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Two endpoint bounds for generalized
Radon transforms in the plane

Jong-Guk Bak, Daniel M. Oberlin and Andreas Seeger

1. Introduction

The purpose of this note is to prove Lp → Lq inequalities for averaging
operators in the plane (also known as generalized Radon transforms). To
describe our setup let ΩL and ΩR be open sets in R

2 and let M be a sub-
manifold in ΩL × ΩR which will contain the singular support of the kernel
of our operator. We assume that the projections M → ΩL and M → ΩR

have surjective differential; thus the varieties

(1.1)
Mx = {y ∈ ΩR ; (x, y) ∈ M}
My = {x ∈ ΩL; (x, y) ∈ M}

are smooth immersed curves in ΩL and ΩR, respectively.

Let χ ∈ C∞(ΩL×ΩR) be compactly supported. We consider the operator

(1.2) Rf(x) =

∫
Mx

χ(x, y)f(y) dσx(y) ;

where dσx is a smooth density on Mx depending smoothly on x ∈ ΩL.

The regularity properties of R depend on certain finite type conditions,
formulated in [15]. We recall that a vector field V on M is of type (1, 0) on an
open subset U of M if for every P ∈ U we have VP ∈ TPM∩ (TP ΩL ×{0}).
V is of type (0, 1) on U if VP ∈ TPM∩ ({0}×TP ΩR}) for every P ∈ U . The
C∞(U) modules of vector fields of type (1, 0) and (0, 1) on U are denoted by
V1,0(U) and V0,1(U), respectively. Since M is three-dimensional there is a
nonvanishing one-form ω which annihilates (1, 0) and (0, 1) vectors. If X and
Y are nonvanishing vector fields of type (1, 0) and (0, 1), respectively, then
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the quantity 〈ω, [X,Y ]〉 is comparable to the rotational curvature introduced
by Phong and Stein. In fact if M is given by the equation Φ(x, y) = 0 with
Φx �= 0, Φy �= 0 and if we choose X = Φx2∂x1 −Φx1∂x2 , Y = Φy2∂y1 −Φy1∂y2

and ω = Φxdx − Φydy, then 〈ω, [X,Y ]〉/2 is equal to

J = det

(
Φxy Φt

x

Φy 0

)
,

the rotational curvature. The generalized Radon transform R is a Fourier
integral operator of class I−1/2(ΩL, ΩR; N∗M′) in the sense of [5], and N∗M′

is a local canonical graph if and only if J does not vanish.

We now recall the notion of finite type (µ, ν). We write adV (W ) =
[V,W ] for the commutator of V and W and for integers µ ≥ 1, ν ≥ 1,
we let Vµ,ν(U) denote the C∞(U)-module generated by all vector fields in
V1,0(U) ∪ V0,1(U) and all vector fields of the form g adV1 · · · adVn−1(Vn),
where g is smooth, Vi ∈ V1,0(U)∪V0,1(U), at most µ of the Vi are in V1,0(U)
and at most ν of the Vi are in V0,1(U). We say that M is of type (µ, ν)
at P if there is an open neighborhood U and a vector field V ∈ Vµ,ν(U)
so that 〈ωP , VP 〉 �= 0 but 〈ωP ,WP 〉 = 0 for all W ∈ Vµ−1,ν(U) ∪ Vµ,ν−1(U).
Thus type (1, 1) corresponds to the nondegenerate situation of nonvanishing
rotational curvature.

Let n ≥ 2, m ≥ 2. Following [14] we also say that M satisfies a left
finite type condition of degree n in U if M is of finite type (1, k) for some
k with k ∈ {1, . . . , n − 1}, for every P ∈ U . We note (see [15]) that M
satisfies this condition if only if for all (x0, y0) ∈ U the quantity J(x0, y)
when restricted to the curve Mx0 vanishes of order at most n− 2 at y = y0.
Likewise M satisfies a right finite type condition of degree m in U if M is of
finite type (j, 1) at P for some j ∈ {1, . . . ,m−1}, for every P ∈ U . Again an
equivalent formulation is that for all P0 = (x0, y0) ∈ U the quantity J(x, y0)
when restricted to the curve My0 vanishes of order at most m−2 at x = x0.

We now state an endpoint Lp → Lq estimate for two-sided finite type
conditions. In fact a sharper statement can be obtained by working with
Lorentz-spaces Lp,q; note that Lp ⊂ Lp,r, if r ≥ p, with continuous embed-
ding.

Theorem 1.1. Suppose that M satisfies a left finite type condition of degree
n and a right finite type condition of degree m.

(i) Suppose that (1/p, 1/q) belongs to the closed trapezoid T (m,n) with
corners (0, 0), (1, 1), ( m

m+1
, m−1

m+1
), ( 2

n+1
, 1

n+1
). Then R maps Lp bound-

edly to Lq.
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ii) R maps L
n+1

2
,n+1 to Ln+1 and L

m+1
m to L

m+1
m−1

, m+1
m .

(iii) If there is a point P such that χ(P ) �= 0 and M is of type (1, n − 1)

at P then R does not map L
n+1

2
,r to Ln+1 if r > n + 1. If there is a

point P such that χ(P ) �= 0 and M is of type (m − 1, 1) at P then R
does not map L

m+1
m to L

m+1
m−1

,s for s < (m + 1)/m.

Remarks:

(a) Let G(P ) be the graph connecting (0, 0) and (1, 1) with the points
( µ+1

µ+ν+1
, µ

µ+ν+1
) for which M is of type (µ, ν) at P and suppose that

(1/p, 1/q) lies above G(P ). Then a result in [15] states that R maps Lp

to Lq provided that the cutoff function has sufficiently small support
close to P ; see also Phong-Stein [6], [7] for sharp endpoint bounds in
several model cases. If (1/p, 1/q) lies below G(P ) and χ(P ) �= 0 then
Lp → Lq boundedness fails ([15]). In the present situation this implies
the following: If there is a point P with χ(P ) �= 0 such that M is of
type (1, n−1) and of type (m−1, 1) and if M is not of type (µ, ν) at P
for all (µ, ν) with ( µ+1

µ+ν+1
, µ

µ+ν+1
) /∈ T (m,n) then the result in part (i) of

Theorem 1.1 is sharp. In particular, the L(n+1)/2,n+1 → Ln+1 estimate
is best possible if M is of type (1, n − 1) and of type (m − 1, 1) for
some m.

(b) The sharp bounds for p > (n + 1)/2, q = 2p, and p < m/(m − 1),
1/q = 2/p − 1 are in [14], [15]. The L(n+1)/2,n+1 → Ln+1 endpoint
inequality for polynomial surfaces of the form M = {(x, y) : y2 =
x2+

∑
j+k≤n aj,kx

j
1y

k
1}, with a1,n−1 �= 0 was obtained by the first author

in [1] based on multilinear arguments in [3], [11]; our proofs of Theorem
1.1 and Theorem 1.2 below rely on this technique as well.

(c) Let M be defined by a polynomial as in (b) . Then M is of type (µ, ν)
at the origin if aµ,ν �= 0 but aj,k = 0 whenever j ≤ µ and k ≤ ν − 1 or
j ≤ µ − 1, k ≤ ν.

Our second result concerns weighted Radon transforms which incorporate
the rotational curvature J as an improving factor (see e.g. [16]), namely for
γ > 0 one defines

Rγf(x) =

∫
Mx

χ(x, y)|J(x, y)|γf(y) dσx(y).

It is known ([15]) that Rγ maps L2 into the Sobolev space L2
1/2, provided

that γ > 1/2. By standard arguments combining Littlewood-Paley theory
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and (complex) interpolation (cf. [2]) one can see that Rγ : Lp → Lp′
α if

α ≤ 2 − 3/p, γ > 1/p′ and 1 < p ≤ 2, in particular it maps L3/2 → L3

for γ > 1/3. In various cases the endpoint bounds for γ = 1/3 are known.
If M is given by the equation y2 = x2 + S(x1, y1) then J = Sx1y1 and
for real analytic S the endpoint L3/2 → L3 estimate can be deduced from
the endpoint L2 estimates for damped oscillatory integrals in Phong-Stein
[9]. We shall prove an L3/2 → L3 endpoint estimate for the case where
S is a polynomial of degree ≤ N , which will have the added feature that
the operator norms depend only on N . In the translation invariant case
such theorems were obtained by the second author in [10], [13]. As in [7]
our operator is now globally defined (without inserting cutoff-functions) and
we obtain an improved inequality using Lorentz-spaces. We note that the
standard interpolation argument alluded to above does not seem to yield
this estimate since one uses analytic interpolation with changing powers of
γ.

Theorem 1.2. Define

(1.3) Af(x1, x2) =

∫ ∞

−∞

∣∣ ∂2P

∂x1∂y1

∣∣1/3
f(y1, x2 + P (x1, y1)) dy1

where P is a polynomial in (x1, y1) of degree at most N . Then there is a
constant C(N) (independent of the particular polynomial) so that for 3/2 ≤
r ≤ 3

(1.4)
∥∥Af

∥∥
L3,r ≤ C(N)‖f‖

L
3
2 ,r

for all f ∈ L
3
2
,r(R2).

If ∂2P/(∂x1∂y1) does not vanish identically then the operator A does not
map L3/2,r to L3,s for any s < r.

In particular A maps L3/2 to L3.

The proof of Theorem 1.1 will be given in §2, and the proof of Theorem
1.2 in §3. We shall use the notation � for inequalities involving admissible
constants; here the definition of admissibility depends on the context and
will be made precise in §2 and §3, respectively.

2. Boundedness under finite type assumptions

In this section we give a proof of the boundedness result in Theorem 1.1.
It suffices to establish the L

n+1
2

,n+1 → Ln+1 inequality. This also implies



Two endpoint bounds for generalized Radon transforms in the plane 235

the L
m+1

2
,m+1 → Lm+1 inequality for the adjoint operator R∗ and thus the

L
m+1

m → L
m+1
m−1

, m+1
m inequality for R.

By compactness arguments it suffices to prove the theorem for the case
that our cutoff function χ is supported in a small neighborhood of a fixed
point P ∈ M; by performing translations we may assume that the coordi-
nates vanish at P .

We may assume that M is given as

M = {(x, y) : y2 = G(x1, x2, y1), |x1|, |x2|, |y1| ≤ 2}

where G is a Cn+1 function defined on [−2, 2]3 and G satisfies

(2.1)
G(0, 0) = 0 , Gx1(0, 0) = Gy1(0, 0) = 0 ,

Gx2(0, 0) = 1 ,
1

2
≤ Gx2(x, y1) ≤ 2 .

We then also have for x1, x2, y1 ∈ [−1, 1]

y2 = G(x, y1) ⇐⇒ x2 = H(y, x1) ,

where H is defined on [−1, 1]3 and satisfies

(2.2)
H(0, 0) = 0 , Hy1(0, 0) = Hx1(0, 0) = 0 ,

Hy2(0, 0) = 1 ,
1

2
≤ Hy2(y, x1) ≤ 2 .

Let M = max{n + 1,m + 1}. We let ‖(G,H)‖CM be the maximum of all
derivative of order at most M of G or H in the cube [−1, 1]4 and assume
that

(2.3) ‖(G,H)‖CM ≤ B ;

note that B ≥ 1.

The rotational curvature (with respect to the defining function Φ(x, y) =
y2 − G(x, y1) is given by

(2.4) J(x, y1) = det

(
Gx1y1(x, y1) Gx1(x, y1)
Gx2y1(x, y1) Gx2(x, y1)

)
By our finite type assumptions there are constants aL > 0 and aR > 0 so
that

(2.5-L) min
x

max
0≤k≤n−2

∣∣∣ ∂k

(∂y1)k
J(x, y1)

∣∣∣ ≥ aL

(2.5-R) min
y

max
0≤j≤m−2

∣∣∣ ∂j

(∂x1)j

[
J(x1, H(y, x1), y1)

]∣∣∣ ≥ aR;
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(2.5-L) means that M is of type (1, k) (some k ≤ n− 1) and (2.5-R) means
that M is of type (j, 1) (some j ≤ m−1), for any point under consideration,
cf. the discussion in [15].

In what follows we choose

(2.6) 0 < ε ≤ 1

4
min{((m + 1)!)−1B−maR, 2−n−5n−1B−2aL}.

We define

Rf(x) =

∫ ε

−ε

χ(x1, x2, y1, G(x, y1)) f(y1, G(x, y1)) dy1

where χ is the characteristic function of [−ε, ε]4. Note that if x1, x2, y1 ∈
[−ε, ε] then |G(x, y1)| ≤ 2ε.

It suffices to show that

‖Rf‖Ln+1 � ‖f‖
L

n+1
2 ,n+1

where the notation α � β means α ≤ Cβ where C depends only on B, m, n,
aL, aR. Since R is a positive operator we may assume that f is nonnegative.

As in [1] we use a multilinear interpolation argument due to M. Christ

[3]. In order to establish that R maps L
n+1

2
,n+1 to Ln+1 one shows the more

general multilinear estimate

∫ n+1∏
i=1

Rfi(x)dx �
n+1∏
i=1

‖fi‖
L

n+1
2 ,n+1

and by symmetry and real interpolation ([3]) this will follow from

∫ n+1∏
i=1

Rfi(x)dx � ‖f1‖1

n+1∏
i=2

‖fi‖Ln,1 .

Now we use the change of variable x2 �→ u2 = G(x1, x2, u1) and write

∫ n+1∏
k=1

Rfk(x)dx =

∫∫
χ(x1, x2, u1, G(x, u1))f1(u1, G(x, u1))

n+1∏
i=2

Rfi(x)dx du1

=

∫∫
χ(x1, H(u, x1), u1, u2)f1(u1, u2)×

×
n+1∏
k=2

Rfk(x1, H(u, x1))
∣∣∣∂H

∂u2

(u1, u2, x1)
∣∣∣du dx1



Two endpoint bounds for generalized Radon transforms in the plane 237

and, since |(∂H)/(∂y2)| is bounded by B, we may omit this factor. We have
reduced matters to the estimate

(2.7)

∫ n+1∏
k=2

Rfk(x1, H(u, x1))dx1 �
n+1∏
i=2

‖fi‖Ln,1

for every u with |u1| ≤ ε, |u2| ≤ 2ε. In what follows we fix u. By Hölder’s
inequality it suffices to show

(2.8)
( ∫

[Rf(x1, H(u, x1))]
ndx1

)1/n

� ‖f‖Ln,1 .

By duality (2.8) is implied by∫
Rf(s,H(u, s))g(s)ds � ‖f‖Ln,1(R2)‖g‖Ln/(n−1)(R),

for any nonnegative step function g. The left hand side is equal to
(2.9)∫∫

χ(s,H(u, s), y1, G(s,H(u, s), y1))f(y1, G(s,H(u, s), y1))g(s)dy1ds

and we define

ωy1,u(s) = G(s,H(u, s), y1)

to change variables in this integral (after interchanging the order of integra-
tion).

Lemma 2.1. (i)

(ωy1,u)′(s) =
(y1 − u1)E(s, u, y1)

Gx2(s,H(u, s), u1)

where

E(s,u, y1) =

(2.10)

∫ 1

0

det

(
Gx1y1(s,H(u, s), u1 + τ(y1 − u1)) Gx1(s,H(u, s), u1)
Gx2y1(s,H(u, s), u1 + τ(y1 − u1)) Gx2(s,H(u, s), u1)

)
dτ.

(ii) Suppose that u1, y1, s ∈ [−ε, ε], |u2| ≤ 2ε and y1 �= u1. Then the deriva-
tive of ωy1,u vanishes at no more than m − 2 points in [−ε, ε].
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The elementary proof will be given below. Given y1, u there are inter-
vals Iy1,u

i , i = 1, . . . , m with ∪m
i=1I

y1,u
i = [−ε, ε] whose boundary points are

measurable functions on (y1, u) so that ωy1,u has nonzero derivative in the
interior of Iy1,u

i . On each interval Iy1,u
i let ω �→ sy1,u

i (ω) be the inverse func-

tion of ωy1,u and let Ĩy1,u
i the image of Iy1,u

i under ωy1,u. Then the integral
(2.9) becomes

m∑
i=1

∫ ε

−ε

∫
I

y1,u
i

χ(s,H(u, s), y1, ω
y1,u(s))f(y1, ω

y1,u(s))g(s)dsdy1

=
m∑

i=1

∫ ε

−ε

∫
ω∈Ĩ

y1,u
i

χ(sy1,u
i (ω), H(u, sy1,u

i (ω)), y1, ω)f(y1, ω)g(sy1,u
i (ω))

∣∣∣dsy1,u
i

dω

∣∣∣dωdy1

≤
m∑

i=1

‖f‖Ln,1‖Ti,u‖L
n

n−1 ,∞

where

Ti,ug(y1, ω) = χ[−ε,ε](y1)χĨ
y1,u
i

(ω)g(sy1,u
i (ω))

dsy1,u
i

dω
.

In order to finish the proof we have to show that Ti,u maps Ln/(n−1) to
Ln/(n−1),∞, that is

(2.11) meas
(
{(y1, ω) : |Ti,ug(y1, ω)| > λ}

)
� 1

λn/(n−1)
‖g‖n/(n−1)

Ln/(n−1)(R)
.

The left hand side of (2.11) is equal to∫∫
{(y1,s)∈[−ε,ε]2, s∈I

y1,u
i ,

g(s)≥λ|(ωy1,u)′(s)|}

|(ωy1,u)′(s)|dy1ds(2.12)

�
∫ ε

−ε

|g(s)|
λ

meas
(
{y1 : |y1 − u1||E(s, u, y1)| ≤ 2|g(s)|/λ}

)
ds

where we have used that |Gx2| ≤ 2. We now employ the following standard

Sublevel set estimate [4]. For any positive integer � there is a constant
C� such that for any interval I ⊂ R, any h ∈ C�(I) and any γ > 0 the
inequality

meas{x ∈ I : |h(x)| ≤ γ} ≤ C�γ
1/� inf

x∈I
|h(�)(x)|−1/�

holds.
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In order to apply this we use

Lemma 2.2. For u1, s, y1 ∈ [−ε, ε], |u2| ≤ ε we have

max
1≤k≤n−1

∣∣∣ ∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]∣∣∣ ≥ 2−n−2n−1aL.

Taking Lemma 2.2 for granted we apply the sublevel estimate for suitable
� ≤ n − 1 and γ = 2|g(s)|/λ if g(s)/λ ≤ 1 (otherwise estimate the size of
any sublevel set by 2ε). We obtain

meas
(
{y1 ∈ [−ε, ε] :

∣∣(y1 − u1)E(s, u, y1)
∣∣ ≤ 2|g(s)|/λ}

)
(2.13)

≤ min{2ε, max
1≤�≤n−1

C�(2
n+3na−1

L |g(s)|/λ)1/�} � (|g(s)|/λ)1/(n−1)

and thus by (2.12), (2.13)

meas
(
{(y1, ω) : |Ti,ug(y1, ω)| > λ}

)
≤ C

∫ |g(s)|
λ

( |g(s)|
λ

)1/(n−1)

ds

= C
1

λn/(n−1)
‖g‖n/(n−1)

Ln/(n−1)(R)
.

2.1. Proof of Lemmas 2.1 and 2.2

We need the following elementary

Sublemma. Let g, h be functions having N derivatives at a point x and
suppose that maxj≤r |u(j)(x)| ≤ Br, r ≤ N . Suppose that max0≤j≤N−1 |(uh′−
u′h)(j)(x)| ≥ αN . Then also

max
1≤j≤N

|h(j)(x)| ≥ 2−NαN − BN |h(x)|.

Proof. By the Leibniz rule (h′u−hu′)(k−1) =
∑k

l=1 bklh
(l) −hu(k) where the

coefficients are given by bkl(x) = [
(

k−1
l−1

)
−

(
k−1

l

)
]u(k−l)(x) if 1 ≤ l < k, and

bkk(x) = u(x). Thus

max
1≤k≤N−1

|(h′u − hu′)(k−1)|

≤ sup
k

∑
l

|bkl(x)| max
1≤j≤N

|h(j)(x)| + |h(x)| max
1≤k≤N−1

|u(k)(x)|

≤ 2N−1BN max
1≤j≤N

|h(j)(x)| + BN |h(x)|

which implies the assertion. �
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Proof of Lemma 2.1 Note that

(ωy1,u)′(s) = Gx1(s,H(u, s), y1) + Gx2(s,H(u, s), y1)Hx1(u, s).

The defining equation for H is x2 = G(u1, H(x1, x2, u1), x1). Implicit differ-
entiation yields that Hx1(u1, G(x, u1), x1) = −(Gx1/Gx2)(x, u1) or

Hx1(u1, u2, x1) = −Gx1(x1, H(u, x1), u1)

Gx2(x1, H(u, x1), u1)
.

Thus

(ωy1,u)′(s) =

[
1

Gx2(x, u1)
det

(
Gx1(x, y1) Gx1(x, u1)
Gx2(x, y1) Gx2(x, u1)

)]
x=(s,H(u,s))

=
(y1 − u1)E(s, u, y1)

Gx2(s,H(u, s), u1)
.

Now we prove (ii). Since Gx2 does not vanish it suffices to show that

(2.14) max
0≤j≤m−2

∣∣∣( ∂

∂s

)j

E(s, u, y1)
∣∣∣ ≥ aR

2
.

We expand

(2.15) E(s, u, y1) = E(s, u, u1) + (y1 − u1)r(s, u, y1)

where E(s, u, u1) = J(u1, H(u, s), s) and

r(s, u, y1) =

∫ 1

0

∫ 1

0

[
Gx1y1y1(X,U1)Gx2(X, u1)−

− Gx2y1y1(X,U1)Gx1(X, u1)
]

X=(s,H(u,s))
U1=u1+στ(y1−u1)

dστdτ.

By assumption (2.5-R) we have

(2.16) max
0≤j≤m−2

∣∣∂j
sE(s, u, u1)

∣∣ ≥ aR.

To get a concrete upper bound for the derivatives of r we need a well known
fact about multiple applications of the chain rule. Namely let v be R

d-valued
and let η be a scalar function on the range of µ, both in Ck. Then (η◦v)(k) is a
sum of at most

∏k−1
i=0 (d+i) terms each of which is of the form ξw1 · · ·w� where

ξ is a derivative of η, of order ≤ k, the wi are derivatives of a component of
v, of order at most k, and � ≤ k. Of course more explicit formulas are known
(such as the Faà di Bruno formula) but we don’t need these here. Applying
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this with d = 2 we see that a derivative of order k of s �→ Gx1(s,H(u, s), y1)
can be estimated by (k + 1)!Bk+1, and a similar remark applies to the other
terms in the integrand defining r. Thus by the Leibniz rule we have the
bound |∂jr/(∂s)j| ≤

∑j
l=0

(
j
l

)
(l + 1)!Bl+1(j − l + 1)!Bj−l+1 ≤ (j + 3)!Bj+2,

j ≤ m − 2. Combining this with (2.16) and |y1 − u1| ≤ 2ε we see that the
left hand side of (2.14) has a lower bound aR − 2ε(m + 1)!Bm. Thus (2.14)
follows by our choice of ε in (2.6). �

Proof of Lemma 2.2. First

∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]
=

∂k−1E

(∂y1)k−1
(s, u, y1) + (y1 − u1)

∂kE

(∂y1)k
(s, u, y1).

Now we expand the kth derivative of the integrand in (2.10) about u1 and

get ∂k−1E
(∂y1)k−1 (s, u, y1) = Mk(s, u) + ρk(s, u, y1) where

Mk(s, u) =
1

k + 1

[
Gx2

∂k+1Gx1

(∂y1)k+1

]
(s,H(s,u),u1)

and

ρk(s, u, y1) = − 1

k + 1

[
Gx1

∂k+1Gx2

(∂y1)k+1

]
(s,H(s,u),u1)

+

+(y1 − u1)

∫ 1

0

∫ 1

0

[
Gx2(x, u1)

∂k+1Gx1

(∂y1)k+1
(x, U1)

− Gx1(x, u1)
∂k+1Gx2

(∂y1)k+1
(x, U1)

]
x=(s,H(u,s))

U1=u1+στ(y1−u1)

dστ kdτ.

Since |Gx1| ≤ 8εB it is easy to see that |ρk(s, u, y1)| ≤ 12εB2, moreover
the term |(y1 − u1)∂

k
y1

E(s, u, y1)| above is bounded by 8εB2/(k + 1). Since
Gx2 ≥ 1/2 we obtain by the Sublemma that

max
k=0,...,n−2

|Mk(s, u)| ≥ (n − 1)−121−n×

× max
k=0,...,n−2

∣∣∣ ∂k

(∂y1)k
[Gx1y1Gx2 − Gx2y1Gx1 ](s,H(u,s),u1)

∣∣∣ − B‖Gx1‖∞

≥ 21−nn−1aL − 8εB2.

Here the L∞ norm of Gx1 is taken over the cube [−2ε, 2ε]4. We finally get∣∣∣ ∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]∣∣∣ ≥ 2−nn−1aL − 20B2ε

and the assertion follows from our choice of ε in (2.6). �
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Remark. For the L(n+1)/2,n+1 → Ln+1 inequality the lower bound aR in
(2.5-R) enters only in the definition of ε in (2.6), the bounds depend on m
but not on aR. Indeed the type (m, 1) assumption can be replaced by an
assumption of bounded multiplicity; i.e. there is � ∈ N so that for almost all
u (sufficiently small) the inverse images of the maps s �→ G(s,H(u, s), y1)
have cardinality ≤ �.

2.2. Sharpness of Lorentz exponents

It is well known that the necessary condition 1/q ≥ 2/p−1 follows by testing
R on characteristic functions of small balls. We assume 1/q = 2/p − 1, 1 <
r < ∞, and verify that R does not map Lp,r → Lq,r−ε. Then applying this to
the adjoint operator one also obtains the necessary condition 1/q ≥ 1/(2p)
and also that R does not map Lp,r → L2p,r−ε.

It suffices to consider 1 ≤ p < 2. We assume that near the origin M
is defined by y2 = G(x, y1) as in (2.1). For a large positive integer � let
f ≡ f�(y) = |y|−2/p for 2−4� ≤ |y| ≤ 2−�/2. Then if |x2 − H(0, x1)| ≈ 2−k

and � ≤ k ≤ 2� then |Rf(x)| ≥ c2−k(1−2/p) and this happens on a set of
measure ≈ 2−k. Thus if λRf denotes the distribution function of Rf then
λRf (2

−k(1−2/p)) � 2−k and

‖Rf‖Lq,s �
(∫

[αλ
1
q

Rf (α)]s
dα

α

)1/s

�
( 2�∑

k=�

[
c2−k(1−2/p)λ

1/q
Rf (c2−k(1−2/p))

]s
)1/s

�
( 2�∑

k=�

c′2−k(1−2/p+1/q)s
)1/s

� �1/s

if 1/q = −1 + 2/p, and by a similar computation ‖f‖Lp,r � �1/r. Thus R
does not map Lp,r → Lq,s if s < r.

3. Polynomial Radon transforms with weights

We now give a proof of Theorem 1.2. Fix a real-valued polynomial P (s, t)
of degree ≤ N ; we may assume that (∂2P )/(∂s∂t) is not identically zero
(otherwise there is nothing to prove).

In this section the notation α � β means α ≤ Cβ where C depends only
on N . It suffices to establish the L3/2,3 → L3 boundedness since applying this
result to the polynomial P (y1, x1) and using duality implies the L3/2 → L3,3/2
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boundedness and then by real interpolation the L3/2,r → L3,r boundedness
for 3/2 ≤ r ≤ 3. The sharpness assertion is proved as in the previous section
(by working close to points with (∂2P )/(∂s∂t) �= 0).

We use the argument of the previous section; now G(x, y1) = x2 +
P (x1, y1), H(y, x1) = y2 − P (x1, y1) and J(x1, y1) = (∂2P )/(∂x1∂y1) are
globally defined. For each s ∈ R, let Is

1 , I
s
2 , . . . , I

s
M(N) be disjoint intervals

with union R so that t �→ ∂s∂tP (s, t) has constant sign on the interior of
each Is

j . For 1 ≤ j ≤ M(N) let Uj be the set of all (s, t) such that t ∈ Is
j

and we can choose the Is
j so that the Uj are measurable. Let χj be the

characteristic function of Uj and define the operator Aj by

Ajf(x) =

∫
f
(
y1, x2 + P (x1, y1)

)
|J(x1, y1)|1/3χj(x1, y1)dy1.

It is enough to prove that Aj maps L3/2,3 to L3, for any j. The goal is to
show ∫

R2

3∏
k=1

Ajfk(x)dx �
3∏

k=1

‖fk‖L3/2,3 ,

and the argument in §2 reduces this to the following analogue of (2.8),

sup
u∈R2

( ∫
|J(x1, u1)|1/3|Ajf(x1, u2 − P (x1, u1))|2dx1

)1/2

� ‖f‖L2,1(R2),

or, with the measure dµu(s) = |J(s, u1)|1/3ds, to

∫
|J(s, u1)|1/3Ajf(s, u2 − P (s, u1))χj(s, u1)g(s)ds

(3.1)

=

∫∫
χj(s, t)|J(s, t)|1/3|J(s, u1)|1/3f(t, u2 + P (s, t) − P (s, u1))g(s)dsdt

� ‖f‖L2,1(R)‖g‖L2(R,dµ).

In view of the assumption that J is not identically zero it is not hard to
see that for every u1 the function s �→ P (s, t) − P (s, u1) is not constant
except for a finite set of values of t. Thus for almost all t there are intervals
I t,u
i , i = 1, . . . , N with ∪N

i=1I
t,u
i = R whose boundary points are measurable

functions on (t, u) so that

ωt,u(s) = u2 + P (s, t) − P (s, u1)

has nonzero derivative in the interior of I t,u
i and, as in the previous section,

we denote by ω �→ st,u
i (ω) the inverse function of ωt,u on I t,u

i and let Ĩ t,u
i be
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the image of I t,u
i under ωt,u. Let

Si,j,ug(t, ω) = χĨt,u
i

(ω)
dst,u

i

dω
χj(s, t)|J(s, t)|1/3|J(s, u1)|1/3g(s)

∣∣∣
s=st,u

i (ω)

and, arguing as in the proof of Theorem 1.1, we see that (3.1) follows from

(3.2) meas
(
{(t, ω) : |Si,j,ug(t, ω)| > λ}

)
� λ−2

∫
|g(s)|2|J(s, u1)|1/3ds.

The left hand side of (3.2) is equal to∫∫
{(s,t):s∈It,u

i ,(s,t)∈Uj ,

|J(s,t)|1/3|J(s,u1)|1/3g(s)≥
λ|(ωt,u)′(s)|}

|(ωt,u)′(s)|dsdt(3.3)

≤
∫ ∞

−∞

∫
{t∈Is

j :

|J(s,t)|1/3|J(s,u1)|1/3g(s)

≥λ| ∂P
∂s

(s,t)− ∂P
∂s

(s,u1)|}

∣∣∣∂P

∂s
(s, t) − ∂P

∂s
(s, u1)

∣∣∣ dt ds

and we have to show that the right hand side is controlled by

λ−2

∫
R

|g(s)|2|J(s, u1)|1/3ds ,

with constant only depending on N . This is accomplished by applying the
following lemma to the inner integral in (3.3), with p(t) = ∂P

∂s
(s, t) (which

has constant sign on Is
j ).

Lemma 3.1. There is a constant C(N) such that the following is true: If
p is a real-valued polynomial of degree ≤ N − 1 and I is an interval with p′

of constant sign on I, then for all t1 ∈ I and all B > 0 the inequality

(3.4)

∫
{t∈I:B|p′(t)p′(t1)|1/3

≥|p(t)−p(t1)|}

|p(t) − p(t1)|dt ≤ C(N) B2|p′(t1)|1/3

holds.

Proof. Note that the integration in (3.4) is always extended over a finite
interval, thus we may assume that I is finite.

We begin by observing that there is C1(N) such that for 0 ≤ θ ≤ 1

(3.5) |b − a||p′(a)|1−θ|p′(b)|θ ≤ C1(N)

∫
[a,b]

|p′(u)|du.
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If a = 0, b = 1 this is true because the L1([0, 1]) and L∞([0, 1]) norms
are equivalent on the (finite-dimensional) space of polynomials of degree
bounded by N − 2. For other intervals [a, b] an affine change of variables
reduces to the case a = 0, b = 1.

Continuing the proof of the lemma, the set

{t ∈ I : B|p′(t)p′(t1)|1/3 ≥ |p(t) − p(t1)|}

is contained in the union of two minimal subintervals [t0, t1] and [t1, t2]
of I (so that the defining inequality holds for t = t0 and t = t2). It is
enough to bound the integral of |p(t)− p(t1)| over each of these intervals by
C1(N) B2|p′(t1)|1/3. The argument is the same in both cases, so we consider
the integral over [t0, t1]. Clearly

(3.6)

∫ t1

t0

|p(t) − p(t1)|dt ≤
∫ t1

t0

∫ t1

t

|p′(v)|dvdt ≤ (t1 − t0)

∫ t1

t0

|p′(v)|dv.

We apply (3.5) with θ = 1/3 and see that the right hand side of (3.6) is
dominated by

(3.7) C1(N)
(∫ t1

t0

|p′(v)|dv
)2

|p′(t0)|−2/3|p′(t1)|−1/3 ≤ C1(N)B2|p′(t1)|1/3

where the last inequality holds since B|p′(t0)p′(t1)|1/3 ≥ |
∫ t1

t0
p′(v)dv| and p′

is of constant sign on [t0, t1]. The assertion follows from (3.6), (3.7). �

Remark. Suppose that the polynomial P (s, t) is replaced by a C2 function
S(s, t) with the property that for almost all t1 the generic multiplicities of the
maps (s, t) �→ (S(s, t) − S(s, t1), t) and s �→ Ss(s, t) − Ss(s, t1) are bounded
by some number � (here we say that F : R

d → R
d has generic multiplicity

bounded by � if F−1(y) has cardinality ≤ � for almost all y ∈ R
n). In

this case a variant of the argument used by the second author in [12] can be
employed to show a slightly weaker inequality, namely that A is of restricted
strong type (3/2, 3); i.e. it maps L3/2,1 to L3, with operator norm depending
only on �.
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