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Outer and inner vanishing measures
and division in H* + C

Keiji Izuchi

Abstract

Measures on the unit circle are well studied from the view of
Fourier analysis. In this paper, we investigate measures from the view
of Poisson integrals and of divisibility of singular inner functions in
H>+(C'. Especially, we study singular measures which have outer and
inner vanishing measures. It is given two decompositions of a singular
positive measure. As applications, it is studied division theorems
in H* 4 C.

1. Introduction

Let H* be the Banach algebra of bounded analytic functions on the open
unit disk D. We denote by M(H*) the maximal ideal space of H*, the
space of nonzero multiplicative linear functionals of H* with the weak*-
topology. We view that D C M(H®) and D is an open subset of M (H).
By Carleson’s corona theorem [2], D is dense in M(H*). Identifying a
function in H* with its Gelfand transform, we view that H* is the closed
subalgebra of C'(M(H®)), the space of continuous functions on M (H*).

We also identify a function in H* with its boundary function and view
that H* is an (essentially) supremum norm closed subalgebra of L>°, the
usual Lebesgue space on the unit circle 0D, see [4, 8, 9] for the study of the
structure of H>* and M(H®). A closed subalgebra B of L* containing H>
strictly is called a Douglas algebra. Then we view that its maximal ideal
space M(B) is a subset of M(H*), and M(L*>) is the Shilov boundary
of H*, see [3, 19] for the structure of Douglas algebras. In [20], Sarason
proved that the smallest Douglas algebra is H* + C, where C' is the space
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of continuous functions on 0D, and M(H*® + C) = M(H>)\ D. For f €
L>\ H*°, we denote by H*®[f] the Douglas algebra generated by f. For a
function f in H*, we put

{[fl <1} ={z e M(H>*+C);|f(z)] <1}
and
Z(f) ={z € M(H* + C); f(z) = 0}.

We note that these sets are considered in M (H*)\ D. A function f in H*
is called inner if |f| = 1 on M(L*®). For a sequence {z,}, in D satisfying
%% 1 —|z,] < 00, we have a Blaschke product

n=1

—Zn Z— Zn
eD.
H |20 1 — 7,2 :

A Blaschke product is an inner function.

For a measurable subset E of 0D, we denote by |E| the value of the
Lebesgue measure of E. Let M (9D) be the Banach space of bounded Borel
measures on JD with the total variation norm. Let M be the set of positive
singular measures in M (0D) with respect to the Lebesgue measure on 0D.
We denote by M, and M;rd the sets of continuous and discrete measures in
M}, respectively. We use familiar notations in the measure theory like as
“<” absolutely continuous and “1” mutually singular. For a finite signed
measure g, let 4 = put — = be the Jordan decomposition of p. For py, ps €
MF, put puy V opo = py + (p2 — pa)™ and gy A prg = pn — (1 — pi2)™. Then
11V g and g A o are the least upper and the greatest lower bounds of
and pio, respectively. It is known that M} is a complete lattice. For a point
¢ € 0D, let §; be the unit point mass at (. For u € M}, we denote by S(u)

the closed support set of .
For each p € M, let

0
Yu(z) = exp <_/a ¢ rz du(ew)) ., z€D.

pe? — 2z

Then 1, is inner and called a singular inner function. We note that

A%WAN—AD( ) du(e”?), =€ D.

where P, is the Poisson kernel, that is, P,(e) = (1 — |z|?)/|e?® — z|?. Let

LL(0) = {v € M50 < v < v 0},
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Then we have a family of singular inner functions {t,; v € L} (1)} associated
with p. In [17], we call these functions singular inner functions of L-type for
the measure p, and we obtained results which are reminiscent of the results
for Blaschke products in [13], see also [14, 15].

Let p € M}. We say that u has an outer vanishing measure if there
exists v € L% (1) such that {[¢,] < 1} C Z(¢,), and v is called an outer
vanishing measure for p. In this case, 1,/ Y, € H> + C for every positive
integer n, see [7]. In [17, Theorem 2.2], it is actually proved that if € M}
and S(u) = 0D, then p has an outer vanishing measure and L™ is generated
by complex conjugate of singular inner functions of L!-type for . Also in
[17, Theorem 5.1], we give a characterization of y € M ;“ ; Which has an
outer vanishing measure. In [7, p. 181], Guillory and Sarason posed the
following problem. Does there exist p, v € M, i # v, such that ¢, and v,
are codivisible in H* 4 C' 7 This problem is very interesting and remains
unsolved.

In Section 2, we study measures which have outer vanishing measures. In
Theorem 2.3, we prove that every p € M} has a decomposition p = p, + fip,
where y, has an outer vanishing measure, p, L up, and there are no nonzero
measures A € L (1) which have outer vanishing measures.

In Section 3, we prove that if ¢ € M; and there is v € M such
that 4 L v, and %, and 1, are codivisible in H* 4 C, then p has an
outer vanishing measure. So to attack Guillory and Sarason’s problem, it is
important to study measures which have outer vanishing measures.

In Section 4, we give some examples of measures. In Theorem 4.1, we
prove the existence of u € M s—t—c which does not have outer vanishing mea-
sures. This answers the problem posed in [17, Problem 5.1] negatively. Also
in Theorem 4.2, we prove the existence of y € My, which has an outer
vanishing measure and |S(u)| = 0.

In Section 5, we study factorization in H* 4 C'. There are many factor-
ization theorems in H* +C see [1, 6, 12, 21|. Let f € H>* +C and ¢ be an
inner function. In [7], Guillory and Sarason proved that {|¢| < 1} C Z(f) if
and only if f/¢" € H*> + C for every positive integer n. In [16], it is proved
that if | f| < [o| on M(H™ + C), then f?/¢) € H*+ C. Let b be a Blaschke
product. In [11], the author proved that for every f € H*+C with |f| < |b|
on M(H® + C'), there exists a subproduct ¢ of b such that f/¢ € H*® + C
and Z(¢) = Z(b), and posed the problem whether there exists a subproduct
¥ of b such that f/i¢ € H® + C and |[¢)| = |[b| on M(H> + C). We study

the same type of problem for a singular inner function.
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For u € M}, we consider the following two conditions on pu, respectively;

(A) for every f € H® + C satisfying |f| < |¢,| on M(H™ + C), there
exists v € M such that v < pu,|¢,| = |[¢,| on M(H*® + C), and
[/, € H® +C,

(B) for every inner function v satisfying [¢,| < || on M (H*>+C), there
exists v € L} () such that g < v < 2pu,|¢,| = ¢, on M(H*® + C),
and 1, /1 € H*® 4 C.

A measure v € L}r(u) with 0 < v < p is called an inner vanishing
measure for p if {|1,| < 1} C Z(¢,). Let p, be the upper band of inner
vanishing measures for p. Put pug = @ — p1o. Then we have p, L pg. In
Theorem 5.1, we prove that conditions (A) and (B) are equivalent to the
condition Z(v,.,) = Z(,).

2. Outer vanishing measures

For p,v € M}, we have [Yaurim| = |10 )", {[¥(@uron | < 1} = {[¥u] <
1YU{|¥| < 1}, and Z (Y (apten)) = Z(¥,) U Z(1,) for every positive numbers
a,b. We also have {|¢,,| < 1} = {|¢,| < 1}U{|¢,| < 1}. For measures p, v
in M such that v < u, we have [¢,| < [1),| on M(H>) and Z(¢,) C Z(1,).
We use these facts frequently without mention.

The following theorem gives a sufficient condition on p € M which has
an outer vanishing measure.

Theorem 2.1 Let p € M and let { i, }n be a sequence in M} such that p =
Yoo . Let {vy}n be a sequence in M satisfying the following conditions;

(i) v, € LY (1) for every n,

(1t) {|Yu,| <1} C Z(4,,) for every n.

Then p has an outer vanishing measure.

To prove our theorem, we need some lemmas.

A Blaschke product with zeros {z,}, is called interpolating if for every
bounded sequence of complex numbers {a,}, there exists f € H> such
that f(z,) = a, for every n. The following is proved essentially in [22], see
also [18].

Lemma 2.1 Let ¢ be an inner function. Then there is an interpolating

Blaschke product b such that {|b| < 1} = {|¢| < 1}.
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The following lemma is proved in [7, p. 176].

Lemma 2.2 Let f € H® + C and let ¢ be an inner function. Then {|y| <
1} € Z(f) if and only if f/y" € H*® + C for every positive integer n. And
in this case, |f /| = |f| on M(H* + C).

For z,y € M(H*), let p(z,y) = sup{|f(y); f € H>, f(x) = 0, f[| <
1}. Put P(z) = {¢ € M(H*);p(x,() < 1}. When P(z) # {z}, P(z) is
called a non-trivial Gleason part. In [9], Hoffman proved that if P(z) is non-
trivial, then there exists a continuous one to one map L, from D onto P(x)
such that L,(0) = z and fo L, € H*™ for every f € H*. Also he proved
that P(x) # {z} if and only if b(z) = 0 for some interpolating Blaschke
product b.

Lemma 2.3 Let b be an interpolating Blaschke product with zeros {z,},.
Let v € M} such that ¢,(2,) — 0 as n — oco. Then {|b| < 1} C Z(¢,),
Y /be H® + C, and [¢,/b] = |¢,| on M(H> + C).

Proof. Since Z(b) = cl{zn}n\{2n}n [8, P- 205], where ¢l {z,}, is the closure
of {z,}n in M(H>), we have ¢, = 0 on Z(b). Since (¢,)/* = ¢, = 0 on
Z(b) for every positive integer k, ¥, = 0 on P(x) for every z € Z(b). Then
by [1, 6], we have v, /b" € H*® 4 C for every positive integer n. By Lemma
2.2, we have our assertion. [ |

Proof of Theorem 2.1. Since > 7 ||us]| = [|u]| < oo, there exists a
sequence of positive numbers {p, }, such that >~ >°  p,|lu.|| < oo,

(2.1) Pn < pnyi1 for every n,

and p, — 0o as n — oo. Since {a,v,}, also satisfies conditions (i) and
(ii) in Theorem 2.1 for every sequence of positive numbers {a,},, we may
assume that > >° | ||| < co. Put

22) 0= 3 (puttn + 1)
n=1

Then by (i), v € L% (u). We shall prove that {|[¢,,| < 1} C Z(¢,). By
Lemma 2.1, there is an interpolating Blaschke product b with zeros {zj}
such that {|b] < 1} = {|¢,] < 1}. Then

(2.3) A= sup | (zr)] < 1.

By Lemma 2.3, it is sufficient to show that
(2.4) Uy (z) — 0 as k — oo.
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To prove this, suppose not. Then there exist a positive number a and a
subsequence {2, }; of {24}, such that
(2.5) |V (2r;)] —a>0 asj— oo.
Here we have
(2.6) |, (21,)] — 1 as j — oo for every n.

To prove this, suppose not. Considering further subsequence, we may assume
that |1y, (z;)| < r for every j for some positive integer n and 0 < r < 1.
By condition (ii), we have v, (z,) — 0 as j — oo. Hence by (2.2),

limsup ¢, (zx;)| < limsup [y, (2,)] = 0.

J—00 J—00

This contradicts (2.5). Thus we get (2.6).

Now for each positive integer N, we have

limsup |¢, (2,)] < limsup [ ¢, (z,) " by (2.2)
Jeo IO =t

IN

limsup [ ] [, (z,)P" by (2.1) and (2.6)

I p=N

= limsup [y, (z;)["™ by (2.6) and p = an

J—00

< APY O by (2.3).

n=1

Since 0 < A < 1 and p, — 00 as n — 00, we obtain ¢, (z,) — 0 as j — oo,
This contradicts (2.5). Thus we get (2.4). This completes the proof. |

Corollary 2.1 Let p € M} and let {p,}n be a sequence in M such that
=300 fn. If pi, has an outer vanishing measure for every n, then p has
an outer vanishing measure.

For a subset E of the complex plane, we denote by E the closure of E. In
[17, Proposition 5.1], it is proved that if u € M, and S(u) = J for an open
subarc J of 0D, then u has an outer vanishing measure. For a subset E of
0D, we denote by int E the interior of E.

Corollary 2.2 Let p € M such that ||| = p(int S(u)). Then p has an
outer vanishing measure.
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Proof. There is a set of countably many disjoint open subarcs {.J,}, of
0D such that int S(p) = U,y Jo. Put p, = s, Then po= > piy,
S(tn) = Jn, and ||| = pn(Jn). By the fact mentioned above, pu, has an
outer vanishing measure. By Corollary 2.1, we get our assertion. [

Corollary 2.3 Suppose that u € M7 has an outer vanishing measure. Let
A € M such that p < X < . Then X has an outer vanishing measure.

Proof. By our assumption, there exists v € LI (u) such that {|y,]| <
1} C Z(¢,). We have v € L! (u) = L (N\). By Radon-Nikodym’s theorem,
d\ = fdu, where f > 0 a.e. du. Put

E,={e?€0D;in—1< f(?)<n} and \,=\pg,
for every positive integer n. Then ), < npu, so that we have

{loa, | <1} C{{vbnul <1} = {0l <1} € Z(¢).

Since A = > | A\, by Theorem 2.1 we have our assertion. [

Corollary 2.4 Let {ji,}, be a sequence in M} such that w, has an outer
vanishing measure for every n. If || VS, un|| < oo, then VS u, has an
outer vanishing measure.

Proof. There exists a sequence of positive numbers {a,}, such that u =
Yoo ity € M. Since a,pu, has an outer vanishing measure, by Corollary
2.1 p has an outer vanishing measure. Since p < V32, < p, by Corollary
2.3 Vo2, has an outer vanishing measure. |

For a closed subset E of 0D, put
Mp(H* +C) ={x € M(H* + C); z(z) € E},

where z is the identity function on D. Let pu € M. If S(u) C E, then
{lul <1} € Mp(H*® + C) and |[¢,| =1 on M(H® +C)\ Mg(H> + C),
see Hoffman’s book [8].

Theorem 2.2 Let yu € M. Then the following conditions are equivalent.

(i) w has an outer vanishing measure.

(ii) For each open subset U of 0D such that U N S(pn) # 0, po has an
outer vanishing measure.

(1it) For every ¢ € S(p), there exists an open neighborhood V¢ of ¢ in 0D
such that pyy, has an outer vanishing measure.
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Proof. (i) = (ii) Suppose that x4 has an outer vanishing measure. Then
there exists v € L1 (1) such that

(2.7) {lbul <1} € Z(0).

Let U be an open subset of 9D such that U N S(u) # 0. Then vy €
LY (up). Take a sequence of increasing closed subsets {E,}, of dD such
that ;" E, = U. Put py = pyp, and p,, = pyg,\g,_,) for n > 2.

Then py =, ptn and

(2.8) {1, | <1} c{lvu] <1} N Mg, (H* 4+ C).
Since U N E,, = 0, [thyy| = 1 on Mg, (H* + C). Since ¢, = 9y, Py, We
have
(2.9) Yol = || on Mg, (H™ +C).
Then
{{u.] <1} < A{lul <1} N Mg, (H*+C) by (2.8)
C Z(,)N Mg, (H® +C) by (2.7)
= Z(yv) N Mg, (H* +C) by (2.9)
- Z(wV\U)

Hence by Theorem 2.1, we have our assertion.

(i) = (iii) is trivial.

(iii) = (i) By (iii), there exist (1,(s,...,(, € S(p) and open subsets
Veis Ves -+ Vi, of 0D such that S(u) C Ui, Ve, ¢ € Vi, and pv,, has an
outer vanishing measure for every j. Put o = 2?21 v, - Then o < p <K 0.
By Corollaries 2.1 and 2.3, we have our assertion. [

Theorem 2.3 Let p € M}. Then pu has a unique decomposition = g +
1y, where g and py satisfy the following conditions.

(Z) Hay iy € ]\45+ and Ha 1 M-
(i) g has an outer vanishing measure.

(111) Letv € M such that 0 < v < u. If v has an outer vanishing measure,
then v < pg.

(i) There are no nonzero measures A € LY () which have outer vanishing
measures.
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Proof. Let €2 be the set of measures v such that 0 < v <y and v has an
outer vanishing measure.

First, suppose that = (). Put pu, = 0 and p = p. If there is a measure
A € LY (p), A # 0, which has an outer vanishing measure, by Corollary 2.3
we have Q # (). Hence p, and p satisfies our conditions.

Next, suppose that € # (). Put
(2.10) a = sup{||v|;v € Q}.

Then 0 < a < ||p]|, and there is a sequence {v,}, in Q such that ||v,|| — «
as n — 00. Put p, = V22, v,. Then we have ||| = o and p, < p. Since v,
has an outer vanishing measure, by Corollary 2.4 u, has an outer vanishing
measure. Put pu, = p — pg.

To prove (i), suppose not. Then p, A iy, # 0. By Corollary 2.3, pug + fig A
wy € Q and ||pg + fta A o] > ||ptal] = . This contradicts (2.10).

(iii) By Corollary 2.4, u, V v has an outer vanishing measure. If v € p,,
then ||uq V V|| > |||l = @ Since p, V v < p, this contradicts (2.10).

(iv) follows from (iii). |

3. Codivisibility of singular inner functions

Up to now, Guillory and Sarason’s problem [7] is still open, that is, it is
not known the existence of measures p, v € M, such that ¢, /v,, 0, /¢, €
H>* 4+ C, and pu # v.

Suppose, for a while, that there exist u, v € M} such that ¢, and ¢, are
codivisible in H*°+C and p # v. Then ¥,_,n, and ¥, _ 5, are codivisible in
H*> + C'. Hence moreover we may assume that p L v. By the codivisibility,
we have [¢,| = [¢,| on M(H*® + C), so that {|¢,| < 1} = {|]¢,| < 1} and
S(p) =5Sw).

It is also not known the existence of y, v € M} such that {|¢,| < 1} =
{|t,] < 1} and p L v. But we have the following.

Proposition 3.1 There exist p,v € M such that {|¢,| <1} C {|v| < 1},
wlv, and S(p) = S(v).

Proof. Let u,A € M such that 4 L X and S(u) = S(\) = 9D. By
Lemma 2.1, there is an interpolating Blaschke product b such that {|b| <
1} = {J¢] < 1}. By [17, Theorem 2.1], there exists v € L}(\) such
that {|b] < 1} C Z(¢,). It is not difficult to see that p and v satisfy our
conditions. |
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The following is the main theorem is this section, and we prove this as
an application of Theorem 2.1.

Theorem 3.1 Let p, A € M such that {|1,| < 1} C {|vn] < 1}, p L A,
and S(pu) = S(X). Then p has an outer vanishing measure.

Proof. Since u L A, by the regularity of measures there is a sequence of
closed subsets { E, },, of D such that {E, }, is mutually disjoint, u(E,) > 0
for every n, p=3">", jug,, and A(E,) = 0 for every n.

Let fix n. Then there is a decreasing sequence of open subsets {U;}; of
0D such that

j=1
(3.2) AU\ Uj) = (U \U;) =0 for every j,

and 3272 [[Ay; || < oo. Put

(3.3) o= Ay,
j=1

Then o € M} and S(o) C S(A) = S(n). Moreover we have

(34) {‘¢M|En| < 1} - Z(¢a)

Let © € {[Y),,, | <1}. Then 2 € Mg, (H* + C). By (3.1), [{s| = |77/})\‘Uj| on
Mg, (H*> + C). Hence we have

(3.5) [¥a(@)] = [, (2)] - for every j.

Since [¢,(2)| < [¢,, ()| < 1, by our assumption we have [y (z)| < 1.
Hence by (3.3) and (3.5), we get

¢
e ()] < H WAM (z)] = [a(x)|"  for every t.
j=1

Since |1y (x)| < 1, by the above we obtain (3.4).

Next, we prove the existence of 7, € L} (u) such that

(3.6) {ls, | <1} C Z(¥r,).
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By Lemma 2.1, there exists an interpolating Blaschke product b such that

(3.7) {Iol <1} = {lth, | < 1}.
Let {z;}; be the zeros of b in D. Then
(3.8) {z:}; \ {z}i = S(us,) C By,

To show (3.6), by (3.7) and Lemma 2.3 it is sufficient to prove
(3.9) . (z) =0 asi— oo.

To prove the existence of 7, € L (i) satisfying (3.9), put
(3.10) Aj = j\vjv.n and  py = popo,,, for every j.

Since {U,}; is decreasing, by (3.3) we have

(3.11) c=> A\
j=1

Since S(A\) = S(p), by (3.2) we have S(\;) = S(u;). Then for each j, there

is a sequence of measures

(3.12) {pixtr C L (1)
such that
(3.13) lajall < Il for every &

and ;5 — A; as k — oo in the weak™*-topology of M (0D) as the dual space
of C(0D). Then
(3.14)

Yy, — ¥, uniformly on each compact subset of D\ S(};) as k — oco.

By (3.1), (3.8), and (3.10), we have |y, (2;)| — 1 as ¢ — oo for each j, so
that by (3.14),

(3.15) [V, /1%, ] — 1 uniformly on {z;}; as k — oo,

Take a sequence of positive numbers {r;}; such that r; > 1 for every j and

o0

(3.16) I <2

j=1
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By (3.15), for every j there exists a positive integer k; such that
(3.17) ]@DHMJ_ (2:)] < rjlhn, (2)]  for every .

We put 7, = 377 k. Since [|o]| < oo, by (3.11) 377, [|Aj]| < oc. Hence
by (3.13), we have ||7,]| < oo and 7,, € M. By (3.10) and (3.12), we have
T, € LY (p). For every i, we have

o)

’an<ZZ)| = H|w//fjkj(zl)|

J=1

< (HTJ‘)(HWA]-(%)D by (3.17)

j=1

< 2|, (2)] by (3.11) and (3.16).

By (3.6) and (3.7), ¥y (2;) — 0 as i — co. Hence by the above, 9, (z;) — 0
as ¢ — oo. Thus we get (3.9), so that we have (3.6).

Hence we can apply Theorem 2.1 and we get our assertion. [ |

In [5], Gorkin proved that for every pu € M there exists A € M such
that {|¢,] < 1} C Z(1y). In this case, we have S(u) C S(X). Moreover, if
1 does not have an outer vanishing measure, then by Theorem 3.1 we have

S(w) # S(A).

Corollary 3.1 Let u € M. If there exists v € M such that p L v, and
Y, and 1, are codivisible in H*+C', then p has an outer vanishing measure.

4. Examples of measures

The following answers the problem posed in [17, p. 809] negatively.
Theorem 4.1 There exists pu € M;rc satisfying the following.

(i) {|Yul <1} & Z(3p,) for every v € M with S(v) C S(p).

(ii) For every v € L (n), v does not have outer vanishing measures.

(iii) For every v e LY (p), {|v] <1} & Z(¥,).

(iv) For every v € MJ, with S(v) C S(u), v does not have outer vanishing
measures.

To prove the existence of such u, we need some preparation. The following
lemma follows from elementary properties of Poisson kernels.
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Lemma 4.1 Let J = {€%;a <0 <b},0<a<b<1,and K C ID be a
closed subset such that J N K = (). For each R > 0 and € > 0, there exist
a positive number r,0 < r < 1, and disjoint closed subarcs J, = {e¥;a <
0<d}, Jo={c%t <O<bla<d <V <b, of J satisfying the following
conditions.

(i) P (e) = P (e") = R, where ¢; = reileta)/2,
(ii) Pr(e?) <e fore? € KU.J,.

(iii) Pr,(e®) = PCQ(e“") — R, where Gy = rei®H)/2,
() Pr,(e?) <e fore? e KUJ.

(v) [1] = || < |J]/4.

Moreover, we may take a' and b’ such that both a’—a and b—b" are sufficiently
small.

Put

A, ={(e1,€9,...,6n);6s=0o0r 1 for every i} and A= U A,.

n=1

Lemma 4.2 Let J = {e?;a < 0 < b},0 < a <b< 1. Then there exist a
family of points {zaYaen in D and closed arcs {J,}aen, say Jo = {€¥;a, <
0 < ba},aq < by, satisfying the following conditions for every n.

(i) Jo CJ forael,.

(ii) JoNJg=0 fora,f e N, a#p.

(iii) P, (ei%) = P, (e®) =2 for a € A,.

() Jia0) U da1) C{e? € Jy;2" < P, (e7) < 2"} for a € A,.
(v) P, (") <1/2" for e € Usen, gra I8

(Vi) P aennn ol £ Daen, [Jal/2-

(vii) |Jao| = [Jan| < [Jal/4 for a €A

Proof. By induction, we shall prove our assertion. First, take R = 2 and
e = 1/2 in Lemma 4.1. Then there exist (;,(o € D and disjoint closed
subarcs Jp, Jo satisfying the conditions in Lemma 4.1. Put

2(0) = C1» 2(1) = G2, Joy = J1, and Jq) = Js.
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Next, suppose that z, and J,, a € UZ:1 A,,, are already chosen satisfying
(i)—(vii). Let a € Ag. Apply Lemma 4.1 for J = J,, R = 2™ and ¢ =
(1/2)¥+1. Then there exist 2(a,0)s Z(a,1) € D and disjoint closed subarcs
Ja0) = {€7 000 < 0 < b} Jia1) = {€% a1 < 0 < by}, ta =

a(a,0) < bia,0) < Aa,1) < b(a,1) = ba, of J, such that

P, (%) =P,

ib(a.0)) — ok+1
Z(@,0) %mm(e ( » =2 )

P, . (e"en) =P, (ePen) =21

Z(a,1) Z(a,1)
P (€) < (1/2)" for eiee( U Jﬁ)uj(a,l),
ﬁEAkzﬂ;éa
P (€7) < (1/25+" for € € ( U Jﬂ) U Jiao).
BEA, B

and
[0 = [Jan| < [Jal/4.

Since Pza(eiaa) =P, (eiba) _ 9" we may further assume that
Jom U Jan C {e” € 12" < P (e7) <271}

This completes the induction.

Lemma 4.3 ([17], Theorem 5.1) . Let p = > " a0, € M, where

n=1

(n € OD and a, > 0 for every n. Then u has an outer vanishing measure
if and only if for each n there exists A\, € M} such that S(\,) C S(u) and

{ls., | <1} € Z(¥r,)-

Proof of Theorem 4.1. First, we construct p € M. Take a closed subarc
J of OD such that |J] > 0 and J C {e?;0 < 6 < 1} and apply Lemma 4.2.
Then there exist a family of points {z, }aca in D and a family of open subarcs

{Ja}aen of J, say J, = {€¥; a0 <0 < by}, an < by, satisfying

(4.1) JaNJdg=0 for a,f € A,,a # 5,

(42)  Jao) U Jn) C {e? € Ju;2" < P, () < 2"} for a € A,

(4.3) P (%) <1/2" for e’ e | ) s
BEAR,fFa

(4.4) P, (¢%) =P, (e") =2" for a € A,,
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(4.5) D el <D 1al/2,

a€Np 11 aEN,
and
(4.6) ‘J(a,())’ = ‘J(a,l)’ < |Ja‘/4 for oo € A.
For each a € A,,, put
(4.7) Aa (5ema +—5ewa).

- 2n+l

For each positive integer n, put

A\, = Z Ao
aENy,

925

Then || As]| = 1/2" and S(A,) C J,. Since number of elements of A,, is 27,

Al =1 and S(A) C | Ja

OéEAn

It is not difficult to see that A\, — u in the weak*-topology as n — oo for

some positive continuous measure p on 0D such that

(4.8) [l =1
and
(4.9) s = (U %)
n=1 OCEATL
By (4.5),
1S < 1l < (1/2)" (1Tl + 1Tw))
acAy
for every n, so that we have |S(u)| = 0.
For a € A,,, let

For each positive integer k, let Ay, = {0 € Ap; A\g(Jo) # 0}. Then by (4.1),

4.2), and (4.7), we have Ag — liq a8 k — oo and
BEAL,o B

H S AﬁH — (o) = 1/2" for k> n.

ﬁeAk,a
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Hence

(4.11) [1all = 1/27,

(4.12) w= Z L,
aEAn

and

(4.13) fra = fi(a,0) T H(a1)-

By (4.11) and (4.12), p € M. Now we have

/ P, dp = ) / P., dug by (4.12)
oD BeAn oD

- / Pza d,u(a,O) + / Pza dﬂ(a,l) +
oD oD

by (4.13)

n 1
< 2 g ol + o 3
BEA,,B#a

Behy,B#a ’ OD

by (4.2) and (4.3)
1
2" | o || + Tl by (4.8) and (4.13)
< 3 by (4.11).

IN

On the other hand, by (4.4) we have P, > 2" on J,. By (4.10) and (4.11),
we get 1 < [, P, dug. Hence 1 < [, P, du < 3 for every a € A. Since
—log|tu(za)| = [5p Pe. dpt, we have

(4.14) e <|u(za) < €' for every a € A.

To prove (i), let v € M such that S(v) C S(n). Put v, = v, for
a € A. Then in the same way as the above paragraph, we have

Il

— i €A,.
on or «

(4.15) / P, dv < 2" |y, || +
oD

Since S(v) C S(u), by (4.9) we have > ., |lvall = [[v]| < co. Since the

number of elements of A, is 2", there exists «, in A, such that ||v,, || <

|v||/2". Hence by (4.15), [, P., dv < 3|v|| for every n. Thus we get

0 < eIVl < |4, (24,)| for every n. Therefore, by (4.14) we have {|¢,| <

1} & Z(4h).



OUTER AND INNER VANISHING MEASURES AND DIVISION IN H® +C 527

Next, we prove (ii) and (iii). Let v, A € L1 (). It is sufficient to prove
that {|¢,| < 1} & Z(¢5). We may assume that ||v|| = ||A|| = 1. Then there
exist K > 0 and a sequence {a,},, @, € A,, such that

(4.16) MJa,)/ K < p(Ja,) < Kv(J,,) for every n.
In the similar way as above, we have

1
/ P, d\ < / P, d\+ —
oD Jan, 12"

S 2n+1)\(Jan) + 2_n

1
< 2Kp(da,) + 57 by (4.16)
< 2K +1 by (4.11)

and

/ P, dv > / P, dv
aD Jon,
by (4.2)

> 2"u(Jo,)/ K by (4.16)
= 1/K by (4.11).

Hence we get 0 < e~ KD < |ahy (24, )| and |9, (24, )] < e /5 < 1 for every
n. Thus we obtain {|¢,| < 1} & Z(¢,).

(iv) Let ¢ = ¢ € S(u). By Lemma 4.3, it is sufficient to prove that

(4.17) {lbs | <1} & Z(¥s).

for every measure o € M such that

V
[\
3

<
—
pkc
3
~—

(4.18) S(o) € S()

To prove (4.17), let 0 € M satisfying (4.18). We may assume that ||o|| = 1.
By (4.9), there exists a sequence {a,}, in A, o, € A,,, such that ¢ € J,, for
every n. Then ¢ € J, 00 U Jia,,1)- Here we may assume that ¢ € Jq, 0,
that is, a1 = (05, 0). Then aq,0) < arg¢ = 0y < ba,0) < A(a,,1)- Put

7 7
(4.19) &, =exp (5 (6o + a(an,l))> and (, = exp (Z (6 +3 a(aml)))'
Then by (4.6),

arg(’ S b(an,O) < arg gn < arg Cn < A(ap,1)
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and (, is the center of the arc jointing &, and e*®@=.1. Hence

(4.20) [€n — Gal = [e"@nD — (o] = d(Gn, S () < € = Gal-
Let w,, € D such that

(4.21) ths (wy)| = e and  wy/|wy| = .
Put
(4.22) 0, = arg (u&,.

Then 6,, — 0 as n — oo. Since ¢ = €%, by (4.19) we have 36, = arg (,(.
Hence by (4.21), we get

(4.23) |wy,| = cos(36,).

Now we have

—log |ty (wy)| = / P,, do
oD

< / Py ds,, by (4.18), (4.20), and (4.21)
oD

= / P, dd.; by (4.21)
oD

1 — cos?(36,)
1 — 2cos(36,) cos b, + cos?(36,,)’

where the last equality follows from (4.22) and (4.23). It is not difficult to
see that

_ 1 — cos?(30)
lim =9.
6—0 1 — 2 cos(36) cos § + cos?(36)
Hence we obtain
liminf [, (w,)] > 7.
By (4.21), we get (4.17). [

The following follows from Theorem 4.1 and Corollary 3.1.

Corollary 4.1 Let p be the measure given in Theorem 4.1 and v € L (p).
Then there are not singular inner functions which are codivisible with 1, .

Relating to Theorem 4.1 (iv), we have the following problem.

PROBLEM 4.1. Let p be the measure given in Theorem 4.1. Does there
exist v € M such that S(v) C S(u) and v has an outer vanishing measure?
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Theorem 4.2 There exists a measure i € M, which has an outer vanish-
ing measure and |S(u)| = 0.

To prove this, we need the following lemma.

Lemma 4.4 Let p € M} and let U be an open subset of 0D such that
S(u) € U. Then for every e > 0, there exists A\ € M, satisfying the
following conditions.

(1) S(n) C S(A\) CU.
(i) [SV = 15(w)]-
(iii) ||\ < e.

() {|ul <1} € Z(¥).

Proof. By Lemma 2.1, there is an interpolating Blaschke product b with
zeros {z, }, such that

(4.24) {Iol <1} = {lvl < 1}.

Since we may discard finitely many zeros from {z,},, we may assume that
2z, # 0 for every n and

o0

(4.25) > l—ml <e
n=1

By (4.24), we have {z,}, \ {z.}n = S(n). Put € = z,/|z,|. Then

(4.26) {e®}, \ {e""}n € S(u) € {e?},,,

so that we may assume that e’ € U for every n. Put

(4.27) E,={e%10 -0, <1—|z|}.
Then
(4.28) P, >1/(1—|z,|) on E, for every n.

By (4.25), there exists a sequence of positive numbers {p, }, such that

(4.29) an(l —|z]) <e and p, — 00 as n— 0.
n=1
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There is a measure A, in M} such that

(4.30) [An]l = Pa(1 = [2u]),
(4.31) e e S(\,) C E, N,
and

(4.32) [S(An)| = 0.

Put A = >>°, \,. Then by (4.29) and (4.30), ||[A|| < e. Since A, € M

s,C)

A€ M. By (4.27), |E,| — 0 as n — oo, so that by (4.26) and (4.31) we
have

SN =8 u(JsH) cu.

Hence by (4.32), |S(A)] = |S(w)]-

Now we have

—log|a(zn)| = / P, d\
oD

> /&ﬂ%

>y by (4.28) and (4.30)
— 00 by (4.29).

Therefore ¥,(2,) — 0 as n — oco. Hence by Lemma 2.3, {|b| < 1} C Z(¢y),
so that by (4.24) we have {|1,| < 1} C Z(). This completes the proof. B

Proof of Theorem 4.2. By induction, we shall prove the existence of
{#tn}n in M, and open subsets {U, }, of 0D satisfying

(4.33) S(ftn1) € S(tn) C Uy C Upy,
(4.34) |5 (pn)| = 0,

(4.35) [l <1727,

(4.36) {tu.| <1} C Z(WPp,),
and

(4.37) T, < 1/n.
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First, take a measure p; € M, such that ||| < 1/2 and [S(u1)| = 0.
Then take an open subset U; of D such that S(u;) C Uy and |U,| < 1.
We use Lemma 4.4 for p = pu;,U = Uy, and ¢ = (1/2)%2. Then there
exists pp € My, such that S(uy) C S(uz) C Ui, [S(p2)| = [S(1)| = 0,
2l < (1/2)%, and {[,| <1} C Z ().

Assume that py, ..., u, and Uy, ..., U,_; are chosen satisfying the above
conditions. Since S(p,) C U,_1, by (4.34) there is an open subset U,, such
that S(u,) C U, C U,_; and |U,| < 1/n. By Lemma 4.4, there exists
Hnt1 € M:,_c such that S(:un) - S(/Ln+1> - Un’ |S(Mn+1)‘ - ‘S(ﬂn)‘ =
0, [[tnsall < 1/27*1 and {|¢,] < 1} C Z(3,,,,). This completes our
induction.

Put o =Y | pt,. Then by (4.35), [|p|| < oo so that u € M. By (4.33),
S(pn) C Uy for every pair of positive integers n and k. Hence S(u) C Uy
for every k. Then by (4.37), we have |S(u)| = 0. By (4.36) and Theorem
2.1, u has an outer vanishing measure. [

We have the following problem:

PROBLEM 4.2. Let E be a closed subset of D such that |E| > 0. Does
there exist p € M such that S(u) C F and g has an outer vanishing
measure?

5. Inner vanishing measures and factorization in H*+C

In this section, we characterize p € M satisfying conditions (A) and (B).
Lemma 5.1 ([21]) . Let B be a Douglas algebra and let i) be an inner
function. Then B C H*+C if and only if » =0 on M(H>*+C)\ M(B).

In the same way as [11, Lemma 4.2], we have

Lemma 5.2 Let ¢ be an inner function. If f € H® + C and |f| < |¢| on
M(H>® +C), then ¥ =0 on M(H*> + C)\ M(H>®[f/v]).

Hence the proof of [11, Theorem 4.2] actually proved the following.

Proposition 5.1 Let f € H* +C and let ¢ be an inner function such that
|f] < || on M(H*> + C). Then there is a Blaschke product b such that
b=0on M(H>®+C)\ M([H®[f/Y]) and {|b| < 1} C Z(¥).
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Corollary 5.1 Let f € H*® 4+ C and let 1 be an inner function such that
|f] < W] on M(H®> + C'). Then there is a Blaschke product b satisfying the
following conditions.

(i) (bf)/v € H® +C and |bf| = |f| on M(H® + C).

(ii) /b€ H® +C, |/b] = || on M(H™ +C), and f/(/b) € H® + C.
Proof. By Proposition 5.1, there is a Blaschke product b such that
(5.1) b=0 on M(H*+C)\ M(IH*[f/¢])

and {|b| < 1} C Z(v). By our assumption, Z(¢) C Z(f), so that we have
|bf| = |f| on M(H* + C). By (5.1) and Lemma 5.1, (bf)/v = b(f/¢) €
H*> 4 C.

By Lemma 2.2, ¢/b € H* + C and |¢/b] = |¢| on M(H* + C). And
we have f/(/b) =b(f/v) € H® + C. |

Proposition 5.2 Let ( € 9D. Then 6, does not satisfy condition (A).
Proof. There exists an interpolating sequence {z,}, in D such that
Vs (2n) — 0 asn — oo,

Let b be the interpolating Blaschke product with zeros {z,},. Then by
Lemma 2.3, f = ¢5./b € H*® + C and |f| = [¢5.| on M(H*> + C). We also
have f/vs5, = 1/b ¢ H*+C. Let v € M such that v < é¢ and [, | = [s, |
on M(H* + C). Then v = §.. Hence §, does not satisfy condition (A). W

Let u € M} . Recall that a measure v with 0 < v < p is called an inner
vanishing measure for p if {|¢),| < 1} C Z(¢,). Let p, be the upper band
of inner vanishing measures for p. We put ug = 1 — po. Generally fi, is
not an inner vanishing measure for p. The measure p, is called the inner
vanishing part of p.

The following is the main theorem in this section.

Theorem 5.1 Let p € M} and let p, be the inner vanishing part of .
Then the following conditions are equivalent.

(1) Z($p) = Z2(p)-
(ii) w satisfies condition (A).

(111) p satisfies condition (B).
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To prove our theorem, we need some lemmas.

Lemma 5.3 Let u € M. Then there exists a sequence of measures {\,}n
in M7 satisfying the following conditions.

(i) A, is an inner vanishing measure for p for every n.
(17) 0 < Ay < Apy1 < o for every n.
(173) fho = V524 A\
(iv) pa L pip.
(v) If 0 # v < ug, then v is not an inner vanishing measure for fi.

Proof. Let M be the set of inner vanishing measures for y and A =
sup{||Al;A e M}. If A € M and 0 < o < A, then {|¢,| < 1} C {|n| < 1},
so that 0 € M. If 1,5 € M and vy +v5 < p, then we have v, +v, € M and
1V € M. Then it is not difficult to find a sequence {\, },, in M satisfying
conditions (i) and (ii), and ||A,|| — A as n — oo. Put p, = V¢, \,. Then
]l = A and g < o

To prove (iii), suppose not. Then there exists v € M such that v £ pl,.
Then ||ul, Vv| > ||uLll = A. Since A\, Vv € M, ||\, V| < A. Since
| An V|| = ||, V ]|, we have a contradiction.

To prove (iv), suppose not. Then p, A pg # 0. By (iii), Ay, A g # 0 for
some ng. Since Ay A pig < Apy € M, Ay Apig € M. Since A, 4+ (Any A pig) <
Ha + p1g = p, we have A\, + (Mg A pg) € M and |[A, + (Mg A pg)|| —
A+ |[Ang A pgl| > A. This is a contradiction.

(v) follows from (iv). |

Lemma 5.4 Let p € M} and let p, be the inner vanishing part of p. Then
there is a sequence of inner vanishing measures { i, }n for p such that p, =

fozl Ho -

Proof. Let {\,}, be a sequence of measures given in Lemma 5.3. Put
w1 = A and p, = A\, — A\,_1 for n > 2. Then pu, is an inner vanishing
measure for g and Y7 p, = Vo2 \,. |

Lemma 5.5 Let p € M} and let u, be the inner vanishing part of . Sup-
pose that Z(v,,,) # Z(1,). Then there is an interpolating Blaschke product b
such that {|b| < 1} C Z(¢,), Y, /b€ H*+C, ¢, /b = |¢,| on M(H*+C),
and 1, /b & H>® + C for every measure v € M} satisfying Z (1) C Z(1,,,).
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Proof. By our assumption, Z(v,) ¢ Z(¢,,). Take x € M(H* + C') such
that ¢, (z) = 0 and v, (x) # 0. Then there exists an interpolating Blaschke
product b with zeros {z,}, such that ¢, (z,) — 0 and ¥, (2,) — ¥,.(z) as
n — oo. By Lemma 2.3, v, /b € H* 4 C and [¢,/b] = |¢,]| on M(H* +C).
Since Z(b) = cl{zy}n \{2n}n, we have ¢, =1, (x) on Z(b). Takey € Z(b).
Then b(y) = 0 and ¢, (y) # 0. Let v € M satisfying Z(v,) C Z(¢,,).
Then ¢, (y) # 0. If ¢, /b € H*® + C, 1, = bh for some h € H* + C. Then
we have 0 # 1, (y) = (bh)(y) = b(y)h(y) = 0. This is a contradiction. [

The following is a key to prove Theorem 5.1.

Lemma 5.6 Let pn € M and let {pn}n be a sequence of inner vanishing
measures for p such that = >"° p,. Let {b,}, be a sequence of inter-
polating Blaschke products such that \J7~ {|bn] < 1} C Z(¢,). Then there
exists a measure A such that 0 < X\ < p and

UJ{Ibal < 13 € Z(02) € {lenl < 13 € Z(y) -

Proof. Let {c;}; be a sequence of positive numbers such that
(5.2) ¢;—0asj—o00 and 0<cjy <c¢; <1 forevery j.
Put

(53) )\ = ZC]'/,L]‘.
7j=1

Then 0 < X < . Moreover we have

(5.4) {lal <1} € Z(Y)-

For, let x € M(H> + C') such that [¢)(z)| < 1. Since A < u, Z(¢y) C
Z(1,). Hence to show (5.4), we may assume that

(5.5) 0 < |a(z)| < 1.
Since {|¢,,| < 1} C Z(¢,), we may further assume that
(5.6) Y, (z)] =1 for every j.

For each positive integer n, put

(5.7) Ay = chﬂj and  p, = Zﬂj-
j=n

j=n
Then by (5.2),
(5.8) Cnlln > A, for every n.
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Now we have

[u(x)] = (Y, ()] by (5.6) and (5.7)
< g, ()[Ver by (5.8)
= |a(z)|Ven by (5.3), (5.6), and (5.7).

Then by (5.2) and (5.5), we have ¢, (x) = 0. Thus we get (5.4). Next, we
shall find a sequence {c;}; satisfying (5.2) and X defined by (5.3) satisfies

(5.9) UAlbnl < 13 € Z(w).

Let {z,x}x be the zeros of b, in D. Since | J7— {|b,| < 1} C Z(4,,), for each
n we have

(5.10) Yu(zng) — 0 as k— oo.

By induction, we shall find a strictly increasing sequence of positive inte-
gers {k;}; and a family of sequence of positive integers {n; ; }1<;<; satisfying
nij < nij for j =1,

(5.11) [V (26,6)| <200, (216)] for 1<t <1< s <y,

and

(5.12) [V, (zes)| < (1/2)" for 1<t <i, s> nyy,

where we put vy = p, and for each positive integer i we set
k1 k2 ki

(5.1) =S S 2+ S (12
j=1 j=k1+1 j=ki—1+1

and

(5.14) vi=vi+ Y (1/2)'p;.

Jj=ki+1

Since vy = p, by (5.10) there is a positive integer n; ; such that
1
[y (21,5)] < g fors=mi.

Hence (5.12) holds for ¢ = 1. Then there exists a positive integer ki, so we
get vy by (5.13), such that [t (21,6)] < 2[ty,(21,5)] for 1 <'s <y ;. Hence
(5.11) holds for ¢ = 1.

Next, suppose that {ki, ks,..., ky} and {n;;;1 <7 < j < N} are cho-
sen satisfying our conditions. We get v/j, and vy by (5.13) and (5.14), re-
spectively. By (5.13) and (5.14), (1/2)¥u < vy < p. Hence by (5.10),
Yy (2ni) — 0 as k — oo for every n.
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Therefore for each ¢,1 <t < N + 1, there exists a positive integer 7 y41
such that n,y < ngns1 and [, (zes)] < (1/2)VF for s > nyyiq. Then
there exists a positive integer ky,1 such that ky < ky,1 and |¢V}v+1(ztvs)| <
2|ty (21s)] for 1 <t < N+1,1 < s <mnyni1. This completes the induction.

Now we define \ as

00 ki

(5.15) A= ( Z (1/2) u]) where ko = 0.
=0  j=k;+1

Put ¢; = (1/2)" for k; +1 < j < k;41. Then (5.2) is satisfied.

To show (5.9) for this A, by Lemma 2.3 it is sufficient to prove
(5.16) Ua(z) = 0 as k — oo for every t.

Fix a positive integer t. Suppose that k is a sufficiently large integer. Then
there exists a positive integer N, depends on k, such that ¢ < N and

(517) Ny, N < k< N¢ N+1-
By (5.13) and (5.15), vjy,; < A. Hence by (5.11) we have
(5.18) [ (zen)l < [Py, ()| < 20000y (208)]

By (5.13) and (5.14), we have vy_1 < 2vy, so that |t ]* < |t .| on
M(H>). Hence by (5.18), we have |{y(2:x)] < 2[¥uy_, (201)|/% Therefore
by (5.12) and (5.17), |[¥a(zer)] < 2(1/2)N/2. When k — oo, we have N — oo.
Hence ¢5(z:x) — 0 as k — oo. Thus we get (5.16). This completes the proof.

[

Proof of Theorem 5.1. (i) = (ii) Let f € H* + C satistying |f| < |4,
on M(H* + C). By Lemma 5.2,

(5.19) Up=0 on M(H> +C)\ M(H™[f/4,]).

By [10], there is a sequence of interpolating Blaschke products {b,}, such
that

(5.20) Ul < 1} = M(H™ + C)\ M(H>[f/4,)).

n=1
By Lemma 5.4, there is a sequence of measures {j,}, in L} (1) such that
o= 320 in and {2, < 1} © Z(35,) for every n. Since Z(,) = Z(1,),
we have {|¢,,,| < 1} C Z(¢,,) for every n. By (5.19) and (5.20), we have
U>Z {lbn] < 1} € Z(¢,.,). Then by Lemma 5.6, there exists a measure A
such that 0 < A < pu, and

(5.21) U{Ibal < 13 € Z(42) € {lea] < 13 € Z(¥,)-
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Since A\/2 also satisfies (5.21) instead of A\, we may assume that
(5.22) 0<\< /2.

Put v = p—A. Thenv € M. By (5.20), (5.21), and Lemma 5.1, {5 (f/1,,) €
H> 4+ C. Thus we get /1, € H® 4+ C. By (5.22), /2 < v < u. Hence
Z(y) = Z(WY,) = Z(pa)- By (5.21), we have {|¢n| < 1} C Z(Y,..) = Z(¢).
Therefore we obtain |1),| = |¢, ||\ = [¥,| on M(H*® + C). Thus we get
(ii).

(i) = (iii) Let ¢ be an inner function such that [¢,,| < |1| on M (H>*+C).
By Lemma 5.2, ¢ = 0 on M (H>+C)\ M (H>[¢),/v]). Since Z () C Z(2,),
we have 1, = 0 on M(H>® + C)\ M(H>®[¢,/¢]). So that by the proof of
(i) = (ii), there exists a measure A such that 0 < A < pu,/2 and

M(H® + C)\ M(H*[},/¥]) C Z(y) C {lhn] <1}
- Z(¢ua):Z(¢u)-

Put v = A+ p. Then by (5.23) and Lemma 5.1, ¢, /¢ = ¥x(¢,/¢) €
H>® +C. We have p < v < p+ (1a/2) < 2u. By (5.23) again, we have
|| = [al[¥0u] = [¥u]. Thus we get (iii).

Suppose that (i) does not hold. We shall prove that both (ii) and (iii) do

not hold. By Lemma 5.5, there is an interpolating Blaschke product b such
that ¢, /b € H*+C, {|b| <1} C Z(¥,), |¥./b] = |¢,| on M(H>+C'), and

5.24) 1,/b ¢ H® +C for every v € M satisfying Z(¢,) C Z(¢,.,,).
S 224

(5.23)

First, to prove that (ii) does not hold, suppose that (ii) holds. Put
f=1,/b. Then f € H* + C and |f| = |¢,|. Since (ii) holds,

(5.25) f/, € H* +C
for some v € M such that 0 < v < p and
(5.26) Yol = Il on M(H®+C),

Put A = g —v > 0. Then by (5.26), |¢,] = [¢u||A] = [¥a]|¢hu] on M(H> +
C'). Hence A is an inner vanishing measure, so that A\ < pu,. Since Z (1)) C
Z(Wu,), by (5.24) we have f/¢, = (¢,/b)/1, = ¥r/b ¢ H* + C. This
contradicts (5.25). Thus we get (i) = (i).

Next, to prove that (iii) does not hold, suppose that (iii) holds. We put
Y = by,. Since {|b] < 1} C Z(¢,), we have |[¢| = [¢,| on M(H> + C).
Since (iii) holds, there exists v € L} (y) such that p < v < 2u, [1h,| = |1,]
on M(H* + (), and 9, /¢ € H*® + C. Then we have

(5.27) Yo /b =)t € H* +C.
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Put A =v —pu. Then A < p and |¢,| = [ | = |¥al|¢u] < [¢0,]. Thus A is an
inner vanishing measure for p. Hence A\ < pi,. Therefore Z(¢\) C Z(¢,,,).
Hence by (5.24), we get /b ¢ H*® + C. This contradicts (5.27). [

Corollary 5.2 Let i € M be an outer vanishing measure for some v €
M. Then po, = p and p satisfies conditions (A) and (B).

Proof. We have p € L% (v) and {|¢,| < 1} C Z(¢,). Suppose that pz # 0.
Then v A pug # 0. We have {|ynu,| < 1} C {]vo| < 1} C Z(¢,). This
contradicts Lemma 5.3 (v). Hence pug = 0 and p, = p. By Theorem 5.1, i
satisfies (A) and (B). [

By [17, Section 5], there exists a measure v € M;rd which has an outer
vanishing measure. Applying Corollary 5.2, we get a measure u € MJ},
satisfying conditions (A) and (B). In the same way, by Theorem 4.2 there
exists u € M, satisfying conditions (A), (B), and [S(u)| = 0.

By Theorem 4.1 (iii), we show an existence of a measure p € M, such
that {|1,| < 1} ¢ Z(v,) for every v € L% (n). For this p1, we have p, = 0.

Hence ¢ does not satisfy conditions (A) and (B).
Relating to Theorem 5.1, we have the following problem.

PROBLEM 5.1. Does there exist p € MJ such that Z(¢,.,) = Z(¢,) and
ps # 07

In this paper, we have two decompositions p = pg+py = po+ps for
w € M. We shall give an example of p € M:d such that u, = p and p, = 0.

ExXAMPLE 5.1. Let {¢;}; be a distinct sequence in 9D such that {(;};
is dense in dD. Let {a;}, be a sequence of positive numbers such that
doZia; < oo Let p=3"" ajd;. Then € MJ,, and by Corollary 2.2 we
have p, = p.

We show the existence of {a, }, such that 1, = 0. Let vy = 372 (1/2)7 ;.
Put a; = 1/2. By [14, Theorem 4.3], there exists a sequence of positive
numbers {c;};>2 such that {|¢s. | < 1} N Z(4,,) = 0 and v, < vy, where
Vo = Z]O';Q 0245@.. Put as = c22. Then there exists a sequence of positive
numbers {cz;};>3 such that {|¢)5, | < 1} N Z(1,,) = 0 and v3 < 1, Where
Vg = Z?‘;S 037]-54].. Put a3 = c33. Repeat the above argument. Then for each
positive integer n, there exists a sequence of positive numbers {c,, ; };>, such
that

(5.28) {lbs,, | <1} N Z(¢0,) =0

and v, < v,_1, where v,, = Z;’in Cn,j0¢; -
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Put a, = ¢,,. As a consequence, we have a sequence {a,},. Put

(5.29) = Zajégj and  p, = (Z a;o¢;) + Vns1-

J=1 Jj=1

Since v, < v,,_1, we have u < p, for every n. To prove p, = 0, suppose not.
Then there exists v € M} such that 0 # v < g and {|[¢,| < 1} C Z(¢,).
Then there exists a positive integer ny such that v({(,,}) > 0. Hence,
{’¢5gno| <1} c{|v| <1} C Z(v,) C Z(wﬂno). Therefore we have

(o, | < 1) = (s, | < 1} 0 Z0h,)
= (M, < 130 (U 2005)) U Z00h,) by (529

= {ls,, | <1} N Z(Ws, ) by (5.28)
= Z(Vs,, ).

Thus we get {wécnO’ <1}=Z7 (w%o ). This is a contradiction.
We have the following problem.
PROBLEM 5.2. Does there exist p € M, such that p, = p and po, =07

,C
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