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Reflexivity of the isometry group
of some classical spaces

Félix Cabello Sánchez and Lajos Molnár

Abstract

We investigate the reflexivity of the isometry group and the

automorphism group of some important metric linear spaces and

algebras. The paper consists of the following sections: 1. Prelim-

inaries. 2. Sequence spaces. 3. Spaces of measurable functions.

4. Hardy spaces. 5. Banach algebras of holomorphic functions. 6.

Fréchet algebras of holomorphic functions. 7. Spaces of continuous

functions.

0. Introduction.

This paper is concerned with the reflexivity of the isometry group and
the automorphism group of certain particular, but important, topological
vector spaces and algebras. Although we deal mainly with Banach spaces,
we are also interested in other (not necessarily locally convex) metric linear
spaces and some Fréchet algebras.

Reflexivity problems for subalgebras of the algebra of all bounded lin-
ear operators acting on a Hilbert space represent one of the most active
research areas in operator theory. The study of similar questions con-
cerning sets of linear transformations on Banach algebras rather than on
Hilbert spaces was initiated by Kadison [10] and Larson [14]. In [10], mo-
tivated by the study of Hochschild cohomology of operator algebras, the
reflexivity of the Lie algebra of all derivations on a von Neumann algebra
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was treated. In [14, Some concluding remarks (5), p. 298], Larson raised
the question of the reflexivity of the automorphism group of Banach alge-
bras. This problem was investigated for several algebras in [1], [19], [20],
[21] and [23]. The present article is a continuation of that work.

We describe the results of the paper as follows. The first section is
preliminary. In Section 2 we investigate symmetric spaces. We prove that,
with the sole exception of l2, every F -space with a symmetric basis has
algebraically reflexive isometry group. Curiously enough, the isometry
group of any non-separable “symmetric” space fails to be algebraically re-
flexive. Section 3 concentrates on Lebesgue spaces. We show the extreme
nonreflexivity of the isometry group of the spaces Lp(µ) (0 < p < ∞)
for homogeneous measures µ, thus obtaining that the only infinite dimen-
sional Lebesgue spaces whose isometry groups are reflexive are the sequence
spaces lp for p �= 2. In contrast, the isometry groups of the Hardy spaces
Hp (0 < p < ∞) are topologically reflexive for all p �= 2. This will be
proved in Section 4.

Sections 5 and 6 deal with algebras of holomorphic functions. We
prove that the isometry group and the automorphism group of the disc
algebra are topologically reflexive. The same is true for H∞(Ω), Ω being
any simply connected domain in the plane. Furthermore, we consider the
“unbounded” case: it is shown that the automorphism group of the Fréchet
algebra H(Ω) is topologically reflexive if and only if Ω �= C.

Finally, we study algebras of continuous functions. We solve some
problems posed in [22] by presenting Banach spaces whose isometry groups
are either trivial or very large. We give an example of a compact Hausdorff
space K such that the isometry group and the automorphism group of the
Banach algebra C(K) both fail to be reflexive, thus verifying a conjecture
formulated in [22], where it was proved that the isometry group and the
automorphism group of C(K) are algebraically reflexive in case K is first
countable. Furthermore, we exhibit a Banach space X with the property
that its isometry group is topologically reflexive but the isometry group
of its dual space X∗ is even algebraically nonreflexive. Next, we present
another Banach space Y whose isometry group is not algebraically reflexive
and yet the isometry group of Y ∗ is algebraically reflexive.
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1. Preliminaries.

Let X be a topological vector space and let B(X) be the algebra of
all continuous linear operators on X. Given any subset S ⊂ B(X), define

refal S = {T ∈ B(X) : Tx ∈ Sx for all x ∈ X} ,

refto S = {T ∈ B(X) : Tx ∈ Sx for all x ∈ X} ,

where Sx = {Lx : L ∈ S} and the bar stands for the closure in X. The
set S is said to be algebraically reflexive if refal S = S and, similarly,
S is called topologically reflexive if refto S = S. Thus, reflexive sets of
operators are, in some sense, completely determined by their local actions
on the underlying space. Sometimes the operators in refal S are said to
belong locally to S.

Since there is no clear intrinsic reason to restrict our attention to the
locally convex setting when dealing with local surjective isometries, we
consider F -spaces, not only Banach spaces.

Recall from [12, p. 2] that a ∆-norm on a real or complex vector space
X is a non-negative real-valued function on X satisfying

1) ‖x‖ > 0 for all 0 �= x ∈ X.

2) ‖α x‖ ≤ ‖x‖ for all x ∈ X and all α ∈ K with |α| ≤ 1.

3) lim
α→0

‖α x‖ = 0 for all x ∈ X.

4) ‖x + y‖ ≤ K (‖x‖ + ‖y‖) for some constant K independent on
x, y ∈ X.

A ∆-norm on X induces a metrizable linear topology for which the
sets Un = {x ∈ X : ‖x‖ < 1/n} form a neighbourhood base at the origin
and, conversely, every metrizable linear topology comes from a ∆-norm.
An F -norm is a ∆-norm satisfying

5) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

Any F -norm induces a translation-invariant metric on X in the obvi-
ous way and every invariant metric compatible with the linear structure is
induced by some F -norm. An F -space is a complete F -normed space.

Finally, a quasi-norm is a ∆-norm which is homogeneous in the sense
that

6) ‖α x‖ = |α| ‖x‖ for all x ∈ X, α ∈ K.
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Observe that 6) implies both 2) and 3) so that quasi-norms can be
defined by 1), 6) and 4). A quasi-normed space is a vector space together
with some specified quasi-norm. Such a space is locally bounded, that is, it
has a bounded neighbourhood of zero. Conversely, every locally bounded
topology is induced by a quasi-norm. A quasi-Banach space is a complete
quasi-normed space.

We denote by Iso(X) the group of all surjective (linear) isometries of
the ∆-normed space X. Also, when A is a topological algebra, Aut(A) de-
notes the group of all continuous automorphisms of A. In accordance
with what is written above, we call the elements of refal(Iso(X)) and
refal(Aut(A)) local surjective isometries and local automorphisms, respec-
tively.

One little problem with ∆-norms is that a ∆-norm need not be con-
tinuous with respect to the topology it induces. (The continuity of a norm
is a consequence of the triangle inequality.) This has some unpleasant con-
sequences. For instance, the operators in refto(Iso(X)) need not be into
isometries. An interesting class of continuous quasi-norms is that of the
so-called p-norms (0 < p ≤ 1). These are quasi-norms satisfying

‖x + y‖p ≤ ‖x‖p + ‖y‖p ,

from which continuity immediately follows. Clearly, if ‖ · ‖ is a p-norm,
then ‖ · ‖p is an F -norm with the same isometries.

2. Sequence spaces.

In this section we study sequence spaces. A basis of an F -space X is a
sequence {en} so that every x ∈ X has a unique expansion x =

∑∞
n=1 xn en.

A basis {en} is said to be symmetric if

∥∥∥ ∞∑
n=1

xn en

∥∥∥ =
∥∥∥ ∞∑

n=1

εn xn eπ(n)

∥∥∥
holds for every choice of scalars εn of modulus 1 and every permutation π
of the positive integers. Perhaps the most interesting class of spaces with
a symmetric basis is that of the Orlicz sequence spaces (see [12], [18], [25]
for definitions) which contains the Banach spaces lp for 1 ≤ p < ∞, the
quasi-Banach spaces lp for 0 < p < 1 and other locally bounded and even
non-locally bounded spaces. Another important class related to lp spaces
is that of the Lorentz sequence spaces [18].
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Theorem 1. Let X be an F -space not isomorphic to l2. Suppose that
X has a symmetric basis. Then the isometry group of X is algebraically
reflexive.

Proof. By a result of Rolewicz [25, Theorems 9.8.3 and 9.8.5] (see also
[7]), every surjective isometry of X is of the form

∑
xn en �−→

∑
εn xn eπ(n) ,

where |εn| = 1 and π is a permutation of N. It follows that if T is a local
surjective isometry of X, then there is an injective mapping ϕ on N for
which

Ten = σn eϕ(n) ,

where |σn| = 1. Hence T is given by

T
(∑

xn en

)
=

∑
σn xn eϕ(n) .

The theorem will be proved if we show that ϕ is surjective. It is easily seen
that X contains an x =

∑
xn en with xn > 0, xn �= xm (n �= m). Taking

L ∈ Iso(X) so that Tx = Lx, one obtains that

∑
σn xn eϕ(n) =

∑
εn xn eπ(n) ,

for some permutation π of N. Hence ϕ = π, ϕ is surjective and the proof
is complete.

Remark 1. Observe that, in general, we do not have topological reflexivity
in Theorem 1. In fact, let X = c0 and consider the unilateral shift S on X.
It is easy to see that for every x ∈ X and ε > 0 there exists a surjective
isometry L such that ‖Sx − Lx‖ < ε. Therefore, S ∈ refto(Iso(X)) but S
is not surjective.

The following example shows that separability is essential in Theorem 1.

Example 1. Let X be a ∆-normed space of functions on an index set Γ.
Suppose that

a) for every f ∈ X the set {γ ∈ Γ : f(γ) �= 0} is at most countable,

b) for every bijection ϕ of Γ, the map f �−→ f ◦ ϕ is a surjective
isometry of X.
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If Γ is uncountable, then the isometry group of X is algebraically
nonreflexive.

Proof. We closely follow [23, last Remark]. Let Λ be a proper subset of
Γ with a bijection ϕ : Λ −→ Γ. Define T : X −→ X by

(Tf)(γ) =

{
f(ϕ(γ)) , if γ belongs to Λ ,

0 , elsewhere .

Obviously, T is non-surjective. To see that T ∈ refal(Iso(X)), fix f ∈ X.
Since f has at most countable support one can find a bijection φ : Γ \
ϕ−1(supp(f)) −→ Γ \ supp(f). Define a bijection on Γ by

ϕf (γ) =

{
ϕ(γ) , if γ ∈ ϕ−1(supp(f)) ,

φ(γ) , elsewhere .

Let Tf be given on X by Tf (g) = g ◦ ϕf . Then Tf ∈ Iso(X) and Tf (f) =
T (f). This completes the proof.

Remark 2. It is well-known that the isometry group of any infinite di-
mensional real or complex Hilbert space fails to be algebraically reflexive.
This is because Hilbert spaces are isotropic: given x, y ∈ H with ‖x‖ = ‖y‖
there is T ∈ Iso(H) such that y = Tx. Hence refal(Iso(H)) is as large as
possible and contains all into isometries. Therefore, Iso(H) cannot be re-
flexive unless H is finite dimensional. In fact, the isometry group of any
infinite dimensional complex Hilbert space is algebraically nonreflexive not
only with respect to the original Hilbert space norm, but also with respect
to the so-called spin norms [22, Theorem 3.7]. It is natural to ask if the
same occurs with any equivalent norm (or renorming, in short). Although
in [22] an affirmative answer was conjectured, the following result shows
that the answer is strongly negative.

Theorem 2. Every Banach space admits a renorming whose isometry
group is topologically reflexive.

Proof. Let Y be a Banach space. By a result of Jarosz [9], there is
a renorming X of Y with trivial isometries, that is, such that Iso(X) =
{σI : σ ∈ K, |σ| = 1}. Clearly, Iso(X) is topologically reflexive.

Remark 3. Suppose that Y is a Hilbert space. Using [27] instead of [14]
one obtains that for every ε > 0 there is a Banach space X with trivial
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isometries and ε-isometric to Y in the sense that there is an isomorphism
T : X −→ Y with ‖T‖ · ‖T−1‖ < 1 + ε. This means that the new norm
can be chosen to be a very small perturbation of the original Hilbert space
norm of Y .

3. Spaces of measurable functions.

Let (Ω, Σ, µ) be a measure space. For 0 < p < ∞, define Lp(µ) to be
the space of all real or complex measurable functions on Ω for which

‖f‖p =
(∫

Ω

|f |p dµ
)1/p

is finite with the usual convention about identifying functions equal almost
everywhere. Observe that ‖ · ‖p is a norm only if p ≥ 1. For 0 < p < 1 it is
only a quasi-norm (in fact, a p-norm) and Lp(µ) is a quasi-Banach space.

By a famous theorem of Maharam, every Lebesgue space (that is, Lp

space) is isometrically representable as

Lp(µ) = lp(Γ)⊕p

(∑
i∈I

Lp(λci)
)

p
,

where Γ and I are (possibly empty) sets, ci are infinite cardinals and λ
denotes the Lebesgue measure on [0, 1] (observe that, for instance, Lp(λ) =
Lp(λω)). The subscript p indicates that the corresponding direct sum is
taken in the lp sense.

Clearly, µ is σ-finite if and only if Γ and I are countable sets. Also,
µ is homogeneous in the sense of [8] if and only if Γ is empty and all ci

coincide (apart from the trivial case when I is empty and Γ is a singleton).
Homogenity means that Σ|Ω′ and Σ|Ω′′ are Boolean isomorphic whenever
Ω′ and Ω′′ are subsets of Ω with positive finite measure, which implies that,
for every 0 < p < ∞, the spaces Lp(Ω′, µ) and Lp(Ω′′, µ) are isometrically
isomorphic. In that case the isometry group of Lp(µ) has at most two
orbits on the unit sphere. More precisely, given f, g ∈ Lp(µ) with ‖f‖p =
‖g‖p �= 0, there is a surjective isometry of Lp(µ) mapping f into g if and
only if either both f and g are nonzero almost everywhere or both f and
g vanish on sets of positive measure (which follows from [8, Lemma 1.4]).
This obviously implies that these spaces are almost isotropic: given f, g ∈
Lp(µ) with ‖f‖p = ‖g‖p = 1 and ε > 0 there is T ∈ Iso(Lp(µ)) fulfilling
‖g − Tf‖p ≤ ε. If, in addition to be homogeneous, µ is not σ-finite, then
Lp(µ) is isotropic for all 0 < p < ∞.
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Theorem 3. Let X be an infinite dimensional Lebesgue space. Then
Iso(X) is algebraically reflexive if and only if X = lp(N) with p �= 2.

Proof. The standard basis of lp(N) is symmetric for every 0 < p < ∞, so
Theorem 1 implies that Iso(lp(N)) is algebraically reflexive for every p �= 2.

For the converse we need the following lemma whose easy proof is left
to the reader.

Lemma 1. Let X be a ∆-normed space whose isometry group is alge-
braically reflexive and let Y be a linear subspace of X. Suppose that Y has
a complement Z in X such that ‖y +z‖ = Φ(‖y‖, ‖z‖) holds for some func-
tion Φ : R2 −→ R and all y ∈ Y, z ∈ Z. Then Iso(Y ) is algebraically
reflexive too.

Now, it clearly suffices to see that Iso(X) is algebraically nonreflexive
for X equal either Lp(λc) or lp(Γ) with Γ uncountable and then apply
Lemma 1. But lp(Γ) is just a particular case of Example 1. The following
result ends the proof of Theorem 3.

Lemma 2. For any cardinal c the isometry group of the space Lp(λc) is
algebraically nonreflexive.

Proof. First observe that two functions f and g in an arbitrary Lp space
(with p �= 2) have almost disjoint supports (that is, fg = 0 holds almost
everywhere) if and only if

‖f + g‖p
p + ‖f − g‖p

p = 2 (‖f‖p
p + ‖g‖p

p) .

It follows that if T is an into isometry between Lp spaces and f vanishes
on a set of positive measure, then so does Tf . (Hence, if in addition T is
surjective, then Tf is nonzero almost everywhere if and only if f is nonzero
almost everywhere.)

Thus, in view of the structure of the orbits of the isometry group of
Lp(µ) for µ a homogeneous measure, it is clear that an into isometry of
Lp(λc) is locally surjective if and only if it preserves the almost everywhere
nonzero functions as well as the functions with support of positive measure.

Let Ω = [0, 1]c. Write Ω = Ω′ ⊕ Ω′′ with Ω′, Ω′′ ∈ Σ of positive mea-
sure. Obviously, Lp(Ω, λc) = Lp(Ω′, λc)⊕p Lp(Ω′′, λc). By the homogenity
of λc, there are surjective isometries T ′ : Lp(Ω, λc) −→ Lp(Ω′, λc) and
T ′′ : Lp(Ω, λc) −→ Lp(Ω′′, λc). Define T : Lp(λc) −→ Lp(λc) as

T (f) =
T ′(f) + T ′′(f)

21/p
.
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Clearly, T is a non-surjective into isometry. On the other hand, it is easily
seen that Tf is nonzero almost everywhere if and only if f is. Therefore,
T is a local surjective isometry of Lp(Ω, λc). This proves the lemma.

Remark 4. Let ϕ be an Orlicz function (see [12, p. 29]). Then Lϕ(µ), the
Orlicz function space determined by ϕ on the finite measure space (Ω, Σ, µ)
is the space of all measurable functions on Ω for which

‖f‖ϕ =
∫

Ω

ϕ(|f(ω)|) dµ

is finite. It can be proved that ‖ · ‖ϕ is a complete ∆-norm on Lϕ(µ).
Under some additional hypotheses (e.g. concavity) ‖ · ‖ϕ is even an F -
norm. It would be interesting to know whether the isometry group of
the spaces Lϕ(µ) is reflexive. For instance, we do not known whether the
isometry group of the space of all measurable functions on [0, 1] is alge-
braically reflexive (that space is determined by the concave Orlicz func-
tion ϕ(t) = t/(1 + t)). It should be noted that, with the exception of the
Lebesgue spaces Lp(µ) (which correspond to the Orlicz functions t �→ tp),
every surjective isometry on a “reasonable” Lϕ(µ) is induced by a measure-
preserving automorphism of Σ (see [13]).

4. Hardy spaces.

In the sequel, we denote by U the open unit disc in the plane and by
T the unit circle. For 0 < p < ∞, the Hardy space Hp is the space of all
holomorphic functions f : U −→ C for which

‖f‖p = sup
0≤r<1

( 1
2π

∫ 2π

0

|f(r eiθ)|p dθ
)1/p

is finite (the space H∞ will be treated in the next section). If p ≥ 1, then
‖ · ‖p is a complete norm on Hp, while for 0 < p < 1 it is only a p-norm
and Hp is a quasi-Banach space.

We refer the reader to [5] for general information about Hardy spaces.
Here we only recall the well-known inequality

|f(r eiθ)| ≤ 21/p (1 − r)−p ‖f‖p , r < 1, f ∈ Hp ,

(see [5, p. 36, Lemma] which implies that for every z ∈ U , the point
evaluation f �−→ f(z) is continuous on Hp.
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Theorem 4. For every p �= 2 the isometry group of Hp is topologically
reflexive.

Before going into the proof, recall from [6] that every into isometry of
Hp (p �= 2) has the form

(1) Tf = F · (f ◦ ϕ) , f ∈ Hp ,

where ϕ is a non-constant inner function (that is, |ϕ(z)| ≤ 1 for |z| ≤ 1
and |ϕ(z)| = 1 for |z| = 1) and F ∈ Hp (we do not use any connection
between ϕ and F , but see [6, Theorem 1]). Moreover, T ∈ Iso(Hp) if and
only if

(2) Tf = b
(dϕ

dz

)1/p

(f ◦ ϕ) , f ∈ Hp ,

where b ∈ T and ϕ is a conformal map of the disc onto itself.

Proof. Let T ∈ refto(Iso(Hp)). Since T is an into isometry, there exists
F and ϕ such that T is of the form (1) above. Observe that F = T (1) and
Fϕ = T (id) (here id denotes the identity function on U). Take Tn, Ln ∈
Iso(Hp) such that F = limn Tn(1) and Fϕ = limn Ln(id). Taking into
account the form of the conformal maps of U onto itself, we see that

F = lim
n→∞ bn

( 1 − |an|2
(1 − an id)2

)1/p

,

Fϕ = lim
n→∞ βn

( 1 − |αn|2
(1 − αn id)2

)1/p( id−αn

1 − αn id

)
,

where bn, βn ∈ T and an, αn ∈ U for all n. Without loss of generality one
can assume that the sequences {bn}, {βn}, {an} and {αn} are convergent.
Put

b = lim
n→∞ bn , β = lim

n→∞ βn , a = lim
n→∞ an , α = lim

n→∞αn .

Clearly, |b| = |β| = 1. We show that a, α ∈ U . Suppose that |a| = 1.
Then, using the continuity of point-evaluations, we have

F (z) = lim
n→∞ bn

( 1 − |an|2
(1 − an z)2

)1/p

= 0 ,
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for every z ∈ U . But this implies that T = 0, a contradiction. Therefore
a ∈ U . The fact that α ∈ U can be proved in a similar way: if we
assume that |α| = 1, then Fϕ = 0 which means that T is not injective.
Consequently, we have α ∈ U . Now, it is easily seen that

F (z) = b
( 1 − |a|2

(1 − az)2
)1/p

,

(Fϕ)(z) = β
( 1 − |α|2

(1 − α z)2
)1/p( z − α

1 − α z

)
.

It remains to show that a = α. Indeed, in this case we obtain that ϕ is a
conformal map of U onto itself, and that T is of the form (2) which gives
us that T is a surjective isometry.

Since ϕ is an inner function on the disc, having in mind the form of
F and Fϕ, we infer that the expression

β

b

z − α

1 − α z

(1 − |α|2
1 − |a|2

)1/p( (1 − a z)2

(1 − α z)2
)1/p

is of modulus 1 whenever |z| = 1. It is now clear that the Möbius function

ω(z) =

√
1 − |α|2
1 − |a|2

( 1 − a z

1 − α z

)

leaves T invariant. It is well-known that any holomorphic function on U
which is continuous on U and leaves T invariant is either constant or has
at least one zero in U . Since in case a �= α the only zero of ω is at 1/a
which is of modulus greater than 1, it follows that ω is constant and hence
we find that a = α. The proof is now complete.

5. Banach algebras of holomorphic functions.

In this section we study the isometry group and the automorphism
group of Banach algebras of holomorphic functions. If Ω ⊂ C is a domain
(that is, an open, connected set), then H(Ω) denotes the algebra of all holo-
morphic functions on Ω and H∞(Ω) stands for the algebra of all bounded
functions in H(Ω). If K ⊂ C is a compact set, then A(K) denotes the
algebra of all continuous functions which are holomorphic in the interior
of K. On H(Ω) we consider the topology of the uniform convergence on
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compact subsets, while H∞(Ω) and A(K) are equipped with the sup-norm
topology.

Let A be a unital semisimple commutative Banach algebra. A is
called a uniform algebra if the spectral radius r(·) is a complete norm on
A. By the well-known fact on the uniqueness of Banach algebra norms on
semisimple Banach algebras [24, 6.1.1 Theorem], using the result that an
injective linear map between Banach spaces has closed range if and only
if it is bounded from below, it is easy to see that A is a uniform algebra
if and only if the range of the Gelfand transformation on A is a closed
subalgebra of the space of all continuous complex valued functions on its
structure space (see the definition of sup-norm algebras in [15]). In what
follows σ(·) denotes the spectrum.

Theorem 5. Let A be a uniform algebra. Every T ∈ refto(Iso(A)) has the
form

T (f) = τψ(f) , f ∈ A ,

for some τ ∈ A with σ(τ) ⊂ T and some unital algebra endomorphism
ψ : A −→ A.

For the proof we recall the result [15, Theorem 3] stating that every
surjective linear isometry of a uniform algebra A is an algebra automor-
phism of A multiplied by an element of A whose spectrum is contained in
T.

Proof. Let T ∈ refto(Iso(A)). Denote τ = T (1). Since

σ(τ) = {ϕ(τ) : ϕ is a character of A} ,

and the characters of A are continuous, we obtain σ(τ) ⊂ T. Consider the
mapping ψ(·) = τ−1T (·). Let ϕ be an arbitrary character of A. We have
(ϕ ◦ ψ)(1) = 1. Let f ∈ A be an arbitrary invertible element and choose
τn ∈ A with σ(τn) ⊂ T and a sequence {ψn} of automorphisms of A such
that

ψ(f) = lim
n→∞ τ−1 τn ψn(f) .

We have

(3) ϕ(ψ(f)) = lim
n→∞ϕ(τ)−1 ϕ(τn)ϕ(ψn(f)) .

Clearly, the number ϕ(τ)−1 ϕ(τn) is of modulus 1 and ϕ(ψn(f)) ∈ σ(f).
Since 0 /∈ σ(f) and the spectrum in a unital Banach algebra is compact, it
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follows that the limit in (3) is nonzero. Therefore, the linear functional ϕ◦ψ
maps 1 to 1 and it sends invertible elements to nonzero complex numbers.
By the well-known Gleason-Kahane-Żelazko theorem [24, 2.4.13 Theorem]
these imply that ϕ ◦ ψ is a multiplicative linear functional for every char-
acter ϕ of A. From the semisimplicity of A it follows that ψ is an algebra
homomorphism.

Remark 5. In view of the above proof it is obvious that if A is a
(unital) semisimple commutative Banach algebra, then every element of
refto(Aut(A)) is a (unital) algebra endomorphism of A.

Theorem 6. The isometry group and the automorphism group of the disc
algebra A(U) are topologically reflexive.

Before the proof we recall some basic facts about the Banach algebra
A(U). First of all, the structure space of A(U) is U [24, 3.2.13]. This
gives us that r(f) = ‖f‖ for every f ∈ A(U) which shows that the disc
algebra is a uniform algebra. Afterwards, one can easily verify that the
automorphisms of A(U) are precisely the maps of the form

f �−→ f ◦ ϕ ,

where ϕ : U −→ U is a homeomorphism which maps U conformally onto
itself.

Proof. Let T ∈ refto(Iso(A(U))). By Theorem 5, T is a unital endomor-
phism multiplied by a function τ ∈ A(U) whose spectrum is contained in
T. Since the spectrum of τ is τ(U), we find that τ must be a constant
function of modulus 1 and without loss of generality we can assume that
T is actually a unital endomorphism of the disc algebra. It is not hard to
verify that T is necessarily of the form

T (f) = f ◦ ϕ , f ∈ A(U) ,

for some function ϕ : U −→ U . Since

T (id) ∈ {λψ(id) : |λ| = 1, ψ is an automorphism of the disc algebra} ,

taking into account the form of automorphisms of A(U) and that of the
conformal maps of U onto itself, it follows that there are sequences λn ∈ T
and αn ∈ U such that

ϕ(z) = T (id)(z) = lim
n→∞λn

z − αn

1 − αn z
,
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where the convergence is uniform in z ∈ U . Choosing subsequences if
necessary, we may assume that {λn} and {αn} converge to λ and α, re-
spectively. Suppose that α is of modulus 1. Then

lim
n→∞

z − αn

1 − αn z
= −α , |z| < 1 .

Since the above convergence is uniform, there is an n ∈ N such that∣∣∣ z − αn

1 − αn z
+ α

∣∣∣ <
1
2

, |z| < 1 .

As the function z �−→ (z −αn)/(1−αn z) maps U onto itself, we arrive at
a contradiction. Consequently, ϕ is of the form

ϕ(z) = λ
z − α

1 − α z
, z ∈ U ,

with |λ| = 1 and |α| < 1, from which we obtain the surjectivity of T . This
completes the proof of the topological reflexivity of Iso(A(U)).

The statement about Aut(A(U)) follows from the same argument.

Theorem 7. Let Ω ⊂ C be a simply connected domain. The isometry
group and the automorphism group of H∞(Ω) are topologically reflexive.

Proof. Clearly, the spectrum of any element f of H∞(Ω) is f(Ω). There-
fore, the spectral radius is equal to the norm and hence H∞(Ω) is a uniform
algebra.

If Ω = C, then by Liouville’s theorem we have H∞(Ω) = C and in
this case the statement is trivial.

Suppose that Ω � C. By the Riemann mapping theorem we may as-
sume that Ω = U . First observe that since the structure space of H∞(U)
contains U , it follows that every element of H∞(U) with spectrum con-
tained in T is a constant function of modulus 1. Also, we know that every
automorphism of the algebra H∞(U) is induced by a conformal selfmap of
U [11]. Now, let T ∈ refto(Iso(H∞(U))). Just as in the proof of Theorem
6 we can assume that T (1) = 1. One can check in a way very similar
to that we have followed there that T (id) is a conformal map of U onto
itself. Therefore, we can suppose that even T (id) = id holds true. With
all these assumptions assume that z0 ∈ U and that f ∈ H∞(U) is such
that f(z0) = 0. We obtain

f

id−z0
∈ H∞(U) .
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Since T is a unital algebra homomorphism, it follows that

T (f)
id−z0

= T
( f

id−z0

)
∈ H∞(U) ,

which gives us that T (f)(z0) = 0. Let now f ∈ H∞(U) be arbitrary. Since
the function f − f(z0) vanishes at z0, it follows that the same holds for
T (f − f(z0)) = T (f) − f(z0). Thus, we have T (f)(z0) = f(z0). Since
this is true for every z0 ∈ U and f ∈ H∞(U), we have T (f) = f for all
f ∈ H∞(U). This completes the proof of the theorem.

Remark 6. The main difference between the proofs of Theorem 6 and
Theorem 7 is that in the former one we were lucky to use the form of
endomorphisms of A(U). Such an “inner” form for the endomorphisms of
H∞(U) does not exist. The reason is that the structure space of H∞(U)
is much bigger than U .

Remark 7. We have some remarks concerning the algebraic reflexivity of
the isometry group and the automorphism group of algebras of holomor-
phic functions on more general domains.

First recall that if K ⊂ C is a compact set whose complement has
finitely many components, then the structure space of A(K) is just K. In
fact, this follows from the celebrated Mergelyan’s approximation theorem
which states that in this case A(K) is equal to the sup-norm closure of the
set of all rational functions with poles outside K [26, 20.5 Theorem and
Exercise 1, p. 427], [24, 3.2.14 Example]. We easily obtain that A(K) is a
uniform algebra and having a look at the proofs of Theorem 5 and 6, one
can easily verify that the isometry group and the automorphism group of
A(K) are algebraically reflexive.

Next, let Ω ⊂ C be a bounded domain. We assert that the isometry
group and the automorphism group of H∞(Ω) are algebraically reflexive.
As for the proof, we can clearly assume that

Ω ⊂ {z ∈ C : Re z > 0}
and that Ω contains a real number. Obviously, if λ ∈ T is any number
different from 1, then there is a positive integer n such that λn Ω � Ω. After
this short preparation, let T : H∞(Ω) −→ H∞(Ω) be a local surjective
isometry. Just as in the proof of Theorem 7, we can suppose that T (1) = 1.
Let λ be a complex number of modulus 1 and let ψ be an automorphism
of H∞(Ω) such that

(4) T (id) = λψ(id) .
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We note that it is not true for general domains that every automorphism
of H∞(Ω) is induced by a conformal selfmap of Ω. We show that in (4) we
have λ = 1. The spectrum of id is Ω. Clearly, every automorphism pre-
serves the spectrum while any unital algebra homomorphism is spectrum
non-increasing. Hence, from the relation above we infer that

λ Ω = λσ(id) = λσ(ψ(id)) = σ(T (id)) ⊂ σ(id) = Ω .

Since this implies that λnΩ ⊂ Ω for every n ∈ N, we obtain that λ must
equal 1. As the norm in H∞(Ω) is equal to the spectral radius, it follows
that every automorphism is a surjective isometry. Therefore, considering
the map ψ−1 ◦ T we can assume that our local surjective isometry sat-
isfies T (1) = 1 and T (id) = id. Now, the proof can be completed as in
the last part of the proof of Theorem 7. The algebraic reflexivity of the
automorphism group can be proved in an easier way.

6. Fréchet algebras of holomorphic functions.

Consider now the full algebra H(Ω) equipped with the topology of uni-
form convergence on compact subsets of Ω. In this case H(Ω), as a Fréchet
space, is metrizable but there is no natural metric on H(Ω) and, therefore,
there is no natural notion of isometry for H(Ω). We have, however, the
following result about the automorphism group.

Theorem 8. Let Ω ⊂ C be a simply connected domain. Then the auto-
morphism group of H(Ω) is topologically reflexive if and only if Ω �= C.

Proof. That the automorphism group of H(C) is not topologically re-
flexive can be seen as follows: consider the automorphisms ψn : H(C) −→
H(C) defined by

(ψn(f))(z) = f
( z

n

)
, z ∈ C, n ∈ N .

Let ψ(f) = f(0) (f ∈ H(C)). Clearly, we have ψ(f) = limn ψn(f) for
every f ∈ H(C), but ψ is not an automorphism of H(C). This proves the
“only if part”.

For the converse, recall that every every automorphism of the algebra
of all holomorphic functions on a domain is induced by a conformal selfmap
of the underlying set [2], [3]. Just as above, we can assume that Ω = U .

Let ψ ∈ refto(Aut(H(U))). As in the previous section, it is easy to see
that any sequence of conformal mappings of U onto itself has a subsequence
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which converges (uniformly on compact subsets of U) to either a map of the
same kind or to a constant function of modulus 1. One can readily check
that this implies that for every f ∈ A(U) ⊂ H(U) we have ψ(f) ∈ A(U)
and the range of ψ(f) is contained in that of f . Therefore, by Gleason-
Kahane-Żelazko theorem ψ is multiplicative on A(U) and just as in the
proof of Theorem 6 we infer that there is a function ϕ : U → U such that

ψ(f) = f ◦ ϕ , f ∈ A(U) .

Considering ψ(id) we find that ϕ is either a conformal map of U onto
itself, or it is a constant function of modulus 1. Since ψ is supposed to
be continuous and the polynomials are dense in H(U), it follows that in
the first case we have ψ(f) = f ◦ ϕ for every f ∈ H(U), so in this case ψ
is an automorphism of H(U). As for the second possibility, suppose that
ϕ ≡ α, where α is a constant of modulus 1. Since the function 1/(α − id)
is a element of H(U), by the continuity of ψ we obtain

ψ
( 1

α − id

)
= ψ

(∑
n

idn

αn+1

)
=

∑
n

1
α

.

This contradiction shows that the second possibility cannot occur. The
proof is now complete.

Remark 8. Let Ω ⊂ C be a bounded domain whose complement has
finitely many components each of them with nonempty interior. We show
that the automorphism group of H(Ω) is algebraically reflexive. Let ψ :
H(Ω) −→ H(Ω) be a local automorphism. Since every automorphism of
H(Ω) is induced by a conformal selfmap of Ω we see that ψ can be consid-
ered as a local automorphism of H∞(Ω). By the second part of Remark 7,
it follows that ψ is an automorphism of H∞(Ω). Our topological condition
on Ω was set to guarantee that, by Runge’s approximation theorem [26,
13.9 Theorem], H∞(Ω) is dense in H(Ω). Therefore, by the continuity of ψ
we obtain that ψ is a homomorphism of H(Ω). But the form of endomor-
phisms of H(Ω) is well-known. Using, for example, [3, Corollary], we have
ψ(f) = f ◦ ϕ (f ∈ H(Ω)). Since ϕ = ψ(id) is, by assumption, a conformal
map, we obtain that ψ is an automorphism of H(Ω).

Finally, we prove that the automorphism group of H(C) is also alge-
braically reflexive. It is well-known that the conformal maps of C onto itself
are precisely the affine functions z �→ az+b, a �= 0. Let ψ : H(C) −→ H(C)
be a local automorphism. Assume that ψ(id) = id. By the continuity of
ψ, it is sufficient to prove that ψ(idn) = idn holds for every n ∈ N. Let
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n ≥ 3. From the equality ψ(id+ idn) = ψ(id)+ψ(idn) it follows that there
are complex numbers a, b, c, d with a, c �= 0 such that

(a z + b) + (a z + b)n = z + (c z + d)n , z ∈ C .

Applying an appropriate affine transformation, the previous equality turns
to

z + zn = (a′ z + b′) + (c′ z + d′)n ,

where a′, c′ �= 0. Comparing the coefficients of the polynomials above,
since 1 < n − 1 < n, it follows that d′ = 0 and then that b′ = 0. We
obtain a′ = 1, (c′)n = 1. It is not hard to see that this yields ψ(idn) = idn.
It remains to check ψ(id2) = id2. Let ψ(id2) = ϕ2, where ϕ is an affine
function. Picking any n ≥ 4 and using a very similar argument as above
but this time for ψ(id2 + idn) = ψ(id2) + ψ(idn), we obtain

ϕ =
u2

un
id ,

where u2 is a second, while un is an n-th root of unity. Since this holds
for every n ≥ 4, we readily have ϕ2 = id2 and thus ψ(id2) = id2. This
completes the proof of the algebraic reflexivity of Aut(H(C)).

To conclude sections 4, 5 and 6, we remark that it would be interesting
to extend our topological reflexivity results for more general domains on
the plane as well as to give examples of exotic domains for which the
corresponding spaces of holomorphic functions have nonreflexive isometry
groups, or automorphism groups. It would be also interesting to treat
similar problems for vector valued holomorphic functions instead of scalar
valued ones (see [16], [17]).

7. Spaces of continuous functions.

In this section we give some examples concerning spaces of continuous
functions. It is proved in [22, Theorem 2.2] that both Aut(C(K)) and
Iso(C(K)) are algebraically reflexive if K is a first countable Hausdorff
space. Our following example shows that reflexivity may fail even if K lacks
first countability at only one point. Observe that if Γ is a discrete space,
then for its one-point compactification Γ ∪ {∞} we have C(Γ ∪ {∞}) =
c(Γ) = K ⊕ c0(Γ).
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Example 2. Let Γ be an uncountable index set. Then Iso(c(Γ)) and
Aut(c(Γ)) are algebraically nonreflexive.

Proof. First, the construction in Example 1 gives us a non-surjective
operator T0 : c0(Γ) −→ c0(Γ) which is both a local surjective isometry and
a local automorphism of c0(Γ). Since c(Γ) = K ⊕ c0(Γ), we can extend T0

to c(Γ) by putting

T (λ1 + f) = λ1 + T0(f) , λ ∈ K, f ∈ c0(Γ) .

Clearly, T is a non-surjective local automorphism and hence a local sur-
jective isometry of c(Γ). This completes the proof.

Our next example is a space of continuous functions whose set of local
automorphisms is as large as it can be according to Remark 5. As usual,
we denote by N∗ the growth of N in its Stone-Čech compactification, that
is, N∗ = β N \ N which is a compact Hausdorff space.

Theorem 9. Every unital injective endomorphism of C(N∗) is a local
automorphism. Therefore, the isometry group and the automorphism group
of C(N∗) fail to be algebraically reflexive.

Proof. Let ψ : C(N∗) −→ C(N∗) be a unital injective endomorphism. As
it is well-known, every unital endomorphism of a C(K) space is induced by
a continuous selfmap of K. Hence there is a surjective continuous mapping
ϕ : N∗ −→ N∗ for which ψ(f) = f ◦ ϕ for all f ∈ C(N∗). Since f and ψf
have the same range, there is an homeomorphism ϕf of N∗ such that
ψ(f) = f ◦ ϕf as a consequence of the following fact about the structure
of N∗ [28, p. 83]: if K is a compact space of topological weight at most
ℵ1 and f and g are continuous maps from N∗ onto K, then there is a
homeomorphism φ of N∗ such that g = f ◦ φ. Clearly, this yields that ψ is
both a local automorphism and a local surjective isometry, although ψ is
never surjective unless ϕ is injective. Since N∗ contains two disjoint copies
of itself which are clopen in N∗ (see [28, 3.10, 3.14, 3.15]), the existence of a
surjective non-injective mapping ϕ : N∗ −→ N∗ is obvious. This completes
the proof.

Our final examples show that there is no much relation between the
reflexivity of the isometry group of X and that of its dual X∗. This solves
in part Problem 2 at the end of [22].

Example 3. a) There is a Banach space X such that Iso(X) is topologi-
cally reflexive but Iso(X∗) fails to be algebraically reflexive.
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b) There is a Banach space Y with algebraically nonreflexive isometry
group such that Iso(Y ∗) is algebraically reflexive.

Proof. We first prove b). Let Y = l1(Γ), where Γ is an uncountable
index set. By Example 1, Iso(Y ) is algebraically nonreflexive. However,
the isometry group of Y ∗ = l∞(Γ) is algebraically reflexive; this can be
proved, mutatis mutandis, as in the countable case (see [1, Proposition 6]).

To verify a), let K be Cook’s continuum having no nontrivial con-
tinuous surjection onto itself [4]. We show that Iso(C(K)) is topogically
reflexive. Let T ∈ refto(Iso(C(K))). By Theorem 5, one has

Tf = τ(f ◦ ϕ) ,

where τ is unimodular and ϕ is a continuous surjection of K onto itself.
Hence ϕ is the identity on K and we obtain that T is surjective. On the
other hand, by general representation results, one has

C(K)∗ = l1(K) ⊕1 L1(µ) ,

where µ is a non-atomic measure. Since K is uncountable (no continuum
is countable), it follows from Theorem 3 that the isometry group of C(K)∗

is algebraically nonreflexive.

We close the paper with the following open problem. Let X be a lo-
cally compact Hausdorff space and denote by C0(X) the Banach algebra
of all continuous real or complex valued functions on X which vanish at
infinity. If C0(X) is separable (this means that the one-point compactifi-
cation of X is metrizable), does it follow that Iso(C0(X)) is algebraically
reflexive? If this was the case, we would get that the isometry group of any
separable commutative C∗-algebra is algebraically reflexive and we would
have some hope to obtain positive reflexivity results for the isometry group
of some classes of separable C∗-algebras.
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