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Rotation invariant subspaces
of Besov and Triebel-Lizorkin

space: compactness of embeddings,
smoothness and decay of functions

Leszek Skrzypczak

Abstract

Let H be a closed subgroup of the group of rotation of Rn.

The subspaces of distributions of Besov-Lizorkin-Triebel type in-

variant with respect to natural action of H are investigated. We

give sufficient and necessary conditions for the compactness of the

Sobolev-type embeddings. It is also proved that H-invariance of

function implies its decay properties at infinity as well as the bet-

ter local smoothness. This extends the classical Strauss lemma.

The main tool in our investigations is an adapted atomic decom-

position.

1. Introduction.

The aim of the paper is to prove some assertions on the compactness of
embeddings of some invariant subspaces of Besov-Lizorkin-Triebel classes
into itself. We proved some decay properties of the invariant functions at
infinity and near the origin. The local Hölder smoothness of the invariant
functions is also investigated.
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The phenomenon that symmetry conditions imply compactness of
Sobolev embeddings has been observed by several authors. We refer to
Berestycki and Lions [1], Coleman, Glazer, and Martin [5], Strauss [22],
and Lions [17], where first order Sobolev spaces were regarded. The re-
sults are important for semi-linear elliptic equations. The case of the radial
subspaces of the spaces of Besov-Lizorkin-Triebel type were investigated
in [19], where the sufficient and necessary conditions for the compactness
of the Sobolev-type embeddings are proved. In this paper we investigate
the compactness of embeddings of subspaces invariant with respect to the
action of a closed subgroup H ⊂ O(n) and give sufficient and necessary
conditions both for the function spaces and the subgroup.

Besov spaces Bs
p,q(Rn) and Lizorkin-Triebel spaces F s

p,q(Rn) are nat-
ural generalizations of Sobolev and Hölder spaces, e.g. we have

F 0
p,2(R

n) = Lp(Rn) (Lebesgue spaces)

Fm
p,2(R

n) = Wm
p (Rn) (Sobolev spaces)

F s
p,2(R

n) = Hs
p(Rn) (Potential spaces)

if 1 < p < ∞ and

Bs
∞,∞(Rn) = Cs(Rn) (Hölder-Zygmund spaces)

if s > 0. The standard references for the above function spaces are Frazier
and Jawerth [9], [10], Peetre [18] or Triebel [23], [24].

A crucial part in the theory of embeddings of these spaces is taken by
the number s−n/p called the differential dimensions. If 0 < p0 ≤ p and if

(1) s0 − n

p0
≥ s − n

p
,

then

(2) F s0
p0,q0

(Rn) ↪→ F s
p,q(R

n) , 0 < q0, q ≤ ∞ (continuous embedding)

and

(3) Bs0
p0,q0

(Rn) ↪→ Bs
p,q(R

n) , 0 < q0 ≤ q ≤ ∞ (continuous embedding) ,

cf. Jawerth [14] or Sickel and Triebel [20]. We shall prove that if we re-
strict our interest to the subspaces RHBs

p,q(R
n) and RHF s

p,q(R
n) of func-

tions (distributions) invariant with respect to the natural action of H than
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most of the above embeddings become compact. In fact we are able to
characterize all situations where those embeddings are compact.

For convenience we recall the definition of the function spaces. Let
ψ ∈ S(Rn) be a function with 0 ≤ ψ ≤ 1, supp ψ ⊂ B(0, 3/2) and ψ(x) = 1
if |x| ≤ 1. We put

(4)

ϕ0(x) = ψ(x) ,

ϕ1(x) = ψ
(x

2

)
− ψ(x) ,

ϕj(x) = ϕ1(2−j+1x) , j = 2, . . .

The system {ϕj}∞j=0 is the smooth resolution of unity and

N∑
j=0

ϕj(x) = ψ(2−Nx) ,(5)

supp ϕj ⊂ {x : 2j−1 ≤ |x| ≤ 3 · 2j−1} .(6)

Let ‖ · ‖p denote the Lp(Rn) quasi-norm.

Definition 1. Let s ∈ R and 0 < p, q ≤ ∞. Then

Bs
p,q(R

n)=
{

f ∈ S ′(Rn) : ‖f |Bs
p,q‖ =

( ∞∑
j=0

2sjq ‖F−1ϕjFf‖q
p

)1/q

< ∞
}

.

If 0 < p < ∞ then

F s
p,q(R

n) =
{
f ∈ S ′(Rn) : ‖f |F s

p,q‖

=
∥∥∥( ∞∑

j=0

2sjq |F−1ϕjFf(·)|qp
)1/q∥∥∥ < ∞

}
.

Remark 1. The spaces are quasi-Banach spaces, Banach spaces if p, q ≥ 1.
The definition is independent of the chosen function ψ up to the quasi-norm
equivalence. The various equivalent characterizations can be found in [23],
[24]. Sometimes we shall use the generic notation As

p,q in place of F s
p,q and

Bs
p,q, if we speak about the common properties of the above spaces.

Our main tool is an atomic decomposition so we recall also the atomic
decomposition theorem. We follow [21] and [19], but the atomic decompo-
sition theorem for the above spaces is due to Frazier and Jawerth, cf. [9],
[10].
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Definition 2. Let s ∈ R and 0 < p ≤ ∞. Let L and M be integers such
that L ≥ 0 and M ≥ −1. Let B(x, r) ⊂ Rn be a ball centered in x with
radius r.

a) A smooth function a(x) is called an 1L-atom centered in B(x, r) if
there is a constant C ≥ 1 such that

supp a ⊂ B(x, 2 r) ,(7)

sup
y∈Rn

|Dαa(y)| ≤ 1 , |α| ≤ L .(8)

b) A smooth function a(x) is called an (s, p)L,M -atom centered in
B(x, r) if

supp a ⊂ B(x, r) ,(9)

sup
y∈Rn

|Dαa(y)| ≤ rs−|α|−n/p , |α| ≤ L ,(10)

∣∣∣ ∫
Rn

a(y)ϕ(y) dy
∣∣∣ ≤ rs+M+1+n/p′ ‖ϕ|CM+1(B(x, 3 r))‖ ,(11)

ϕ ∈ C∞(Rn), where 1/p + 1/p′ = 1.

Remark 2. If M = −1, then (11) becomes superfluous, it is covered by
(10).

Remark 3. The following observations will be helpful from time to time.
If p0 < p1 and s0 − n/p0 = s1 − n/p1, then an (s0, p0)L,M -atom is also
an (s1, p1)L,M -atom. Furthermore, if s0 > s1 and if a(x) is an (s0, p)L,M -
atom, then rs0−s1 a(x) is an (s1, p)L,M -atom.

Let j ∈ N0 and {B(xj,i, 2−j)}i∈N0 be a covering of Rn by balls such
that the maximal number of the balls with non-empty intersection in this
covering is finite. Such a covering is called uniformly locally finite and the
maximal number is called the multiplicity of the covering. We may choose
the sequence of the coverings Bj = {B(xj,i, 2−j)}i∈N0 , j = 0, 1, 2, . . . , with
the same finite multiplicity. We recall the atomic decomposition theorem
for Besov spaces.
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Theorem 1. Let s ∈ R and 0 < p, q ≤ ∞. Let L and M be fixed integers
satisfying the following conditions :

(12)
L ≥ ([s] + 1)+ and M ≥ max {[−σp − s],−1} ,

σp = n max
{1

p
− 1, 0

}
.

Let Bj = {B(xj,i, 2−j)}i∈N0 , j = 0, 1, . . . , be a sequence of locally finite
coverings with the same finite multiplicity.

a) Each f ∈ Bs
p,q(R

n) can be decomposed as follows

(13) f =
∞∑

j=0

∞∑
i=0

sj,i aj,i (convergent in S ′(Rn))

where a0,i is an s-atom related to the ball B(x0,i, r), and aj,i, j �= 0 is an
(s, p)-atom related to the ball B(xj,i, rj), si and sj,i are complex numbers
with

(14)
( ∞∑

j=0

( ∞∑
i=0

|sj,i|p
)q/p)1/q

< ∞ .

(modification if either p = ∞ or q = ∞).

b) Conversely, suppose that f ∈ S ′(Rn) can be represented as in (13)
and (14). Then f ∈ Bs

p,q(R
n).

Furthermore, the infimum of (14) with respect to all admissible repre-
sentations (for fixed sequence of coverings and fixed integers L, M) is an
equivalent norm in Bs

p,q(R
n).

2. Rotation invariant subspaces.

Let g be an isometry of Rn. For ϕ ∈ S(Rn) we put ϕg(x) = ϕ(g x).
If f ∈ S ′(Rn) then fg is a tempered distribution defined by

fg(ϕ) = f(ϕg−1
) , ϕ ∈ S(Rn) ,

where g−1 denote the isometry inverse to g.
Let O(n) denote a real orthogonal group on n×n matrices. The group

O(n) acts on Rn as a group of linear isometries. The group is a compact
Lie transformation group. So its action on Rn is smooth. By SO(n) we
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denote a real special orthogonal group that is the subgroup of O(n) consists
of matrices with determinant equal to 1. It is a connected component of
identity of O(n).

Definition 3. Let H be a subgroup of O(n). We say that the tempered
distribution f is invariant with respect to H if fh = f for any h ∈ H. For
any possible s, p, q we put

RHBs
p,q(R

n) = {f ∈ Bs
p,q(R

n) : f is invariant with respect to H} ,

RHF s
p,q(R

n) = {f ∈ F s
p,q(R

n) : f is invariant with respect to H} .

Remark 4. 1) The space RHAs
p,q(R

n) is a closed subspace of As
p,q(R

n).
respectively. It follows immediately from the continuity of the linear
operators Thf = fh − f , h ∈ H, in As

p,q(R
n) and the representation

RHAs
p,q(Rn) =

⋂
h∈H ker Th. Thus they are quasi-Banach spaces with

the quasi-norm induced from As
p,q(Rn). They are Banach spaces if p ≥ 1

and q ≥ 1.

2) The group SO(n) acts transitively on the unit sphere Sn−1 =
{x ∈ Rn : |x| = 1} therefore the subspaces RSO(n)A

s
p,q(R

n) consists
of the radial distributions. We will denote this subspace by RAs

p,q(R
n).

If H is a subgroup of O(n) then RSO(n)A
s
p,q(R

n) ⊂ RHAs
p,q(R

n). Thus
RHAs

p,q(R
n) = RAs

p,q(R
n) if SO(n) ⊂ H. These subspaces were investi-

gated in [19].

3) Another example of rotation invariant subspaces are the subspaces
corresponding to block radial (cylindrical) symmetries. Let n = n1 + · · ·+
nm with ni ≥ 2 and

H = SO(n1) × · · · × SO(nm)

with the action of h = (h1, . . . , hm) ∈ H on Rn defined by

h(x(1), . . . , x(m)) = (h1(x(1)), . . . , hm(x(m))) , x(i) ∈ Rni .

The H invariant subspaces of the first order Sobolev spaces were investi-
gated in [17]. In particular the compactness of the Sobolev embeddings
into Lp spaces is proved.

4) We will assume that H is a closed subgroup of O(n). This as-
sumption seems to be not very restrictive. The groups SO(n) as well
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as SO(n1) × · · · × SO(nm) are of course closed subgroup of O(n). More-
over, closed subgroup of real orthogonal groups O(n) cover all compact Lie
groups in that sense that any compact Lie group is isomorphic to a closed
subgroup of certain orthogonal group O(n), [2, Chapter 0, Theorem 5.1].

5) We give another example of identification of the compact Lie group
with the subgroup of orthogonal transformations that arise naturally in
geometry. Let X = G/K be a homogeneous Riemannian manifold with a
Riemannian metric tensor g. Then G is Lie group of isometries of X and K
is a stability subgroup of a fixed point o ∈ X. The group K is compact and
acts naturally on the tangent space ToX by tangent mappings d(k)o, k ∈
K. The action is orthogonal on ToX since go(d(k)ov, (dk)ow) = go(v, w),
v, w ∈ ToX. The nice exposition of the homogeneous manifolds can be
find in [4, Chapter 3].

Proposition 1. Let s ∈ R and 1 ≤ p, q ≤ ∞. If H ⊂ O(n) is a closed
subgroup then the space RHBs

p,q(R
n) (RHF s

p,q(R
n)) is a complemented sub-

spaces of Bs
p,q(R

n) (RHF s
p,q(R

n) respectively).

Proof. We prove that there is a continuous projection R : Bs
p,q(R

n) −→
RHBs

p,q(R
n). The proof for RHF s

p,q spaces is similar. The operator (I −
∆)m, m ∈ N commutes with all isometries of Rn. So, it is an isomorphism
of Bs

p,q(R
n) onto Bs−2m

p,q (Rn) as well as an isomorphism of RHBs
p,q(R

n)
onto RHBs−2m

p,q (Rn), it is sufficient to regard s > n/p. In that case
Bs

p,q(R
n) ⊂ C(Rn).

If n = 1 then we put Rf(x) = (f(x) + f(−x))/2. It is clear that the
operator is a continuous projection we are looking for.

If n > 1 and the group H is finite we put

Rf(x) =
1
|H|

∑
h∈H

f(hx) .

The operator R is once more a continuous projection.
Let n > 1 and let dh denotes the normalized Haar measure on H. We

define
Rf(x) =

∫
H

f(hx) dx .

The H-invariant functions are fixed points of R. We prove that R is a
bounded projection from Bs

p,q(Rn) onto RHBs
p,q(Rn).

The Fourier transform commutes with the orthogonal transformations
of Rn. So, F(f(g(·)))(x) = F(f)(g(x)), if g ∈ SO(n). In consequence

F(Rf) = R(F(f)) ,
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and

(15) F−1ϕjF(Rf) = R(F−1ϕjFf) ,

if the functions ϕj are rotation invariant.
On the other hand, by the Minkowski inequality for integrals,

(16) ‖Rf‖p ≤ ‖f‖p .

So, the inequalities (15) and (16) imply

‖Rf |Bs
p,q(R

n)‖ =
( ∞∑

j=0

2jsq ‖F−1ϕjF(Rf)‖q
p

)1/q

≤ C ‖f |Bs
p,q(R

n)‖ .

This finishes the proof.

3. Compactness of the embeddings.

In this section we give the sufficient and necessary condition for com-
pactness of embeddings

RHAs0
p0,q0

(Rn) ↪→ As1
p1,q1

(Rn) .

Our main tool will be H-invariant atomic decompositions of Bs
p,q(R

n). We
start with notions of a separation and a discretization of Rn since they are
useful for description of the atomic decomposition.

Definition 4. Let ε > 0 be a positive number, α = 1, 2, . . . be a positive
integer and X a nonempty subset of Rn.

A subset H of X is said to be ε-separation of X, if the distance between
any two distinct points of H is greater than or equal to ε.

A subset H of X is called an (ε, α)-discretization of X if it is an
ε-separation of X and

X ⊂
⋃

x∈H
B(x, α ε) .

Remark 5. 1) Any ε-separation is a finite or countable subset of Rn.

2) For the notation of ε-separations and discretization as well as their
importance in geometry we confer to [3, Chapter 4]. Please note, that our
notion of discretization is a bit different to that one in Chavel’s book.
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We denote by |X| cardinality of a set X.

Lemma 1. Let ε > 0 and α ∈ N.
a) For any nonempty subset X of Rn there is a (ε, 1)-discretization of

X.

b) Let m be a positive integer. If H is an (ε, α)-discretization of
Rn and m ≥ α then the family {B(x, mε)}x∈H is an uniformly locally
finite covering of Rn with multiplicity that can be estimates from above by
constant depending on n and m, but independent of ε.

Proof. The proof is standard. It follows from the Zorn lemma that for
any nonempty set X there exist the maximal ε-separation H of X. But
then

X ⊂
⋃

x∈H
B(x, ε) .

by maximality of H. This proves a).
We prove b). If xi, xj ∈ H and xi �= xj then

(17) B
(
xi,

ε

2

)
∩ B

(
xj ,

ε

2

)
= ∅ .

Let y ∈ Rn and I(y) = {x ∈ H : y ∈ B(x, mε)}. Then by (17) we get

cn |I(y)|
(ε

2

)n

≤ vol
( ⋃

x∈I(y)

B
(
x,

ε

2

))
≤ vol (B(y, (m + 1) ε)

≤ cn (m + 1)n εn .

Thus the multiplicity of the covering is less or equaled to Cn (m + 1)n.

Let H ⊂ O(n) be a closed subgroup of O(n) and H any ε-separation
of Rn. For any x ∈ H we put

H(x, H) = {y ∈ H : exists h ∈ H, h · x = y} .

Definition 5. Let H be a closed subgroup of O(n). Let H be a (ε, α)-
discretization of Rn. We say that the discretization H is H-rich if there
are constants c > 0 and b ≥ 1 such that for any x ∈ H, x �= 0 the following
estimate

(18) c (|x| ε−1)b ≤ |H(x, H)|
holds.
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Remark 6. Since 0 is a fixed point of H the set H(x, H) is contained
in a sphere Sn−1(0, |x|). This implies the following upper bound of the
cardinality of H(x, H)

(19) |H(x, H)| ≤ C (ε−1 |x|)n−1 .

Moreover H · x, x �= 0, is a smooth submanifold of Rn, therefore one can
take

(20) b = min
x∈Sn−1

dim H · x .

This value of b is optimal.

Lemma 2. Let H be a closed subgroup of O(n). Then the following
conditions are equivalent :

1) For any x �= 0 there orbit H · x = {h · x : h ∈ H} is infinite.

2) For any x ∈ Sn−1 there orbit H · x = {h · x : h ∈ H} is infinite.

3) For any j ∈ N0 and there exist a (2−j , α)-discretization Hj of Rn

such that :

• the constant α is independent of j,
• the discretization Hj is H-rich,
• the constants (c, b) in (18) are independent of j.

Proof. Step 1. The equivalence 1) if and only if 2) is obvious. The group
H is a closed subgroup of a compact group therefore it is compact and
it has a finite many connection components. Let H0 denote a connection
component of the identity of H. It is a closed subgroup of H.

The group H is a closed subgroup of the compact Lie group O(n)
therefore it is a Lie subgroup of O(n) if equipped with the unique differ-
ential structure, cf. [12, Chapter 2, Theorem 2.3]. In consequence it acts
analytically of the unit sphere Sn−1 as a group of isometries. Any orbit
H ·x is a regular submanifold of Sn−1 of dimension kx = dim H −dimHx,
where Hx is a stability subgroup of x in H, cf. [2, Chapter 6, Corol-
lary 1.3]. So if the orbit H · x is infinite then it is a regular submanifolds
of dimension kx ≥ 1.

The group H acts on the family of its connected components by trans-
lations. In consequences if Th : H0 −→ H1 is a translations that defines
an diffeomorphism of H0 onto a connected component H1 then it defines
also a diffeomorphism of an orbit H0 · x onto H1 · x. In consequence the
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orbit H · x is infinite if and only if infinite is the orbit H0 · x. So, H0 · x is
a regular connected submanifolds of dimension kx ≥ 1.

Step 2. We prove that 2) implies 3). First we notice that there is a positive
constant δ such that for any x ∈ Sn−1 we have

(21) H0 · x � B(x, δ) .

Indeed, if the last statement is not true then for any m ∈ N there exist
xm ∈ Sn−1 such that H0 · xm ⊆ B(x, 1/m). But Sn−1 is a compact set
therefore the sequence {xm}m∈N has got a convergent subsequence. To
simplify the notation we assume that xm −→ y, if m −→ ∞. Let us
choose ε > 0 then there is xm such that 1/m < ε/3 and |y − xm| ≤ ε/3.
So, for any h ∈ H0 we have |h · y − y| ≤ ε. Thus, H0 · y ⊂ B(y, ε) for any
ε. Then H0 · y = {y}, but this is impossible since any H0-orbit is infinite,
cf. Step 1.

Let us choose ε, 0 < ε ≤ 1. Let xε,1, . . . , xε,k ∈ Sn−1 be a maximal
set such that:

1) xε,1 ∈ Sn−1,

2) xε,i ∈ Sn−1 and dist (xi,
⋃i−1

l=1 H0 · xε,l) = ε, for i = 2, . . . k.

Since any orbit is a regular submanifold of Sn−1 and Sn−1 is compact
such set is finite. In particular if H0 acts transitively on the sphere then
the set has only one element.

For any orbit H0 · xε,i there is an (ε, 1)-discretization of H0 · xε,i. We
will denote this discretization by Xε,i. The set Xε =

⋃k
i=1 Xε,i is then

the (ε, 2)- discretization of Sn−1. The orbit H0 · xi is a connected regular
submanifold of Sn−1 of dimension ki ≥ 1 therefore (21) implies, that the
inequalities

(22) |Xε,i| ≥


1 , if δ < ε ,

�δ

ε
� , if δ ≥ ε ,

holds for any discretization Iε,i. Here �t� denotes the integer part of t ∈ R+.
Let us choose j ∈ N0. We construct the (2−j , 2)-discretization Hj of

Rn that is H-rich. We assume that the set Hj consists of 0 and all the
points satisfying the following conditions:

|y| = N 2−j , N = 1, 2, . . . ,(23)

exists XN−1,i , |y|−1y ∈ XN−1,i .(24)
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It should be obvious that Hj is an (2−j , 3)-discretization of Rn. Moreover
by (22) and (24) we have

δ

2
2j |y| ≤ |XN−1,i| = |Hj(y)|

for any 0 �= y ∈ Hj .

Step 3. It remains to prove that 3) implies 2). Let x ∈ Sn−1. We put
xN = N · x. There exists yN ∈ H0 such that xN ∈ B(yN , α). Let M
denotes the multiplicity of the covering {B(y, α)}y∈H0 , cf. Lemma 1. We
have

|H · x| = |H · xN | ≥ M−1|H · yN | ≥ cM−1 N b

since H is a group of isometries of Rn. Thus |H · x| = ∞. This finishes
the proof.

Remark 7. 1) The simplest example of a group satisfying the assumption
of the above Lemma is SO(n). In this case b = n − 1 . The theory of
corresponding radial subspaces is elaborated in [19].

2) Another example are block radial (cylindrical) symmetries regarded
in Remark 4. In this case we can give more explicit construction of the H-
rich discretizations. Let {x(i)

k,l}, k ∈ N0 and l = 0, . . . , kni−1, be a (2−j , αi)-
discretization in Rni that is SO(ni)-rich, cf. [19] for the construction. We
put

Hj = {xk̃,l̃ = (x(1)
k1,l1

, . . . , x
(m)
km,lm

) : ki ∈ N0 , li = 0, . . . , kni−1
i } ,

and
α =

√
n max

i
{αi} .

The set Hj is a (2−j , α)-discretization of Rn Let xk̃,l̃ ∈ Hj with k̃ �= 0.
Then

0 < 2−j max
i

ki ≤ |x| ≤ √
n 2−j max

i
ki .

So

|Hj(xk̃,l̃, H)| ≥ kn1−1
1 . . . knm−1

m ≥ max {kn1−1
1 , . . . , knm−1

m } ≥ c (2j |x|)b ,

with b = min {n1, . . . , nm} − 1.
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3) Let n = n1 + · · · + nm and let

H = K1 × · · · × Km

be a subgroup of O(n) with Ki ⊂ O(ni). The action of h = (h1, . . . , hm) ∈
H on Rn is defined in the same way as above. The group H satisfies the
assumptions of the Lemma 2 if and only if every group Ki satisfies the
assumptions of the Lemma.

4) To give another example we continue the last point of Remark 4.
Let X = G/K be a Riemannian symmetric space of compact or noncom-
pact type. In that case the group G is semi-simple. The rank r(X) of the
symmetric spaces is a maximal dimension of a flat totally geodesic sub-
manifold of X. The group K acts transitively on the sphere centered at
the origin o ∈ X of X if and only if r(X) = 1. For any x ∈ X the exist a
flat totally geodesic submanifold trough x and o of dimension r(X). More-
over, maximal flat totally geodesic submanifolds trough the origin o ∈ X
are in one to one correspondence with maximal abelian subspaces of the
Iwasawa decomposition of the Lie algebra g of G. The group AdG(K)
acts transitively on the family the maximal abelian subspaces. So, if the
r(X) > 1 then AdG(K) do not act transitively on the sphere but any orbit
is infinite. The best reference for geometry of symmetric space in Helga-
son’s book [12]. For the analysis on tangent spaces of symmetric spaces
including the harmonic analysis of AdG(K) invariant functions we refer to
[13, Chapter 3, sections 7 and 8].

5) Let

m =
(n − 1) (n + 2)

2
, n > 1 .

We describe more precisely the action of SO(n) onto Rm connected with
the decomposition of a space SL(n, R)/SO(n), that is a symmetric spaces
of rank n − 1. We identify Rm+1 with a space s of n × n real symmetric
matrices and Rm with a subspace p of s of matrices with zero trace. We
define the scalar product in s by

K(A, C) = 2n tr (AC) , (the Killing for of SL(n, R)) .

Equipped with the above scalar product s is an euclidean space and p an
euclidean subspace of codimension 1. We define the action of SO(n) onto
p by

τ(B) : p � A �−→ B−1AB ∈ p , B ∈ SO(n) .
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It follows by the elementary properties of the trace and transpose matrices
that B−1AB ∈ p if A ∈ p, and that K(τ(A), τ(C)) = K(A, C). The spaces
a of diagonal matrices in p is an n − 1 dimensional linear subspace. Any
symmetric matrix is diagonalizable so for any A ∈ p there exists B ∈ SO(n)
and C ∈ a such that A = B−1CB. Thus

p =
⋃

B∈SO(n)

τ(B)(a) .

An easy calculation shows that if both matrices A and B−1AB are diagonal
then they differ only by permutation of the elements on the diagonal. So
SO(n) acts on any subspace of the form τ(B)(a) as a group of permutation
of n elements.

So any system of real numbers λ1, . . . , λn−1 appoints exactly one orbit
of the group SO(n) in p. The orbit consists of symmetric matrices of
eigenvalues λ1, . . . , λn−1 and λn = −λ1−· · ·−λn−1. If the system contains
at least one number no equaled to 0 then the orbit is infinite. But if n > 2
then SO(n) does not act transitively on any sphere centered at the origin
in a, hence also in p.

Theorem 2. Let H ⊂ O(n) be a closed subgroup of O(n), n ≥ 2. Let
RHAs

p,q(R
n) be an H-invariant subspace of As

p,q(R
n). The embedding

RHAs0
p0,q0

(Rn) ↪→ RHAs1
p1,q1

(Rn)

is compact if and only if,

i) for any x ∈ Sn−1 the orbit H · x is infinite,

ii) p0 < p1 and s0 − n/p0 > s1 − n/p1.

Remark 8. 1) If n = 1 then the only invariant subspaces is a subspaces
of even distributions. In that case the embeddings are not compact. This
was proved in [19].

2) The compactness of embeddings of invariant subspaces of order one
Sobolev spaces, in case of the block radial symmetries was regarded in [17].

Proof. Step 1. Preparations. In view of the elementary embeddings

RHBs
p,min {p,q} ⊂ RHF s

p,q ⊂ RHBs
p,max {p,q} ,

cf., e.g. [23, 2.3.2], it is enough to deal with the subspaces of the Besov
spaces. Let m be a natural number. The operator (id−∆)m maps a Besov
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space Bs
p,q(R

n) isomorphically onto Bs−m
p,q (Rn) and it is invariant with

respect to any isometry of Rn so it maps also RHBs
p,q(R

n) isomorphically
onto RHBs−m

p,q (Rn). Consequently, the question whether an embedding
like RBs0

p0,q0
(Rn) ↪→ RBs1

p1,q1
(Rn) is compact can be lifted to arbitrary

large smoothness s0 and s1 by employing the properties of ((id−∆)m)−1.
So we may assume s0 > σp0 and s1 > σp1 , cf. (12).

Step 2. In this step we prove the sufficiency of the conditions i) and ii).
Substep 2.1. By Lemma 2 there is a positive integer α such that for any
j ∈ N0 there exist a (2−j , α)–discretization Hj of Rn such that the following
inequalities hold

(25) c (|x| 2j)b ≤ |Hj(x, H)| ,

where the constants c > 0 and b ≥ 1 are independent of j. It follows
from Lemma 1 that a family of balls {B(x, β 2−j)}x∈Hj

, β ≥ α forms a
uniformly locally finite covering of Rn. Moreover, the multiplicities of the
coverings can be bounded from above by the constant independent of j.
Thus the above coverings are suitable for atomic decompositions.

We put

Hj = {xj,k,m,� ∈ Rn : k = 0, 1, 2 . . . ,

m = 0, . . . , c(j, k) , � = 0, 1, . . . , C(j, k, m)}

and assume that xj,0,0,0 = 0 and

(k − 1) 2−j < |xj,k,m,�| ≤ k 2−j

and
xj,k,m,� ∈ Hj(xj,k,m,0, H)

if k = 1, 2, . . . It follows from (19) and (25) that

(26) c kb ≤ C(j, k, m) ≤ Ckn−1 .

On the other hand since the volume of the ring {x : (k − 1) 2−j ≤ |x| ≤
k 2−j} is equivalent to kn−1 2−jn and Hj is the 2−j-separation therefore

c(j,k)∑
m=0

C(j, k, m) ≤ Ckn−1 .

In consequence
1 ≤ c(j, k) ≤ Ckn−1−b .
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Substep 2.2. We describe the atomic decomposition that is suitable to our
purpose. We can be brief here because it is similar to that one given in
[19] for radial case, which is parallel to the construction given in [9].

The starting point is a Calderon type formula. As usual F denotes the
Fourier transform and F−1 its inverse. Let Θ0 and Θ be radial Schwartz
functions satisfying

|FΘ0(ξ)| > 0 , if |ξ| ≤ 2 ,

and
|FΘ(ξ)| > 0 , if

1
2
≤ |ξ| ≤ 2 .

Then there exists two further radial Schwartz functions ϕ0, ϕ and a positive
number δ such that

supp ϕ0 ⊂ {ξ : |ξ| ≤ 2} , |ϕ0(ξ)| > 0 , if |ξ| ≤ δ ,

supp ϕ ⊂
{

ξ :
1
2
≤ |ξ| ≤ 2

}
, |ϕ(ξ)| > 0 , if

3
5
≤ |ξ| ≤ 5

3
,

and

FΘ0(ξ)ϕ0(ξ) +
∞∑

j=1

FΘ(2−jξ)ϕ(2−jξ) = 1 ,

for all ξ ∈ Rn, cf. e.g. [9]. The above identity gives

(27)

f(x) =
∫

Θ0(x − y)F−1(ϕ0(ξ)Ff(ξ))(y) dy

+
∞∑

j=1

∫
2jn Θ(2j (x − y))F−1(ϕ(2−jξ)Ff(ξ))(y) dy ,

for all tempered distributions f (convergence in S ′(Rn)). We may choose
Θ0 and Θ such that

supp Θ0 ⊂
{
ξ : |ξ| ≤ 1

2

}
, supp Θ ⊂

{
ξ : |ξ| ≤ 1

2

}
.

Using the abbreviations

(28) fj(x) =

{ F−1(ϕ0(ξ)Ff(ξ))(x) , if j = 0 ,

F−1(ϕ(2−jξ)Ff(ξ))(x) , if j > 0 ,
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we define

(29) sj,k,m,� =


D1 sup

y∈B(x0,k,m,�,α)

|f0(y)| if j = 0 ,

D2 2j(s−n/p) sup
y∈B(xj,k,m,�,α2−j)

|fj(y)| , if j > 0 ,

and

(30)

aj,m,k,�(x)

=


1

s0,�

∫
B(x0,k,m,�,α)

Θ0(x − y) f0(y) dy , if j = 0 ,

2jn

sj,�

∫
B(xj,k,m,�,α2−j)

Θ(2j (x − y)) fj(y) dy , if j > 0 ,

where D1, D2 > 0 are normalization constants. The above formulae lead
to the following atomic decompositions

f(x) =
∞∑

j=0

∑
k,m,�

sj,k,m,� aj,k,m,�(x)

(convergence in S ′(Rn)), and

(31)
( ∞∑

j=0

( ∑
k,m,�

|sj,k,m,�|p
)q/p)1/q

≤ C ‖f |Bs
p,q(R

n)‖

with some constant C independent of f . Since s > σp no moment condition
for atoms is needed.

If f ∈ RHBs
p,q(R

n) then the functions fj defined in (28) are also
H-invariant. Thus the properties of the discretizations Hj described in
Substep 2.1 and (30) imply sj,k,m,� = sj,k,m,0 if � = 0, . . . , C(j, k, m). So
we simplify the notation putting

(32) sj,k,m = sj,k,m,� , � = 0, . . . , C(j, k, m) .

Substep 2.3. It is known that the above embeddings are continuous, cf.,
e.g. Jawerth [14] or Triebel [23, 2.7.1].

First we assume p0 < p1 < ∞. Suppose f ∈ RHBs0
p0,q0

(Rn) is given
by

(33) f(x) =
∞∑

j=0

sj,0,0 aj,0,0,0(x) +
∞∑

j=0

∞∑
k=0

∑
m,�

sj,k,m aj,k,m,�(x) ,
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Since s0 − n/p0 > s1 −n/p1 the above decomposition is an (s0, p0) as well
as an (s1, p1) decomposition. Without loss of generality we may assume
q1 = q0 = ∞. Let E be a bounded set in RBs0

p0,∞(Rn). Then there is a
general constant C such that for any f ∈ E we have

(34) sup
j=0,1,...

|sj,0,0| + sup
j=0,1,...

( ∞∑
k=1

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p0

)1/p0

< C ,

cf. (32). The monotonicity of the sequence spaces lp(N) implies

sup
j=0,1,...

|sj,0,0| + sup
j=0,1,...

( ∞∑
k=1

c(j,k)∑
m=0

C(j, k, m)p1/p0 |sj,k,m|p1

)1/p1

< C .

The last inequality and (26) implies

(35) sup
j=0,1,...

|sj,0,0| + sup
j=0,1,...

( ∞∑
k=1

kσ

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p1

)1/p1

< C ,

where σ = b (p1/p0 − 1) > 0.
Let us fix ε > 0. Let N > (C/ε)p1/σ, where C is as above. From (35)

it follows

(36)

sup
j=0,1,...

( ∞∑
k=N

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p1

)1/p1

≤ N−σ/p1 sup
j=0,1,...

( ∞∑
k=N

kσ

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p1

)1/p1

< ε .

For given f we put

f1(x) =
∞∑

j=0

sj,0,0 aj,0,0,0(x) +
∞∑

j=0

N−1∑
k=1

c(j,k)∑
m=1

C(j,k,m)∑
�=1

sj,k,m aj,k,m,�(x) ,

f2(x) =
∞∑

j=0

∞∑
k=N

c(j,k)∑
m=1

C(j,k,m)∑
�=1

sj,k,m aj,k,�(x) .
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Hence f = f1 + f2 and (36) imply

(37) ‖f2 |Bs1
p1,∞(Rn)‖ ≤ ε .

Moreover, f1 ∈ Bs0
p0,∞(Rn) and supp f1 ⊂ {x : |x| ≤ N + 1} = BN+1.

So, we may interpret f1 as an element of Bs0
p0,∞(BN+2), where the last

function space is a Besov space on the ball BN+2 defined by restriction, cf.
[24, Chapter 5] for details. Furthermore, there exists a constant c1 > 0,
depending on N but not on f1 such that

(38) c1 ‖f1 |Bs0
p0,∞(Rn)‖ ≤ ‖f1 |Bs0

p0,∞(BN+2)‖ ≤ ‖f1 |Bs0
p0,∞(Rn)‖ ,

cf. [24, 5.2]. Hence, the set E1 = {f1 : f ∈ E} is a bounded subset in
Bs0

p0,∞(BN+2) and, by the theorem about compact embeddings of Besov
spaces on bounded domains, it is precompact in Bs1

p1,q1
(Rn), cf. [8, Sec-

tion 3.3]. This and (37) show that E is a precompact subset of Bs1
p1,∞(Rn).

Thus the embedding

RHBs0
p0,∞(Rn)) ↪→ RHBs1

p1,∞(Rn)

is compact. To remove the dependence on the third index q one can use
the elementary embedding of Besov spaces, cf. [19].

It remains to regard the case p0 < p1 = ∞. The only modification we
have to make consists in a replacement of (36) by

‖f2 |Bs1∞,∞(Rn)‖ ≤ c sup
j=0,1,...

sup
k=N,2,...

sup
m=0,...c(j,k)

|sj,k,m|

≤ cN−b/p0 sup
j=0,1,...

( ∞∑
k=1

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p0

)1/p0

< ε .

The remaining arguments are unchanged.

Step 3. Now we prove the necessity of the conditions i) and ii). Since

RBs
p,q(R

n) ↪→ RHBs
p,q(R

n) ,

therefore the necessity of ii) follows from the fact that ii) is a necessary
condition for the compactness of embeddings of radial subspaces, [19].

We prove that the condition i) is also necessary. Let us assume that
i) is not satisfied. Then the exists x ∈ Sn−1 such that the orbit H · x
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is finite. Let H · x = {x = x1, x2, . . . , xm}. We may choose ε > 0 such
that B(xi, ε) ∩ B(xk, ε) = ∅, for any i �= k. Let ϕ ∈ C∞

o (Rn) with
supp ϕ ⊂ B(x, ε). We define

(39) ψ(y) =
∫

H

ϕ(h · y) dh .

The function ψ is a smooth compactly supported function with

(40) supp ψ ⊂
m⋃

i=1

B(xi, ε)

since H is a group of isometries of Rn. So we can write

(41) ψ =
m∑

i=1

ϕi , ϕi ∈ C∞
o (Rn) , suppϕi ⊂ B(xi, ε) .

Moreover function ψ is H-invariant and

(42) ϕk(y) = ϕi(h · y) , if xi = h · xk .

For any N ∈ N we put

ϕN,i(y) = ϕi(y + xi − N · xi) and ψN =
m∑

i=1

ϕN,i .

Since, any h ∈ H is a linear transformation and it acts on the orbit H · x
as a permutation, we get

ψN (h · y) =
m∑

i=1

ϕN,i(h · y)

=
m∑

i=1

ϕi(h · (y + h−1 · (xi − N · xi)))

=
m∑

i=1

ϕi(h · (y + xi − N · xi))

=
m∑

i=1

ϕi(y + xi − N · xi)

= ψN (y)
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cf. (42). Thus the function ψN is H-invariant.
The function ϕN,i are s-atom after suitable normalization, for any s ∈

R. In consequence, the exists the constant C = C(s, p, q) > 0 independent
of N such that

‖ψN |As
p,q(R

n)‖ ∼ C(s, p, q) .

But, this leads to the contradiction with compactness of the embeddings
since supports of ψN do not intersect each other.

Corollary 1. Let 0 < p, q ≤ ∞. Then the embedding

(43) RHAs
p,q(R

n) ↪→ vmo (Rn)

is compact if, and only if,

(44) RHAs
p,q(R

n) ↪→ bmo (Rn)

is compact if, and only if,

(45) RHAs
p,q(R

n) ↪→ C(Rn)

is compact if, and only if,

(46) RHAs
p,q(R

n) ↪→ L∞(Rn)

is compact if, and only if, p < ∞, s − n/p > 0 and for any x ∈ Sn−1 the
orbit H · x is infinite.

Corollary 2. Let 1 ≤ p0, p1 ≤ ∞ and let m ∈ N. Then the embedding

(47) RHWm
p0

(Rn) ↪→ Lp1(R
n)

is compact if, and only if, p0 < p1, m − n/p0 > p1 and for any x ∈ Sn−1

the orbit H · x is infinite.

Corollary 3 (Block radial symmetry). Let n = n1 + · · · + nm and

H = SO(n1) × · · · × SO(nm) .

The embedding
RHAs0

p0,q0
(Rn) ↪→ RHAs1

p1,q1
(Rn)

is compact if and only if p0 < p1, s0 − n/p0 > s1 − n/p1 and ni ≥ 2 for
any i = 1, . . . , m.
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The first and the second corollary can be proved exactly in the same
way as the analogous corollaries in [19]. The third corollary is evident.

4. Decay properties and local smoothness of H-inva-
riant functions.

First we deal with a generalized version of the Strauss lemma, cf.
[22] or [16, Chapter 2]. The approach via atomic decompositions has the
additional advantage that it gives some hints about the sharpness. We will
assume in this section that H ⊂ O(n) is a close subgroup and that

1 ≤ b = min
x∈Sn−1

dim H · x .

We formulate the results about the behavior near infinity and near the
origin separately.

Theorem 3 (Behavior near infinity). Let 0 < p ≤ ∞.
Let either s > (n−b)/p and 0 < q ≤ ∞ or s = (n−b)/p and 0 < q ≤ 1.

Then there exists a constant C such that

(48) |f(x)| ≤ C ‖f |Bs
p,q(R

n)‖ |x|−b/p

holds for all f ∈ RHBs
p,q(Rn) and all |x| ≥ 1.

Remark 9. The following properties of radial functions proved in [19] say
something about sharpness of the above result.

1) Let (n− 1)/n < p. Further, let either s < (n− b)/p and 0 < q ≤ ∞
or s = (n − b)/p and 1 < q ≤ ∞. Then for all |x| ≥ 1 there exists a
sequence {fN}∞N=1 of radial, smooth and compactly supported functions,
(depending on x) such that ‖fN |Bs

p,q‖ = 1 and limN→∞ |fN (x)| = ∞.

2) Let (n − 1)/n < p. Then for all triples (s, p, q) there exists a
positive constant C such that for all |x| ≥ 1 there exists a smooth radial
and compactly supported function f ∈ RHBs

p,q(Rn), ‖ f |Bs
p,q(Rn)‖ = 1

(depending on x) such that

|f(x)| ≥ C |x|(1−n)/p .
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Theorem (Behavior near the origin). Let 0 < p ≤ ∞.
Let either s > (n−b)/p and 0 < q ≤ ∞ or s = (n−b)/p and 0 < q ≤ 1.

Then there exists a constant C such that

(49) |f(x)| ≤ C ‖f |Bs
p,q(R

n)‖ |x|−b/p

holds for all f ∈ RBs
p,q(R

n) and all 0 < |x| ≤ 1. Moreover, if p < ∞ we
even have

(50) lim
|x|→0

|x|b/p f(x) = 0 .

Remark 10. The following inverse result was proved in [19].
Let s < 1/p and 0 < q ≤ ∞. For all natural numbers N there exists

a ring with radius |xN | and a smooth and compactly supported radial
function fN such that ‖fN |Bs

p,q‖ = 1 and

(51) |fN (xN )| ≥ N |xN |(1−n)/p .

Proof of Theorems 3 and 4.
Step 1. We comment the situation if p = ∞. Then all the assertions are
covered by the well-known relations of Bs

∞,q(R
n) to C(Rn), cf. [20]. The

H-invariance does not matter. In what follows we suppose always p < ∞.
Step 2. We prove (48) and (49).
Substep 2.1. Let |x| ≥ 1. Let f ∈ RHBs

p,q(Rn). There exists an atomic
decomposition

f =
∞∑

j=0

∞∑
k=0

c(j,k)∑
m=0

C(j,k,m)∑
�=0

sj,k,m aj,k,m,� ,

such that (34) is satisfied. Let us fix x ∈ Rn, |x| ≥ 1. Observe, that for all
j ≥ 0 there exists kj ≥ 1 such that

(52) kj 2−j ≤ |x| < (kj + 1) 2−j .

Then the main part of f near x is given by the function

fM (y) =
∞∑

j=0

sj,kj ,mj
aj,kj ,mj ,�j

(y)
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(in fact, f(x) is a finite sum of functions of type
∞∑

j=0

sj,kj ,mj
aj,kj+rj ,mj+uj ,�j+tj

(y) ,

and |rj |, uj and |tj | are uniformly bounded). For convenience we give an
estimate of the main part fM only. Because of (52) and the normalization
of the atoms we obtain

|fM (x)| ≤
∞∑

j=0

|sj,kj ,mj
| 2−j(s−n/p)

≤
∞∑

j=0

k
−b/p
j 2−j(s−n/p)

( ∞∑
k=1

c(j,k)∑
m=0

kb |sj,k,m|p
)1/p

≤ C |x|−b/p
∞∑

j=0

2−j(s−(n−b)/p)
( ∞∑

k=1

c(j,k)∑
m=0

C(j, k, m)|sj,k,m|p
)1/p

(53)

≤ C |x|−b/p‖f |Bs
p,q(R

n)‖ ,

as long as s > (n− b)/p or s = (n− b)/p and 0 < q ≤ 1. Moreover, C does
not depend on x and f .
Substep 2.2. Let 0 < |x| < 1. The counterpart of (52) is given by

(54) 2−j0 ≤ |x| < 2−j0+1 ,

for some j0 ≥ 1. Then the main part of f near x is taken by the function

fM (y) =
j0−1∑
j=0

sj,0,0 aj,0,0,0(y) +
∞∑

j=j0

sj,kj ,mj
aj,kj ,mj ,�j

(y) .

Similar as above we derive

|fM (x)| ≤
j0−1∑
j=0

|sj,0,0| 2−j(s−n/p) +
∞∑

j=j0

|sj,kj ,mj
| 2−j(s−n/p) .

It remains to deal with the first sum on the right-hand side. By the mono-
tonicity of the quasi-norms with respect to s and q it is sufficient to con-
centrate on s = (n − b)/p and q = 1. This gives

(55)

j0−1∑
j=0

|sj,0,0| 2jb/p ≤ |x|−b/p

j0−1∑
j=0

2(1−j0)b/p 2jb/p |sj,0,0|

≤ C2 |x|−b/p ‖f |Bs
p,q(R

n)‖ .
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Now, (53) and (55) prove the claim.
Step 3. We prove (50). As in Substep 2.2 we obtain

|x|b/p |fM (x)|

≤
j0−1∑
j=0

|sj,0,0| 2(j−j0)b/p +
∞∑

j=j0

|sj,kj ,mj
| 2(j−j0)b/p

≤ (
sup

j=0,1,...
|sj,0,0|

) j0/2∑
j=0

2(j−j0)b/p +
(

sup
j≥j0/2

|sj,0,0|
) j0−1∑

j=j0/2

2(j−j0)b/p

+
∞∑

j=j0

( ∞∑
k=1

kb |sj,k,m|p
)1/p

≤ C
((

sup
j=0,1,...

|sj,0,0|
)
2−bj0/(2p) +

(
sup

j≥j0/2

|sj,0,0|
)

+
∞∑

j=j0

( ∞∑
k=1

C(j, k, m) |sj,k,m|p
)1/p)

,

since kj ∼ 2j−j0 . If |x| −→ 0, then j0 −→ ∞. Further, if j0 −→ ∞, then∑
j≥j0

|sj,0,0| −→ 0. Finally, also the second sum in the latter inequality
tends to zero if j0 −→ ∞. From this (50) follows.

For later use we add the following observation about the convergence
of partial sums of the series in (33). Let f ∈ RHBs

p,q(R
n) be given by

f(x) =
∞∑

j=0

∞∑
k=1

c(j,k)∑
m=1

C(j,k,m)∑
�=1

sj,k,m aj,k,m,� ,

then we put

SJf(x) =
J∑

j=0

J∑
k=0

c(j,k)∑
m=0

C(j,k,m)∑
�=0

sj,k,m aj,k,m,� , J = 0, 1, . . .

Lemma 3. Let 0 < p < ∞. Suppose either s > (n − b)/p and 0 < q ≤ ∞
or s = (n− b)/p and 0 < q ≤ 1. Let ε > 0. Then f ∈ RHBs

p,q(R
n) implies

f is continuous in {x : |x| > ε} and

lim
J→∞

‖f − SJf |L∞({x : |x| > ε})‖ = 0 .
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Proof. We employ the same arguments as in proof of Theorems 3 and 4,
Step 2. Thanks to f ∈ RHBs

p,q(R
n) for each δ > 0 there exists a number

J0 such that

( ∞∑
j=J

( ∞∑
k=0

c(j,k)∑
m=0

C(j, k, m) |sj,k,m|p
)q/p)1/q

< δ ,

for all J ≥ J0. First, consider |x| ≥ 1. Then, as in (53)

(56) |fM (x) − SJfM (x)| =
∣∣∣ ∞∑

j=J+1

sj,kj ,mj
aj,kj ,mj ,�j

(x)
∣∣∣ ≤ C |x|−b/p δ ,

for all J ≥ J0, with C independent of x and δ. Similar, if max {ε, 2−j0} ≤
|x| < 2−j0+1 and J is sufficiently large with respect to ε, then also in this
case we arrive at (56). Hence, we have convergence of SJf in the uniform
norm and for that reason the limit itself is a continuous function. This
proves the lemma.

Next we investigate local Hölder regularity of H-invariant functions.
Let ψ be a radial smooth cut-off function supported around the origin and
satisfying ψ(x) = 1 if |x| ≤ 1.

Any x ∈ Sn−1 defines a ray ρx = {y ∈ Rn : y = t x , t > 0}.
To a function f : Rn −→ C we associate a function fx : [0,∞) −→ C by
fx(t) = f(t x), x ∈ Sn−1. We say that a function fx belongs to Bs

∞,∞(0,∞)
if the functions (1 − ψ(λ |y|)) f0(|y|) belong to Bs

∞,∞(R) for all λ > 0.

Lemma 4. Let 0 < p, q ≤ ∞. Suppose s > (n−b)/p. Let f ∈ RHBs
p,q(Rn).

Then for any x ∈ Sn−1, fx belongs to Bso∞,∞(0,∞), with so = s−(n−b)/p.

Proof.
Step 1. First, we remark that the case p = ∞ is obvious by employing the
equivalence of the quasi-norms ‖f |Bs

∞,∞(Rn)‖ and

sup
x∈Rn

|f(x)|+ max
|α|≤m

sup
x,y∈R

n

x �=y

|Dαf(x) − Dαf(y)|
|x − y|s−m−1/p

, m < s−n − b

p
< m+1 ,

or

sup
x∈Rn

|f(x)| + max
|α|≤m

sup
x,h∈R

n

h �=0

|Dαf(x + 2h) − 2Dαf(x + h) + Dαf(x)|
|h| ,
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s − (n − b)/p = m + 1.
Step 2. Let p < ∞. Let f ∈ RHBs

p,q(Rn) for some s > (n − b)/p. The
function (1−ψ(λx)) is a pointwise multiplier for Bs

p,q(Rn), cf. e.g. [23, 2.8]
or [10], and hence, also (1−ψ(λx)) f(x) belongs to RBs

p,q(R
n). Lemma 3

yields that it is a continuous function. Moreover there are constants N and
K dependent on λ such that the function (1 − ψ(λ ·)) f has the following
atomic decomposition

(1 − ψ(λx)) f(x)

=
N∑

j=0

sj,0,0 aj,0,0,0 +
∞∑

j=0

∑
k≥max{1,2jK}

c(j,k)∑
m=1

C(j,k,m)∑
�=1

sj,k,m aj,k,m,� ,

cf. (33). To simplify the notation we may assume that x = (1, 0, . . . , 0)
and restrict our attention to the x1-axis. We have

(1 − ψ(λ(x1, 0, . . . , 0))) f(x1, 0, . . . , 0)

=
N∑

j=0

sj,0,0 aj,0,0,0(x1, 0, . . . , 0)

+
∞∑

j=0

∑
k≥max{1,2jK}

∑
m,�

sj,k,m aj,k,m,�(x1, 0, . . . , 0) ,

(counting the aj,k,m,� in an appropriate way). The functions bj,k,m,�(x1) =
2−jb/p aj,k,m,�(x1, 0, . . . , 0) are (s+1/p−(n−b)/p, p)L,−1-atoms on x1-axis.
It follows that

gm,� =
N∑

j=0

2jb/psj,0,0 bj,,0,0,0 +
∞∑

j=0

∑
k≥max{1,2jK}

2jb/p sj,k,m bj,k,m,� ,

� = 1, . . . , M , represent tempered distributions on R satisfying

‖gm,� |Bσ
p,∞(R)‖

≤ C
(

sup
j=0,...,N

2jb/p |sj,0,0| + sup
j=0,...

( ∑
k≥max{1,2jK}

|2jb/psj,k,m|p
)1/p)

≤ C
(

sup
j=0,...,N

|sj,,0,0,0| + sup
j=0,...

( ∞∑
k=1

∑
m

C(j, k, m) |sj,k,m|p
)1/p)(57)

≤ C ‖f |Bs
p,∞(Rn)‖ ,
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with σ = s + 1/p − (n − b)/p and C does not depend on f .

Step 3. The trace problem. Consider the mapping

γL : f(x1, x2, . . . , xn) �−→ (1 − ψ(2−L(x1, 0, . . . , 0)) f(x1, 0, . . . , 0) ,

f ∈ C(Rn). Let SJf be the partial sum of the atomic decomposition
from Lemma 3. Because of s > 1/p there exists a number s0 such that
1/p < s0 < s and f ∈ RBs0

p,1(R
n). Moreover

SJf(x) −→ f

in ‖ · |Bs0
p,1(R

n)‖ if J −→ ∞. Because of

γL(SJf)

=
∑
m,�

min{J,N}∑
j=0

2jb/psj,0,0 bj,0,0,0 +
J∑

j=N

∑
k≥max{1,2jK}

2jb/psj,k,m bj,k,m,� .

Step 2 implies the convergence of γL(SJf) in ‖ · |C(R)‖ (thanks to the
continuous embedding Bs

p,∞(R) ↪→ C(R)). Consequently, γL extends to a
bounded linear mapping of RBs

p,q(R
n) into RBs

p,q(R).
Lemma 3 implies coincidence (pointwise) of γL(f) and (1−ψ(2−L |y|))

· fx(|y|). The prove is complete.

Remark 11. The phenomenon of the higher local regularity of radial
functions outside the origin has been observed by P. L. Lions [17].

We have proved more than stated. Namely for any f with supp F ⊂
Rn \ B(0, R) the following inequality

(58) ‖f0 |Bso∞,q(R)‖ ≤ ‖f0 |Bσ
p,q(R)‖ ≤ C R−b/p ‖f |Bs

p,q(R
n)‖

holds with the constant C independent of f and λ. In fact, since in (57) we
have(R2j)b/p ≤ C(j, k, m) therefore for q = ∞ the inequality (58) follows
from (57). The extension does not cause any trouble.

Lemma 5. Let H ⊂ O(n) be a compact subgroup. We assume that H do
not acts transitively on Sn−1 and that

1 ≤ b = inf
x∈Sn−1

dim H · x .
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Let 0 < p ≤ ∞. We assume that s > (n − b)/p and 0 < q ≤ ∞. Then for
any f ∈ RHBs

p,q(Rn) the exists a trace f̃ of f on Sn−1
R and

f̃ ∈ Bs̃
p1,q(S

n−1)

with p ≤ p1 ≤ ∞ and s̃ = s − 1/p1 − (n − b) (1/p − 1/p1). Moreover,

‖f̃ |Bs̃
p1,q(S

n−1)‖ ≤ C ‖f |Bs
p,q(S

n−1)‖ ,

where σ = b (1/p − 1/p1).

Remark 12. 1) If p1 = p then s̃ = s − 1/p. So we get the usual trace
smoothness.

2) If p < p1 then s̃ > s − 1/p. In particular if p1 = ∞ then s̃ = s −
(n−b)/p. So the function f̃ is Hölder continuous on Sn−1 with smoothness
coefficient s − (n − b)/p > 0.

Proof. The sphere Sn−1 is a compact manifold so we can use the atomic
decomposition of the functions spaces on manifolds with bounded geom-
etry. We refer to [21] for details. The function f is continuous since
s > (n − b)/p, cf. Lemma 3. Once more we regard only the main part of
f near Sn−1. It is given by the function

fM (y) =
∞∑

j=0

C(j,kj)∑
m=0

C(j,kj ,m)∑
�=0

sj,kj ,m aj,kj ,m,�(y) ,

where 2−j kj ∼ 1. In fact, f(x) is a finite sum of functions of the above
type.

We note that there is a constant C > 0

C(j, kj , m) ≥ C 2jb ,

cf. (25). Let σ = b (1/p − 1/p1). We put

ãj,kj ,m,� = 2−jσ aj,kj ,m,�

∣∣
Sn−1 ,

s̃j,kj ,m = 2jσ sj,kj ,m .

The above functions are (s̃, p1)-atoms on Sn−1. Since, s̃ > 0 no moment
for atoms is needed, cf. [21].
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Let

f̃M (y) =
∞∑

j=0

C(j,kj)∑
m=0

C(j,kj ,m)∑
�=0

s̃j,kj ,m ãj,kj ,m,�(y) .

The last decomposition is an atomic decomposition of f̃M on Sn−1, since

( ∞∑
j=0

( C(j,kj)∑
m=0

C(j, kj , m) |s̃j,kj ,m|p1

)q/p1
)1/q

≤
( ∞∑

j=0

( C(j,kj)∑
m=0

C(j, kj , m) |sj,kj ,m|p
)q/p)1/q

< ∞ .

But the last inequalities and the atomic decomposition theorem imply

‖f̃M |Bs̃
p1,q(S

n−1)‖ ≤ C ‖fM |Bs
p,q(R

n)‖ .

It follows from Lemma 3 that f̃M is a trace of fM on Sn−1. This finishes
the proof.

The last two lemmas give us the following theorem.

Theorem 5. Let H ⊂ O(n) be a compact subgroup and b = infx∈Sn−1

dim H · x. Let 0 < p ≤ ∞ and 0 < q ≤ ∞. We assume that s >
(n − b)/p. Let ψ be a radial smooth cut-off function supported around the
origin and satisfying ψ(x) = 1 if |x| ≤ 1. Then for any λ > 0 and any f ∈
RHBs

p,q(R
n) the function (1−ψ(λ·)) f ∈ Bso∞,∞(Rn), with so = s−(n−b)/p.

Moreover, the operator RHBs
p,q(R

n) � f �−→ (1− ψ(λ·)) f ∈ Bso∞,∞(Rn) is
bounded.

Proof.

Step 1. Let us choose a point x ∈ Rn with |x| = λ−1. Let x = (λ−1, θo) be
the polar coordinates of x. For 0 < ε < λ−1/2 we defined the neighborhood
Uε of x by

(59) Uε = {(r, θ) : |r − λ−1| < ε , |θ − θo| < ε} .

Let ϕ ∈ C∞
0 (Rn) be a smooth compactly supported function such that

supp ϕ ⊂ B(x, δ) ⊂ Uε, 0 < δ.
Let Ψ be a diffeomorphism of Uε onto (0, 1)n such that:
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• the lines r −→ (r, θ) are mapped onto the lines parallel to the x1-
axis,

• the surfaces of the spheres centered at the origin are mapped to the
hyperplanes orthogonal to the x1-axis.

If a function f is supported in Uε than by the diffeomorphism prop-
erties of the Besov spaces a function f ∈ Bs

∞,∞(Rn) if and only if f̃ =
f ◦ Ψ−1 ∈ Bs

∞,∞(Rn), cf. [23, Theorem 2.10.2]. Lemma 4 implies that for
any x̃ ∈ (0, 1)n−1 the function f̃(·, x̃) is an element of Bso∞,∞(R) and

‖f̃(·, x̃) |Bso∞,∞(R)‖ ≤ C ‖f |Bs
p,q(R

n)‖ .

Here the constant C depend on λ but not x̃. In the similar way, Lemma 5
and (61) implies that for any x1 ∈ (0, 1) the function f̃(x1, ·) is an element
of Bso∞,∞(Rn−1) and Bso∞,∞(R) and

‖f̃(x1, ·) |Bso∞,∞(Rn−1)‖ ≤ C ‖f |Bs
p,q(R

n)‖ .

Now the Fubini type theorem for Besov spaces implies that f̃ ∈ Bso∞,∞(Rn),
cf. [23, Theorem 2.5.13]. Thus f ∈ Bso∞,∞(Rn) and

(60) ‖f |Bso∞,∞(Rn)‖ ≤ C ‖f |Bs
p,q(R

n)‖ .

By rotations the last inequality holds for any choosen x, |x| = λ−1, with
the same constant C.
Step 2. If the function f is supported in the set Uε,R = {x ∈ Rn : x =
Ry , y ∈ Uε} then the usual scaling argument with dilations, cf. [8, Theo-
rem 2.3.1], implies

(61)

‖f |Bso∞,∞(Rn)‖ ≤ C R−so ‖f(R·) |Bso∞,∞(Rn)‖
≤ CR−so ‖f(R·) |Bs

p,q(R
n)‖

≤ CRs−so−n/p ‖f |Bs
p,q(R

n)‖
= CR−b/p ‖f |Bs

p,q(R
n)‖ ,

where C is a constant depending on λ but independent of R and f .
We can cover the anulus B(0, 3λ−1/2)\B(0, λ−1/2) by the finite fam-

ily of the set of the type (59) and then we can cover Rn \ B(0, λ−1/2) by
the dilatations of these sets. One can find also a resolution of unity core-
sponding to the above covering with the following property: if a function
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φ is supported in Uε,R then |∂αφ(R·)| ≤ Cα for any multi-index α. Now
the theorem follows by the localization property for the space Bso∞,∞(Rn).

Remark 13. Since we can control the constants in the last proof we can
stated even more. Namely the following inequality

‖f |Bso∞,∞(Rn)‖ ≤ C R−b/p ‖f |Bs
p,q(R

n)‖
holds for any H-invariant function f with supp f ⊂ Rn \ B(0, R), R > 0.
The constant C is independent of f and R.
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