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Size properties of wavelet packets

generated using finite filters

Morten Nielsen

Abstract

We show that asymptotic estimates for the growth in LP(R)-
norm of a certain subsequence of the basic wavelet packets asso-
ciated with a finite filter can be obtained in terms of the spectral
radius of a subdivision operator associated with the filter. We
obtain lower bounds for this growth for p > 2 using finite dimen-
sional methods. We apply the method to get estimates for the
wavelet packets associated with the Daubechies, least asymmetric
Daubechies, and Coiflet filters. A consequence of the estimates
is that such basis wavelet packets cannot constitute a Schauder
basis for LP(R) for p > 2. Finally, we show that the same type
of results are true for the associated periodic wavelet packets in

LP[0,1).

1. Introduction and main results.

Let {V;} be a multiresolution analysis with associated scaling function
¢, wavelet 1, and associated low-pass filters (mg, my). The basic wavelet
packets {w,, }>° ; are defined recursively by wyg = ¢, wy = 1, and for n € N

with binary expansion
n = E e 2871 ,
k
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we let

= £
(@) = [T, (57)

j=1
Such functions were introduced in [1], [2] to improve the frequency localiza-
tion of wavelets at high frequency. It was proved in [1] that the collection
{wn }n of basic wavelet packets associated with the Lemarié-Meyer mul-
tiresolution analysis are not uniformly bounded in L?(R)-norm for p large.
The technique used was to show that the family {w,}, is not bounded
in L'-norm. This works because the Lemarié-Meyer low-pass filter myq is
a nonnegative functions so each w, is just a modulation of a nonnega-
tive function. It is therefore possible to recover the L°°-norm of w, from
the L'-norm of w,. However, this technique fails in general since all fi-
nite filters associated with a multiresolution analysis are not nonnegative
functions (see [3]). The growth in L!'-norm of the Fourier transform of
basic wavelet packets associated with finite filters was studied in detail by
E. Séré in [6], where he proves that the subsequence of the basic wavelet
packets with worst asymptotic growth is {wan_1}52 4.

In the present paper we introduce a technique to estimate the LP(R)-

norm of the subsequence {wan 1 }52  associated with finite filters (mg, my).

The key is to study the subdivision operator S, associated with the finite
high-pass filter m1(£) = Y ,c7 gk €, defined by

(1) (Sc); = Zgi_zj cj, 1€ L.

JEZ

for c € P(Z), 1 < p < co. We let 0,[S] denote the spectral radius of S on
¢P(Z). The main observation of Section 2 is

Theorem 1.1. Let {w, }°°, be the wavelet packets generated by the finite
filters (mo, m1) associated with a multiresolution analysis. Define ¢,, 1 <
p < oo, by

~ _ 1 1/n

op = lm_[Jwgn ;™" .

Then &, exists and o, = 2'~/Pa,[S].

In Section 3 we derive numerical estimates using Theorem 1.1 for
the growth in LP(R)-norm, p > 2, for a number of Daubechies, least
asymmetric Daubechies, and Coiflet filters. We find that such families
of wavelet packets all have a subsequence with growth in LP(R)-norm of
order n®, with n denoting the frequency, for p > 2 and for some o > 0
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(depending on p). Moreover, our technique provides a lower bound for
the value of a and a surprising consequence of this is derived in Section
4, where we prove that such wavelet packets cannot constitute a Schauder
basis for LP(R) for p > 2. This is in sharp contrast to the simplest wavelet
packet system, the Walsh system, that do constitute a Schauder basis for
LP(R) for 1 < p < oo. In Section 5 we consider the same but more difficult
question about growth in LP[0, 1)-norm for the periodized wavelet packets

{w, }22, defined by
Wy () = an(x — k)

keZ

The following theorem will be proved in Section 5.

Theorem 1.2. Let {w,}, be a wavelet packet basis associated with the
finite filters (mg,my). Choose N such that diamsupp (w,) < 2V. Fiz
Le27Z"+1.If

(mg L (0) Um0 (Uz 2Z+1) o

then there exist finite constants c,,Cp > 0 (depending on L) such that

—_—

cp [[wan —1|lp < [Jwantn _p||Lrjo,1) < Cp lwan—1]lp
forns2"tN [ >1.

This theorem is then applied to the periodized versions of the wavelet
packets mentioned above. The conclusion is that they all have a sub-
sequence with growth in LP[0,1)-norm of order n®, a > 0, for p > 2.
Moreover, we prove that such periodic wavelet packets cannot constitute
a Schauder basis for LP[0,1) for large p.

2. L’-norms of wavelet packets.

In this section we some fundamental results about multiresolution
analyses and scaling functions to calculate the LP(R)-norm of wavelet
packets associated with finite filters. We will assume that {V;} be a mul-
tiresolution analysis with associated scaling function ¢ satisfying |¢(z)| <
C (1 + |z|)~t=¢ for some ¢ > 0, and associated low-pass filters (mg,my).
In [5] one can find the following lemma,



252 M. NIELSEN

Lemma 2.1. There exist finite constants cp,Cp, > 0 such that for every
finite sequence {ci trez C C we have

o lfertllow < | o= <Clierd o -

kEZ

which gives us a sharp estimate of the LP(R) norm of a wavelet packet
associated with a multiresolution analysis.

Lemma 2.2. There exist finite positive constants c, and Cp such that the
LP(R)-norm, 1 < p < oo, of the wavelet packet w,,, defined by

o) (TTme (EVV3(E
0= (fm (5))76)
18 bounded by

¢ 2N 27N | {e w2y < NJwnllp < Cp 2N 27N |[{ek Hien(z) »

where

Me N (5) Men_q (2€> cr Mgy (2N_1€) = Z Ck eik’f .

keZ

Proof. We have

56— (TTm (EVV3(E
() = (gm5j<2j>)¢<21\f>’

Ba(2V€) = (h My, (276))8(0).

Taking the inverse Fourier Transform of (2) shows that 2= Nw,, (27 V2) is
a linear combination of the functions {¢(x — k)}, and that the expansion
coefficients are given by the coefficients of the Fourier series

Mgy (5) Men_y (25) c Mgy (2N_1€) = Z Cr eik& .
keZ

Note that [|27Nw, (27N, = 27V2N/P||lw,||, for 1 < p < oco. It now
follows from Lemma 2.2 that there exist constants ¢, and C, (independent
of n) such that

cp 2N 27N | [{eHler(zy < llwnlly < Cp 2277 [ {ex}Hlev z) -
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In what follows, we will restrict our attention to subsequences of the
form {wan_1},. The main reason is that the binary expansion of 2" — 1
consists of n—1 1’s and nothing else which simplifies the estimates given by
Lemma 2.2. The key to getting good estimates is to consider the operator S
defined by (1) on /P(Z), 1 < p < co. S is called the (stationary) subdivision
operator associated with the filter m,. Note that S is just the bi-infinite
matrix (g;—2;)i; considered as a bounded operator on (P(Z). It is also easy
to check that S can be represented (formally) as the multiplication operator

Sf(&) =mi(§) f(26),
for f(&) = > ez ck ekt

We are interested in calculating the spectral radius o, [S] of S on ¢P(Z).
The multiplicative representation of S suggests that the product

mi(&)my(2€)---my(2"71¢)

might be useful for that purpose. Indeed, the following result can be found
in [4]:

Theorem 2.1. Let my be a finite high-pass filter, and let S be defined by
(1). Define the sequence {gj }r by

ZQZ e =my (&) mi(28)---ma (2" 1E).

keZ

Then "
UP[S] = nh—{go H{gﬁ}k\bp&) .

We now combine Theorem 2.1 and Lemma 2.2 to get the proof of
Theorem 1.1.

Proof of Theorem 1.1. We have, using the same notation as in Lemma
2.2,

2 TP o) < lwaeally < Cp2" 272 (e ey -

The result then follows from Theorem 2.1 by taking the n’th root of the
above inequalities and letting n — oo.
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2.1. Estimates for o,[S].

We want to find the asymptotic behavior of the subsequence
{wgn_1}p in LP(R). By Theorem 1.1 this reduces to calculating the spec-
tral radius o,[S]. Unfortunately, there is no general method available to
calculate 0,[S]. However, the following lemma shows that we only have
worry about 0., [S] to estimate o,[S] for p large. Note that the lemma is
a Bernstein type inequality.

Lemma 2.3. Let {w,} be a wavelet packet system associated with a mul-
tiresolution analysis {V;} with scaling function ¢. Let n > 0, 2271 <
n < 27. Then there is a finite constant C,,, independent of j, such that for
p € [1,00] ,

[wnlso < Cp 27/p [wnlp -

Proof. We have w,, € V; so

wp () = Z ck Pjk

kEZ
for some finite sequence {cx}. Then, using Lemma 2.1,
lwnlloo < Coo 272 [[{c Hle (z)
< Coo 272 [{er Hler ()
= Oy 97/ (2j/27j/p||{ck}||EP(Z))

<Cp 2i/P Hwan .

And we have

Corollary 2.1. Let {w,} be a wavelet packet system associated a mul-
tiresolution analysis. Then

G, > 2" YP5, .
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2.2. Lower bounds for o.

We are left with the following problem; how do we obtain a lower
bound for 0, [S]? It turns out that the calculation of 0, [S] can be reduced
to a finite dimensional problem. We need the following definition and
theorem

Definition 2.1. Let Ay and Ay be two n X n-matrices. The joint spectral
radius of Ag and Ay is given by

p(Ag A1) = limsup max [ Ao, Ay - Ao V7,

r—oo €€{0,1}7
where || - || is any (matriz) norm on R™*™.

The following general theorem about subdivision operators is proved
in [4].

Theorem 2.2. Let mq(§) = Zﬁ]:_l G €€ be a high-pass filter associated
with a multiresolution analysis. Form the two matrices

Ao = (9-iv2i)h =1 5 Ay = (g1—it2) 0=y -

Then
0oo[S] = p(Ao, A1) .

It is, in general, difficult to calculate the joint spectral radius of the
matrices Ag, A1 introduced in Theorem 2.2. However, we just want a lower
bound for o, so for our purpose it suffices to notice that p(Ag, A1) >
p(Ap). Hence, the spectral radius of the matrix Ag gives us a lower bound
on 0, i.€., we have reduced the problem to a finite dimensional eigenvalue
problem that can be solved (numerically, at least) for any finite filter.

3. Growth in L’-norm of some familiar wavelet pack-
ets.

We now apply this method to some much used filters. We have calcu-
lated lower bounds for o, for some of the standard Daubechies filters, least
asymmetric Daubechies filters, and Coiflet filters (see [3] for definitions).
The estimates, which were calculated using Matlab and verified using the
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power method, appear in Tables 1, 2, and 3, respectively. The columns
will be explained in Section 4. It is interesting
to note the difference in the estimates obtained for the Daubechies filter
and the least asymmetric Daubechies filter of the same length since their
transfer functions agree in absolute value. It suggests that the phase of
the transfer function does influence the behavior of the associated wavelet

)

related to “o1” and “pg’

packets in LP(R).

Dauby Lower bounds for
01 Ooo 01000 Do
2 [0.918558 | YILEE 11159376 | 4.687617
3 [0.946828 [ 1.182094 | 1.119240 | 6.153068
4 [0.964076 | 1.128085 | 1.087560 | 8.257957
5 | 0.975229 [ 1.178557 | 1.149363 | 4.979198
6 [0.982686 [ 1.120631 | 1.101229 | 7.188270
7 [ 0.987780 | 1.088578 | 1.075275 | 9.550474
8 [0.991312[1.120338 | 1.110605 | 6.607374
9 [0.993788 | 1.081554 | 1.074836 | 9.604556
10 [0.995538 | 1.050467 | 1.045780 | 15.48460
11 [0.996783 [ 1077456 | 1.073990 | 9.710528
12~ [0.997673 | 1.053657 | 1.051206 | 13.87991
13 [0.998313 | 1.023405 | 1.021679 | 32.31807
14 [0.998774 | 1.047230 | 1.045946 | 15.42983
15 [0.999107 | 1.034474 | 1.033551 | 21.00407
16 |0.999349 | 1.007608 | 1.006952 | 100.0505
17 [0.999524 | 1.027401 | 1.026913 | 26.10002
18 [0.999652 | 1.021871 | 1.021515 | 32.56199
19 [0.999745 | 1.001009 | 1.000754 | 919.3268
20 | 0.999813 [ 1.015251 | 1.015061 | 46.36799

Lower bounds for 71, 04, and pg for the first 20
Daubechies filters (with filter length from 4 to 40).

Least asymmetric Daubechiesy

Lower bounds for

0y

O

01000

Do

0.964076

1.192708 | 1.149862

4963745

0.975229

1.087374 | 1.060439

11.81179

0.982686

1.146192 | 1.126374

5.825744

0.987780

1.133295 | 1.119446

6.143067

0.991312

1111158 | 1.101505

7.169679

O OO —I| S| O =

0.993788

1.047619 | 1.041111

17.20426

10

0.995538

1.084002 | 1.079118

9.095479

Lower bounds for 71, 04, and pg

for the least asymmetric Daubechies filters of length 8 to 20.
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Coiflet x Lower bounds for

6'1 6'00 &15w Po
0.939727 | 1.075437 | 1.010617 | 65.63136
0.967122 | 1.197928 | 1.158542 | 4.710071
0.984923 | 1.151143 | 1.133787 | 5.520289
0.992775 | 1.114805 | 1.106750 | 6.833865
0.996445 | 1.086199 | 1.082338 | 8.760274

NelRex] NOV)

[y S
SN

Lower bounds for 71, 04, and pg
for the “Coiflet” filters with filter length 6 to 30.

The following result generalizes the results obtained in [1] for the
Meyer wavelets.

Corollary 3.1. For each wavelet packet system associated with one of the
filters listed in Tables 1, 2, and 3 there is a pg > 2 such that for p > py we
have a constant r, > 1 such that [|wan 1|, > Cpry.

We would like to know if the previous theorem is sharp in the sense
that there is a p, 2 < p < po, such that sup,, ||wan_1]|, < co. The answer
is, in general, negative as the following result shows.

Theorem 3.1. Let mq be the Daubechies filter of length 4 and let {w,}
be the associated wavelet packets. Then

Jwan 1|, = o0,

for every p > 2.

Proof. If we can prove that |[wyn_1 1 "= 0 then the result will follow by
Holder’s inequality since ||wan_1||2 = 1. It suffices to show that o1[S] < 1.
Note that if we can find an N such that >, |cl| = a < 1, where

() i 2V = 3 oY e,

keZ

then ¢1[S] < a'/N < 1. But one can check that

< 0.98.

S el = 9517 + 13043v/3
7| =

= 32768
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4. Failure of some wavelet packet systems to be a basis
for L”(R).

It is well known that the simplest example of a wavelet packet system,
the Walsh system, do form a Schauder basis for LP(R), 1 < p < oo, so one
might conjecture that such a result holds for any reasonable wavelet packet
system. However, it turns out that the assertion is not true for many nice
finite filters such as the Daubechies, least asymmetric Daubechies, and
Coiflet filters. They all fail because of the following result:

Lemma 4.1. If {w,(x —k)}k n is a Schauder basis for LP(R), 1 < p < oo,
then there exists a finite constant C), such that

[wnllp wallpy < Cp, n=20,1,...

Proof. It is a well known result (see [7]) that a Schauder basis {e,} in a
Banach space B with associated coefficient functionals { f,,} satisfies

sup [[en s | fnll- < 400
n

So it suffices to show that w, € L¥ (R) is the coefficient functional of
w, € LP(R). However, this follows easily using that {w,(z — k)},  is an
orthonormal system in L2?(R) and the fact that bi-orthogonal sequences
for Schauder bases are unique [7].

The idea is to find a subsequence of a given wavelet packet system for
which (4.1) fails. We have the following useful result.

Lemma 4.2. If
51[5] 500[51 =a>1,

then the associated wavelet packet system {w, (- —k)}n.r (in any ordering)
fails to be a Schauder basis for LP(R) for p > pg, where pg = 1/logs ().

Proof. Since the functions {w, } all have support contained in some fixed
finite interval, we have ||wy,|1 < Cp|lwy|lp. Thus, for p > 2,

[[wan —1[|pr lwan—1lp = Cp [Jwan 1|1 [[wan 1]l

> Cp 27 won_1 |1 [[wan—1]loo
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where we have used Lemma 2.3. Note that

277 lwan_q |1 Jwan—1]lse 3 00

for p > pp, and from Lemma 4.1 it follows that {w,(z — &)}, fails to be
a Schauder basis for such LP(R).

Remark. Notice that the negative result of Lemma 4.2 is independent of
the ordering of the system {w,}. Thus, whenever a wavelet packet system
fails to be a Schauder basis due to this result we can be sure that the
reason is not that we have chosen the “wrong” ordering of the system.
Lemma 4.2 is coarse in the sense that it does not take into account the
interaction between different wavelet packets, and all we can say in the
case where o = 1 is such a wavelet packet system might be a Schauder
basis for LP(R). One such example is the Walsh system.

We already have estimates of 0,,[S]. The following result takes care
of o 1 [S ],

Lemma 4.3. Let m1(§) be a finite high-pass filter with real coefficients
associated with a multiresolution analysis. Then

o512 (3|

Proof. Note that the set {—27/3,27/3} is invariant under the transfor-
mation £ — 2¢ (mod 27). Also,

o (5) = (= 5|

since m1 has real coefficients. Thus,
2 2
() o (22 )] = ()

N et = my () my(2€) - ma(2771€).

kEZ

Let

Then

< ma(€) - mi (2" ) ppo2m) < D Ik,

kEZ
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and the results follows from Lemma 2.1.

We have the following unfortunate result about the basic wavelet pack-
ets associated with one of the filters listed in Tables 1, 2, and 3,

Corollary 4.1. For each wavelet packet system {w,} associated with one
of the filters listed in Tables 1, 2, and 3 there exists a (finite) py > 2 such
that for p > po, the system {w, (- — k)}n i (in any ordering) fails to be a
Schauder basis of LP(R).

Lower bounds for py can be found in Tables 1, 2, and 3.

5. Periodic wavelet packets.

We want to calculate the growth in LP[0,1)-norm of the periodic
wavelet packets associated with wavelet packet systems generated using
finite filters. The main result is Theorem 1.2 below, which we will prove
using the next lemma.

Lemma 5.1. Let {my}rez be a 2V -periodic sequence with

o :i%f\mk| >0.
Then the operator T, defined on L?[0,1) by

T( 2 :ake27rzkx) _ 2 :mk ar e27mkx ’

= kEZ
extends to an isomorphism on LP[0,1), 1 < p < 0.
Proof. Define the operator Ay : LP[0,1) — LP[0,1) by
2V -1

SUCEE SWICE ).

where ¢ is considered a 1-periodic function. It is clear that Ay is bounded
on LP[0,1). We claim that 7" has the representation

2N _1
Tf(.T) — Z ms AN(fe—Zﬂ”ik-)€27rikx’
k=0
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for every trigonometric polynomial f = > _, an e2™n  To see this we
notice that
12! N
AN(fefQﬂ'k‘-)(x) _ 2_N Z Z a, 627rz(nfk):t 6727‘(’1(”,7]{3)5/2
=0 nez
1 2N 1
_ Za” e27ri(n—k)x<2_N Z €—2m(n—k)z/2N)
nez =0
_ Z a, eQﬂ'i(nfk)x 7
n€k+2N7Z

from which the claim follows at once. Hence, T is bounded on LP[0, 1),
1 < p < o0, and applying the same argument to the multiplier sequence
A = 1/my, we get that T' extends to an isomorphism on LP[0,1).

We can now prove Theorem 1.2.

Proof of Theorem 1.2. We have, using that m(k7)=—(k mod 2),

Wanin_p(7) = Z Won4n_p (27k) 2™Fe
keZ
wk kYN - wk ‘
= > m()me, () e, (g ) o (g )
kEZ
204+ 17 20+ 1)7
- S () o (250
LEZ
N 20+ 1 . ,
Wgn 1 (( ;—N )ﬂ->627rz2£a: 627mm ’
where €1, €2, ..., e are the first J bits of the binary expansion of 2"t~ — L.
Note that e; = 1 since L is odd and e, ...,e5 do not depend on n, only
on L. Thus,

—_—

||w2"+N—L||LP[0,1)

_ H émQ(W) ...m€J<<2€2+_N1>W>

-~ 2€+1 ™ mi2bx 2mix
-w2n1<( 2N) )62 26z 2

Lr[0,1)
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204 1) 204 1)
:HZm€2< 2 )"'m”< N >
LET

N 2¢0+1 ,
Wgn 1 <( ;1_\] )7T>€27r12€x

LP[0,1)
=H%;m@(9£§33)-~mw(9€§31)

R 2¢0+1 ,
gn 1 <( ;V )7T>627rz€m

Lr[0,1)

Note that

e (B e (P57 )

is a 2N-periodic sequence. Moreover, the sequence is non-vanishing (by
assumption). Hence, by Lemma 5.1 for 1 < p < oo,

Hw2”+N7L||iz)[0’1) ~ H Zw2n71<27N>e2 V4
LEL

L?[0,1)

20T T 5N, ||P
_9—N -~ Y 2mi2T
=2 H szn_1< 5N + 2N>€ LP[0,29) °
LEZ
However,
_ . 20w m ri2=N g
9 Nsz"*1<2—N n 2_1\7)62 2=Ny
LEZ
is just the Fourier series on [0,2) of the function
gl@) =) fle—2"k),
kEZ
- N .
where f(x) = wan_1(z) e "% ™. Also, ||g|lprp,2n) = ||wan—1| Lr(r) since

diam supp (wan_1) < 2V. So we conclude that for 1 < p < oo

—_—

Hw2n+N_L||L:D[0’1) ~ ||w2”71||LP(]R) )

for n sufficiently large.

We now apply Theorem 1.2 to the wavelet packets of Section 3 to get
the following result.
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Corollary 5.1. Let {wy,}, be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Fix L € 277 + 1. Then there is
a po > 2 such that for p > po there is a constant r, > 1 (depending on L)
such that

—_—

|wan—rl|Lr0,1) = Cpry

for n large.

Proof. Follows at once from Corollary 3.1 and Theorem 1.2, since the
combined zero-set of the filters mg and m; is 7 Z, and (24 +1)/2 & Z for
i>1

Corollary 5.1 can also be used to extend Corollary 3.1 to a larger
index set. The following result emphasizes that it is the high-pass filter
(mq) that causes the growth in LP-norm of the wavelet packets.

Corollary 5.2. Let {wy,}, be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Fiz L € 277 + 1. Then there is
a po > 2 such that for p > po there is a constant r, > 1 (depending on L)
such that

Jwan—l|Lewy > Cpry s

for n large.
Proof. Follows at once from Corollary 5.1, Minkowski’s inequality, and
the fact that the wavelet packets all have support contained in some fixed
interval.

We proved in the previous section that compactly supported wave-
let packets may fail to be Schauder bases for the LP(R)-spaces. We show
in this section that a similar (unfortunate) result holds true for periodic

wavelet packets. The failure is due to the following analog of Lemma 4.1.

Lemma 5.2. If {w,}32, is a Schauder basis for LP[0,1),1 < p < oo,
then there ezists a finite constant C), such that

<4) H{U\;LHLP[O,I) ||7])\7;||Lp’[071) < Cp ) n=20,1,...

Proof. Same as for Lemma 4.1.

We now use Theorem 1.2 and Lemma 5.2 to obtain the following result.
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Corollary 5.3. Let {wy,}, be a wavelet packet system generated using one
of the filters listed in Tables 1, 2, and 3. Then there is a py > 2 such that
for p > pg the periodic wavelet packet system {wy}, (in any ordering) fails
to be a Schauder basis for LP[0,1).

Proof. Choose pg such that

sup [|wan 1 ||y [lwaon 1|, = o0,
n

for each p > pg. Fix p > po. By Theorem 1.2, there is a constant ¢, €
(0,00) and an integer N such that

—_—

Hw2”+N—1HLP'[O,1) [wansn _1lLejo,1) = Cpllwan 1y [[war—1][p -

Hence,

sup ||@:||LP’[O,1) ||1@:||LP[0,1) = 00.
J

The result then follows from Lemma 5.2.
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