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Non-rectifiable limit sets of

dimension one

Christopher J. Bishop

Abstract

We construct quasiconformal deformations of convergence type
Fuchsian groups such that the resulting limit set is a Jordan curve
of Hausdorff dimension 1, but having tangents almost nowhere. It is
known that no divergence type group has such a deformation. The
main tools in this construction are (1) a characterization of tangent
points in terms of Peter Jones’ (s, (2) a result of Stephen Semmes
that gives a Carleson type condition on a Beltrami coefficient which
implies rectifiability and (3) a construction of quasiconformal defor-
mations of a surface which shrink a given geodesic and whose dilata-
tions satisfy an exponential decay estimate away from the geodesic.

1. Introduction

In [6] Bowen proved that any deformation of a cocompact Fuchsian group
gives a quasi-Fuchsian Kleinian group whose limit set is either a circle or has
Hausdorff dimension > 1. This was extended to all divergence type groups
by the author in [3] and was shown to be false for all convergence groups (of
the first kind) by Astala and Zinsmeister in [1]. They showed that all such
groups have a deformation such that the limit set is a non-circular rectifiable
curve.

Zinsmeister asked if Bowen’s property could fail in a different way, name-
ly, are there quasi-Fuchsian groups whose limit sets are not locally rectifiable,
but still have dimension 17 We will show there are many such groups.
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Theorem 1.1. If R = D/G is a Riemann surface with Green’s function (i.e.,
G is convergence type) and with bounded injectivity radius, then there is a
quasiconformal deformation of G whose limit set has Hausdorff dimension 1
and has tangents on a set of at most 1-dimensional measure zero (and hence
it contains no rectifiable subarcs). In fact, given any function o(t) = o(t),
we can choose such a deformation f,, so that A = f,(T) has zero ¢-Hausdorff
measure.

Note that if R has bounded injectivity radius then G is of the first kind,
i.e., the limit set is the whole circle. A Fuchsian group G is called convergence
typeif >0 c(1—-[9(0)]) < oo, and otherwise it is called divergence type. It is
well known that G is convergence type iff R = ID/G has a Green’s function.
A conformal mapping f : D — € is called a deformation of the Fuchsian
group G if for every g € G, fogo f~1 is Mobius transformation restricted
to €. It is called a quasiconformal deformation if f has a quasiconformal
extension to the whole plane. The corresponding Beltrami coefficient is
w = fz/f. and has L>® norm k = ||pll < 1 if f is quasiconformal. The
number K = (k+ 1)/(k — 1) is called the quasiconformal constant of f. If
wis a G invariant coefficient with ||ulloo < 1 on D* = {|z| > 1} U {0}, i.e.,

satisfies

u(g(2)) = m(2)g'(2)/19'(2)l,
for all ¢ € G, then there is a corresponding quasiconformal deformation
which we will denote f,, (unique up to Mobius transformations). Note that
for such a pu, |p| is well defined on the quotient surface. The injectivity
radius of G at z € D is inj(z) = 3p(2, G*(2)), where G*(z) denotes all the
images of z under non-identity elements of G.

If 2 is simply connected, a point z € 0 is called an inner tangent point
if for every 6 < 7, x is the vertex of a cone in ) of angle # and this is not
true for any 6 > 7. If 92 =T is a Jordan curve then we say z is a tangent
point iff it is an inner tangent for both sides of I'. If T" is a quasicircle then
x being an inner tangent (for either side) is equivalent, up to sets of zero
linear measure, to x being a tangent point (e.g., [12]).

The support of the Beltrami coefficient p in Theorem 1.1 cannot be
compact modulo G. If it were, then results of [4] imply that A = f,(T)
has tangents on a set of positive linear measure (indeed, on full harmonic
measure).

A generalized Y-piece in R is a region bounded by three closed geodesics
(or punctures) which is homeomorphic to a 2-sphere minus three disks (or
points). An X-piece in R is the union of two (not necessarily distinct)
Y -pieces which share a common boundary geodesic v, which is called the
central curve of X. The following is proven in [2].
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Lemma 1.2. Giwen an L-bounded X -piece X1, its central curve v and any
0 < e < 1/2, there is an X -piece Xy and a quasiconformal map f: X1 — Xo
so that f(7y) is the central geodesic for X5 and has length 1 — € times that of
~v. Moreover, f is an isometry on the boundary of X; and the corresponding
Beltrami coefficient ji, . satisfies ||fiy¢||coc < Ce and

(1.1) |phy.e(2)] < Ceexp(—2dist(z,7)).

Such /1, ’s will be the building blocks of the desired Beltrami coeffi-
cient . The proof of this estimate is only difficult in the case when 7 is
extremely short, in which case the X-piece has large diameter. Moreover,
[ty is supported on the union of the thin part associated to v (if any) and
the two central pieces of the Y-pieces making up X (see Section 6 of [2]).
This union will be called the core of the X-piece.

Suppose R is a Riemann surface and R = D/G, where G is a Fuchsian
group. We assume that the injectivity radius of R is bounded above by
some M < oo. The goal in this paper is to construct a G-invariant Beltrami
coefficient 1 on D*, so that f,(T) has Hausdorff dimension 1, but has tan-
gents almost nowhere (with respect to linear measure). If we also assumed
that there was a positive lower bound for the injectivity radius, then the
argument would be easier in the sense that Lemma 1.2 would be much eas-
ier. Certain other cases (e.g., some infinite covers of a compact surface) are
even simpler and could be used if one only wanted a single example as in
Theorem 1.1.

The first step is to show that a X-piece can be found near any point we
want. For example, we will show

Lemma 1.3. Suppose R is a Riemann surface such that the injectivity radius
is bounded above by M < oo at every point. Then there is a L = L(M) < oo
so that for every point z € R there is a Y-piece Y C R such that each
boundary arc of Y has length < L and either z € Y or the distance from z
to the thick part of Y 1s < L.

Using this, we can make collections of pairwise disjoint X-pieces which
have large harmonic measure with respect to any given point of R. More
precisely, given a point z,, € R and compact set K,,, we will show that we can
find a disjoint collection of X-pieces {X,, ;} with central curves {v, ;}, which
all lie outside K, and which have large harmonic measure with respect to
Zn, 1.€., there is a § > 0 (depending only on M, the injectivity upper bound)
so that

Un(2n) = wW(2n, UjYnj, B\ Ujn,;) > 6.
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Given such a collection, we set €, = w(zn, Yni, B \ Ujn,;) and let i, ; be
the Beltrami coefficient supported on X; which shrinks the length of +, ; by
a factor of 1 — /€€, ;. We then define p,, = >, ptnj and pp =3 pn.

This definition may look a bit mysterious, but it is quite easy to motivate.
In order to show that f,(T) has dimension one, we are going to choose each
fn, so that f, (T) is rectifiable. To prove that f,, (T) is rectifiable, we will
use a theorem of Stephen Semmes [13] that this happens if

2 dz dy

|:un(z) 1 — ’2‘27

is a Carleson measure of small norm. One can show this is a Carleson
measure if

dx dy
2~
sup/ L (2)P(2, W) ——ss < 00,
S S F R
where §(z, w) = log || is the Green’s function for the disk. Since |, is

G-invariant, this integral is the same as

sup / 10 (2) P (2, w)dA(2),

wER

where g is the Green’s function for R and dA denotes hyperbolic area on R.
However, this integral (as a function of w) gives a superharmonic function
on R whose Laplacian is —|u,|>. Thus to make it bounded we want |,|?
to look like the Laplacian of a bounded subharmonic function on R. This
is exactly what our definition of p, above does (it is an approximation of
—Au,, where u,, is the harmonic measure of R\ U;7, ;).

Taking {z,} to be a dense sequence in R and K, to be a closed r,-
neighborhood of U<, U; X} ; we inductively define a sequence of Beltrami
coefficients {y,} whose supports are far apart and leave every compact set.
Using the estimates for the building block p, ;’s and the definition of €, ;,
we can show that

sup / 12(2)g(z, w)dA(2) < Ce.

w

and hence that )
|1n(2)[*d dy

1—[z2
is a Carleson measure on the unit disk of norm at most C'e. Thus by Semmes’
theorem, for any fixed n, f,, (T) is rectifiable. Combined with the fact that

the supports of {u,} can be chosen as far apart as we wish, we can then
deduce that f,(T) has dimension 1.
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On the other hand, we will show that shrinking a closed geodesic v by a
factor of 1 — € implies that the corresponding limit set must “wiggle” by a
factor of at least C'e when viewed from a point on the geodesic. We will make
this idea precise in terms of Peter Jones’ ’s which measure the deviation of
a set from straight line. Jones defines

1
Or(z,t) =inf — sup dist(z, L),
L tzEFﬂB(x,t)

where L is the set of all lines hitting z. It follows from results in [5] that
if I' is a quasicircle, then up to sets of zero 1-dimensional measure, x is a
tangent point of I" iff

(1.2) /OOO ﬁp(l’,t)2% < 00.

For our purposes, it is more convenient to introduce a Mobius invariant
version of the (’s, namely,

nr(z) = min (1,inf sup log |T(x)|>,
T xyel I7(y)]

where the infimum is over all Mébius transformations 7 such that 7(z) = 0.
In other words, 1 measures the smallest r such that I' can be mapped in
{1 <|w| < r} with 2z going to the origin. It is easy to bound 7 in terms of
a sum of 3’s over different scales and to give an almost everywhere criteria
for tangent points in terms of 7.

The advantage of 7 is that it is clearly invariant under Mobius trans-
formations, so if I' is the limit set of a Kleinian group, then 7(z) is a well
defined function on the quotient Riemann surface. Thus one can think of
1 as a geometric version of the Schwarzian derivative. We shall prove that
if I" is the limit set of a quasi-Fuchsian group corresponding to a Riemann
surface R; on one side and its quasiconformal image R, on the other and
if 71 is a closed geodesic in Ry whose image is closed geodesic v, in Ry of
length (1 + €)¢(7y1), then n > Ce at all points in a unit neighborhood of
~v1. In other words, changing the length of a closed geodesic by a definite
amount causes a “wiggle” in the limit set of comparable size.

The calculation that shows p,, corresponds to a Carleson measure of norm
at most Ce also shows that its Carleson norm is comparable to €. Thus pu is
a sum of measures whose Carleson norms are uniformly bounded away from
zero. Moreover, the closed geodesics {7, ;} chosen to have large harmonic
measure from z, and {z,} was chosen to be dense in R. Using these facts,
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we will show that if I' = f,(T), then

/0 () -2 = oo,

1—r

for almost every #. This and the comparison between and n and [ allows us
to deduce that the integral in (1.2) diverges almost everywhere and hence
that almost no point of I' = f,(T) is a tangent point.

Next we describe the structure of the rest of the paper. It splits roughly
into three pieces: Sections 3-5 which show there are X-pieces near any point
and collections of X-pieces with large harmonic measure; Sections 6-9 which
prove that f,(T) has tangents almost nowhere; and Sections 10-12 which
prove that f,(T) has dimension 1. More precisely,

Section 2 We give a few estimates for Green’s function on R.

Section 3 We prove that if R has injectivity radius bounded above by M,
then every point z € R is either in a Y-piece with all boundary lengths
< L(M) or is a bounded hyperbolic distance from the thick part of
such a Y-piece.

Section 4 Given a point z € R and a compact K C R we construct a
collection of disjoint X-pieces which all lie outside K, but which have
large harmonic measure with respect to z.

Section 5 We use the deformations of X-pieces described earlier to define
the desired dilatation p =" p,.

Section 6 We prove a lemma about Stolz integrals of Carleson measures.

Section 7 We recall Peter Jones’ 3’s and introduce a Mobius invariant
version 7. The divergence of a certain integral involving 7 implies a.e.
that a point is not a tangent point.

Section 8 We show that a deformation which shortens a simple closed
geodesic by a factor of € forces n(z) > Ce at points near the geodesic.

Section 9 We show that f,(T) has tangents almost nowhere.

Section 10 We subdivide the disk into disjoint chord-arc domains, each of
which intersects the support of at most one of the u,’s.

Section 11 We recall a theorem of Steven Semmes about quasiconformal
mappings of chord-arc domains and prove that our u corresponds to
a Carleson measure with respect to the stopping time domains of the
previous section.

Section 12 We prove that f,(T) has dimension 1.
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If A, B are quantities that depend on some parameter we write A < B if
the ratio B/A is bounded uniformly independent of the parameter. We will
also sometimes write this as A = O(B). Similarly for 2. We write A ~ B if
both A < B and A 2 B hold and say A and B are comparable.

2. Estimates for Green’s function

In this section we record some simple estimates related involving the Green’s
function for R = /G and Beltrami coefficients satisfying the exponential
decay estimate (1.1). Most of what we need follows from two easy facts.
First, Harnack’s inequality, which says that if u is a positive harmonic func-
tion on the unit disk then

u(x) < CeP™Puy(y).

Second, the observation that if x € R lifts to the origin in the disk, then

a(x) =area({z € R: p(z,z) < 1}) ~ min(1,inj(z)) ~ %,
where N is the number of G-images of 0 in the hyperbolic ball B,(0,1). The
estimate can be proven by first noting that there is nothing to do (except
take a large enough constant) if the injectivity radius at z is bounded away
from zero, say inj(x) > €y > 0, where €); denotes the Margulis constant.
On the other hand if inj(x) < €)y, then  is in a thin part of R and the only
G-images of 0 near 0 correspond to powers of the associated parabolic or
hyperbolic element g € (G, and the desired estimate follows easily.

Lemma 2.1. Suppose g is the Green’s function for a hyperbolic Riemann
surface. Then there is Cy, such that for any x,w € R,

i < fB(a:,l) g(Z,lU)dA(Z)
Ci 7 ofz)min.epa) 9(z,w) —

(2.1) N

Proof. This is simply Harnack’s inequality if p(z,w) > 2, so we may assume
p(xz,w) < 2. To prove (2.1), lift g to the disk so that the point z lifts to the
origin. Then

g(Z,l‘) - Zg('z7wn)7
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where {w,} is an enumeration of the orbit of zero and

g(z,w) = log‘1 —wz’
zZ—w
is the Green’s function for the disk. Split the sum into two terms, ¢, + go,
corresponding to the w,’s which are either more than or less than hyperbolic
distance 2 from the origin. The sum g; over the “far” points is harmonic
on a unit hyperbolic ball around the origin and so (2.1) holds by Harnack’s
inequality. The number N of orbits inside the ball of radius 2 is bounded by
a constant divided by the injectivity radius at x and it is easy to see that

/ g1dA >~ N, min g; ~ N,
B(0,1) B(0,1)

which proves the desired inequalities since «a(x) is the area in R of B(z,1)
C R. |

Lemma 2.2. Suppose g is the Green’s function for a hyperbolic Riemann
surface. Then there is Cy, such that for any x,y,w € R, such that 1 <
p(w,z) <4, 1< p(w,y) <4,

(2.2) 1 _gl@w)

Cy = gy, w)

< Ch.

Proof. The proof is almost the same as the proof of (2.1). Lift g to the
disk so the pole lifts to the origin and divide the sum according to whether
wy, is further than distance 5 from the origin or closer than distance 5. For
the first sum the result holds by Harnack’s inequality. For the second sum
it holds because the sum is comparable to N (the number of terms in the
sum) at both z and . [

Lemma 2.3. Suppose g is the Green’s function for a hyperbolic Riemann
surface. Then there is Cs3, such that for any x,y,w € R,
2.3 min g(z,w) < C3e”®™¥ min g(z, w).
(2.3) i g(zw) < C JJnin g(z,w)
Proof. There are a few cases, depending on the location of the pole w with
respect to x and y. If p(y,w) > p(y,x) + 1, then the desired inequality
follows directly from Harnack’s inequality since g is positive and harmonic
on {z: p(y,2) < p(y, w)}.

If p(w,y) < 1 then choose a point z; on the geodesic from y to x which
is distance 2 from y. Then by Harnack’s inequality and (2.2),

min g(z,w) < Cg(z,w) < Ce’ @V g(z,w) < Ce” @Y min g(z,w).
z€B(1,z) z€B(y,1)
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Similarly if w is close to x. Finally, if w is more than distance 1 from both
x and y, we can choose two points z1, 2o on the geodesic from y to x such
that

p(ZbZQ) < 27
p(zlvw) 2 17 p(227w) Z ]-7
p(yazl) < p(yaw> - 17 p(CL’, 22) < p(:}c,w) - L

This is an easy exercise with the triangle inequality. Just as above we deduce
that
gy, w) > Ce @) gz, w),

g(z,w) < C’ep(x’ZQ)g(zg,w).

Thus it suffices to show the values at z; and 2z, are comparable, but this
follows from (2.2) and Harnack. |

Lemma 2.4. Suppose Y C R is a L-bounded Y -piece and g is the Green’s
function for R. Suppose p is bounded function which satisfies the estimate
(1.1) with respect to a boundary geodesic v C Y. Then for any w € R

/Y (=) gz, w)dA(z) < C& / gz w)do(2),

”
where do denotes hyperbolic arclength measure.

Proof. As functions of w, the integrals are both harmonic off Y and tend
to zero at infinity. Thus we need only consider w € Y by the maximum
principle. By Lemma 2.1,

/ g(z,w)dA(z) ~ inj(x) min g(z,w).
B(z,1) B(z,1)

By Lemma 2.3

min g(z,w) < Ce?™¥ min g(z,w
i g(z,w) < [nin g(z, w)

Suppose v has length ~ e=". Then the boundary piece of Y corresponding
to the boundary component v C 9Y has diameter ~ N. Let A, ={z €Y :
n—1< p(z,v) < n}. Note that area(A,) < Ce™ . Thus

/Yexp(—élp(z,aYb))g(z,w)dA(z) < Z/ e g(z,w)dA(z)

N
< g e Nt e min g(z, w)
1 zey
n=

< Ce N min g(z,w)
zey

< C/g(z,w)da(w). |
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3. Finding Y-pieces near a given point
In this section, we show there are L-bounded Y-pieces near any point of R.

Lemma 3.1. Suppose R is a Riemann surface such that the injectivity radius
is bounded above by M < oo at every point. Then there is a L = L(M) < oo
so the following holds. Suppose v is a closed geodesic of length < 2M and
v 1s a normal direction to y. Then there is a generalized L-bounded Y -piece
Y C R such that v is one boundary component of Y, and v points into Y.

Proof. Suppose v has hyperbolic length s and lifts to the imaginary axis
in the upper half-plane, H. Without loss of generality assume the normal
v points to the right. The group element corresponding to 7 is g(z) = e®z.
Consider the segments

y = [e"(5*9), eeri(%*@)) for 6 € [0, g)

Clearly 7o projects to v in R and each vy projects to a closed curve 7. As
0 increases these sweep out a closed region Wj in H which contains larger
and larger balls. Since R has injectivity radius bounded by M, there is a
smallest 0y (depending only on M) so the projection of Wy is no longer 1
to 1. It is easy to check that 7y, is not a simple curve (if an interior point
of Wy is identified with some other point of W), this must have also been
true for a smaller §). Thus we can split 74, into two closed curves each with
length bounded depending only on M. Shrinking each of these to a closed
geodesic (or puncture) gives the desired Y-piece. |

The same proof, with only minor changes, also shows the following.

Lemma 3.2. Suppose R is a Riemann surface such that the injectivity radius
is bounded above by M < oo at every point. Then there is a L = L(M) < oo
so the following holds. Suppose P is a parabolic thin part of R. Then there
15 a L-bounded Y -piece Y C R such that P C Y.

The last two lemmas imply that every point of R is near a L-bounded
Y -piece in the following sense.

Lemma 3.3. Suppose R is a Riemann surface such that the injectivity radius
is bounded above by M < oo at every point. Then there is a L = L(M) < oo
and C = C(M) < oo so that for every point z € R there is a L-bounded
Y -piece Y C R such that either z € Y or the distance from z to the thick
part of Y is < C.
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Proof. First suppose z is in a parabolic thin part of R. Then by Lemma
3.2 there is a Y-piece with the desired estimates containing z.

Next suppose z is in a hyperbolic thin part P and let v be the central
simple closed geodesic of the part. Then v cuts P into two pieces, one of
which contains z. Now apply Lemma 3.1 with v pointing into the piece
containing z to obtain a Y-piece containing z.

Finally, assume z is in the thick part of R. Then there is a simple closed
loop 4 passing through z and of length < 2M.

Let v be the simple closed geodesic or puncture corresponding to ¥ and
note that z is either a bounded distance from v or from the thin part corre-
sponding to «. Using either Lemma 3.1 or 3.2 we get a Y-piece whose thick
part is only a bounded distance from z (and the bound depends only on M).

|

Recall that if Q is a domain, z € Q2 and F C 012, then w(z, F, ) denotes
the harmonic measure of E in 2 with respect to z. For a fixed E this is a
harmonic function on €, and for a fixed z is a probability measure on 0f).

Lemma 3.4. Suppose Y is a L-bounded Y -piece. Then given r > 0 there is
a 61 = 61(r, L) and a boundary geodesic v C Y such that w(z,v, R\7y) > &
for every z € R such that p(z,Y) <r.

Proof. First note that a Brownian motion starting at z has a probability of
hitting Y which is bigger than 6(r) > 0, depending only on r (it is bounded
below by the probability of hitting a unit hyperbolic ball at distance r 4 1
in the hyperbolic disk).

Second, a Brownian motion starting in Y has probability at least a 1/2
of reaching the thick part of Y (since starting on short geodesic it has equal
chance of exiting the thin part in either of the two boundary components
and if it starts in the thin part in Y, then it has a > 1/2 chance of exiting the
thin part via the thick part of V). Since the diameter of the thick part of Y
is bounded, if we fix a boundary component of Y its harmonic measure will
be comparable at any two points of the thick part (by Harnack’s inequality),
say with a constant C' = C'(L).

Finally, fix a point of the thick part and note that one of the three
boundary components of ¥ must have harmonic measure at least 1/3 with
respect to this point. Thus for our original point z the probability of hitting
this boundary curve is at least
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4. Finding disjoint Y -pieces

In this section we will show that given any point z of R we can find a disjoint
collection of X-pieces which are far from z, but have large harmonic measure
with respect to z.

Lemma 4.1. Suppose R has a Green’s function and has injectivity radius
bounded by M, zo € R and K C R is compact. Then there is an dy =
d2(M) > 0 and a finite disjoint collection of simple closed geodesics {V,} of
length < L = L(M) (the constant from Lemma 3.3) so that

Zw(zo, UnYns B\ Upvn) > 0.

n

Moreover, if Y, s a L-bounded Y -piece with v, as a boundary curve, then
Y, N K =0. Also, given any € > 0 we may choose the curves -y, so that the
Green’s function g with pole at zy is less than € on every 7,.

Proof. Fix s > 0 so large that K C B(z, s) and consider all hyperbolic thin
parts that hit B(zg, s+ D(L)+1) (where D(L) is the bound on the diameter
of the thick part of a L-bounded Y-piece). This is a finite collection so the
union is compact, call it K;. Now take a D(L)+1 neighborhood of K7, call
it K5. Then take all the hyperbolic thin parts which hit it and let the union
be K3. This is compact, so there is a ball B(zy,t) which contains it. We
claim that if -y is a simple closed geodesic which is outside B(zp,t) then any
L-bounded Y -piece, of which it is a boundary component, is disjoint from K.

To prove this claim, note that if Y hits K in its thick part, then it is
contained in K. If it hits K with a thin part, then the thick part of YV
is contained in K5 and so Y is contained in K3. Thus v must be in Kj,
contrary to assumption. This proves the claim.

Now choose € > 0 so small that E' = {z : g(z,20) = €} is outside B(zo, t)
(recall g is the Green’s function with pole at zy). We can do this because ¢
is strictly positive on any compact set. Clearly £ has harmonic measure 1
with respect to 2.

For each z € E let Y, be the Y-piece associated to z by Lemma 3.3.
By Lemma 3.4 there is a geodesic boundary component v = 7, which has
harmonic measure at least 6; with respect to z. Let {~,} be an enumeration
of the geodesics which arise in this way (we will show it is a finite collection
in Lemma 4.2). Then clearly,

W(ZOa Un'YnaR\ Un’Vn) > 5IW(ZO>E’ R \ E) = 517

as desired.
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Finally, since each 7, has uniformly bounded length and is far from
the pole of Green’s function, the value of g at any two points of v, are
comparable with uniform constants (depending only on M). Since ~, has
harmonic measure > ¢; with respect to a point z where g(z,2y) = €, we
deduce that g is bounded by Ce/d; on =, (where C' depends only on M).
Taking e even smaller if necessary proves the final claim of the lemma. W

Lemma 4.2. Given L < 0o and a compact set K, there is an Ny = N(L, K)
such that K can intersect at most Ny different simple closed geodesics of
length < L.

Proof. By the Collar lemma (e.g., [10], [11]), each simple closed geodesic
v of length < L has a 6 = (L) annular neighborhood A with the property
that v is the only simple closed geodesic contained entirely in A. Let € > 0
and suppose that K can be covered by n; balls of size €. Let B be one of
these balls and suppose more than 27ny + 1 simple closed geodesics hit B.
Choose one such, say 7. Then either there is a geodesic v; hitting B which
is disjoint from 7y or there are two which both hit 7y and the angles they
make with v, differ by less than 1/ny. In the first case, since both 7o and v,
have length < L, the two geodesics must remain within distance € + ee” of
each other. So if € is small enough (depending on L and §), they lie in each
others ¢ collars and hence are the same geodesic.

A similar argument works if there are two geodesics which both hit ~q
within € of each other and with angles differing by 1/ny. Thus there must
be fewer than ny simple closed geodesics of length < L hitting B, and hence
fewer than nyn, which hit K. [ |

Lemma 4.3. Suppose K C R is a set of diameter at most D. Then the
number of distinct thin parts which can intersect K is bounded by Ny =

Ny(D).

Proof. Without loss of generality we may assume K is connected (since we
can make it connected without increasing its diameter). If K is contained
in a single thin part, then we may take N3 = 1. Otherwise, if K intersects
a part, it also intersects a component of the part’s boundary. Then such a
boundary component is also a boundary of an annulus inside the thin part
of at most unit width and a fixed hyperbolic area. Thus for each thin part K
intersects, the 1-neighborhood of K intersected with the part contains a set
of fixed area. Since this neighborhood has diameter < D + 2 its hyperbolic
area is bounded in terms of D and hence K can only intersect a bounded
number of thin parts. [
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Lemma 4.4. Suppose v is a simple closed geodesic of length < L. Then
v can be a boundary component of at most N3 = N3(L) distinct L-bounded
Y -pieces.

Proof. First suppose 7 is in the thick part of R and v is a boundary
component of Y. If 4 is one of the other two boundary components (either
a geodesic or puncture), then either it hits a D(L) neighborhood of v (if it is
also in the thick part) or its associated thin part hits the D(L)-neighborhood
of v. In either case, the number of possible such geodesics is bounded in
terms of L by Lemma 4.2 and Lemma 4.3.

If v is in a thin part (or is a puncture), then a similar argument works
except that we have to consider D(L) neighborhoods of the two boundary
components of the thin part associated to ~. [ |

We will say an X-piece is L bounded if it is the union of two L-bounded
Y -pieces.

Lemma 4.5. There is a N = N(L) such that a L-bounded X -piece can
intersect at most N distinct L-bounded X -pieces.

Proof. Since a X-piece is a union of two Y-pieces, it clearly suffices to
prove the result for Y-pieces instead. So fix a L-bounded Y-piece Y, and
suppose Y7 is another L-bounded Y-piece which intersects it. Since one Y-
piece cannot properly contain another, a boundary component of one must
intersect a boundary component of the other. By Lemma 4.2 each boundary
component of Yy can intersect at most N; distinct simple closed geodesics of
length < L. Moreover, each such geodesic can be a boundary component of
at most N3 distinct Y-pieces. Thus Y can intersect at most 3/N; N3 distinct
Y -pieces. [ |

Lemma 4.6. Suppose R has injectivity radius bounded by M, zy € R and
K C R is compact. Then there is an 63 = 63(M) and a finite disjoint col-
lection of simple closed geodesics {v,} of length < L = L(M) (the constant
from Lemma 3.3) so that

Zw(zo, UnYns B\ Upvn) > 03.

n

Moreover, each v, is contained in an L-bounded X -piece X,, such that that
the collection {X,} is pairwise disjoint and all are disjoint from K. Also,
given any € > 0 we may choose the curves v, so that the Green’s function g
with pole at zy is less than € on every ,.
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Proof. This is immediate from Lemma 4.1, except for the disjointness of the
X,’s. Take the collection of X-pieces given by Lemma 4.1 and order then
in decreasing order, according to the harmonic measure v(zg, Y, R \ UpYn)-
Form a disjoint subcollection inductively as follows. Take the first X-piece
(i.e., the one with geodesic of largest harmonic measure) and remove from
the list all later X-pieces which hit it. Then choose the next remaining
element and remove the X-pieces which hit it. Continue in this way. The
resulting collection is obviously pairwise disjoint and since at each stage we
are removing at most N (as in Lemma 4.5) geodesics each of whose harmonic
measure is less than a geodesic we keep, we see that the harmonic measure
of the remaining geodesics is at least d3 = d2/(N + 1). This completes the
proof. [ |

If Green’s function g is < € on the boundary curve v of an Y-piece, then
g is bounded by C'e on the thin part corresponding to «y (since each boundary
component of the thin part has equal harmonic measure from 7) and is also
bounded on the central piece of Y (by Harnack’s inequality). Thus if g is
bounded by € on the central curve of a X-piece, then it is bounded by Ce
on the core of X.

5. Defining i by potential theory

In this section we define the desired Beltrami coefficient . We will write
po= >, Hn Where p, = > i, and each p;, is a Beltrami coefficient
supported on a X-piece X, which shrinks a simple closed geodesic v;, C
X, n by a factor of 1 —¢;,. The delicate part is that given € > 0 we want to
choose the ¢;,’s so that the resulting Beltrami coefficients {y,} correspond
to Carleson measures |u,(2)*(1 — |2|)~! dw dy, with norms ~ e¢. We will
make this selection using potential theory as our guide.

Suppose we are given a dense sequence {z,} C R in which each ele-
ments appears infinitely often and an increasing sequence {r,} C [0, 00).
Define a collection of X-pieces { X} with central curves {v;1} by applying
Lemma 4.6 to the point z; and the compact set K1 = {z : p(z,21) < 1} C R.
In general, if we have already defined a collection {Xj,_1}, let K, be a
closed 7,-neighborhood of Uy, U; X, and let 6,, = ming, g(z, z1) (where
g denotes the Green’s function). Choose €, < d,/n. Now define the col-
lection of X-pieces {X;,} and geodesics {7;,} by applying Lemma 4.6.
Thus there is a uniform constant A (depending only on M) and a sequence
€, — 0, so that if X, is the union of the cores of nth generation X-pieces and
Sn =4z : /A < g(z,21)€n}, S = U, Sy, then dist(X,,S) > r,. In other
words, distinct generations are well separated by level curves of Green’s
function.
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Now fix a n and let I',, = Uj;7;,, where v, , is the simple closed geodesic
contained in X, and given by Lemma 4.6. Let

un(z) =w(z,Tn, R\ T'y).

This is a superharmonic function on R, is harmonic off ', takes values
between 0 and 1 and has boundary values 1 on I',,. In the sense of distribu-
tions, the Laplacian Auwu,, exists as a measure and is supported on I',,. Let
v, denote this measure on I',,. Then

() = [ gl ),

where g denotes the Green’s function on R. Since each geodesic v;, has
uniformly bounded length, there is a fixed width neighborhood A,, of the
geodesic so that u, is harmonic in A;,, \ 7. Since u, is bounded between
0 and 1, this implies it has uniformly bounded normal derivatives. Since
each geodesic has uniformly bounded length, this means the mass v, (7;)
is uniformly bounded for all j and n.

Let €, = \V€|vn(yjn)| and let p;,, be the Beltrami coefficient of the
quasiconformal map given by Lemma 1.2 which is supported in X, and
shrinks 7, by a factor of 1 —¢;,, (by our comments above €;, < 1/2if € is
small enough). Now let

/vbnzzluj,n and N:ZNn‘
i n

As usual, given an arc I C T we define the corresponding Carleson box as
Qr={zeD:z/|z| € ,1—|z| <|I]}.

The top of the box () is defined as
1
T@ ={zeD:2/lz] € I, lI| <1~ [z] < [I]}.

The side length of a box is defined as /(@) = |I|. The dyadic subintervals
of T are those of the form

lexp(ij 27"), exp(i(j +1)27")]

and a dyadic Carleson box is one with a dyadic base. A positive measure
on disk is Carleson iff ¥(Q) < CY(Q) for every Carleson box.
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Lemma 5.1. Suppose p, is as above. Then |, (2)|*(1 — |z]?) "t dz dy is a
Carleson measure on the disk with norm at most Ce (where C' is independent
of n and €, but depends on R).

Proof. The key observation is the following simple result (see e.g., [4]).

Lemma 5.2. Suppose f is a positive function on the disk, bounded by A < oo
and such that for every w € D,

1 —w dz d
/f(z)10g|z wz| TW <A< oo
. _ _

Then f(2)(1 — |2|*) Y dx dy is a Carleson measure with norm at most C' A.

In this lemma, the function multiplying f is the Green’s function for
the disk and dx dy/(1 — |z]?)? is hyperbolic area on the disk. Thus if f is
invariant under a Fuchsian group G, it is a well defined function on R and
the integral in the lemma becomes

/f g w)dA(2),

where ¢ is the Green’s function for w and dA denotes hyperbolic area on
R =D/G. Thus to prove Lemma 5.1, we need only show

sup/ | (2)2g(2, w)dA(z) < Ce.
weR JR

By Lemma 2.4,
/]un Wolz,w)dA(w) < CEZ/ (z,w)dv,(w) = Ceuy,(2) < Ce.

This completes the proof of Lemma 5.1 [

Choose an a > 0 so that the components of I' are at least hyperbolic a
distance apart (we can do this by the collar lemma since all the components
are closed geodesic of length < L).

Lemma 5.3. Let T, be the lift of T,, to the unit disk and let W be a hyperbolic
a-neighborhood of T. On each component of W let 0,,(2) be [V (Vi) /0(Vim)
where 7 1s chosen so the component of W projects onto a neighborhood of
YVim- Then for any Carleson square () C D,

limsup/ Jn(z)M > 00(Q) > 0,
Qnw

n L—1]z2 —

where § > 0 depends only on M, the injectivity bound for R.
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Proof. Fix a Carleson square () = )y and for 0 < A < 1 let AQ) denote
the Carleson square whose base is centered at the same point that [ is, but
whose length is A|/|. We will show the desired estimate holds for @ if A is
small enough and z, € T(AQ). Since {z,} is dense in R, this implies the
lemma. Note that

(Q) /Q y an<z>1df—fjg > /Q ()il )AC)

where ¢ is the Green’s function for the disk and dA denotes hyperbolic area.
Thus

(5.1) /QQWUR<Z)1diE7|iy|2 > /Wan(z)g(z,zn)dA(z)
—/ on(2)3(2, 2n)dA(2).
Qnw

The first integral on the right is the same as

/Un(z)g(z,zn)dA(z) > C/ 9(z, zp)dvy, > Cu(z,) > C103.
R R

To estimate the second integral on the right side of (5.1) use a Mdobius
transformation to move z, to the origin. Then )¢ is mapped into a Carleson
square ()’ of diameter ~ \ and so

/ o (2)3(2 2 )dA(z) < / o () log —dA(2)
QeNw ,

||

dx dy
<
< Jeri
S OQAJ

where the last inequality holds because the proof of Lemma 5.1 shows that

o, (2) (1—|2|?)"' dz dy is a Carleson measure with uniformly bounded norm.
Thus if we choose A < C105/(2C3), we get

)
Qnw
which proves the lemma. [ |
The following is now immediate.
Corollary 5.4. The Carleson norm of |p,(2)?|(1 — |2]?) "' dz dy is compa-

rable to € with constants that only depend on the injectivity upper bound

for R.
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6. Divergence of a Stolz type sum

Suppose v is a Carleson measure on the D with constant M and for x € T,
let

L(z) =Y v(T(Q)HI,

1

where the sum is over all dyadic intervals containing x. This is a dyadic
analog of an integral over a Stolz cone. It is easy to see that

/T I, (w)dz = v(D),

so that [, must be positive on a set of positive measure (if v is non-trivial).
We need a more quantified version of this fact.

Lemma 6.1. Suppose v is a Carleson measure on D with constant < M and
suppose @ is a dyadic Carleson square with base I C T such that v(Q) >
el(Q) for some € > 0. Then there is a B = B(M,¢) such that

H{zel: I (x)>e/d} > Bv(Qr).

Proof. Without loss of generality, we may assume v is supported in (). The
idea is to show that I, is in dyadic BMO and then apply the John-Nirenberg
theorem. To be more precise, recall that a function f on the circle is said to
be in dyadic BMO if for every dyadic interval I there is a number ¢; such
that

1
Il = sup - [ 17 = 1] < .
I ’I | I
and the supremum is over all dyadic intervals. If f is in dyadic BMO then

the John-Nirenberg theorem (e.g., [7]), states that there is a C},Cy < oo
such that

{z e L:|f = mi(f)] = A} < CilI] exp(=Ca| fllBroA)-

We claim that if v is a Carleson measure then [, is in dyadic BMO. To prove
this let ¢; = >, v(T(J)) where the sum is over all dyadic J containing I.
Then

1
m/’[,j — C[‘dl’ § HVHC
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Thus [, is in dyadic BMO, as claimed. Hence if f = I, — ¢y,

vQr) < /I fd

St
f<e/4 /A< f<A =X

ﬂﬂ+Mﬁ§f<AH+QM/‘MCWM
4 4 \

IN

IN

3M+AH§§f<AH+£mﬂa@N

Thus taking X so large that Cie=* < €/4 we get

1
{rel:l, = e/ > Q) — 71| = Cil1]le=®

1 1 1

> —lelI|(1—-=—-

> Sln- - ;)
€

> —|I.

- 2)\| |

This completes the proof of the lemma. [ |

Lemma 6.2. Suppose {v,} are positive Carleson measures on D, that

sup ||tn]lec < M < o,
n

and that for any Carleson square @),

limsup v,(Q) =€ > 0,

n

(for some € independent of Q). Let v = > v,. Then I,(x) = oo almost
everywhere on T.

Proof. Fix an I. By Lemma 6.1 we have [, > ¢/8 on a set of size B|I|
for infinitely many n’s. Thus the series I, = ) I, diverges on a subset
of I of size at least 06 = B|I|. Since the series diverges on a fixed fraction
of every dyadic interval, the Lebesgue density theorem implies it diverges
almost everywhere. [
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7. How close is [' to a circle?

In order to show that I' = f,,(T) has tangents almost nowhere, we have to
show that I' has oscillation at almost all points and infinitely many scales.
To do this we measure its oscillations using Peter Jones’ 3’s, e.g., [9].

Given a closed curve I', a point x € I' and ¢ > 0 we define

1
Br(z,t) = inf — sup dist(z, L),
F( ) Lec t 2€TNB(x,t) ( )

where L is the set of all lines hitting . For a Riemann mapping f: D — Q
let 5(2) = Baa(f(2/|z]), 10dist(z,09)). It follows from the results in [5] that
if I' = 002 is a quasicircle, then up to sets of zero 1-dimensional measure,
r = f(e?) is a tangent point of T iff

(71) [ ey

or (equivalently, up to sets of linear measure zero) iff,

& dt
(7.2) / ﬁr(fﬂ,t)27 < 00.
0
We also define

t) = Zﬁp(z, e"t)e .
n=0

When T is clear from context, we will drop it from our notation.

Lemma 7.1. With notation as above,

/ﬁzt /93,”

Proof. One direction is obvious since § < 8. To prove the other direction
we use Cauchy-Schwarz to get

d *
/ B(z,t : :/0 (;ﬁ(z,e"t)e )2 tt
0o 00 00 d
< [T A enemenT
n=0 n=0
= [ dt
=C 2 n -n "
;/0 B(z,e"t)e ;
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For our purposes in this paper, it is more convenient to measure the flatness
of T" is a slightly different way. We define

o |7 (@)l
nr(z) = min (1,1171f$s;1€p} log |T(y)|>7

where the infimum is over all M&bius transformations 7 such that 7(z) = 0.
In other words, 1 measures the smallest r such that I' can be mapped into
the annulus {1 < |z| < r} with z going to the origin. The minimum with
1 is included simply to make it easier to compare 7 to 8 below. The main
advantage of 1 over (3 is that 7 is invariant under Mobius transformations.
In particular, if " is the limit set of a Kleinian group then 7 is well defined
on the quotient Riemann surface. In fact, we may consider n as a geometric
analog of the Schwarzian derivative.

Lemma 7.2. There is a C < oo such that the following holds. If T' C R?,
ze€l, t>0, and t <|w — z| < 2dist(w, ") < 4t then

nr(w) < CBr(z,t).

Proof. After a linear change of variables we may assume that w = ¢ and
—1,1 € I". Let B, be the hyperbolic ball of radius r centered at ¢ in the
upper half-plane, H, and let B} denote its reflection across the real line. Let
7 be a Mobius transformation which maps H to the unit circle, taking i to
0. Suppose that 0 < a < 1 and that Br(0,1) < ae™™. We claim that if a
is small enough (independent of n), then I' N (B,,_. U B}__.) = 0 for some
¢ > 0 independent of n. If we can prove the claim then 7(I') lies in a Ce™
neighborhood of the unit circle and we will be done.

Thus it suffices to prove the claim. Let Sy ={z =z +iy: |z] < 1,|y| <
e "} and for k > 0, let Ay = {2 : 71 < |z| < €k}, O = {2 : |2] = €F} and
S ={z=x+iy € Ay : |y| < e* "} It is easy to check that the hyperbolic
distance from i to Sy in H is greater than n — ¢ for some ¢ independent of
k, so it suffices to prove I' C U, Sk.

Figure 1: Definition of the Sy
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We prove this by induction on k. Since § < B, we clearly have I' N {|z] <
1} C Sp. Now suppose 'M Ay C Sk_1. Since Br(0) < ae™™ we must have

B, = Br(i, e¥) < €kn€(€e;11)

if a is small enough. Hence I' N A;, is contained in strip S of width 28,e* =
e?k=m=1 Since TN Ap_1 C Sp_1, SN S, N Ch_1 # 0. Thus the maximum
height of a point in SNCy_; is at most =" + Bre*. Thus the central line of
S (which passes through the origin) hits C}, at height at most e times this
and so S N Ay has height at most

e—1
e(e+1)
) — 62k7n

e[e2k"Dn 4 B ek] 4 Bek = P1mn 4 (g2hnHl | 2y
e—1

e(e+1)

Thus I' N A, C S, as desired. This completes the proof of the lemma. H

= e 4 (e + 1)

From the lemma we see that there is a C' < oo so that for any I' = f( )
and any e? e

/1 2(f( w)) o = 0/1 2( w) :

re B (re .

. Ui 1—r ; r 1—r

Hence, combining (7.1), Lemma 7.1 and Lemma 7.2 we get

Corollary 7.3. Except for a set of zero 1-dimensional measure, f(e?) is
not a tangent point of I if

(7.3) / e (fre®)2 -2

1—7r

= OQ.

8. Shrinking a geodesic makes 7 large

In this section we show that shrinking a closed geodesic forces n to be large.
Combined with the results of the previous sections, this will imply that f,(T)
has tangents almost nowhere.

Lemma 8.1. Given 2 < M < oo, there is a C = C(M) < oo so that the
following is true. Suppose I' is a closed Jordan curve which is the limit set
of a Kleinian group G. Let 1 be the bounded complementary component
and o the unbounded component. Suppose that g € G fires —1,1 € I and
that g has translation length r < M in Ry = Q1/G and length (1 — €)r in
Ry = Qy/G. Then nr(0) > Ce.

Proof. Let p; denote hyperbolic distance on 2; for j = 1,2. Let p denote
the hyperbolic metric on D and also on D* = {|z| > 1} U {occ}. We may
assume that 7 is small, say n < 6 = §(M) (to be chosen below), because
otherwise the lemma is true with C' = 1/4.
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Note that if I' C {1 < [2] <147}, then

1 dpl
<—<1+C
1+Cn — dp — e
for |z| <1—4§ or |z] > 146 and C depends on . The translation length of

g in Q; for j = 1,2 is equal to

min p;(, 9(2)).

By replacing g by a power of itself, we may assume its translation length in
Qq is at least 1. If § is small enough then the axis A of g from —1 to +1
must intersect By, = {|z] < 1/2}. Choose a point z € AN By,. Since g
has translation length < M the image g(z) is still in {|w| <1 — 46} (if § is
small enough depending on M).

The Mo6bius transformation g can be written as a composition g =c o7
where both 7 and ¢ fix 1 and —1, 7 maps the unit circle to itself (and hence
7(2*) = 7(2)*) and o moves points by less than C7n in the spherical metric.
Thus

iz 9(2))

VAN VAN VAN VAR VAN

Hence the translation length in € is at most (1+ Cn) times the translation
length in 25 and hence € < Cn, as desired. [

9. f,(T) has almost no tangents

Suppose pt = Y ji, is the Beltrami coefficient defined in Section 5 and f,
is the corresponding quasiconformal map. Each p, is a sum of the form
> pinj where each p,, ; is associated to a closed geodesic v, ; and shrinks the
length of this geodesic by a factor of 1 — ¢, ;. Let A, ; be a hyperbolic a-
neighborhood of v, ; (where a is chosen so these neighborhoods are disjoint).
Let 0, = €i,jXAn,j, O, = Zj onjand o =3 oy

Combining Lemmas 5.1, 5.3 and 6.2, we see that I, = oo almost every-
where on the circle. By Lemma 8.1 we know that 7(z)> > Ce} ; on A, ;.
Thus

dr
2 > I () =
[ 2 L) =,

for almost every x on the circle. Thus f,(T) has tangents on a set of at most
linear measure zero, by Corollary 7.3.
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10. A stopping time decomposition

A stopping time region W C D, is a region of the form

W =Q\ UpQs,

where @ and {Qy} are dyadic Carleson squares. For dyadic intervals, IN.J #
() implies I C J or J C I and from this is easily follows that the {Qy} in
the definition of stopping time region may always be taken to have disjoint
interiors.

A locally rectifiable curve - is called a chord-arc (or Lavrentiev) curve if
there is a C' < oo so that for any two points x,y € v, the shorter arc between
x,y has length at most C|z — y|. A domain W will be called chord-arc if its
boundary is a closed chord-arc curve. Clearly, dyadic stopping-time regions
are chord-arc domains (with a uniform constant).

We will be interested in stopping time regions formed in the following
way. Let R = D/G be a Riemann surface with Green’s function. Fix a
base point zy € R and let g(z, z9) denote the lift to the disk of the Green’s
function on R with pole at z;. Note that away from the lifts of zy, g(z, z0)
is positive harmonic function and hence by Harnack’s inequality there is a
constant A so that

ot ) = Apg o)
for any top half of a Carleson box for which maxr(g) g(2, 20) < 1.

Now suppose 1 > ¢y > €; > ... are as in Section 5, so that the level
sets {g = €,} separate the supports of the u,’s. We may assume that z; is
the projection of the origin via the quotient map b — R. Let Cy be the
collection of dyadic Carleson boxes which are maximal with respect to the
property

max g(z, z9) < €1,
haxg(m ) < @

and let
Wo =D\ Ugec,, @-
Then W, is a chord-arc domain and
9(z,20) > e€1/A,  z €Wy,
e > g(z,20) >e/A  ze€ IW,.

For each ) € C; define the collection C(Q) = C21 U Cp1 where Cy; is the
maximal collection of dyadic sub-boxes such that

<
1%1(%9(2, 20) < €,
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and Cp; is the maximal collection of dyadic sub-boxes such that

> €.
rTrl(%>)<g(z, Z0) > €

In general, given a ) € Cy, with k& > 2, define Cy41,41 as the maximal
collection of dyadic sub-boxes Q)" of () such that

max g(z,zg) < €
T(Q’)g( ) O)_ k+15

and define Cy_; 41 as the maximal collection of sub-boxes such that.

> €. 1.
g}}g;%g(z, 20) > €1

If @ € Cy,, define the stopping time region
W(Q) = Q \ UQleckfl,nleUCkJrl,nJrl Q/'

We will say such a W is of type (k,n). Note that
€k+1/A S g(za ZO) S €k—1,% € W.

Furthermore, W is a chord-arc curve, W N T has length zero (since the
Green’s function ¢ tends radially to 0 almost everywhere on the circle), and

ex/A < g(z,20) < €

on the unique connected component of W which intersects 7'(Q)). Moreover,
on every other connected component of W \ T either

er—1/A < 9(2,20) < €p
or

eut1/A < g(z,20) < €.

If £ = 0 then we have to modify the construction because there is no
€x—1. In this case, we just define one collection C; 41 as above and let

W(Q) = Q \ UQ’€C1,n+1 Qla

and say W is type (0,n). As above W hits the circle in a set of measure
Zero,
e1/A < g(z,20),2z €W,

EO/A S 9(2720) S €0,
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for z in the unique component of W hitting T(Q)) and
61/14 < g('Z?ZO) < €1,

for z in all the other components of OW \ T.

If £ = N then we also modify the construction to prevent there being
a type N + 1 region. In this case, we just define one collection Cn_1 41 as
above and let

W(Q> = Q \ UQ/GCNA,nHQ/’
and say W is type (N,n). As above,

9(z,20) < en-1,2 € W,

and
GN/A < g(’z?ZO) < €N,
for z in the unique component of W hitting 7'(Q)) and

en—1/A < g(z,20) < en_1,

for z in all the other components of OW \ T. However, unlike the previous
domains, W hits the circle in a set of positive measure. Let C = U, ,,C; .

We can think of the decomposition of the disk into these regions as a
random walk on {0,1,... N + 1} which is reflecting at 0 and absorbing at
N +1: a type k region is followed by either a type k — 1 or type k+ 1 region
except that a type 1 must be followed by type 2 and a type N has a positive
probability of having no successor. Later we will choose the parameters {e;}
so that with high probability a type k is followed by a k+1 and not a k — 1.

Lemma 10.1. There are « > 0 and C' < oo so that the following holds. Sup-
pose QQ € Cy, and W is the corresponding stopping time region constructed
above. Suppose EC OW corresponds to the tops of type (k—1,n+1) squares.
Then 6 \a
UE) < C(—k) o(OW).
€k—1

Proof. Since the Green’s function ¢ is harmonic and satisfies g(zg) > € /A
and g(z) < €1 for z € E, we see that the harmonic measure of F in W
with respect to zg satisfies

w(zg, E,W) < A

€k—1
Since harmonic measure and arclength are A, related with constants de-
pending only on the chord-arc constant of W (this is a theorem of Jerison
and Kenig, e.g., [8]) there is an o and C' (depending only on the chord-arc
constant of W) such that ((F) < Cw(FE)*. Combined with our previous
observation, this proves the lemma. [
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11. Chord-arc domains and Carleson measures

If W is a chord-arc domain then a positive measure v on R? is called a
Carleson measure for OW if there is a C' < oo so that

v(B(z,r)) < Cr,
for every x € OW and r > 0. The following is due to Stephen Semmes [13].

Theorem 11.1. Suppose W is a chord-arc domain. There is an €y, de-
pending only on the chord-arc constant M of W so that the following holds.
Suppose € L*(R?) and

12 (2)

S GO S A
g dist(z, OW) e

is a Carleson measure for W with norm < e,. Let f, be a quasiconformal
mapping with dilatation . Then f,(W) is chord-arc with constant depending
only on ||[v||c and M.

We want to be able to apply Semmes’ result to our Beltrami coefficient
w1 and the stopping-time domains in our collection C. To do this we must
prove

Lemma 11.2. Given ¢ > 0 there is an r < oo so that the following holds.
Let I' = UwecOW and suppose f =) f, is such that the supports of the
fn are pairwise disjoint, || f|l.o < € and for all n,

fn
1—|z]

dx dy,

is a Carleson measure for D* with norm < € and that p(supp(f),I'*) > r.
Then for any W € C,

f(2)
—TE) grdy < Cet
/BW) Jist (=, w7y 4 dy < Oet,

for any x € OW and t > 0.

Proof. Choose a point z € OW and a t > 0. If ¢ > 2diam(W) then

/ L drdy < / f(2) dx dy < Cet.
B(at)\B(z,diam(w)) dist(z, 0W) B 1 — |2]

Thus it suffices to consider ¢t < 2 diam (V).
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Choose a Carleson square () such that B(z,t)ND C @ and diam(Q) ~ t.
Clearly it suffices to show that (recall @* and W* are the reflections of @
and W across the unit circle)

f(2)
/Q* Tt (=, o) 0y = Cel@)

Write f = g1 + g where g = fxw+. Then g; is the restriction to W* of
some f, and so

91(2) 91(2)
—————dxdy < dxdy < Cel
/Q* dist(z,0W) y—/QJ—m zdy < Cel(@Q),
by assumption.

To estimate the contribution of go, suppose W N Q = @ \ UQ;. We
can choose the @;’s so that Y ¢(Q;) < CU(Q). For each @, go is sup-
ported inside a region of width Ce™"¢(Q;) along the base of @; (because u
is supported far from 9W), and so

/Q % dudy < e™0(Q;).

Thus

; % da dy < C’||f||ooe_tZ€(Qj) < Cel(Q).

As an immediate consequence we see that f,(W) is chord-arc for any
W € C, with a constant that is independent of W.

Corollary 11.3. Given ¢ > 0 there is a A < 1 so that if ex/ep_1 < A
and {p,} satisfies the conditions of Lemma 11.2, then the following holds.
Suppose () € C,,. Then

Z diam(f,(Q")) < ediam(f,(Q)),

Q'eCl_1,nt1

and

Z diam(f,(Q")) < Mdiam(f.(Q)).

Q' €Chi1,nt+1

Proof. The second estimate is immediate from the fact that f,(W(Q)) is
chord-arc. To prove the first, we note that as in the proof of Lemma 10.1,
the harmonic measure of E' = dW NUg,_, .. ,0Q is bounded by A\. Since
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fu is conformal on W (remember that y is supported outside the unit disk),
the same is true for the image domain. Since p is Carleson with small norm
with respect to W, f,(W) is also chord-arc and so harmonic measure is A
related to arclength. Thus E has length as small as we wish if A is small
enough. This proves the result. [

12. f,(T) has dimension 1

We now want to show that f,(T) has dimension 1. To do this we first
consider the Beltrami coefficient Y ;_, y, and let f,, be the corresponding
quasiconformal map fixing 0, 1, co.

Lemma 12.1. With f, as above, f,(T) is rectifiable.

Proof. To show f,(T) is rectifiable, we will estimate the length of all the
image domains f,(W), W € C and show the total sum is finite. To each
such W associate a ball of twice its diameter centered at some point of W.
Every point in f,(T) is either on the boundary of some f, (W) or is covered
by infinitely many of the balls. The first set clearly has finite one dimen-
sional measure. The second set has zero length by the following elementary
observation.

Lemma 12.2. If ) diam(B,) < oo and each point of E is in infinitely
many of the sets {B,}, then E has zero 1-dimensional measure.

Proof. Clearly E is also covered by {B,}¥ for any N and for N large the
sum of diameters is as small as we wish. [

Every domain W in our decomposition of the disk has a label of the form
(k,n) where k indicates the size of Green’s function on W (approximately
between €1 and €1, except for the special cases k = 1, N) and n is the
number of domains separating it from the origin. If W has type (k,n) then
associated to it is a length n string s = {ji,...,j,} where j; € {1,..., N},
J1 =1, jo = k and |j; — jix1| = 1 denoting the types of domains which
separate 0 from W. Clearly there are at most 2" such strings of length n.

Lemma 12.3. Fiz a string s of length n as above and let W(s) be the
collection of all domains in our decomposition which have this string. Then

ST diam(£,(0) < (2000,

€
WeW(s)

where M and € are as in Corollary 11.3 and € < 1/(4M).
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Proof. A step in the string s will be called “up” if it is of the form k — k+1
and will be called “down” if it is of the form k¥ — k—1. Let n, be the number
of up steps and ny the number of down steps in s. Then clearly n, +n4y =n
and n, <ng+ N. Hence ng > %(n — N). By Corollary 11.3

Z diam(f,(W)) < M"e™
WeW(s

< MYN(Me)m

< MN(MG)%(an)

Il
—~
=
~—
z
[}
—~
=
2
£
no

We can now finish Lemma 12.1. The sum over all domains is bounded by

Zdiam(f#(W)) < Z Z Z diam(f,(W))

n  s:s|=n WeW(s

N/2
<Y Y (7)o
n  s:s|=n
N/2
( ) 22" Me) n/2
< (M/G)N/Q,
if Me < 1/4. This completes the proof. [ |

Now we can prove that f,(T) has dimension 1 if  is chosen appropriately.

Lemma 12.4. Suppose notation is as above. Suppose ¢(t) : [0,00) — 00
is increasing, continuous and satisfies (t) = o(t). There is a sequence

rn /" 00 so that if p(supp(fin), SUPP(tint1)) = 7n, then H?(f,(T)) = 0.

Proof. Suppose we have already chosen puy, ..., u,. Then by Lemma 12.1,
fn(T) is rectifiable. Thus there is a cover of f,(T) by open balls {B(x;,7;)}
such that 3, ¢(r;) < 27" Then U, = U;B(z;,;) is an open neighborhood
of f,(T) and if 7, is large enough we have f,(T) C U, as well (since f — f,
uniformly on compact sets as r, — oc0). This proves the lemma. [ |

Taking (t) = tlog(1/t), for example, and p satisfying the lemma shows
that f,(T) can have dimension 1, as desired.
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