimate for the case where S is a polynomial of degree $\leq N$, which will have the added feature that the operator norms depend only on N. In the translation invariant case such theorems were obtained by the second author in [10], [13]. As in [7] our operator is now globally defined (without inserting cutoff-functions) and we obtain an improved inequality using Lorentz-spaces. We note that the standard interpolation argument alluded to above does not seem to yield this estimate since one uses analytic interpolation with changing powers of γ .

Theorem 1.2. Define

(1.3)
$$\mathcal{A}f(x_1, x_2) = \int_{-\infty}^{\infty} \left| \frac{\partial^2 P}{\partial x_1 \partial y_1} \right|^{1/3} f(y_1, x_2 + P(x_1, y_1)) \, dy_1$$

where P is a polynomial in (x_1, y_1) of degree at most N. Then there is a constant C(N) (independent of the particular polynomial) so that for $3/2 \le r \le 3$

(1.4)
$$\|\mathcal{A}f\|_{L^{3,r}} \le C(N) \|f\|_{L^{\frac{3}{2},r}}$$

for all $f \in L^{\frac{3}{2},r}(\mathbb{R}^2)$.

If $\partial^2 P/(\partial x_1 \partial y_1)$ does not vanish identically then the operator \mathcal{A} does not map $L^{3/2,r}$ to $L^{3,s}$ for any s < r.

In particular \mathcal{A} maps $L^{3/2}$ to L^3 .

The proof of Theorem 1.1 will be given in $\S 2$, and the proof of Theorem 1.2 in $\S 3$. We shall use the notation \lesssim for inequalities involving admissible constants; here the definition of admissibility depends on the context and will be made precise in $\S 2$ and $\S 3$, respectively.

2. Boundedness under finite type assumptions

In this section we give a proof of the boundedness result in Theorem 1.1. It suffices to establish the $L^{\frac{n+1}{2},n+1} \to L^{n+1}$ inequality. This also implies

the $L^{\frac{m+1}{2},m+1} \to L^{m+1}$ inequality for the adjoint operator \mathcal{R}^* and thus the $L^{\frac{m+1}{m}} \to L^{\frac{m+1}{m-1},\frac{m+1}{m}}$ inequality for \mathcal{R} .

By compactness arguments it suffices to prove the theorem for the case that our cutoff function χ is supported in a small neighborhood of a fixed point $P \in \mathcal{M}$; by performing translations we may assume that the coordinates vanish at P.

We may assume that \mathcal{M} is given as

$$\mathcal{M} = \{(x, y) : y_2 = G(x_1, x_2, y_1), |x_1|, |x_2|, |y_1| \le 2\}$$

where G is a C^{n+1} function defined on $[-2,2]^3$ and G satisfies

(2.1)
$$G(0,0) = 0, \quad G_{x_1}(0,0) = G_{y_1}(0,0) = 0,$$

$$G_{x_2}(0,0) = 1, \quad \frac{1}{2} \le G_{x_2}(x,y_1) \le 2.$$

We then also have for $x_1, x_2, y_1 \in [-1, 1]$

$$y_2 = G(x, y_1) \iff x_2 = H(y, x_1),$$

where H is defined on $[-1,1]^3$ and satisfies

(2.2)
$$H(0,0) = 0, \quad H_{y_1}(0,0) = H_{x_1}(0,0) = 0,$$

$$H_{y_2}(0,0) = 1, \quad \frac{1}{2} \le H_{y_2}(y,x_1) \le 2.$$

Let $M = \max\{n+1, m+1\}$. We let $\|(G, H)\|_{C^M}$ be the maximum of all derivative of order at most M of G or H in the cube $[-1, 1]^4$ and assume that

$$(2.3) ||(G,H)||_{C^M} < B;$$

note that $B \geq 1$.

The rotational curvature (with respect to the defining function $\Phi(x,y) = y_2 - G(x,y_1)$ is given by

(2.4)
$$J(x,y_1) = \det \begin{pmatrix} G_{x_1y_1}(x,y_1) & G_{x_1}(x,y_1) \\ G_{x_2y_1}(x,y_1) & G_{x_2}(x,y_1) \end{pmatrix}$$

By our finite type assumptions there are constants $a_L > 0$ and $a_R > 0$ so that

(2.5-L)
$$\min_{x} \max_{0 \le k \le n-2} \left| \frac{\partial^k}{(\partial y_1)^k} J(x, y_1) \right| \ge a_L$$

$$(2.5-R) \qquad \min_{y} \max_{0 \le j \le m-2} \left| \frac{\partial^{j}}{(\partial x_{1})^{j}} \left[J(x_{1}, H(y, x_{1}), y_{1}) \right] \right| \ge a_{R};$$

(2.5-L) means that \mathcal{M} is of type (1, k) (some $k \leq n - 1$) and (2.5-R) means that \mathcal{M} is of type (j, 1) (some $j \leq m - 1$), for any point under consideration, cf. the discussion in [15].

In what follows we choose

(2.6)
$$0 < \varepsilon \le \frac{1}{4} \min\{((m+1)!)^{-1} B^{-m} a_R, 2^{-n-5} n^{-1} B^{-2} a_L\}.$$

We define

$$Rf(x) = \int_{-\varepsilon}^{\varepsilon} \chi(x_1, x_2, y_1, G(x, y_1)) f(y_1, G(x, y_1)) dy_1$$

where χ is the characteristic function of $[-\varepsilon, \varepsilon]^4$. Note that if $x_1, x_2, y_1 \in [-\varepsilon, \varepsilon]$ then $|G(x, y_1)| \leq 2\varepsilon$.

It suffices to show that

$$||Rf||_{L^{n+1}} \lesssim ||f||_{L^{\frac{n+1}{2},n+1}}$$

where the notation $\alpha \leq \beta$ means $\alpha \leq C\beta$ where C depends only on B, m, n, a_L , a_R . Since R is a positive operator we may assume that f is nonnegative.

As in [1] we use a multilinear interpolation argument due to M. Christ [3]. In order to establish that R maps $L^{\frac{n+1}{2},n+1}$ to L^{n+1} one shows the more general multilinear estimate

$$\int \prod_{i=1}^{n+1} Rf_i(x) dx \lesssim \prod_{i=1}^{n+1} \|f_i\|_{L^{\frac{n+1}{2},n+1}}$$

and by symmetry and real interpolation ([3]) this will follow from

$$\int \prod_{i=1}^{n+1} Rf_i(x) dx \lesssim ||f_1||_1 \prod_{i=2}^{n+1} ||f_i||_{L^{n,1}}.$$

Now we use the change of variable $x_2 \mapsto u_2 = G(x_1, x_2, u_1)$ and write

$$\int \prod_{k=1}^{n+1} Rf_k(x) dx = \iint \chi(x_1, x_2, u_1, G(x, u_1)) f_1(u_1, G(x, u_1)) \prod_{i=2}^{n+1} Rf_i(x) dx du_1$$

$$= \iint \chi(x_1, H(u, x_1), u_1, u_2) f_1(u_1, u_2) \times$$

$$\times \prod_{k=2}^{n+1} Rf_k(x_1, H(u, x_1)) \left| \frac{\partial H}{\partial u_2}(u_1, u_2, x_1) \right| du dx_1$$

and, since $|(\partial H)/(\partial y_2)|$ is bounded by B, we may omit this factor. We have reduced matters to the estimate

(2.7)
$$\int \prod_{k=2}^{n+1} Rf_k(x_1, H(u, x_1)) dx_1 \lesssim \prod_{i=2}^{n+1} ||f_i||_{L^{n,1}}$$

for every u with $|u_1| \le \varepsilon$, $|u_2| \le 2\varepsilon$. In what follows we fix u. By Hölder's inequality it suffices to show

(2.8)
$$\left(\int [Rf(x_1, H(u, x_1))]^n dx_1 \right)^{1/n} \lesssim ||f||_{L^{n,1}}.$$

By duality (2.8) is implied by

$$\int Rf(s, H(u, s))g(s)ds \lesssim ||f||_{L^{n,1}(\mathbb{R}^2)}||g||_{L^{n/(n-1)}(\mathbb{R})},$$

for any nonnegative step function g. The left hand side is equal to (2.9)

$$\iint \chi(s, H(u, s), y_1, G(s, H(u, s), y_1)) f(y_1, G(s, H(u, s), y_1)) g(s) dy_1 ds$$

and we define

$$\omega^{y_1,u}(s) = G(s, H(u,s), y_1)$$

to change variables in this integral (after interchanging the order of integration).

Lemma 2.1. (i)

$$(\omega^{y_1,u})'(s) = \frac{(y_1 - u_1)E(s, u, y_1)}{G_{x_2}(s, H(u, s), u_1)}$$

where

(2.10)

$$E(s,u,y_1) = \int_0^1 \det \begin{pmatrix} G_{x_1y_1}(s,H(u,s),u_1+\tau(y_1-u_1)) & G_{x_1}(s,H(u,s),u_1) \\ G_{x_2y_1}(s,H(u,s),u_1+\tau(y_1-u_1)) & G_{x_2}(s,H(u,s),u_1) \end{pmatrix} d\tau.$$

(ii) Suppose that $u_1, y_1, s \in [-\varepsilon, \varepsilon]$, $|u_2| \le 2\varepsilon$ and $y_1 \ne u_1$. Then the derivative of $\omega^{y_1,u}$ vanishes at no more than m-2 points in $[-\varepsilon, \varepsilon]$.

The elementary proof will be given below. Given y_1, u there are intervals $I_i^{y_1,u}$, $i=1,\ldots,m$ with $\bigcup_{i=1}^m I_i^{y_1,u} = [-\varepsilon,\varepsilon]$ whose boundary points are measurable functions on (y_1,u) so that $\omega^{y_1,u}$ has nonzero derivative in the interior of $I_i^{y_1,u}$. On each interval $I_i^{y_1,u}$ let $\omega \mapsto s_i^{y_1,u}(\omega)$ be the inverse function of $\omega^{y_1,u}$ and let $\widetilde{I}_i^{y_1,u}$ the image of $I_i^{y_1,u}$ under $\omega^{y_1,u}$. Then the integral (2.9) becomes

$$\sum_{i=1}^{m} \int_{-\varepsilon}^{\varepsilon} \int_{I_{i}^{y_{1},u}} \chi(s, H(u, s), y_{1}, \omega^{y_{1},u}(s)) f(y_{1}, \omega^{y_{1},u}(s)) g(s) ds dy_{1}$$

$$= \sum_{i=1}^{m} \int_{-\varepsilon}^{\varepsilon} \int_{\omega \in \widetilde{I}_{i}^{y_{1},u}} \chi(s_{i}^{y_{1},u}(\omega), H(u, s_{i}^{y_{1},u}(\omega)), y_{1}, \omega) f(y_{1}, \omega) g(s_{i}^{y_{1},u}(\omega)) \Big| \frac{ds_{i}^{y_{1},u}}{d\omega} \Big| d\omega dy_{1}$$

$$\leq \sum_{i=1}^{m} \|f\|_{L^{n,1}} \|T_{i,u}\|_{L^{\frac{n}{n-1},\infty}}$$

where

$$T_{i,u}g(y_1,\omega) = \chi_{[-\varepsilon,\varepsilon]}(y_1)\chi_{\widetilde{I}_i^{y_1,u}}(\omega)g(s_i^{y_1,u}(\omega))\frac{ds_i^{y_1,u}}{d\omega}.$$

In order to finish the proof we have to show that $T_{i,u}$ maps $L^{n/(n-1)}$ to $L^{n/(n-1),\infty}$, that is

$$(2.11) \qquad \operatorname{meas}(\{(y_1, \omega) : |T_{i,u}g(y_1, \omega)| > \lambda\}) \lesssim \frac{1}{\lambda^{n/(n-1)}} \|g\|_{L^{n/(n-1)}(\mathbb{R})}^{n/(n-1)}.$$

The left hand side of (2.11) is equal to

(2.12)
$$\iint_{\substack{\{(y_{1},s)\in[-\varepsilon,\varepsilon]^{2},\,s\in I_{i}^{y_{1},u},\\g(s)\geq\lambda|(\omega^{y_{1},u})'(s)|\}}} |(\omega^{y_{1},u})'(s)|dy_{1}ds$$

$$\lesssim \int_{-\varepsilon}^{\varepsilon} \frac{|g(s)|}{\lambda} \operatorname{meas}(\{y_{1}:|y_{1}-u_{1}||E(s,u,y_{1})|\leq 2|g(s)|/\lambda\}) ds$$

where we have used that $|G_{x_2}| \leq 2$. We now employ the following standard

Sublevel set estimate [4]. For any positive integer ℓ there is a constant C_{ℓ} such that for any interval $I \subset \mathbb{R}$, any $h \in C^{\ell}(I)$ and any $\gamma > 0$ the inequality

$$\max\{x \in I : |h(x)| \le \gamma\} \le C_{\ell} \gamma^{1/\ell} \inf_{x \in I} |h^{(\ell)}(x)|^{-1/\ell}$$

holds.

In order to apply this we use

Lemma 2.2. For $u_1, s, y_1 \in [-\varepsilon, \varepsilon]$, $|u_2| \leq \varepsilon$ we have

$$\max_{1 \le k \le n-1} \left| \frac{\partial^k}{(\partial y_1)^k} [(y_1 - u_1) E(s, u, y_1)] \right| \ge 2^{-n-2} n^{-1} a_L.$$

Taking Lemma 2.2 for granted we apply the sublevel estimate for suitable $\ell \leq n-1$ and $\gamma = 2|g(s)|/\lambda$ if $g(s)/\lambda \leq 1$ (otherwise estimate the size of any sublevel set by 2ε). We obtain

(2.13)
$$\max \left(\left\{ y_1 \in [-\varepsilon, \varepsilon] : \left| (y_1 - u_1) E(s, u, y_1) \right| \le 2|g(s)|/\lambda \right\} \right) \\ \le \min \left\{ 2\varepsilon, \max_{1 \le \ell \le n-1} C_{\ell} (2^{n+3} n a_L^{-1} |g(s)|/\lambda)^{1/\ell} \right\} \lesssim (|g(s)|/\lambda)^{1/(n-1)}$$

and thus by (2.12), (2.13)

$$\max(\{(y_1, \omega) : |T_{i,u}g(y_1, \omega)| > \lambda\}) \le C \int \frac{|g(s)|}{\lambda} \left(\frac{|g(s)|}{\lambda}\right)^{1/(n-1)} ds$$
$$= C \frac{1}{\lambda^{n/(n-1)}} \|g\|_{L^{n/(n-1)}(\mathbb{R})}^{n/(n-1)}.$$

2.1. Proof of Lemmas 2.1 and 2.2

We need the following elementary

Sublemma. Let g, h be functions having N derivatives at a point x and suppose that $\max_{j \leq r} |u^{(j)}(x)| \leq B_r$, $r \leq N$. Suppose that $\max_{0 \leq j \leq N-1} |(uh' - u'h)^{(j)}(x)| \geq \alpha_N$. Then also

$$\max_{1 \le j \le N} |h^{(j)}(x)| \ge 2^{-N} \alpha_N - B_N |h(x)|.$$

Proof. By the Leibniz rule $(h'u - hu')^{(k-1)} = \sum_{l=1}^k b_{kl}h^{(l)} - hu^{(k)}$ where the coefficients are given by $b_{kl}(x) = \left[\binom{k-1}{l-1} - \binom{k-1}{l}\right]u^{(k-l)}(x)$ if $1 \leq l < k$, and $b_{kk}(x) = u(x)$. Thus

$$\max_{1 \le k \le N-1} |(h'u - hu')^{(k-1)}|
\le \sup_{k} \sum_{l} |b_{kl}(x)| \max_{1 \le j \le N} |h^{(j)}(x)| + |h(x)| \max_{1 \le k \le N-1} |u^{(k)}(x)|
\le 2^{N-1} B_N \max_{1 \le j \le N} |h^{(j)}(x)| + B_N |h(x)|$$

which implies the assertion.

Proof of Lemma 2.1 Note that

$$(\omega^{y_1,u})'(s) = G_{x_1}(s, H(u,s), y_1) + G_{x_2}(s, H(u,s), y_1)H_{x_1}(u,s).$$

The defining equation for H is $x_2 = G(u_1, H(x_1, x_2, u_1), x_1)$. Implicit differentiation yields that $H_{x_1}(u_1, G(x, u_1), x_1) = -(G_{x_1}/G_{x_2})(x, u_1)$ or

$$H_{x_1}(u_1, u_2, x_1) = -\frac{G_{x_1}(x_1, H(u, x_1), u_1)}{G_{x_2}(x_1, H(u, x_1), u_1)}.$$

Thus

$$(\omega^{y_1,u})'(s) = \left[\frac{1}{G_{x_2}(x,u_1)} \det \begin{pmatrix} G_{x_1}(x,y_1) & G_{x_1}(x,u_1) \\ G_{x_2}(x,y_1) & G_{x_2}(x,u_1) \end{pmatrix} \right]_{x=(s,H(u,s))}$$
$$= \frac{(y_1 - u_1)E(s,u,y_1)}{G_{x_2}(s,H(u,s),u_1)}.$$

Now we prove (ii). Since G_{x_2} does not vanish it suffices to show that

(2.14)
$$\max_{0 \le j \le m-2} \left| \left(\frac{\partial}{\partial s} \right)^j E(s, u, y_1) \right| \ge \frac{a_R}{2}.$$

We expand

$$(2.15) E(s, u, y_1) = E(s, u, u_1) + (y_1 - u_1)r(s, u, y_1)$$

where $E(s, u, u_1) = J(u_1, H(u, s), s)$ and

$$r(s, u, y_1) = \int_0^1 \int_0^1 \left[G_{x_1 y_1 y_1}(X, U_1) G_{x_2}(X, u_1) - G_{x_2 y_1 y_1}(X, U_1) G_{x_1}(X, u_1) \right]_{\substack{X = (s, H(u, s)) \\ U_1 = u_1 + \sigma \tau(y_1 - u_1)}} d\sigma \tau d\tau.$$

By assumption (2.5-R) we have

(2.16)
$$\max_{0 \le j \le m-2} \left| \partial_s^j E(s, u, u_1) \right| \ge a_R.$$

To get a concrete upper bound for the derivatives of r we need a well known fact about multiple applications of the chain rule. Namely let v be \mathbb{R}^d -valued and let η be a scalar function on the range of μ , both in C^k . Then $(\eta \circ v)^{(k)}$ is a sum of at most $\prod_{i=0}^{k-1} (d+i)$ terms each of which is of the form $\xi w_1 \cdots w_\ell$ where ξ is a derivative of η , of order $\leq k$, the w_i are derivatives of a component of v, of order at most k, and $\ell \leq k$. Of course more explicit formulas are known (such as the Faà di Bruno formula) but we don't need these here. Applying

this with d=2 we see that a derivative of order k of $s\mapsto G_{x_1}(s,H(u,s),y_1)$ can be estimated by $(k+1)!B^{k+1}$, and a similar remark applies to the other terms in the integrand defining r. Thus by the Leibniz rule we have the bound $|\partial^j r/(\partial s)^j| \leq \sum_{l=0}^j \binom{j}{l}(l+1)!B^{l+1}(j-l+1)!B^{j-l+1} \leq (j+3)!B^{j+2},$ $j \leq m-2$. Combining this with (2.16) and $|y_1-u_1| \leq 2\varepsilon$ we see that the left hand side of (2.14) has a lower bound $a_R - 2\varepsilon(m+1)!B^m$. Thus (2.14) follows by our choice of ε in (2.6).

Proof of Lemma 2.2. First

$$\frac{\partial^k}{(\partial y_1)^k} [(y_1 - u_1)E(s, u, y_1)] = \frac{\partial^{k-1}E}{(\partial y_1)^{k-1}} (s, u, y_1) + (y_1 - u_1) \frac{\partial^k E}{(\partial y_1)^k} (s, u, y_1).$$

Now we expand the kth derivative of the integrand in (2.10) about u_1 and get $\frac{\partial^{k-1}E}{(\partial y_1)^{k-1}}(s, u, y_1) = M_k(s, u) + \rho_k(s, u, y_1)$ where

$$M_k(s, u) = \frac{1}{k+1} \left[G_{x_2} \frac{\partial^{k+1} G_{x_1}}{(\partial y_1)^{k+1}} \right]_{(s, H(s, u), u_1)}$$

and

$$\rho_k(s, u, y_1) = -\frac{1}{k+1} \left[G_{x_1} \frac{\partial^{k+1} G_{x_2}}{(\partial y_1)^{k+1}} \right]_{(s, H(s, u), u_1)} +$$

$$+ (y_1 - u_1) \int_0^1 \int_0^1 \left[G_{x_2}(x, u_1) \frac{\partial^{k+1} G_{x_1}}{(\partial y_1)^{k+1}} (x, U_1) \right]_{(x_1 = u_1 + \sigma \tau(u_1 - u_1))} d\sigma \tau^k d\tau.$$

Since $|G_{x_1}| \leq 8\varepsilon B$ it is easy to see that $|\rho_k(s, u, y_1)| \leq 12\varepsilon B^2$, moreover the term $|(y_1 - u_1)\partial_{y_1}^k E(s, u, y_1)|$ above is bounded by $8\varepsilon B^2/(k+1)$. Since $G_{x_2} \geq 1/2$ we obtain by the Sublemma that

$$\max_{k=0,\dots,n-2} |M_k(s,u)| \ge (n-1)^{-1} 2^{1-n} \times$$

$$\times \max_{k=0,\dots,n-2} \left| \frac{\partial^k}{(\partial y_1)^k} [G_{x_1y_1} G_{x_2} - G_{x_2y_1} G_{x_1}]_{(s,H(u,s),u_1)} \right| - B \|G_{x_1}\|_{\infty}$$

$$\ge 2^{1-n} n^{-1} a_L - 8\varepsilon B^2.$$

Here the L^{∞} norm of G_{x_1} is taken over the cube $[-2\varepsilon, 2\varepsilon]^4$. We finally get

$$\left| \frac{\partial^k}{(\partial u_1)^k} \left[(y_1 - u_1) E(s, u, y_1) \right] \right| \ge 2^{-n} n^{-1} a_L - 20 B^2 \varepsilon$$

and the assertion follows from our choice of ε in (2.6).

Remark. For the $L^{(n+1)/2,n+1} \to L^{n+1}$ inequality the lower bound a_R in (2.5-R) enters only in the definition of ε in (2.6), the bounds depend on m but not on a_R . Indeed the type (m,1) assumption can be replaced by an assumption of bounded multiplicity; i.e. there is $\ell \in \mathbb{N}$ so that for almost all u (sufficiently small) the inverse images of the maps $s \mapsto G(s, H(u, s), y_1)$ have cardinality $\leq \ell$.

2.2. Sharpness of Lorentz exponents

It is well known that the necessary condition $1/q \geq 2/p-1$ follows by testing \mathcal{R} on characteristic functions of small balls. We assume 1/q = 2/p-1, $1 < r < \infty$, and verify that \mathcal{R} does not map $L^{p,r} \to L^{q,r-\varepsilon}$. Then applying this to the adjoint operator one also obtains the necessary condition $1/q \geq 1/(2p)$ and also that \mathcal{R} does not map $L^{p,r} \to L^{2p,r-\varepsilon}$.

It suffices to consider $1 \leq p < 2$. We assume that near the origin \mathcal{M} is defined by $y_2 = G(x, y_1)$ as in (2.1). For a large positive integer ℓ let $f \equiv f_{\ell}(y) = |y|^{-2/p}$ for $2^{-4\ell} \leq |y| \leq 2^{-\ell/2}$. Then if $|x_2 - H(0, x_1)| \approx 2^{-k}$ and $\ell \leq k \leq 2\ell$ then $|\mathcal{R}f(x)| \geq c2^{-k(1-2/p)}$ and this happens on a set of measure $\approx 2^{-k}$. Thus if $\lambda_{\mathcal{R}f}$ denotes the distribution function of $\mathcal{R}f$ then $\lambda_{\mathcal{R}f}(2^{-k(1-2/p)}) \gtrsim 2^{-k}$ and

$$\|\mathcal{R}f\|_{L^{q,s}} \gtrsim \left(\int [\alpha \lambda_{\mathcal{R}f}^{\frac{1}{q}}(\alpha)]^{s} \frac{d\alpha}{\alpha}\right)^{1/s}$$

$$\gtrsim \left(\sum_{k=\ell}^{2\ell} \left[c2^{-k(1-2/p)} \lambda_{\mathcal{R}f}^{1/q}(c2^{-k(1-2/p)})\right]^{s}\right)^{1/s}$$

$$\gtrsim \left(\sum_{k=\ell}^{2\ell} c'2^{-k(1-2/p+1/q)s}\right)^{1/s} \gtrsim \ell^{1/s}$$

if 1/q = -1 + 2/p, and by a similar computation $||f||_{L^{p,r}} \lesssim \ell^{1/r}$. Thus \mathcal{R} does not map $L^{p,r} \to L^{q,s}$ if s < r.

3. Polynomial Radon transforms with weights

We now give a proof of Theorem 1.2. Fix a real-valued polynomial P(s,t) of degree $\leq N$; we may assume that $(\partial^2 P)/(\partial s \partial t)$ is not identically zero (otherwise there is nothing to prove).

In this section the notation $\alpha \lesssim \beta$ means $\alpha \leq C\beta$ where C depends only on N. It suffices to establish the $L^{3/2,3} \to L^3$ boundedness since applying this result to the polynomial $P(y_1,x_1)$ and using duality implies the $L^{3/2} \to L^{3,3/2}$

boundedness and then by real interpolation the $L^{3/2,r} \to L^{3,r}$ boundedness for $3/2 \le r \le 3$. The sharpness assertion is proved as in the previous section (by working close to points with $(\partial^2 P)/(\partial s \partial t) \ne 0$).

We use the argument of the previous section; now $G(x, y_1) = x_2 + P(x_1, y_1)$, $H(y, x_1) = y_2 - P(x_1, y_1)$ and $J(x_1, y_1) = (\partial^2 P)/(\partial x_1 \partial y_1)$ are globally defined. For each $s \in \mathbb{R}$, let $I_1^s, I_2^s, \ldots, I_{M(N)}^s$ be disjoint intervals with union \mathbb{R} so that $t \mapsto \partial_s \partial_t P(s, t)$ has constant sign on the interior of each I_j^s . For $1 \leq j \leq M(N)$ let U_j be the set of all (s, t) such that $t \in I_j^s$ and we can choose the I_j^s so that the U_j are measurable. Let χ_j be the characteristic function of U_j and define the operator \mathcal{A}_j by

$$\mathcal{A}_j f(x) = \int f(y_1, x_2 + P(x_1, y_1)) |J(x_1, y_1)|^{1/3} \chi_j(x_1, y_1) dy_1.$$

It is enough to prove that A_j maps $L^{3/2,3}$ to L^3 , for any j. The goal is to show

$$\int_{\mathbb{R}^2} \prod_{k=1}^3 \mathcal{A}_j f_k(x) dx \lesssim \prod_{k=1}^3 \|f_k\|_{L^{3/2,3}},$$

and the argument in §2 reduces this to the following analogue of (2.8),

$$\sup_{u \in \mathbb{R}^2} \left(\int |J(x_1, u_1)|^{1/3} |\mathcal{A}_j f(x_1, u_2 - P(x_1, u_1))|^2 dx_1 \right)^{1/2} \lesssim ||f||_{L^{2,1}(\mathbb{R}^2)},$$

or, with the measure $d\mu_u(s) = |J(s, u_1)|^{1/3} ds$, to

$$(3.1)$$

$$\int |J(s, u_1)|^{1/3} \mathcal{A}_j f(s, u_2 - P(s, u_1)) \chi_j(s, u_1) g(s) ds$$

$$= \iint \chi_j(s, t) |J(s, t)|^{1/3} |J(s, u_1)|^{1/3} f(t, u_2 + P(s, t) - P(s, u_1)) g(s) ds dt$$

$$\lesssim ||f||_{L^{2,1}(\mathbb{R})} ||g||_{L^2(\mathbb{R}, d\mu)}.$$

In view of the assumption that J is not identically zero it is not hard to see that for every u_1 the function $s\mapsto P(s,t)-P(s,u_1)$ is not constant except for a finite set of values of t. Thus for almost all t there are intervals $I_i^{t,u}$, $i=1,\ldots,N$ with $\bigcup_{i=1}^N I_i^{t,u}=\mathbb{R}$ whose boundary points are measurable functions on (t,u) so that

$$\omega^{t,u}(s) = u_2 + P(s,t) - P(s,u_1)$$

has nonzero derivative in the interior of $I_i^{t,u}$ and, as in the previous section, we denote by $\omega \mapsto s_i^{t,u}(\omega)$ the inverse function of $\omega^{t,u}$ on $I_i^{t,u}$ and let $\widetilde{I}_i^{t,u}$ be

the image of $I_i^{t,u}$ under $\omega^{t,u}$. Let

$$S_{i,j,u}g(t,\omega) = \chi_{\widetilde{I}_{i}^{t,u}}(\omega) \frac{ds_{i}^{t,u}}{d\omega} \chi_{j}(s,t) |J(s,t)|^{1/3} |J(s,u_{1})|^{1/3} g(s) \Big|_{s=s_{i}^{t,u}(\omega)}$$

and, arguing as in the proof of Theorem 1.1, we see that (3.1) follows from

(3.2)
$$\operatorname{meas}(\{(t,\omega): |S_{i,j,u}g(t,\omega)| > \lambda\}) \lesssim \lambda^{-2} \int |g(s)|^2 |J(s,u_1)|^{1/3} ds.$$

The left hand side of (3.2) is equal to

$$(3.3) \qquad \iint_{\{(s,t):s\in I_{i}^{t,u},(s,t)\in U_{j}, \\ |J(s,t)|^{1/3}|J(s,u_{1})|^{1/3}g(s)\geq \\ \lambda|(\omega^{t,u})'(s)|\}} |(\omega^{t,u})'(s)|^{1/3}|J(s,u_{1})|^{1/3}g(s) \\ \leq \int_{-\infty}^{\infty} \int_{\{t\in I_{j}^{s}: \\ |J(s,t)|^{1/3}|J(s,u_{1})|^{1/3}g(s) \\ \geq \lambda|\frac{\partial P}{\partial s}(s,t) - \frac{\partial P}{\partial s}(s,u_{1})|\}} |dt \, ds$$

and we have to show that the right hand side is controlled by

$$\lambda^{-2} \int_{\mathbb{R}} |g(s)|^2 |J(s, u_1)|^{1/3} ds$$
,

with constant only depending on N. This is accomplished by applying the following lemma to the inner integral in (3.3), with $p(t) = \frac{\partial P}{\partial s}(s,t)$ (which has constant sign on I_i^s).

Lemma 3.1. There is a constant C(N) such that the following is true: If p is a real-valued polynomial of degree $\leq N-1$ and I is an interval with p' of constant sign on I, then for all $t_1 \in I$ and all B > 0 the inequality

(3.4)
$$\int_{\substack{\{t \in I: B|p'(t)p'(t_1)|^{1/3} \\ \geq |p(t)-p(t_1)|\}}} |p(t)-p(t_1)|dt \leq C(N) |B^2|p'(t_1)|^{1/3}$$

holds.

Proof. Note that the integration in (3.4) is always extended over a finite interval, thus we may assume that I is finite.

We begin by observing that there is $C_1(N)$ such that for $0 \le \theta \le 1$

$$(3.5) |b-a||p'(a)|^{1-\theta}|p'(b)|^{\theta} \le C_1(N) \int_{[a,b]} |p'(u)| du.$$

If a = 0, b = 1 this is true because the $L^1([0,1])$ and $L^{\infty}([0,1])$ norms are equivalent on the (finite-dimensional) space of polynomials of degree bounded by N-2. For other intervals [a,b] an affine change of variables reduces to the case a = 0, b = 1.

Continuing the proof of the lemma, the set

$$\{t \in I : B|p'(t)p'(t_1)|^{1/3} \ge |p(t) - p(t_1)|\}$$

is contained in the union of two minimal subintervals $[t_0, t_1]$ and $[t_1, t_2]$ of I (so that the defining inequality holds for $t = t_0$ and $t = t_2$). It is enough to bound the integral of $|p(t) - p(t_1)|$ over each of these intervals by $C_1(N) B^2 |p'(t_1)|^{1/3}$. The argument is the same in both cases, so we consider the integral over $[t_0, t_1]$. Clearly

$$(3.6) \quad \int_{t_0}^{t_1} |p(t) - p(t_1)| dt \le \int_{t_0}^{t_1} \int_{t}^{t_1} |p'(v)| dv dt \le (t_1 - t_0) \int_{t_0}^{t_1} |p'(v)| dv.$$

We apply (3.5) with $\theta = 1/3$ and see that the right hand side of (3.6) is dominated by

$$(3.7) C_1(N) \left(\int_{t_0}^{t_1} |p'(v)| dv \right)^2 |p'(t_0)|^{-2/3} |p'(t_1)|^{-1/3} \le C_1(N) B^2 |p'(t_1)|^{1/3}$$

where the last inequality holds since $B|p'(t_0)p'(t_1)|^{1/3} \ge |\int_{t_0}^{t_1} p'(v)dv|$ and p' is of constant sign on $[t_0, t_1]$. The assertion follows from (3.6), (3.7).

Remark. Suppose that the polynomial P(s,t) is replaced by a C^2 function S(s,t) with the property that for almost all t_1 the generic multiplicities of the maps $(s,t) \mapsto (S(s,t) - S(s,t_1),t)$ and $s \mapsto S_s(s,t) - S_s(s,t_1)$ are bounded by some number ℓ (here we say that $F: \mathbb{R}^d \to \mathbb{R}^d$ has generic multiplicity bounded by ℓ if $F^{-1}(y)$ has cardinality $\leq \ell$ for almost all $y \in \mathbb{R}^n$). In this case a variant of the argument used by the second author in [12] can be employed to show a slightly weaker inequality, namely that \mathcal{A} is of restricted strong type (3/2,3); i.e. it maps $L^{3/2,1}$ to L^3 , with operator norm depending only on ℓ .

References

- [1] Bak, J.-G., An $L^p L^q$ estimate for Radon transforms associated to polynomials. Duke Math. J. 101 (2000), 259–269.
- [2] Brenner, P., $L_p L_{p'}$ estimates for Fourier integral operators related to hyperbolic equations. Math. Z. **152** (1977), 273–286.
- [3] Christ, M., On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case. Trans. Amer. Math. Soc. 287 (1985), 223-238.
- [4] Christ, M., Hilbert transforms along curves, I. Nilpotent groups. Ann. of Math. 122 (1985) 575–596.
- [5] HÖRMANDER, L., Fourier integral operators I. Acta Math. 127 (1971), 79–183.
- [6] Phong, D. H. and Stein, E. M., Radon transforms and torsion. *Int. Math. Res. Notices*, appended to *Duke Math. J.* (1991), 49–60.
- [7] Phong, D. H. and Stein, E. M., Models of degenerate Fourier integral operators and Radon transforms. *Ann. of Math.* **140** (1994), 703–722.
- [8] Phong, D. H. and Stein, E. M., The Newton polyhedron and oscillatory integral operators. *Acta Math.* **179** (1997), 146–177.
- [9] Phong, D. H. and Stein, E. M., Damped oscillatory integral operators with analytic phases. *Adv. Math.* **134** (1998), 146–177.
- [10] OBERLIN, D. M., Oscillatory integrals with polynomial phase. *Math. Scand.* **69** (1991), 45–56.
- [11] OBERLIN, D. M., Multilinear proofs for two theorems on circular averages. Colloq. Math 63 (1992), 187–190.
- [12] OBERLIN, D. M., Convolution with affine arclength measures in the plane. *Proc. Amer. Math. Soc.* **127** (1999), 3591–3592.
- [13] OBERLIN, D. M., Convolution with measures on polynomial curves, to appear in *Math. Scand.*
- [14] SEEGER, A., Degenerate Fourier integral operators in the plane. *Duke Math. J.* **71** (1993), 685–745.
- [15] SEEGER, A., Radon transforms and finite type conditions. J. Amer. Math. Soc. 11 (1998), 869–897.
- [16] SOGGE, C. D. AND STEIN, E. M., Averages of functions over hypersurfaces: smoothness of generalized Radon transforms. *J. Anal. Math.* **54** (1990), 165–188.

Recibido: 7 de septiembre de 2000

Jong-Guk Bak Department of Mathematics Pohang University of Science and Technology, Pohang 790-784 and Korea Institute for Advanced Study, Seoul 130-012 Korea bak@euclid.postech.ac.kr

> Daniel M. Oberlin Department of Mathematics Florida State University Tallahassee, FL 32306 USA oberlin@math.fsu.edu

> Andreas Seeger Department of Mathematics University of Wisconsin Madison, WI 53706 USA seeger@math.wisc.edu