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Carleson measures for
analytic Besov spaces

Nicola Arcozzi, Richard Rochberg and Eric Sawyer

Abstract

We characterize Carleson measures for the analytic Besov

spaces. The problem is first reduced to a discrete question in-

volving measures on trees which is then solved. Applications are

given to multipliers for the Besov spaces and to the determination

of interpolating sequences. The discrete theorem is also applied to

analysis of function space on trees.

1. Introduction and summary.

Our starting point is an attempt to get a better understanding of
Carleson measures for Besov spaces of holomorphic functions. To do this
we first reduce to a discrete model problem which turns out to be the
question of characterizing those measures on trees for which a discrete
Hardy’s inequality holds. We give solution to that problem, Theorem 3,
and use that result in obtaining our characterization of Carleson measures
on Besov spaces, Theorem 1.

Carleson measures arise in many questions involving analysis in func-
tion spaces and we consider two such questions here. We look at multipli-
ers. That is, given a space, X, of functions on a set Y, we want to describe
those functions f for which the map of multiplication by f is a continuous
map of X to itself. We show that the known results for the classical Besov
spaces extend easily to the weighted Besov spaces we consider, Theorem
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15. We also find that these results have a satisfyingly exact analog for our
spaces of functions on trees, Theorem 26.

The other problem we consider is of describing interpolating sequences
That is, we want to characterize those sequences {yi} in Y with the prop-
erty that, as f ranges over X, the set of sequences of values, {f(yi)} ranges
over the space of all sequences which satisfy a natural growth condition.
We are able to give a complete characterization of interpolating sequences
in the discrete model, Theorem 26. However we do not yet see how to
extend our results fully to the Besov spaces; in that context we offer only
partial results, Theorems 31 and 33.

To describe our results further we introduce some notation and ter-
minology.

Let D be the unit disk in the complex plane, z = x+ i y, and m(dz) =
π−1 dx dy the normalized area element on D.

For ρ ≥ 0, a positive Borel measurable weight function on D, f : D −→
C holomorphic in D, and 1 < p < ∞, set

‖f‖∗p
Bp(ρ) =

∫
D

|(1 − |z|2)f ′(z)|pρ(z)
m(dz)

(1 − |z|2)2 .

The weighted Besov space Bp(ρ) with weight ρ is the space of those holo-
morphic functions f for which ‖f‖∗Bp(ρ) is finite. Bp(ρ) is a Banach space
under the norm

‖f‖Bp(ρ) = |f(0)| + ‖f‖∗Bp(ρ) .

(That fact actually requires some conditions on ρ.However there is certainly
no problem for the class of admissible weights which we introduce in a
moment.) The spaces Bp(ρ) for ρ ≡ 1 are the usual analytic Besov spaces
and we denote them Bp. B2 is the Dirichlet space and the more generally
spaces B2(ρ) are sometimes also called Dirichlet spaces. We will study
Carleson measures for Bp(ρ); that is, given indices p and q, and a weight ρ,
we wish to describe measures µ such that Id, the natural identity inclusion
of Bp(ρ) into Lq(µ), is continuous.

For a ∈ D let

S(a) =
{

z ∈ D: 1 − |z| ≤ 1 − |a|,
∣∣∣arg(a z)

2π

∣∣∣ ≤ 1 − |a|
2

}

be the Carleson box (or square) with vertex at a. We will also use the
heightened box

S̃(a) =
{
z ∈ D: 1 − |z| ≤ 2 (1 − |a|),

∣∣∣arg(az)
2π

∣∣∣ ≤ 1 − |a|
2

}
.
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We sometimes find it convenient to think of D with its hyperbolic geom-
etry. Let mh(dz) = (1 − |z|2)−2 m(dz) be the hyperbolic area element.
Set δf(z) = (1 − |z|2) |f ′(z)|; δf measures the infinitesimal distortion of
f regarded as a map from D with the hyperbolic metric to C with the
Euclidean metric. With this notation, Bp(ρ) consists of holomorphic func-
tions for which δf ∈ Lp(ρmh).

Our methods require that ρ satisfy certain smoothness and growth
conditions. Given p, 1 < p < ∞, we say that ρ is p-admissible, or, simply,
admissible, if both:

i) ρ is regular, i.e., there exist ε > 0, C > 0 such that ρ(z1) ≤ Cρ(z2)
whenever z1 and z2 are within hyperbolic distance ε. Equivalently, there
are δ < 1, C ′ > 0 so that ρ(z1) ≤ C ′ρ(z2) whenever

∣∣∣ z1 − z2

1 − z1z2

∣∣∣ ≤ δ < 1 .

ii) The weight ρp(z) = (1 − |z|2)p−2 ρ(z) satisfies the Bekollé-Bonami
Bp condition ([BB], [Bek]): There is a C(ρ, p) so that for all a ∈ D.

(1)

(∫
S(a)

ρp(z)m(dz)
)( ∫

S(a)

ρp(z)1−p′
m(dz)

)1/(p′−1)

≤ C(ρ, p)m(S(a))p .

(Here and throughout p−1 + p′−1 = q−1 + q′−1 = 1.) This condition allows
us to identify the dual space of Bp(ρ) with Bp′(ρ1−p′

).
For instance, ρ ≡ 1 is admissible. More generally, it is easy to check

that ρ(z) = (1 − |z|2)α is p−admissible if and only if 1 − p < α < 1. The
interesting range is 0 ≤ α < 1.

When we prove that a family of inequalities A imply an inequality
B, we say that the constants appearing in B are quantitative if they only
depend on the constants that appear in A, on p, q and, eventually, on the
dimension.

We will prove the following

Theorem 1. Suppose 1 < p ≤ q < ∞ and that ρ is a p-admissible weight.
For a positive Borel measure µ on D the following are equivalent :

i) There is a C(µ) > 0 such that

(2) ‖f‖Lq(µ) ≤ C(µ) ‖f‖Bp(ρ) .
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ii) There is a C1(µ) > 0, so that for all a ∈ D

(3)
( ∫

S̃(a)

ρ(z)−p′/p(µ(S(z) ∩ S(a)))p′
mh(dz)

)q′/p′

≤ C1(µ)µ(S(a)) .

The constants are quantitative.

In Section 5.5 we give an alternative formulation of (2) which empha-
sizes its conformal invariance. Under the more restrictive assumption that
p < q, however, the characterization is much simpler and, as we shall see
later, analogous to the characterization of the Carleson measures for the
Hardy spaces.

Theorem 2. If 1 < p < q < ∞ and ρ is a p-admissible weight, then (2)
holds if and only if

(4) µ(S(a))1/q ≤ C
(∫

[0,a]

ρ(w)1−p′ |dw|
1 − |w|2

)−1/p′

.

The constants are quantitative.

In the right hand side [0, a] denotes the segment between 0 and a. We
will see, later, that, for p = q, (4) is weaker than (3).

We say that a positive measure µ on D is a Carleson measure for
(Bp(ρ), q) if it satisfies the inequality (2). When p = q, we will simply say
that µ is Carleson for Bp(ρ). We will see in Section 5.5 that (2) has an
equivalent conformally invariant formulation.

The classical result of Carleson [Car] for the Hardy space corresponds
to the weight ρ(z) = 1 − |z|2 which is not 2-admissible. The first result
involving admissible weights is due to Stegenga [Ste]. He considered p =
q = 2 and showed, among other thing, that for the Dirichlet space, i.e.
for ρ ≡ 1, the Carleson measures could be characterized by a geometric
condition involving the logarithmic capacity of subsets of ∂ D. Stegenga’s
theorem was generalized by I. Verbitsky [Ve] to 1 < p = q < ∞, again
by using appropriate capacities. Unfortunately, that paper did not have
the attention it deserved, and the result was recently rediscovered by J.
Wang [Wang]. More recent work in a similar vein is in [Wu], [CO1], and
[CO2]. In [KS], Kerman and Sawyer characterized the Carleson measures
for B2(ρ) for certain radial weights ρ. The conditions in [KS] do not involve
capacities and are of a different form than those in Theorem 1. The two
sets of results are compared in detail in Section 5.
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Theorem 1 goes further in that it also applies to weights that are
not radial and covers p in the range (1,∞). Perhaps the most interesting
aspect of Theorem 1 is the form of condition (3) which characterizes the
Carleson measures. The condition seems easier to work with than the
earlier conditions; in particular, it seems much easier to verify than the
capacitary conditions of Stegenga, Verbitsky, Wang, and Wu.

The proof of Theorem 1 is based on a discretization procedure and on
the solution of the resulting discrete problem which involves measures on
trees.

Let T be a tree, i.e., a connected, loopless graph, that we do not
assume to be locally finite; see Section 3 for complete definitions and no-
tation. Let o ∈ T be a fixed vertex, the root of T . There is a partial order
on T defined by: x ≤ y, x, y ∈ T , if x ∈ [o, y], the geodesic joining o and
y. Let ϕ: T −→ C. We define Iϕ, the primitive of ϕ with respect to o, by

Iϕ(x) =
x∑
o

ϕ(y) =
∑

y∈[o,x]

ϕ(y) .

A weight ρ on T is a positive function on T .
For x ∈ T , let S(x) = {y ∈ T : y ≥ x}. S(x) is the Carleson square

with vertex x or the shadow of x.

Theorem 3. Let 1 < p ≤ q < ∞ and let ρ be a weight on T . For a
nonnegative function µ on T , the following are equivalent :

1) For some constant C(µ) > 0 and all functions ϕ

(5)
( ∑

x∈T

|Iϕ(x)|qµ(x)
)1/q

≤ C(µ)
( ∑

x∈T

|ϕ(x)|pρ(x)
)1/p

.

2) For some C(µ) > 0 and all r ∈ T

(6)
( ∑

x∈S(r)

( ∑
y∈S(x)

µ(y)
)p′

ρ(x)1−p′)q′/p′

≤ C(µ)
∑

x∈S(r)

µ(x) .

The constants are quantitative.

When p < q, we again have a much simpler condition.
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Theorem 4. With the assumptions of Theorem 3 and p < q, (5) holds if
and only if, for some C(µ) > 0 and all r ∈ T ,

(7)
( ∑

x∈S(r)

µ(x)
)1/q

≤ C
( r∑

0

ρ(x)1−p′)−1/p′

.

The constants are quantitative.

In analogy with the continuous case, we say that a measure satisfying
(5) is a Carleson measure for (I, ρ, p, q).

In fact, inequality (5) is a weighted Hardy inequality on the tree T .
For more on weighted Hardy inequalities see the survey [Muck] and the
articles [Saw], [SW].

Given Theorem 3, the proof of Theorem 1 is rather simple. To prove
that the geometric condition (3) forces µ to be Carleson we discretize the
holomorphic functions and use Theorem 3. Here is an outline of that
argument. Consider a dyadic Whitney decomposition of D. Namely, for
integer n ≥ 0, 1 ≤ m ≤ 2n, let

∆n,m =
{

z ∈ D : 2−n−1 ≤ 1−|z| ≤ 2−n,
∣∣∣arg(z)

2π
−m − 1/2

2n

∣∣∣ ≤ 2−(n+1)
}

.

It is natural to consider the Whitney squares as indexed by the vertices of
a dyadic tree, T2. Thus the vertices of T2 are

(8) {α : α = (n, m), n ≥ 0 and 1 ≤ m ≤ 2n, m, n ∈ N}

and we say that there is an edge between (n, m), (n′, m′) if ∆(n,m) and
∆(n′,m′) share an arc of a circle. The root of T2 is, by definition, (0, 1).
Here and throughout we will abuse notation and, when convenient, identify
the vertices of such a tree with the sets for which they are indices. Here
we identify α and ∆α.

If f ∈ Bp(ρ) and α ∈ T2, let ϕ(α) = (1 − |zα|2)f ′(zα), where zα ∈ α
is chosen as to maximize |f(z)| in α. Then, by the assumptions on ρ and,
essentially, the mean value property,

‖f‖Bp(ρ) ≥
1
C

∑
α∈T2

|ϕ(α)|pρ(zα)

and

|f(zα)| =
∣∣∣f(0) +

∫ zα

0

(1 − |ξ|2)f ′(ξ)
dξ

(1 − |ξ|2)

∣∣∣ ≤ C
α∑

β=o

ϕ(β) .
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Thus

‖f‖Lq(µ) ≤ C
( ∑

α∈T2

|I(α)|qµ(α)
)1/q

.

It then follows easily from Theorem 3 that a positive measure µ on D is
Carleson for (Bp(ρ), q) if (6) is satisfied. In Section 5 we give a show that
(6) is equivalent to (3). To prove the converse, we test an inequality which
is dual to (2) on weighted characteristic functions of Carleson boxes in D.

The proof of Theorem 3 is more technical and is based on a good-λ
type argument. A crucial fact in the proof is that there is no issue of
cancellation in the theorem. Hence it suffices to prove the theorem for
positive ϕ. For positive ϕ the monotonicity properties of Iϕ can be used
decisively.

In fact there is no loss of information in the passage to this discrete
model problem. Given a measure µ on D and an admissible weight ρ;
µ can be regarded as a function on T2 and ρ can be defined on T2 by
ρ(α) = ρ(∆α), where ξα is, say, the center of the Whitney box α. We then
have

Proposition 5. For 1 < p ≤ q < ∞, µ is a Carleson measure for
(Bp(ρ), q) if and only if it is a Carleson measure for (I, ρ, p, q).

Proposition 5 might appear surprising because some structure was
discarded in the discretization process. For instance, neither ϕ nor Iϕ are
required to satisfy any variant of the mean value property. That the propo-
sition holds nevertheless seems linked to the Bp condition. For instance,
the B2 condition does not hold for ρ(z) = 1 − |z|2 and we will see that
both Theorem 1 and Proposition 5 fail for the weighted Dirichlet space
B2(1 − |z|2) (= the Hardy space, H2).

The article is structured as follows. In Section 2 we discuss some facts
about Bergman spaces. We show how the discretization procedure works in
the simpler context of Bergman spaces by providing a proof of Luecking’s
characterization of the Carleson measures for the weighted Bergman spaces
[L]. Section 3 is dedicated to the proof of Theorems 3 and 4 and to a closer
analysis of some classes of Carleson measures on trees. We also show that a
simple condition on a measure, analogous to Carleson’s condition in H2, is
not generally sufficient for the measure to be a Carleson measure on a tree.
In Section 4 we prove Theorems 1 and 2, modulo the equivalence between
(3) and (6), and we also characterize multipliers for Bp(ρ). The equivalence
of (3) and (6) is Proposition 16 in Section 5. In Section 5 we also compare
several characterizations for the Carleson measures for Dirichlet spaces and
give concrete conditions for some weights to be admissible. That section
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also contains an analysis of the relation between our results and those in
[KS]. In Corollary 23 we show that the two conditions can be viewed as
endpoints of a scale of equivalent characterizations of Carleson measures.
Also, we show how Carleson measures can be defined in a conformally
invariant fashion.

In Section 6 we characterize multipliers and interpolating sequences
for certain function spaces on trees. Some partial results for interpolating
sequences for the analytic Besov spaces are discussed in Section 7.

Theorem 3 does not require that ρ be admissible and hence it ap-
plies if ρ(z) is (a discrete version of) (1 − |z|2). However the conclusion
obtained is not a discrete analog of Carleson’s pioneering theorem for
B2(ρ) = H2(∂ D). We pursue this further in Section 8, where we show
that if we only require (5) to hold for discrete harmonic functions (i.e.
those which satisfy a mean value equality) then the resulting class of mea-
sures is characterized by a single box condition analogous to the classical
one, Theorem 37.

A more detailed outline of the contents is given at the beginning of
each section.

2. Carleson measures on Bergman spaces.

The Carleson measures for weighted Bergman spaces were character-
ized by Luecking [L]. In Theorem 7 we give an alternative proof to some
of those results. This lets us display the basic approach used in proving
Theorem 1 in a more straightforward context. Some of the background
material on Bergman spaces from this section is used later, however the
results in other sections are independent of Theorem 7.

Let 1 < p < ∞ be fixed and let ρ be a weight on D. The Bergman
space Ap(ρ) is the space of those functions f that are holomorphic in D

and such that
‖f‖p

Ap(ρ) =
∫

D

|f(z)|pρ(z)m(dz)

is finite. Define, for f, g ∈ A2 ≡ A2(1),

〈f, g〉A2 =
∫

D

f(z) g(z)m(dz) .

Let Ap(ρ)∗ be the dual space of Ap(ρ). We identify g ∈ Ap′(ρ1−p′
) with

the functional on Ap(ρ)

(9) Λg : f �−→ 〈f, g〉A2 .
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By Hölder’s inequality we have that A∗
p(ρ) ⊆ Ap′(ρ1−p′

). Condition (1)
allows us to reverse the inclusion.

Theorem 6 (Bekollé-Bonami [BB], [Bek]). If the weight ρ satisfies (1)
then g �−→ Λg, where Λg is defined in (9) is an isomorphism of Ap′(ρ1−p′

)
onto A∗

p(ρ).

(Actually, the papers mentioned have results on the boundedness of
the Bergman projection on certain weighted Lebesgue spaces. However
the theorem stated follows easily; see [L, Theorem 2.1] for a detailed argu-
ment.)

In many respects, Theorem 6 allows us to work with spaces of analytic
functions “as if” they were Lp spaces.

We will see, now, how the determination of the Carleson measures
for the Bergman spaces can be reduced to a discrete inequality, one which
happens to be trivial in this case. Recall that a measure µ on D is Carleson
for Ap(ρ) if, for all f ∈ Ap(ρ),∫

D

|f(z)|p µ(dz) ≤ C(µ)
∫

D

|f(z)|p m(dz) .

Let N be a fixed, positive integer, to be chosen later. For each integer
n ≥ 0 and 1 ≤ m ≤ N 2n, let

∆n,m =
{

z ∈ D : 2−n−1 ≤ 1−|z| ≤ 2−n,
∣∣∣arg(z)

2π
−m − 1/2

2n

∣∣∣ ≤ N−1 2−n
}

and
T2 = {α = (n, m) ∈ N × N : n ≥ 0, 1 ≤ m ≤ N 2n} .

The regions ∆α form a Whitney decomposition of D; i.e., in terms of the
Euclidean diameter and distance

diam(∆α) ∼ dist(∆α, ∂ D) .

From the viewpoint of hyperbolic geometry, the regions ∆α all have com-
parable diameter and all have comparable volume. With harmless abuse,
we identify ∆α and α.

Let ρ be an admissible weight and set

λ(α) =
∫

α

ρ(z)m(dz) .
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Theorem 7 (Luecking [L]). A measure µ on D is a Carleson measure for
Ap(ρ) if and only if, for some C > 0 and for all α ∈ T2,

(10) µ(α) ≤ Cλ(α) .

The constants are quantitative.

Suppose that (10) holds and let f ∈ Ap(ρ). Because f is continuous
we can pick zα ∈ α so that∫

D

|f(z)|p µ(dz) ≤
∑

α∈T2

µ(α) |f(zα)|p .

Condition (10) implies the discrete inequality

(11)
∑

α∈T2

µ(α) |aα|p ≤ C
∑

α∈T2

λ(α) |aα|p .

Now, there exists ε > 0 such that, if Vα = ∪β∩α�=φβ, then B(zα, ε (1 −
|z|)) ⊆ Vα. Thus, by (11), the mean value property, Jensen’s inequality,
and the regularity of ρ we have∫

D

|f(z)|p µ(dz)

≤ C
∑

α∈T2

∫
α

ρ(w)m(dw) |f(zα)|p

≤ C
∑

α∈T2

∫
α

ρ(w)m(dw)
∣∣∣ 1
(1 − |zα|)2

∫
B(zα,ε(1−|zα|))

f(z)m(dz)
∣∣∣p

≤ C
∑

α∈T2

∫
α

ρ(w)m(dw)
1

(1 − |zα|)2
∫

B(zα,ε(1−|zα|))
|f(z)|p m(dz)

≤ C
∑

α∈T2

∫
Vα

|f(z)|p ρ(z)m(dz)

≤ C

∫
D

|f(z)|p ρ(z)m(dz) .

Thus, µ is Carleson for Ap(ρ).
Suppose now that µ is Carleson for Ap(ρ), i.e. that

Id : Ap(ρ) −→ Lp(µ)
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is bounded. By Theorem 6, this is equivalent to the boundedness of the
adjoint, Θ = Id∗;

Θ : Lp′
(µ) −→ Ap′(ρ1−p′

) ,

〈Θg, f〉A2 = 〈g, f〉L2(µ) .

Explicitly,

Θg(ξ) =
∫

D

g(z) kξ(z)µ(dz) ,

where kξ(z) = (1−z ξ)−2 is the reproducing kernel for A2; that is, 〈f, kξ〉A2

= f(ξ), whenever f ∈ A2, ξ ∈ D. If we test the boundedness of Θ on
functions of the form g = χα , α ∈ T2, we obtain

(12)
∫

α

∣∣∣ ∫
α

µ(dz)
(1 − z ξ)2

∣∣∣p′

ρ(ξ)1−p′
m(dξ) ≤ C(µ)

∫
α

µ(dz) .

Now note that, for some δ > 0,

(13)
∣∣∣ ∫

α

µ(dz)
(1 − z ξ)2

∣∣∣ ≥ δ
µ(α)
m(α)

.

This follows from the fact that if N is sufficiently large then there is an
ε > 0 such that if z and ξ are in the same ∆α then | arg(1−z ξ)−2| ≤ π/2−ε.
From (13), and (12), one deduces (10).

With little more effort, one can characterize the measures for which

(∫
D

|f(z)|q µ(dz)
)1/q

≤ C(µ)
(∫

D

|f(z)|p ρ(z)m(dz)
)1/p

,

when 1 < p < q < ∞, for all f ∈ Ap(ρ), where ρ is an admissible weight.
The condition on µ is, then,

(14) µ(x)1/q ≤ c λ(x)1/p .

If 1 < q ≤ p < ∞, Luecking [L2] showed that the condition is

(15)
∑
x∈T2

µ(x)p/(p−q) λ(x)−q/(p−q) ≤ C .

Our duality argument does not seem to work in this case; however, see [A].



454 N. Arcozzi, R. Rochberg and E. Sawyer

This proof of Luecking’s theorem contains the main outline of the
proof of Theorem 1. If we regard functions in Ap(ρ) as being essentially
constant on Whitney boxes and if we forget some of their structure (e.g.,
the mean value property) then condition (11) is a discrete analogue of
the definition of Carleson measure for Ap(ρ). In this case the associated
discrete problem, characterizing µ’s and λ’s so that (11) holds, is trivial.
(11) is equivalent to (10). Together with the mean value property and
Jensen’s inequality, this fact is sufficient to show that (10) implies that
µ is a Carleson measure for Ap(ρ). To prove the converse, we test the
boundedness of the adjoint operator on localized characteristic functions.
For this to give us what we want, we must identify the dual space of Ap(ρ)
with respect to the duality pairing given by the inner product of A2. That
choice of pairing is dictated by its compatibility with the traditional Lp–
Lp′

duality for the function spaces on the tree T. The results of Bonami
and Bekollé allow us to identify that dual space.

3. Carleson measures on trees.

In this section we prove Theorems 3 and 4. We also consider some
special cases in which it is especially easy to verify whether a measure ν
on T is Carleson for (I, p). We also give results comparing, when p = q,
condition (6) with the simpler condition (7).

Let T be a tree. We use the same name T for the tree and for its set
of vertices. We do not assume that T is locally finite; a vertex of T can be
the endpoint of infinitely many edges. If x, y ∈ T , the geodesic between x
and y, [x, y], is the set {x0, . . . , xn} where x0 = x, xn = y, xj−1 is adjacent
to xj (i.e., xj−1 and xj are endpoints of an edge), and the vertices in [x, y]
are all distinct. We let [x, x] = {x}. If x, y are as above, we let d(x, y) = n.
Let o ∈ T be a fixed root. We will say that T is homogeneous of degree
k if o is the endpoint of k edges and every other vertex is the endpoint
of k + 1 edges. We say that x ≤ y, x, y ∈ T , if x ∈ [o, y]. ≤ is a partial
order on T . If x ∈ T , x �= o, we denote by x− ∈ T the predecessor of
x: x− < x and d(x, x−) = 1. We denote d(x) = 
[o, x] = d(o, x) + 1.
For x ∈ T , the Carleson square (or box) of vertex x (or shadow of x) is
S(x) = {y ∈ T : y ≥ x}. For x ∈ T , we denote by δx the characteristic
function of the singleton x, or, when convenient, the measure consisting of
a point mass at x. Let µ be a positive measure on T . The inner product
on L2(µ) = L2(T, µ) is 〈f, g〉L2(µ) =

∑
x∈T f(x) g(x)µ(x).
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Proof of Theorem 3. Fix p, q, 1 < p ≤ q < ∞, and let µ be a Carleson
measure for (I, ρ, p, q). Testing the boundedness of I on the function δo we
deduce that µ must be bounded. I∗, the formal adjoint of I, is bounded
from Lq′

(µ) to Lp′
(ρ1−p′

). Now, I∗f(x) =
∑

y∈S(x) f(y)µ(y). Let χ
E

be
the characteristic function of the set E. If we test the boundedness of I∗

on functions of the form f = χ
S(r)

, we obtain (6). This shows the only if
part of the theorem.

Suppose now that µ is bounded and that (6) holds. We need to show
that I : Lp(ρ) −→ Lq(µ) is bounded, i.e., that

(16) ‖Ig‖Lq(µ) ≤ C ‖g‖Lp(ρ) ,

for some C > 0. It suffices to show that (16) holds for g ≥ 0. In this case,
Ig is nondecreasing with respect to the order relation on T . Let

Ωk = {x : Ig(x) > 2k} =
⋃
j

S(rk
j ) =

⋃
j

Qk
j ,

where {rk
j : j = 1, . . . } ⊂ T is the set of the minimal points in Ωk with

respect to the partial order on T and Qk
j = S(rk

j ). We suppose that no
rk+1
j coincides with an rk

j and leave for the reader the minor modifications
for the general case.

Let Ek
j = S(rk

j ) ∩ (Ωk+1\Ωk+2). Then, if x ∈ Ek
j ,

(17) I(χ
Qk

j

g)(x) =
∑

rk
j ≤y≤x

g(y) = Ig(x) − Ig((rk
j )−) > 2k+1 − 2k = 2k .

Here we let Ig((rk
j )−) = 0 if (rk

j )− = o. Thus,

2kµ(Ek
j ) = 2k

∑
x∈Ek

j

µ(x)

≤
∑

x∈Ek
j

I(χQk
j
g)(x)µ(x)

=
∑

y∈Qk
j

g(y)
∑

x∈Ek
j ,x≥y

µ(x)

=
∑

y∈Qk
j

g(y) I∗χEk
j
(y) .
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Denoting the complement of Ωk+2 by Ωc
k+2 and noting that I∗χ

Ek
j

(y) = 0

when y ∈ Qk
j ∩ Ωk+2 we obtain

(18) 2kµ(Ek
j ) ≤

∑
y∈Qk

j ∩Ωc
k+2

g(y) I∗χ
Ek

j

(y) .

Now,

∑
x∈T,Ig(x)>2

|Ig(x)|qµ(x) ≤
∑

k

µ(x : 2k+1 ≤ Ig(x) < 2k+2) 2q(k+2)

= C
∑

k

µ(Ωk+1\Ωk+2) 2qk

≤ C
∑
k,j

µ(Ek
j ) 2qk

= C
( ∑

(k,j)∈E

+
∑

(k,j)∈F

)
µ(Ek

j ) 2qk

= C
(∑

1
+

∑
2

)
.

Here,

E = {(k, j) : µ(Ek
j ) ≤ β µ(Qk

j )} ,

F = {(k, j) : µ(Ek
j ) > β µ(Qk

j )} ,

and β is a positive constant to be chosen later. In the inequalities below
C is a constant independent of g and β. To estimate the first sum, note
that, by definition of Ωk,

∑
1
≤ β

∑
(k,j)

µ(Qk
j ) 2qk

= β
∑

k

µ(Ωk) 2qk

≤ Cβ
∑
x∈T

|Ig(x)|qµ(x)

= Cβ ‖Ig‖q
Lq(µ) .
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On the other hand, we can estimate
∑

2 by

∑
2

=
∑

(k,j)∈F

µ(Ek
j ) 2qk

(by (18)) ≤
∑

(k,j)∈F

µ(Ek
j )−1

·
∣∣∣µ(Ek

j )
−1 ∑

y∈Qk
j ∩Ωc

k+2

g(y) I∗ χ
Ek

j

(y)
∣∣∣q

(by definition of F ) ≤ β−q
∑
(k,j)

µ(Ek
j )

µ(Qk
j )q

∣∣∣ ∑
y∈Qk

j ∩Ωc
k+2

g(y) I∗χ
Ek

j

(y)
∣∣∣q

(by Hölder’s inequality) ≤ β−q
∑
(k,j)

µ(Qk
j )1−q

·
( ∑

y∈Qk
j ∩Ωc

k+2

|I∗χ
Ek

j

(y)
∣∣∣p′

ρ(y)1−p′)q/p′

·
( ∑

y∈Qk
j ∩Ωc

k+2

|g(y)|pρ(y)
)q/p

(by (6)) ≤ Cβ−q
∑
(k,j)

( ∑
y∈Qk

j ∩Ωc
k+2

|g(y)|pρ(y)
)q/p

(since q ≥ p) ≤ Cβ−q
( ∑

(k,j)

∑
y∈Qk

j ∩Ωc
k+2

|g(y)|pρ(y)
)q/p

= Cβ−q
( ∑

k

∑
Ωk\Ωk+2

|g(y)|pρ(y)
)q/p

= Cβ−q
( ∑

y∈T

|g(y)|pρ(y)
)q/p

.

From the estimates for Σ1 and Σ2, and a similar argument when Ig(x) ≤ 2,
we obtain that

∑
x∈T

|Ig(x)|qµ(x) ≤ Cβ
∑
x∈T

|Ig(x)|qµ(x) + Cβ−q
( ∑

y∈T

|g(y)|pρ(y)
)q/p

.
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By choosing β small enough, we have that I is bounded.

The necessary condition in 3, (6), was obtained by testing I∗ on the
characteristic functions of the “natural” sets for the operator I∗. We could
have tested I itself on its “natural” functions, namely, ϕx = χ

[0,x]
ρ1−p′

,
x ∈ T . Those functions are natural for I in the sense that if y ≥ x, we
have the equality

‖ϕx‖p
Lp(ρ) = Iϕx(y) .

Using those as test functions gives

Proposition 8. Let 1 < p ≤ q < ∞ and let ρ be a positive weight on T .
If µ is Carleson for (I, ρ, p, q), then

(19)
( ∑

x∈S(z)

µ(x)
)1/q

≤ C
( z∑

0

ρ(x)1−p′)−1/p′

with C independent of z ∈ T . The constant is quantitative.

We will see in Section 8 that (19), which is sometimes called a single
box condition, is, in fact, a discretization and generalization of the neces-
sary and sufficient condition for a measure to be Carleson for the analytic
Hardy space (or the Bergman space). It is interesting that for p = q and
a large class of weights (19) is not sufficient. We return to that after the
proof of Theorem 4, a weak variant of which is next.

Theorem 9. Let 1 < p < q < ∞ and let ρ be a weight on T . For a
nonnegative function µ on T , the following are equivalent.

i) I maps Lp(ρ) to weak Lq(µ), i.e.,

(20) sup
λ>0

λµ(x ∈ T : If(x) ≥ λ)1/q ≤ C(µ)
( ∑

x∈T

f(x)p ρ(x)
)1/p

,

whenever f ≥ 0.

ii) (19) holds, for some C > 0.

Proof that Theorem 9 implies Theorem 4. We proceed as in [Saw2,
p. 341]. By Theorem 3, it suffices to show that the weak inequality (20)
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implies (6). For r ∈ T ,

( ∑
x∈S(r)

( ∑
y≥x

µ(y)
)p′

ρ(x)1−p′)1/p′

=
( ∑

x∈T

|I∗(χ
S(r)

µ)(x)|p′
ρ(x)1−p′)1/p′

= sup
‖f‖Lp(ρ)≤1

∑
x∈T

I(χ
S(r)

µ)(x)f(x)

= sup
‖f‖Lp(ρ)≤1

∑
y∈S(r)

If(y)µ(y)

= sup
‖f‖Lp(ρ)≤1

∫ ∞

0

µ(S(r) ∩ {If > λ}) dλ

by (20) ≤ C

∫ ∞

0

min {µ(S(r)), λ−q} dλ

= Cµ(S(r))1/q′
,

which is (6).

Proof of Theorem 4. Let σ = ρ1−p′
. Fix r ∈ T and let λ = σ([0, r]). If

f = χ
[0,r]

σ

then If(x) = λ for x ∈ S(r) and the weak type inequality (20) yields

σ([o, r])µ(S(r))1/q ≤ C
( ∑

x∈T

f(x)pρ(x)
)1/p

= Cσ([o, r])1/p

since σpρ = σ. Dividing both sides by σ([o, r])1/p yields condition (7).
Conversely, fix f ≥ 0 in Lp(ρ). Let ro be a minimal point in the set

E(f, cλ/2) = {x ∈ T : If(x) ≥ λ/2} and let x ∈ S(r0) ∩ E(f, λ). Then

(21)
∑

r0≤y≤x

f(y) >
λ

2
.

Now, define r0 < r1 < · · · < x so that



460 N. Arcozzi, R. Rochberg and E. Sawyer

i) µ(S(rk+1)) < µ(S(rk))/2,

ii) µ(S(r)) ≥ µ(S(rk)) for rk < r < rk+1.

i.e., rk+1 is the first point along the path leading to x for which its
successor set has µ-measure less than half that of the successor set of rk.
Of course, it is understood that the construction stops at, say, rN , when

µ(S(x)) ≥ 1
2

µ(S(rk)) .

By (21),

λ

2
<

N∑
k=0

∑
rk≤y<rk+1

f(y)

where the sum stops at x when k = N

≤
N∑

k=0

( ∑
rk≤y<rk+1

σ(y)
)1/p′( ∑

rk≤y<rk+1

f(y)pρ(y)
)1/p

≤
N∑

k=0

σ([o, tk+1])1/p′( ∑
y∈S(rk)

f(y)pρ(y)
)1/p

where tk+1 is the predecessor of rk+1

by (7) ≤ C
N∑

k=0

µ
(
S(tk+1)

)−1/q( ∑
y∈S(rk)

f(y)pµ(y)
)1/p

by ii) ≤ C
N∑

k=0

µ(S(rk))−1/q
( ∑

y∈S(rk)

f(y)pµ(y)
)1/p

≤ C
( N∑

k=0

µ(S(rk))1/p−1/q
)

sup
r0≤t≤x

( 1
µ(S(t))

∑
y∈S(t)

f(y)pρ(y)
)1/p

by i) ≤ Cµ(S(r0))1/p−1/q sup
r0≤t≤x

( 1
µ(S(t))

∑
y∈S(t)

f(y)p ρ(y)
)1/p

.

Thus, to each point in S(r0)∩E(f, λ) there corresponds a point rx ∈ [r0, x]
such that

λ ≤ Cµ(S(r0))1/p−1/q sup
r0≤t≤x

( 1
µ(S(t))

∑
y∈S(t)

f(y)pρ(y)
)1/p
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or, equivalently,

(22) µ(S(rx)) ≤ C λ−pµ(S(r0))1−p/q
∑

y∈S(rx)

f(y)pρ(y) .

Now, let {ri}i be the minimal points in S(r0) ∩ E(f, λ). Then, by (22),

λqµ(S(r0) ∩ E(f, λ)) = λq
∑

i

µ(S(ri))

≤ Cλq−pµ(S(r0))1−p/q
∑

i

∑
y∈S(ri)

f(y)pρ(y)

≤ Cλq−pµ(S(r0))1−p/q
∑

y∈S(r0)

f(y)pρ(y) .

Summing over r0 ∈ M, the set of the minimal points in E(f, λ/2),

λqµ(E(f, λ)) ≤ Cλp−q
∑
r∈M

µ(S(r))1−p/q
∑

y∈S(r)

f(y)pρ(y)

≤ C
( ∑

r∈M
µ(S(r))

)1−p/q( ∑
r∈M

( ∑
y∈S(r)

f(y)pρ(y)
)q/p)p/q

≤ C
(
λqµ

(
E

(
f,

λ

2

)))1−p/q ∑
y∈T

f(y)pρ(y) .

For t > 0, take the supremum over 0 < λ < t in the last inequality, to get

(23) sup
0<λ<t

λq µ(E(f, λ)) ≤ C
(

sup
0<λ<t

λq µ(E(f, λ))
)1−p/q ∑

y∈T

f(y)pρ(y) .

Standard arguments show that the first factor on the right hand side is
finite under the hypothesis of the theorem. Algebraic rearrangement now
gives the desired inequality. Now, divide both sides by the first factor the
right hand side to obtain the desired inequality. Standard arguments show,
in fact, that this factor is finite under the hypothesis of the theorem.

We now introduce a special class of Carleson measures we will use
several times. We will assume that p = q for the rest of this section. Let
x, y ∈ T . The minimum between x and y, x ∧ y, is the unique t ∈ T such
that t ≤ x, t ≤ y and t is maximum in T with this property. A sequence
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Z in T is tree-like if z ∧ w ∈ Z whenever z ∈ Z and w ∈ Z. Let ρ be a
positive weight on T . For x, y ∈ T , let

(24) dρ(x, y) =
∑

t∈[x,y]

ρ(t)1−p′

and let

(25) dρ(x) =
∑

o≤t≤x

ρ(t)1−p′
.

The function dρ has all properties of a distance except for the fact that
dρ(x, x) �= 0. Also note that when ρ ≡ 1, dρ = d + 1 (not d !).

Many properties of the operator I can be expressed in terms of dρ.
To each sequence Z ⊆ T and to each p ∈ (1,∞) we associate the measure
µZ

µZ(x) =
∑
z∈Z

dρ(z)1−p δz(x) .

Proposition 10. Let Z be a tree-like sequence in T . Then, µZ is Carleson
for (I, ρ, p) if and only if there exists C > 0 so that

(26) µz(S(z)) =
∑

w∈Z∩S(z)

dρ(w)1−p ≤ C dρ(z)1−p ,

whenever z ∈ Z.

Proof. To see that condition (26) is necessary, it suffices to test the
boundedness of I on functions of the form χ

[o,z]
ρ1−p′

, z ∈ Z. On the other
hand, condition (26) implies (6), and hence that µZ is a Carleson measure.
To see this, observe that since Z is tree-like to each r ∈ T we can associate
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the smallest ξ = ξ(r) ∈ Z such that ξ ≥ z, and S(r)∩Z = S(ξ)∩Z. Hence

∑
x∈S(r)

∣∣∣ ∑
y∈S(x)

µZ(y)
∣∣∣p′

ρ(x)1−p′

=
∑

x∈S(ξ(r))

∣∣∣ ∑
z∈S(ξ(x))∩Z

dρ(z)1−p
∣∣∣p′

ρ(x)1−p′

=
∑

w∈S(ξ(r))∩Z

∑
w−<x≤w

ρ(x)1−p′∣∣∣ ∑
z∈S(w)∩Z

dρ(z)1−p
∣∣∣p′

≤ C
∑

w∈S(ξ(r))∩Z

dρ(w)(1−p)p′ ∑
w−<x≤w

ρ(x)1−p′

≤ C2
∑

w∈S(ξ(r))∩Z

dρ(w)(1−p)p′+1(27)

= C2
∑

x∈S(r)

µZ(x) .(28)

We now show that the single box condition (19) is generally not suf-
ficient for a measure to be Carleson. This phenomenon was first noted by
Adams [Ad] in the context of Sobolev spaces and by Stegenga [Ste] in his
work on multipliers and Carleson measures for the Dirichlet space B2. Our
construction is reminiscent of Stegenga’s argument.

For a radial weight ρ on T we define ρ(n) by ρ(n) = ρ(x) where
d(o, x) = n.

Theorem 11. Let T be a homogeneous tree of degree 2 with root o. Let ρ
be a radial weight on T . Let 1 < p < ∞. Assume that

i) ρ(n) ≤ Cρ(n + 1) for some C > 0 and all n ≥ 0, and

ii)
∞∑

n=0

ρ1−p′
(n) = ∞.

Then there exists µ ≥ 0 on T such that (19) holds, but µ is not a
Carleson measure for (I, ρ, p).

Proof. We will construct a sequence Z, Z ⊆ T and, as before, define a
measure µ by letting µ(z) = dρ(z)1−p, if z ∈ Z, µ(x) = 0, if x /∈ Z.

First we construct W , the sequence of the branching points of Z.
Consider a tree-like sequence W in T , homogeneous of degree 2 as a tree,
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having the same root as T and having 2n points wn
1 , . . . , wn

2n at the level
n in W , such that dρ(wn

j ) ∼ (n 2n)1/(p−1). We will show later that there
are such points.

Now we construct Z. For each w ∈ W with dρ(w) ∼ (n 2n)1/(p−1)

we select z = z(w) so that z > w, dρ(z) ∼ (n2 2n)1/(p−1), and whenever
ξ ∈ W , ξ > w, one has that z ∧ ξ = w. The last condition can be restated
as: if x1 and x2 are the points of T immediately below w and, say, z ≥ x1,
then S(x1) ∩ W = ∅.

In this context, (19) and (6) read, respectively,

(29)
∑

z∈Z, z≥x

dρ(z)1−p ≤ Cdρ(x)1−p

and

(30)
∑
y≥x

( ∑
z∈Z, z≥y

dρ(z)1−p
)p′

ρ(y)1−p′ ≤ C
∑

z∈Z, z≥x

dρ(z)1−p .

It is easy to verify that (29) holds if and only if it holds for x = w ∈ W ,
a branching point. By our construction of W and Z, (29) can then be
rephrased as: for all h ≥ 0∑

k≥h

2k−h(k2 2k)−1 ≤ C(h 2h)−1 .

This is fine. On the other hand, (30) fails. To see this first note that, by
(25), for y ∈ [wk−1

j , wk
l ] we have

ρ(y)1−p′ � ((k 2k)p′−1 − ((k − 1) 2k−1)p′−1) � (k 2k)p′−1 .

In this case (30) is equivalent to

∑
k≥h

2k−h(k 2k)p′−1
( ∑

n≥k

2n−k(n2 2n)−1
)p′

≤ C
∑
k≥h

2k−h(k2 2k)−1 ,

which simplifies as

∑
k≥h

2−h(k)p′−1
( ∑

n≥k

n−2
)p′

≤ C
∑
k≥h

2−h(k2)−1 ,

which simplifies as ∑
k≥h

kp′−1(k−1)p′ ≤ Ch−1 ,
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which fails.
It remains to verify that we can find wn

j ’s and z = z(wn
j )’s such that

dp−1
ρ (wn

j ) ∼ 2n n , dp−1
ρ (z) ∼ 2n n2 .

By assumption ii) in the hypothesis, there exists N such that

N∑
k=0

ρ1−p′

k ≥ (2n n)p′−1 and
N−1∑
k=0

ρ1−p′

k < (2n n)p′−1 .

Hence, by i),

N∑
k=0

ρ1−p′ ≤
N−1∑
k=0

ρ1−p′
+ Cρ1−p′

N−1 ≤ (1 + C) (2n n)p′−1 .

Thus, ( N∑
k=0

ρ1−p′)p−1

∼ 2n n

and we can choose w such that d(o, w) = N . The same reasoning applies
to the choice of z(w).

Remark 1. With a slight modification of the proof, we can exhibit µ such
that (19) holds and (6) fails if the following conditions are satisfied:

i) Each vertex in T other than the root is the endpoint of at least
three edges.

ii) ρ(z−) ≤ Cρ(z), where z− is the predecessor of z in T .

iii)
z∑

ξ=o

ρ(ξ)1−p′ −→ ∞ as z −→ ∂T , the boundary of T , along any

geodesic.

Remark 2. If the tree reduces to the integers then (19) and (6) are
equivalent.

We now look at two cases in which Proposition 10 is decisive. Let Z
be a tree-like sequence in a tree T . Assume, for simplicity, that o ∈ Z. We
can think of Z itself as a tree with root o. Suppose that Z is homogeneous
of degree k. Suppose that ρ ≡ 1, hence dρ = d + 1. Suppose that dZ , the



466 N. Arcozzi, R. Rochberg and E. Sawyer

edge-counting distance in the tree Z, satisfies d(z) � dZ(o, z)m for some
m > 1. An inspection of (26) shows that µZ is a Carleson measure for
(I, p) if and only if

p > 1 +
log k

log m
.

More generally, if d(z) = φ(dZ(o, z)), where φ is an increasing, positive
function, then µZ is Carleson for (I, p) if and only if for all j

∑
n≥j

knφ(n)1−p ≤ C kj φ(j)1−p ,

where C > 0 is independent of j.
Now suppose that Z = T is a homogeneous tree of degree k and that

the weight ρ is defined by ρ(z) = kad(o,z) for some a ∈ R. This weight
corresponds to a weight ρ on D, which is given by ρ(z) = (1 − |z|2)−a.
Then, µZ is Carleson for (I, ρ, p) if and only if a > 0. Observe that, in
this case, hypothesis ii) of Theorem 11 is not satisfied.

4. Carleson measures for the analytic Besov spaces.

4.1. Carleson measures.

In this section, we prove an equivalent formulation of Theorem 1,
Theorem 12 below, and Theorem 2. Then, in Theorem 15, we give the
characterization of the multipliers for the spaces Bp(ρ).

For this section, recall T2, the tree introduced in Section 1.

Theorem 12. Let 1 < p ≤ q < ∞ and let ρ be a p-admissible weight. A
positive Borel measure µ on D is a Carleson measure for (Bp(ρ), q) if and
only if

(31)
( ∑

β≥α

( ∑
γ≥β

µ(γ)
)p′

ρ(β)1−p′)q′/p′

≤ C
∑
β≥α

µ(β) ,

for some constant C = C(µ) independent of α ∈ T2.

Proof. We prove first that condition (31) is sufficient, under the less
restrictive hypothesis that ρ is a regular weight. Let f be holomorphic in
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D. Select zα, wα ∈ α so that supz∈α |f(z)| = |f(zα)| and supw∈α |f ′(w)| =
|f ′(wα)|. Set Φ(α) = |f(zα)|. Then∫

D

|f(z)|q µ(dz) =
∑

α∈T2

∫
α

|f(z)|q µ(dz) ≤
∑

α∈T2

µ(α) |Φ(α)|q .

Now set φ(o) = Φ(o) and, for other points of T2, set φ(α) = Φ(α)−Φ(α−),
ρ(α) = ρ(zα). We have Φ(α) = Iφ(α) and, by (31), Theorem 3, and the
fact that ρ is regular

(∫
D

|f(z)|q µ(dz)
)p/q

≤ C
∑

α∈T2

ρ(α) |φ(α)|p .

For α �= o,

|φ(α)| = |Φ(α) − Φ(α−)|

=
∣∣∣ ∫ z(α)

z(α−)

f ′(w) dw
∣∣∣

≤ C (|f ′(wα)| + |f ′(wα−)|) diam(α) ,

while for α = o we have

φ(o) = |f(zo)| ≤ |f(0)| +
∣∣∣ ∫ z(o)

0

f ′(w) dw
∣∣∣ ≤ |f ′(wo)| diam(o) + |f(o)| .

Summing over α ∈ T2, and noting that 
{α ∈ T2 : β = α−} = 2, for β �= o
we obtain

(∫
D

|f(z)|q µ(dz)
)p/q

≤ C
∑

α∈T2

ρ(α) |f ′(wα)|p + C ρ(o) |f(0)|p .

By the mean value property,

f ′(wα) =
1

m(Bα)

∫
Bα

f ′(z)m(dz) ,

where Bα = B(wα, rα), rα = (1−|α|)/3. Note 
{β ∈ T2 : Bα∩β �= ∅} ≤ 4
and hence m(Bα) is comparable with m(α). Thus, by Jensen’s inequality,

|f ′(wα)|p ≤ C
1

m(α)

∫
∪β∩Bα �=∅β

|f ′(z)|p m(dz)
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and hence( ∫
D

|f(z)|q µ(dz)
)p/q

≤ C
∑

α∈T2

ρ(α)
m(α)

∫
α

|f ′(z)|p m(dz) diam(α)p + |f(0)|p

≤ C
∑

α∈T2

∫
α

|(1 − |z|2)f ′(z)|pρ(z)mh(dz) + C |f(0)|p

= C ‖f‖p
Bp(ρ)

as wished.
Before we prove the necessity part, we need some preparation. Let

F, G be holomorphic functions in D,

F (z) =
∞∑
0

an zn , G(z) =
∞∑
0

bn zn .

Define

〈F, G〉D∗ =
∞∑
1

n an bn =
∫

D

F ′(z)G′(z) m(dz)

and

〈F, G〉D = a0 b0 +
∞∑
1

n an bn = F (0)G(0) + 〈F, G〉D∗ .

Lemma 13. Let ρ be a weight satisfying (1). Then Bp′(ρ1−p′
) is the dual

of Bp(ρ) under the pairing 〈·, ·〉D, i.e., each functional Λ on Bp(ρ) can be
represented as

Λf = 〈f, g〉D , f ∈ Bp(ρ) ,

for a unique g ∈ Bp′(ρ1−p′
).

Lemma 13 is a direct consequence of Theorem 6 and the definition of
the Bp.

A simple manipulation of Fourier series shows that the reproducing
kernel of D with respect to the product 〈·, ·〉D is

φz(w) = 1 + log
1

1 − w z

i.e., if f ∈ D, then

f(z) = 〈f, φz〉D =
∫

D

f ′(w)
(
1 + log

1
1 − z w

)′
m(dw) + f(0) .
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Lemma 14. Let ρ be an admissible weight, 1 < p < ∞. Then φz is a
reproducing kernel for Bp′(ρ1−p′

) ; i.e., if G ∈ Bp′(ρ1−p′
) then

(32) G(z) = 〈G, φz〉D .

In particular, point evaluation is bounded on Bp′(ρ1−p′
).

Observe that (1) is symmetric in (ρ, p) and (ρ1−p′
, p′) and hence the

same conclusion holds for Bp(ρ).

Proof. For fixed z,

‖φz‖p
Bp(ρ) = 1 +

∫
D

∣∣∣ (1 − |w|2) z

1 − z w

∣∣∣p ρ(w)mh(dw)

∼ 1 +
∫

D

(1 − |w|2)p−2 ρ(w)m(dw) ,

with a constant that depends on z. Since (1) holds, the integral is finite
and hence φz ∈ Bp(ρ). (32) follows from a Fourier series argument.

Now let µ be a positive bounded measure on D and define

〈F, G〉µ = 〈F, G〉L2(µ) =
∫

D

F (z)G(z) µ(dz) .

µ is Carleson for (Bp(ρ), p, q) if and only if

Id : Bp −→ Lq(µ)

is bounded. In turn, this is equivalent to the boundedness, with the same
norm, of its adjoint Θ = Id∗,

Θ : Lq′
(µ) −→ (Bp(ρ))∗ ≡ Bp′(ρ1−p′

) .

Here we have used the duality pairings 〈·, ·〉D and 〈·, ·〉µ and Lemma 13.
By Lemma 14,

ΘG(z) = 〈ΘG, φz〉D
= 〈G, φz〉L2(µ)

=
∫

D

(
1 + log

1
1 − z w

)
G(w)µ(dw) .
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Now let µ be Carleson for (Bp(ρ), q). Fix α ∈ T2\{o} and define

g(w) = χ
S(α)

(w)w−1 .

Since µ is Carleson and S(α) has distance at least 1/2 from the origin of
D,

( ∑
β≥α

µ(β)
)p′/q′

= µ(S(α))p′/q′

≥ C‖g‖p′/q′

Lq′ (µ)

≥ C(µ) ‖Θg‖p′

Bp′ (ρ1−p′ )

≥ C

∫
D

(1 − |z|2)p′
ρ(z)1−p′

∣∣∣ ∫
D

g(w)
w

1 − z w
µ(dw)

∣∣∣p′

mh(dz)

≥ C

∫
D

ρ(z)1−p′
∣∣∣ ∫

S(α)

1 − |z|2
1 − z w

µ(dw)
∣∣∣p′

mh(dz) .

Now

Re
1 − |z|2
1 − z w

=
1 − |z|2
|1 − z w|2 Re (1 − z w) ≥ 0

and, if z ∈ S̃(α), w ∈ S(z) ∩ S(α) and θ = arg(z w), then

Re
1 − |z|2
1 − z w

=
(1 − |z|2) (1 − |z| |w| cos θ)

(1 − |z| |w|)2 + 2 |z| |w| (1 − cos θ)

≥ C
(1 − |z|2)2

max {(1 − |z|2)2, θ2}
≥ δ

> 0

with δ independent of α.
Inserting this estimate in the previous chain of inequalities, we obtain

(33)
( ∑

β≥α

µ(β)
)p′/q′

≥ C

∫
S̃(α)

ρ(z)1−p′(∫
S(z)∩S(α)

µ(dw)
)p′

mh(dz) .
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We can split the integral over S̃(α) as∫
S̃(α)

µ(S(z) ∩ S(α))p′
ρ(z)1−p′

mh(dz)

=
∑
β≥α

∫
β

µ(S(z) ∩ S(α))p′
ρ(z)1−p′

mh(dz)

+
∫

S̃(α)\S(α)

µ(S(z) ∩ S(α))p′
ρ(z)1−p′

mh(dz) .

Since the Whitney boxes β and S̃(α)\S(α) have comparable hyperbolic
area, and ρ is essentially constant in each box, the latter is

≥ C
∑
β≥α

ρ(β)1−p′( ∑
γ>β

µ(γ)
)p′

+ Cρ(α)1−p′( ∑
γ≥α

µ(γ)
)p′

≥
∑
β≥α

ρ(β)1−p′( ∑
γ≥β

µ(γ)
)p′

.

Hence, ( ∑
β≥α

µ(β)
)p′/q′

≥ C
∑
β≥α

ρ(β)1−p′( ∑
γ≥β

µ(γ)
)p′

as wished.
When α = o, a similar argument works.

Proof of Theorem 2. By Theorems 1, 3 and 4, when p < q, (2) is
equivalent to (7), which is equivalent to (4).

4.2. Multipliers.

Let ρ be a positive weight on D and 1 < p < ∞. Given ϕ, a function
holomorphic in D, we say that ϕ is a multiplier of Bp(ρ) if

(34) f �−→ ϕf

is a bounded operator from Bp(ρ) into itself. We write ‖ϕ‖ = ‖ϕ‖M for
the norm of the multiplication operator, and ϕ ∈ M = M(Bp(ρ)).

The characterization of the multipliers of Bp is given in [Wang] and
[Wu], following the argument given in [Ste] for p = 2. We show that their
results extend to allow admissible weights.
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Theorem 15. Let 1 < p < ∞, let ρ be an admissible weight. Let ϕ be a
holomorphic function on D and define

µϕ(dz) = (1 − |z|)p−2 |ϕ′(z)|pρ(z)m(dz) = (δ ϕ)p ρmh(dz) .

Then, ϕ ∈ M(Bp(ρ)) if and only if ϕ is bounded and µϕ is a Carleson
measure for Bp(ρ).

Proof. Let λz, z ∈ D, be the point evaluation in D. Since ρ is admissible,
Lemma 14 λz is bounded on Bp(ρ). Suppose ϕ ∈ M(Bp(ρ)). Let (Bp(ρ))∗

be the dual space of Bp(ρ) and 〈·, ·〉 be the duality product. Then, if f is
holomorphic in D,

|ϕ(z)f(z)| = |〈ϕf, λz〉|

≤ ‖ϕf‖Bp(ρ) ‖λz‖(Bp(ρ))∗

≤ ‖ϕ‖M ‖f‖Bp(ρ) ‖λz‖(Bp(ρ))∗ .

Taking the supremum of |f(z)| over those f for which ‖f‖Bp(ρ) = 1,

|ϕ(z)| ‖λz‖(Bp(ρ))∗ ≤ ‖ϕ‖M ‖λz‖(Bp(ρ))∗

and hence ϕ is bounded.
If ϕ is a multiplier of Bp(ρ) then

(∫
D

|(ϕf)′(z)|p (1 − |z|2)p−2 ρ(z)m(dz)
)1/p

≤ C‖f‖Bp(ρ) .

Because ϕ is bounded this implies

(∫
D

|f(z)|p|ϕ′(z)|p (1 − |z|2)p−2ρ(z)m(dz)
)1/p

≤ C ‖f‖Bp(ρ)

i.e., µϕ is Carleson for Bp(ρ).
Conversely, if ϕ is bounded, then

|ϕ(0)f(0)| ≤ ‖ϕ‖L∞ |f(0)| .

Also, if µϕ is Carleson for Bp(ρ), then

(∫
D

|f(z)|p|ϕ′(z)|p (1 − |z|2)p−2 ρ(z)m(dz)
)1/p

≤ C ‖f‖p
Bp(ρ)
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and, since ϕ is bounded,

(∫
D

|ϕ(z)f ′(z)|p(1 − |z|2)p−2ρ(z)m(dz)
)1/p

≤ C
(∫

D

|f ′(z)|p (1 − |z|2)p−2ρ(z)m(dz)
)1/p

≤ C ‖f‖p
Bp(ρ) .

Combining these we find

(∫
D

|
(
ϕf

)′
(z)|p(1 − |z|2)p−2 ρ(z)m(dz)

)1/p

≤ C ‖f‖p
Bp(ρ)

i.e., µφ is Carleson for Bp(ρ).

5. Various characterizations of Carleson measures.

In this section we compare various noncapacitary conditions on
weights and give some examples. In Proposition 16 we show that con-
dition (3) in Theorem 1 and the discrete condition (31) in Theorem 12 are
equivalent, hence completing the proof of Theorem 1. Next, when p = q,
we look at the relation between the more complicated condition (2) and
the single box condition. In Proposition 18, we show that a single box
condition is implied by the more complicated (3), but, by Theorem 19, is
generally not equivalent to it. In the third part we compare our conditions
with those of [KS] which we recall as Theorem 21. We show in Propo-
sition 22 that, for purely measure theoretic reasons, the condition (3) on
the measure µ implies the corresponding condition in [KS]. However, in
fact, the two conditions are equivalent and that implies the equivalence of
a range of conditions for a measure to be a Carleson measure. That is in
Corollary 23. The issue of constructing families of examples of admissible
weights is addressed in Lemma 17 and Proposition 20 and in the final sub-
section. Those examples may be familiar to experts but we include them
in the hope they will help illuminate the general landscape and the vari-
ous comparisons being discussed. In Proposition 24, we give a conformally
invariant characterization of the Carleson measures for Bp(ρ).
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5.1. Equivalence of the discrete and continuous con-
ditions.

To complete the proof of Theorem 1 we need to show that the condi-
tion (3) in Theorem 1 and condition (31) in Theorem 12, which a priori
might depend on the Whitney decomposition of the disc, are in fact equiv-
alent.

Proposition 16. Let ρ be a regular weight. Then (3) and (31) are equiv-
alent. Namely, for a measure µ on D the following are equivalent :

1)

(35)
(∫

S̃(a)

ρ(z)−p′/p(µ(S(z) ∩ S(a)))p′
mh(dz)

)q′/p′

≤ C1 µ(S(a)) ,

for some constant C1 independent of a ∈ D.

2)

(36)
( ∑

β≥α

( ∑
γ≥β

µ(γ)
)p′

ρ(β)1−p′)q′/p′

≤ C
∑
β≥α

µ(β) ,

for some constant C independent of α ∈ T2.

Proof. Suppose that (35) holds for µ. We specialize the inequality to
I = I(α). Then

µ(S(I)) =
∑
β≥α

µ(β)

while, since ρ is regular,

(∫
S(I)

ρ(z)−p′/p (µ(S(z) ∩ S(a)))p′
mh(dz)

)q′/p′

∼
( ∑

β≥α

ρ(β)1−p′
∫

β

µ(S(z) ∩ S(I))p′
mh(dz)

)q′/p′

≥ c
( ∑

β≥α

ρ(β)1−p′( ∑
γ≥β

µ(γ)
)p′)q′/p′

.
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The same reasoning shows that

(∫
S̃(I)\S(I)

ρ(z)−p′/p (µ(S(z) ∩ S(a)))p′
mh(dz)

)q′/p′

≥
(
ρ(α)1−p′( ∑

γ≥α

µ(γ)
)p′)q′/p′

.

As a consequence, (36) holds.
Suppose, conversely, that (36) holds. Hence by Theorem 3, (36) holds

for µI = µ|S(I), with a smaller constant. Thus, if α is such that S̃(I) ⊆
S(α),

Cµ(S(I)) ≥
( ∑

β≥α

ρ(β)1−p′( ∑
γ≥β

µI(γ)
)p′)q′/p′

=
( ∑

β≥α

ρ(β)1−p′
µI(S(β))p′)q′/p′

.

Now, if z ∈ β, it is easy to see that

µI(S(z)) ≤ µI(S(β)) + µI(S(β1)) + µI(S(β2)) ,

where β1 and β2 are boxes at the same level of β and adjacent to it. We
can then estimate the previous sum by

≥ c
( ∑

β≥α

ρ(β)1−p′
∫

β

µI(S(z))p′
mh(dz)

)q′/p′

≥ c
(∫

S(I)

µI(S(z))p′

ρ(z)p′−1(1 − |z|2)2
)q′/p′

.

Condition (35) now follows from this chain of inequalities and from the
fact that, again by (36),

Cµ(S(α)) ≥
∫

S̃(I)\S(I)

µI(S(z))p′

ρ(z)p′−1(1 − |z|2)2 .
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5.2. Relation with the Carleson condition.

Let ρα(z) = (1− |z|2)α and let Dα be the associated scale of Dirichlet
spaces; Dα = B2(ρα(z)). In 1980 Stegenga [Ste] characterized the Carleson
measures for Dα, α ≥ 0. His result includes Carleson’s classical theorem
for H2 ≡ D1 and a characterization of Carleson measures for the Bergman
space A2 ≡ D2. When α ≥ 1, a necessary and sufficient condition for µ to
be Carleson for Dα is the single box condition

(37) µ(S(z)) ρ−1
α (z) ≤ C .

For the ρα, (37) is equivalent to

(38) µ(S(z))
∫

[0,z]

ρ−1
α (w)

|dw|
1 − |w|2 ≤ C

and it is this latter version which we want for later comparison. Stegenga
also found that in the range α < 1, (38) is not sufficient anymore, although
still necessary. He gave a necessary and sufficient condition for µ to be a
Carleson measure for α in the range [0, 1) in terms of a capacitary estimate.
His result was later generalized by I. Verbitsky, [Ve], J. Wang [Wang] and
Wu [Wu] to Bp, 1 < p < ∞.

We now show that this failure of the simple condition (38) is rather
general. Of course our analysis only covers admissible weights. In partic-
ular, in the scale of spaces Dα, our analysis allows −1 < α < 1.

Lemma 17. ρα is an admissible weight if and only if −1 < α < 1.

Proof. We only have to verify the B2 condition. For ρα, that reduces to

(
R

∫ R

0

tα dt
)(

R

∫ R

0

t−α dt
)
≤ CR4

which is satisfied for |α| < 1.

Remark. When α < 0, Dα is contained in the space C(·) of the functions
that are continuous on the closure of the unit disc. Hence, a measure
is Carleson if and only if it is bounded. In particular, condition (35) is
equivalent to the boundedness of µ, which is equivalent to (38).

We now note that an analog of (38) holds in general. We also note in
passing that this proposition indicates that, in the continuous case as well
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as the discrete case, underlying the analysis on Bp(ρ), there is a distance
which depends on ρ.

Proposition 18. Let ρ be a regular weight. If µ satisfies (35), then

(39) µ(S(z))1/p
(∫

[0,z]

ρ(w)1−p′ |dw|
1 − |w|2

)1/p′

≤ C ,

for some constant C, independent of z ∈ D.

Proof. By Proposition 16 and Theorem 3, (35) implies that µ is a Carleson
measure for (I, ρ, p). The result then follows from Proposition 8 and the
regularity of ρ.

Theorem 19. Let 1 < p < ∞, let ρ be an admissible weight on D, and
suppose that ∫ eiθ

0

ρ(w)1−p′ |dw|
1 − |w|2 = ∞ ,

for all eiθ ∈ ∂ D.
Then, there exists a positive measure µ on D such that (39) holds, but

µ is not a Carleson measure for Bp(ρ).

Proof. By Theorem 11 there is a measure, µ, defined on the tree T2 such
that (39) holds, but µ is not a Carleson measure for (I, ρ, p). By Theorem
3 and Theorem 12, µ, thought of as a measure on D, is also not a Carleson
measure for Bp(ρ).

5.3. Comparison with the condition of Kerman and
Sawyer.

In 1984 Kerman and Sawyer [KS] extended some of Stegenga’s results;
giving a necessary and sufficient condition for a measure to be a Carleson
measure that does not make use of capacities. They worked with p = 2
and considered Dirichlet weights on D; ρ of the form ρ(z) = ϕ(1 − |z|)
with 0 ≤ ϕ ≤ 1, and ϕ nondecreasing and concave. For instance, an easy
calculation shows that ρα is a Dirichlet weight if and only if 0 ≤ α ≤ 1.
All Dirichlet weights are regular but they are not all admissible; recall for
instance that ρα is an admissible weight if and only if −1 < α < 1. The
intersection of the two classes is described by the following:
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Proposition 20. Let ρ be a Dirichlet weight, ρ(z) = ϕ(1 − |z|). Then ρ
is admissible if and only if there are constants C > 0, ε ∈ (0, 2), such that

(40) ϕ(2kx) ≤ C (2 − ε)k ϕ(x)

whenever k ≥ 1 is an integer and 2kx ≤ 1.

Proof. Since ϕ is increasing and concave,

ϕ(2x) ∼ ϕ(x)

hence,

R ϕ(R) ∼
∫ R

0

ϕ(t) dt .

Condition B2 then reduces to

(41)
1
R

∫ R

0

ϕ(t)−1 dt ≤ C ϕ(R)−1 .

On the other hand,

∫ R

0

ϕ(t)−1dt =
∞∑

n=0

∫ 2−nR

2−n−1R

ϕ(t)−1dt ∼
∞∑

n=0

2−n R ϕ(2−nR)−1 .

Thus, (41) is equivalent to

(42)
∞∑

n=m

an ≤ Cam ,

where
an = 2−nϕ(2−n) .

It is easy to prove that (42) holds if and only if

(43) am+k ≤ C

(1 + δ)k
am ,

for some δ, C > 0.
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It is clear that (43) implies (42). Conversely, if (42) holds, then

C am ≥
∑
n≥m

an = am +
∑

n≥m+1

an

≥
(
1 +

1
C

) ∑
n≥m+1

an

≥ · · ·

≥
(
1 +

1
C

)k ∑
n≥m+k

an

and (43) follows with δ = 1/C. Now, (43) is a restatement of (40).

Theorem 21. (Kerman, Sawyer [KS]). Let ρ be a Dirichlet weight. Then,
µ is Carleson for Dρ = B2(ρ) if and only if for all arcs I on the boundary
of the unit disk

(44)
∫

I

sup
θ∈J⊆I

µ(S(J))2

ρ(|J |) |J | dθ ≤ Cµ(S(I)) ,

the supremum being taken over all closed arcs J ⊆ I.

Thus by Carleson’s theorem for H2 (i.e., ρ = ρ1) we have that, for
α = 1, (38) is equivalent to (44). On the other hand, for ρ = ρα, 0 ≤ α < 1,
(38) is strictly weaker than (44). In fact, we saw in Theorem 19 that for
this range of α, (38) is strictly weaker than (31) which, by Theorem 12
and Lemma 17, is equivalent to (44). In some sense, then, the condition of
Kerman and Sawyer is intermediate between the simple (38) and the more
complicated (31) in Theorem 12.

Let p = 2 and let ρ be a Dirichlet weight. Because (44) and (35) are,
respectively, necessary and sufficient for a measure µ to be Carleson for
D(ρ), the latter must imply the former. In fact, as we show in the next
proposition, (35) implies (44) is actually a consequence of the inclusion
l1 ⊂ l∞ and holds for each interval I separately. By similar reasoning,
(44) must imply (35). However we don’t know of a simple direct proof
of that implication. (Since this manuscript was completed some further
progress has been made, see [AR].)

Proposition 22. Let ρ be a regular weight on D. If a positive measure µ
satisfies (35), with p = q, then

(45)
∫

I

sup
θ∈I(z)

sup
z∈S(I)

( µ(S(z) ∩ S(I))
ρ(z)1/p |I(z)|1/p′

)p′

dθ ≤ Cµ(S(I)) .
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In particular, if ρ is a regular weight and p = 2, then (35) implies (44).

Proof. If I is an arc on the boundary of D,
∫

S̃(I)

µ(S(z) ∩ S(I))p′

ρ(z)p′−1 m(S(z))
m(dz) ∼

∫
I

B(θ) dθ ,

where

B(θ) =
∫ 1

1−2|I|

µ(S(r eiθ) ∩ S(I))p′

ρ(r eiθ)p′−1(1 − r)2
dr .

Now,

B(θ) =
∞∑

n=0

∫ |I|/2n−1

|I|/2n

µ(S((1 − t) eiθ) ∩ S(I))p′

ρ((1 − t) eiθ)p′−1t2
dt

≥
∞∑

n=0

µ(S((1 − 2−n |I|)eiθ) ∩ S(I))p′

ρ((1 − 2−n |I|) eiθ)p′−1(2−n |I|)2 2−n |I|

≥ sup
n≥0

µ(S((1 − 2−n |I|) eiθ) ∩ S(I))p
′

ρ((1 − 2−n |I|) eiθ)p′−1 2−n |I|

∼ sup
θ∈I(z)

sup
z∈S(I)

µ(S(z) ∩ S(I))p′

ρ(z)p′−1|I(z)| .

Integrating over I with respect to θ and using (35), we obtain (45).

In the other direction, suppose that p = 2 and ρ is an admissible
weight and a Dirichlet weight. Then, if we know (45) holds uniformly for
all intervals I, then the reverse implication holds. This shows that, in some
sense, the inclusion l1 ⊂ l∞ can be reversed in that case. More specifically
set

an(I, θ) =
µ(S((1 − 2−n |I|) eiθ) ∩ S(I))2

ρ((1 − 2−n |I|)eiθ) 2−n |I| .

For 1 ≤ q ≤ ∞ we are interested in the conditions,

(46)

There is a Cq = Cq(ρ, µ) so that for all arcs I ⊂ ∂ D ,

1
|I|

∫
I

( ∞∑
n=0

an(I, θ)q
)1/q

dθ ≤ Cq
1
|I|

∫
I

a0(I, θ) dθ

� Cq
1
|I| µ(S(I)) .
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with the usual interpretation when q = ∞.

Corollary 23. Suppose p = 2, ρ is an admissible weight, and µ is a
measure on D. The following are equivalent :

1) µ is a Carleson measure for B2(ρ).

2) Cq holds for q = 1.

3) Cq holds for some q, 1 ≤ q ≤ ∞.

4) Cq holds for all q, 1 ≤ q ≤ ∞.

5) Cq holds for all q, 1 ≤ q ≤ ∞ and the constants Cq can be chosen
to be independent of q.

6) Cq holds for q = ∞.

Proof. By Theorem 3, 1) implies that µ satisfies (45). We saw in the proof
of the previous proposition that (45) implies 2). By logic and Hölder’s
inequality, 2) implies each of 3), 4), and 5) and each of them implies 6).
By the theorem of Kerman and Sawyer, 6) implies 1).

This corollary is reminiscent of the fact that the space BMO can be
defined using qth power means for any q, 1 ≤ q < ∞. The corollary also
suggests questions such as the following: If these conditions hold then does
it also hold, say, that there is a constant C so that for all arcs I ⊂ ∂ D

1
|I|

∫
I

∞∑
n=0

an(I, θ) dθ ≤ C
1
|I|

∫
I

( ∞∑
n=0

an(I, θ)2
)1/2

dθ .

5.4. The condition of Evans, Harris, and Pick.

In [EHP] Evans, Harris, and Pick show that the weighted Hardy in-
equality holds on a tree, i.e. (5) holds, if and only if µ satisfies a capac-
ity condition thus giving a result which can be seen as a discrete analog
of Luecking’s theorem. It follows of course that their condition must be
equivalent to our condition (6). However we don’t know of a way to show
that equivalence directly.
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5.5. Examples.

In these examples we work with Dirichlet weights and with the nota-
tion of Proposition 20. We will call ϕ admissible if ρ is.

1) Let ϕ(t) = tα logβ (2/t), α, β ∈ . Then ϕ is admissible if and only
if α < 1.

2) More generally, if ϕ(t) = t/ε(t), where ε(t) −→ 0 as t −→ 0, then,
ϕ is admissible if and only if for some C, δ > 0

ε(2−ks) ≤ C ε(s) (1 + δ)−k .

In particular, if, for each α > 0, ϕ(t) = O(t1−α), then ϕ is not admissible.

3) If, for some ε ∈ (0, 1),

lim
t→0

t ϕ′(t)
ϕ(t)

≤ 1 − ε

then ϕ is admissible.

4) There exists a Dirichlet weight ϕ such that, for 0 < t ≤ 1,

t1/2 ≤ ϕ(t) ≤ t1/4

but ϕ is not admissible. This shows that it is not enough to impose a
rough growth condition on ϕ in order to make it admissible.

Here is an outline of the construction of such a ϕ. Let u0 = 1, consider
the straight line tangent to the graph of s = t1/2 at u0 and let w1 <
u0 be the abscissa of the point where the line crosses the graph of s =
t1/4. Consider the other tangent to s = t1/2 passing through (w1, w

1/4
1 ),

let (u1, u
1/2
1 ) be the point where it touches s = t1/2, u1 < w1, and let

(w2, w
1/4
2 ) be the second point where this second line cuts the graph of s =

t1/4. If we iterate this procedure, we find a sequence of points (u0, u
1/2
0 ),

(w1, w
1/4
1 ), (u1, u

1/2
1 ), . . . Let ϕ be the function on [0, 1], whose graph is

the union of the segments joining these points. ϕ is clearly a Dirichlet
weight, taking on values between t1/2 and t1/4.

One easily verifies that wn = 42/3 u
2/3
n (1 + o(1)), as n −→ ∞. If ϕ

is admissible then by Proposition 20, with x = un and 2kx = wn, there
would exist α ∈ (0, 1) and C > 0 such that

log ϕ(wn) − log ϕ(un) ≤ C + α (log wn − log un) .
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(Actually, to do that we need k to be an integer, we leave that technical
adjustment to the reader.) This would imply that

log un

(1
6
− 1

2

)
≤ C + α log un

(2
3
− 1

)
which is absurd.

5.6. A conformally invariant definition of Carleson
measures.

The inequality that defines Carleson measures, (2), is equivalent to a
conformally invariant inequality, the equivalence being non quantitative.

Proposition 24. Given a Borel, probability measure µ on D, a positive
weight ρ on D and q ≥ p, the following are equivalent :

i) µ is a Carleson measure for (Bp(ρ), q), i.e.,

(47)
(∫

D

|f |q dµ
)p/q

≤ C1

(
‖f‖∗p

Bp(ρ) + |f(0)|p
)
.

ii) There exists C2 > 0 such that

(48)
(∫

D

|f − µ(f)|q dµ
)p/q

≤ C2 ‖f‖∗p
Bp(ρ) .

Here, µ(f) denotes the integral of f with respect to µ. Inequality
(48) is conformally invariant in the following sense. If ϕ is a conformal
transformation of D and µ is a measure on D, let ϕ∗µ(E) = µ(ϕ−1(E))
whenever E ⊆ D. Similarly, if ρ is a positive weight on D, let ϕ∗ρ(z) =
ρ(ϕ−1(z)). ϕ∗ is, in both cases, the push-forward operator. Then, if (48)
holds for µ and ρ, it holds, with the same constant, for ϕ∗µ and ϕ∗ρ. Also,
observe that, if µ is a Dirac delta, then (48) holds with C2 = 0, while we
have C1 > 0 in (47).

Proof. (47) implies (48). Applying (47) twice, we have

(∫
D

|f − µ(f)|q dµ
)p/q

≤ C1

(
‖f‖∗p

Bp(ρ) + |f(0) − µ(f)|p
)

≤ C1 (C1 + 1) ‖f‖∗p
Bp(ρ) .
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(48) implies (47). Observe first that (48) implies that

(49)
(∫

D

|f |pdµ
)p/q

≤ C3

(
‖f‖∗p

Bp(ρ) + µ(|f |)p
)

with C3 ≤ 2p−1(C2 + 1). Suppose now that, by contradiction, (49) holds
and (47) does not. Then, there exists a sequence {fn} of functions holo-
morphic in D such that

a) |fn(0)|p + ‖fn‖∗p
Bp(ρ) = 1,

b) µ(|fn|p) ↗ ∞,

c) µ(|fn|p) ≤ Cµ(|fn|)p for some C > 0.

By normal families, we can assume that fn converges uniformly on
compacts to some g such that ‖g‖Bp(ρ) ≤ 1. Let Mn = µ(|fn|) and choose
rn ↗ 1 such that ∫

|z|≤rn

|fn|dµ ≥ Mn

2
.

For fixed s ∈ (0, 1),
fn χ{|z|≤rn}

Mn
−→ 0

as n −→ ∞, uniformly on {|z| ≤ s}. Thus, for n ≥ n(s),∫
|z|≤s

|fn| dµ ≤ 1
4

Mn .

Hence, ∫
s≤|z|≤rn

|fn| dµ ≥ 1
4

Mn

so that

Mp
n

4p
≤

(∫
s≤|z|≤rn

|fn| dµ
)p

≤
∫
|z|<1

|fn|p dµ
(∫

|z|≥s

dµ
)p/p′

i.e.,

µ(|fn|p) ≥
µ(|fn|)p

4pµ(|z| ≥ s)p/p′ .

But this inequality contradicts c), since µ(|z| ≥ s) −→ 0 as s −→ 1.
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6. Applications to discrete analysis.
Let T be a tree, 1 < p < ∞, and let ρ be a positive weight on T . We

define the Besov spaces Bp(ρ) with respect to the root o on T as the set of
the functions Φ : T −→ C such that

Φ = Iφ ,

for some φ ∈ Lp(ρ). We also write Φ′ = φ. The Besov p-norm of Φ ∈ Bp(ρ)
is

‖Φ‖Bp(ρ) = ‖φ‖Lp(ρ) .

This space is a discrete model for the space of holomorphic functions which
we also denoted Bp(ρ). In Theorem 25 and Theorem 26 we will discuss
multipliers and interpolating sequences for Bp(ρ).

We say that a positive measure ν on T is Carleson for Bp(ρ), or,
simply, p-Carleson, if it is Carleson for (I, ρ, p). As in the classical case, ν
is p-Carleson if and only if Bp(ρ) ⊆ Lp(ν) or, equivalently, if

‖Φ‖Lp(ν) ≤ C(ν) ‖Φ‖Bp(ρ) .

A function Ψ : T −→ C is a multiplier of Bp(ρ) if the map

Φ �−→ ΨΦ

is bounded from Bp(ρ) to itself.

Theorem 25. Ψ is a multiplier of Bp(ρ) if and only if Ψ ∈ L∞(T ) and
the measure

(50) ν = |Ψ′|pρ

is a Carleson measure for Bp(ρ).

When we pass from spaces of holomorphic functions on D to this
discrete model, mh(dz) is modeled by counting measure on T . Thus this
result is a complete analog of Theorem 15 in Section 4.

Proof. The derivative ′ satisfies the product rule

(51) (ΨΦ)′(x) = Ψ′(x)Φ(x) + Ψ(x)Φ′(x−) .
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Suppose that Ψ = Iψ is a multiplier for Bp(ρ), fix z ∈ T and consider
Φz = Iδz. By (51), (ΨΦz)′(z) = Ψ(z), hence

ρ(z) = ‖Φz‖Bp(ρ) ≥
1
C

‖(ΨΦz)′‖Lp(ρ) ≥
1
C

ρ(z) |Ψ(z)|

and hence Ψ ∈ L∞(T ). Thus, for general Φ = Iφ ∈ Bp(ρ),

C ‖Φ‖p
Bp(ρ) ≥ ‖ΨΦ‖p

Bp(ρ)

≥
∑
x∈T

|ψ(x)|p |Φ(x)|p ρ(x) − ‖Ψ‖p
L∞(T )

∑
x∈T

|φ(x)|p ρ(x) ,

i.e., ν(x) = |ψ(x)|pρ(x) is a p-Carleson measure.
Conversely, suppose ν(x) is a p-Carleson measure. Then, by (51),

‖ΨΦ‖p
Bp(ρ) ≤ C

∑
x∈T

|ψ(x)|p |Φ(x)|pρ(x) + ‖Ψ‖p
L∞(T ) ‖φ‖

p
Lp(ρ)

≤ C ‖φ‖p
Lp(ρ) = C ‖Φ‖p

Bp(ρ) .

Recall (24); for x, y ∈ T , we have dρ(x, y) =
∑

t∈[x,y] ρ(t)1−p′
and

dρ(x) = dρ(o, x).
Consider a sequence Z ⊂ T . Let ν = νZ be the measure ν =∑

z∈Z dρ(z)1−p δz. Z is interpolating for Bp(ρ) if and only if

Id : Bp(ρ) −→ Lp(νZ)

is bounded and onto. This is equivalent to requiring the same of I :
Lp(ρ) −→ Lp(νZ) or, with a different normalization, the same of the op-
erator Ap from Lp(ρ) to Lp(Z) given by

(52) Apφ(z) = dρ(z)−1/p′Iφ(z) .

We use this formulation in the proof of the next theorem.

Theorem 26. For Z ⊂ T and 1 < p < ∞, the following are equivalent :

1) Z is interpolating for Bp(ρ).

2) νZ is p-Carleson and there is a constant A > 0 such that, for all
z, w ∈ Z, z �= w,

(53) A(dρ(z, w) − ρ(z ∧ w)1−p′
) ≥ dρ(z) .
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We want to rewrite this last condition in a way that emphasizes the
analogy with later results. Suppose ρ ≡ 1. In this case (53) is equivalent
to the requirement that there is are constants A, B > 0 such that, for all
z, w ∈ Z, z �= w,

(54) d(0, z) ≤ Ad(z, w) + B .

The equivalence is straightforward after recalling that, for this ρ, dρ(z, w)
= d(z, w) + 1; and noting that if z �= w then d(z, w) ≥ 1. Thus, for p = 2,
this theorem is a perfect analog of Theorem BMS.

It is also interesting to note that, here as later, our solution to this
interpolation problem is linear.

Proof. First we show that 1) implies 2). νZ must be Carleson by defi-
nition. By the open mapping theorem there is C > 0 such that, for any
z ∈ Z, there exists ψz ∈ Lp(ρ) such that

(55) Iψz(z) = dρ(z)1/p′
δz , ‖ψz‖Lp(ρ) ≤ C .

Hence,

dρ(z)1/p′
= |Iψz(z) − Iψz(w)|

≤
∣∣∣ ∑

z∧w<x≤z

ψz(x) −
∑

z∧w<x≤w

ψz(x)
∣∣∣

≤ ‖ψz‖Lp(ρ)

( ∑
x∈[z,w],x �=z∧w

ρ(x)1−p′)1/p′

≤ C (dρ(z, w) − ρ(z ∧ w)1−p′
)1/p′

.

We now show that (2) implies (1). The proof consists in constructing, for
z ∈ Z, a solution φz to

(56) Iφz = δz , for z ∈ Z

with

(57) ‖φz‖Lp(ρ) ≤ C dρ(z)−1/p′

and in such a way that each x ∈ T belongs to the support of φz for at most
two values of z. This allows us to construct solutions φ ∈ Lp(ρ) to

(58) Iφ(z) = g(z) , z ∈ Z, g ∈ Lp(νZ) .
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In fact, let φ =
∑

z∈Z g(z)φz. Then (58) holds and, using the information
about the overlap of the supports of the φz’s, we have

‖φ‖p
Lp(ρ) =

∑
x∈T

ρ(x)
∣∣∣ ∑

z∈Z

g(z)φz(x)
∣∣∣p

=
∑
x∈T

ρ(x)
∣∣∣ ∑

z:φz(x) �=0

g(z)φz(x)
∣∣∣p

≤ 2p
∑
z∈Z

g(z)
∑

x:φz(x) �=0

φz(x)pρ(x)

≤ C ‖g‖p
Lp(νZ) .

Thus the map g �−→ φ gives an explicit right inverse to Ap = d(·)−1/p′I.
In order to show we can find the required functions φz such that (56)

and (57) hold we endow Z with a suitable tree-like structure. Assume, for
convenience, that o ∈ Z. For any X ⊂ T let X̃ be he smallest subtree of
T containing X; i.e., X̃ = {w ∈ T : w ≤ x, for some x ∈ X}. We now
proceed inductively. Let z0 = o, Z̃0 = {o}. Now suppose that Zn−1 and
Z̃n−1 have already been formed. Pick zn ∈ Zc

n−1, the relative complement
of Zn−1, such that

(59) dρ(o, zn) = min {dρ(o, z) : z ∈ Zc
n−1} .

Set Zn = Zn−1 ∪ {zn}. One easily verifies that Zn ⊆ Zn+1,
⋃

n≥0 Zn = Z,
and

⋃
n≥0 Z̃n = Z̃.

Let ξn = max {x ∈ Z̃n−1 : x ≤ zn}. The map zn �−→ ξn = γ(zn)
defines a function γ : Z −→ T . We call γ(z) the landing point of z on
Z̃. We denote by γ+(z) the immediate successor of γ(z) on the geodesic
[γ(z), z].

Lemma 27. Let A be the constant in (53). Then

(60) dρ(z, γ+(z)) ≥ (2A)−1dρ(z) .

Proof. (60) is obvious for z = o. Otherwise, z = zn for some n and
γ(z) ∈ [0, zj ] for some j < n. By the construction of Zn, dρ(zn) ≥ dρ(zj).
Hence,

2 dρ(zn, γ+(zn)) ≥ dρ(zn, γ+(zn)) + dρ(γ+(zn), zj)

= d+(zn, zj) − ρ(zn ∧ zj)1−p′

≥ A−1dρ(zn) .
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Let z ∈ Z. φz will constructed by an algorithm.

Proof. For w ∈ Z, w �= o, consider the geodesic segment [γ+(w), w].
We divide [γ+(w), w] = a(w) ∪ b(w) into two geodesic segments a(w) =
[γ+(w), λ(w)], b(w) = [λ(w), w], such that

dρ(γ+(w), λ(w))
dρ(γ+(w), w)

≥ 1
2

and
dρ(λ(w), w)
dρ(γ+(w), w)

≥ 1
2

.

This is always possible. Observe that a(w) and b(w) have just the point
λ(w) in common.

By construction,

Z̃ = {o} ∪
( ⋃

w �=o,w∈Z

(a(w) ∪ b(w))
)

.

Set φz = 0 on [o, λ(z)) and let φz = dρ(λ(z), z)−1 on b(z). Hence

(61) Iφz(z) = 1 .

Suppose that w1 ∈ Z is such that γ(w1) ∈ b(z). Let φz = α1 on a(w1),
where α1 is chosen so that

α1 dρ(γ+(w1), λ(w1)) + Iφz(γ(w1)) = 0 .

Thus

(62) Iφz(w1) = 0 .

Assume now that φz has been defined on

Wn−1(z) = b(z) ∪ a(w1) ∪ · · · ∪ a(wn−1) ,

a subtree of T , in such a way that

(63) Iφz(z) = 1 , Iφz(w1) = · · · = Iφz(wn−1) = 0 .

If wn ∈ Z\{z, w1, . . . , wn−1} lands on Wn−1(z), i.e. γ(wn) ∈ Wn−1(z),
then define φz = αn on a(wn), where

(64) αn dρ(γ+(wn), λ(wn)) + Iφz(γ(wn)) = 0 .

As a consequence, Iφz(wn) = 0.
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Iterate the procedure. Observe that it could run for infinitely many
n. If x ∈ T and φz(x) has not been defined by the algorithm then set
φz(x) = 0. By (63) for n = 0, 1, . . . , we have that Iφz(w) = δz(w), w ∈ Z,
which is (56).

Now consider the intersection of the supports of φz and φw, z �= w.
First note that if supp(φz) ∩ supp(φw) �= ∅, then the intersection consists
of one point, which is either λ(z) or λ(w). To see this let z = zn, where
the indexing is that given by (59). If w = zm, m > n, and supp(φz) ∩
supp(φw) �= ∅, then w lands on the support of φz and the intersection of
the two supports is x = λ(w). Now note that x in T cannot also be the
landing point λ(ξ) for some other ξ ∈ Z. If a third point ξ = zl, l > m, n,
were such that λ(ξ) = λ(w), then ξ would land on the support of φw and
so,

λ(ξ) > γ(ξ) = λ(w) = λ(ξ)

which is absurd. Combining these observations shows that no x ∈ T is in
the support of more than two φz, as required for (58).

In order to obtain the estimate (57) for ‖φz‖Lp(ρ), we need two more
lemmas.

Lemma 28. There is a constant C > 0 such that, if z ∈ Z, x ∈ (γ(w), w],
w > λ(z), then

(65) |φz(x)| ≤ C dρ(w)−1 .

Also, φz(x) = 0 otherwise.

Proof of the Lemma. By construction, φz is monotone on sets of the
form (γ(w), w]. An induction argument then shows that 0 ≤ φz(x) ≤ 1.
Thus, by

|φz(x)| ≤ dρ(γ+(w), λ(w))−1 ∼ d(w, γ(w)) ≤ d(w)−1

if x ∈ (γ(w), w], by Lemma 27. The same reasoning applies if x ∈ (γ(z), z].
The other x’s are never considered in the procedure for constructing

φz, hence for them φz(x) = 0.

Lemma 29. If νZ is p-Carleson, then there is C > 0 such that, for all
x ∈ T ,

(66)
∑

z∈S(x)∩Z

dρ(z)1−p ≤ C dρ(x)1−p .



Carleson measures for analytic Besov spaces 491

Proof of the Lemma. This lemma is a specialization of Proposition 8
to the case of µ = νZ .

From Lemma 28 and Lemma 29

‖φz‖p
Lp(ρ) =

∑
w≥λ(z)

w∈Z

∑
x∈(γ(w),w]

|φz(x)|pρ(x)

≤ C
∑

w≥λ(z)

w∈Z

dρ(w, γ(w))
dρ(w)p

≤ C dρ(ν(z))1−p

≤ C dρ(z)1−p ,

where the last inequality follows from Lemma 27. This shows the second
statement in (57), hence the theorem.

7. Interpolating sequences in analytic Besov spaces.

In this section we consider results about interpolating sequences for
the analytic Besov spaces. For simplicity, we only consider unweighted
Besov spaces. First we consider the case of B2, where the problem was
partially solved by Bishop and, independently, was completely solved by
Marshall and Sundberg. In Theorem 31, we characterize those Cantor-like
sequences that are interpolating for B2. For p ∈ (1,∞), we examine some
sequences with a high degree of symmetry in Theorem 33. The results we
obtain for B2 are sharper than those we obtain for p �= 2. In particular,
we think that Theorem 33 is off target for p > 2.

(After this manuscript was completed we received a preprint from
B. Böe [Boe] in which he has solved the analogous problem in which he
characterizes the interpolating sequences for Bp, 1 < p < ∞.)

For 1 ≤ p < ∞ and Z a sequence in D, we say that Z is interpolating
for Bp if the operator Tp defined for za ∈ Z by

(67) Tpf(za) =
(
1 + log

1
1 − |za|2

)−1/p′

f(za)

is a bounded map from Bp onto Lp(Z). The normalizing factor in (67)
insures Tp maps Bp to L∞(Z).
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Lemma 30. ([Zhu, Exercise 5.17]). If f ∈ Bp, then f is Hölder continuous
with exponent p′−1 with respect to the hyperbolic metric. In fact

(68) |f(z) − f(w)| ≤ C ‖f‖
B∗

p
dh(z, w)1/p′

.

7.1. p = 2.

Bishop and Marshall-Sundberg have proved the following:

Theorem BMS ([MS]). A sequence Z ⊂ D is interpolating for B2 if and
only if the following two conditions hold

1) The measure µZ given by

(69) µZ =
∑

za∈Z

(
1 + log

1
1 − |za|2

)−1

δza

is Carleson for B2.

2) There are A, B > 0 so that whenever za �= zb are points in Z

(70) d(0, za) ≤ Ad(za, zb) + B .

This separation condition (70) is of the same form as the condition
(54) which we saw in the discrete case. There are a number of equiva-
lent reformulations of these conditions. It is easy to check that one gets
equivalent conditions if, say, the left hand side of (70) is replaced by the
more symmetric d(0, za)+ d(0, zb), or if the origin (or the root) is replaced
with an alternative distinguished reference point. In [MS] the condition is
presented in the following form. Recall the pseudohyperbolic distance on
D which is defined by

ρ(z, w) =
∣∣∣ z − w

1 − w z

∣∣∣ .
Then (70) is equivalent to there being a constant γ > 0 so that whenever
za �= zb are points in Z

1 − ρ2(zn, zm) ≤ (1 − ρ2(0, zm))γ .

This equivalence of this and (70) follows from the relation between the
hyperbolic and pseudohyperbolic distances and straightforward estimates.
Marshall and Sundberg also offer another, intriguing, condition which is
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again equivalent, but where the equivalence, although again elementary, is
less straightforward. Recall that the reproducing kernel for the Dirichlet
space is given by

kz(w) = 1 + log
1

1 − w z
.

It follows that for each z, k̃z = kz(z)−1/2kz is a unit vector in B2. Hence
the inner product of any two such functions has modulus at most one.
[MS, Lemma 19] states that (70) is equivalent to the following: there is a
σ < 1 so that whenever za �= zb are points in Z

|〈k̃za
, k̃zb

〉| ≤ σ .

The analysis in [MS] uses Stegenga’s capacitary characterization of Car-
leson measures. It is our hope that our alternative description can be
used to give an alternative, easier, approach; and one which extends to
p �= 2. However we have not yet been able to do that. For now, we only
have partial results. We work with Cantor-like sequences because they are
very well suited for an approach through trees and also because, from Ste-
genga’s pioneering paper, they are a recurrent theme in counterexamples
in the theory of the analytic Besov spaces [Ste], [MS], [Wang]. See [A] for
an approach based on the explicit estimation of capacities.

Let {dn : n ≥ 0} be an increasing sequence in [0, 1), d0 = 0. We
construct a sequence Z as follows

Z = {z(n, m) : n ≥ 0, 1 ≤ m ≤ 2m} ,

where
|z(n, m)| = Rn = (1 − e1−dn)1/2

and arg(z(n, m)) is defined by the following procedure: Let I0 = [0, π]
and, for n ≥ 1, let In

1 , . . . , In
2n be the intervals at the nth stage in the

construction of a Cantor set in which the initial segment is I0 and

m(In
j ) = π(1 − Rn) , j = 1, . . . , 2n .

Let arg(z(n, 1)) < · · · < arg(z(n, 2n)) be the centers of such intervals.

Theorem 31. Let Z be a Cantor-like sequence just described. Z is an
interpolating sequence if and only if, for some C > 0 independent of N ,

(71)
∑
n≥N

2n d−1
n ≤ C 2N d−1

N
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and, for some ε > 0 independent of n,

(72) dn+1 ≥ (1 + ε) dn .

We begin by showing that (71) completely solves the problem of the
boundedness of T .

Proposition 32. T is bounded if and only if (71) holds.

Proof. Recall the tree T2 considered in Section 3. Let Z̃ ⊂ T2 be a
sequence so that α = (n, m) ∈ Z̃ if there is z ∈ Z with z ∈ ∆α.

The following assertions are elementary.

a) Except at the origin, Z̃ is a tree-like sequence in T2, having the
structure of a homogeneous tree of degree 2,

b) Denote by d distance in T2 and by dh the hyperbolic distance on
D. We have, recalling the notation dρ introduced just before Proposition
10,

dn ∼ 1 + log
1

1 − |z(n, m)|2

∼ dh(0, z(n, m)) + 1

∼ d((n, m), o) + 1

∼ d1((n, m)) .

It follows from b) that in (71) we can replace dn by d((n, ·)) = d((n, ·)+1)
by changing the constant C. Thus, by a) and Proposition 10, we have that
(71) holds if and only if µZ̃ =

∑
z∈Z̃ d(z)−1 δz is Carleson for (I, 2). In

turn, this is equivalent to the fact that T is bounded, by Proposition 5
and by b) once again.

Proof of the Theorem. Given Proposition 32 and Theorem BMS, it
remains to show that (72) is equivalent to condition ii). This easily follows
from an estimate of the hyperbolic distance between two points z(n, m)
and z(n + 1, l) and the fact that if either ii) or (72) hold then

| arg(z(n, m)) − arg(z(n, m + 1))|

is large if compared with e−dn .
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7.2. 1 < p <∞ .

We now discuss some applications of Theorem 1 and Proposition 5 to
the determination of interpolating sequences for Bp, 1 < p < ∞. We work
with sequences that are “radially symmetric” in a sense that will be clear
below. We use a Neumann series argument introduced, in the study of
interpolating sequences for the Bergman space, by R. Rochberg in [R]. See
also [Wang] for results for the Besov spaces obtained by a similar argument.

Let λ > 1 and c0 > 0 be fixed. Consider a symmetric sequence Z ⊂ D

given by

(73) Z = {z(n, m) : n ≥ 0, 1 ≤ m ≤ 2n} ,

where
z(n, m) = Rn eiθn,m , 1 ≤ m ≤ 2n

and
Rn = (1 − e−c0λn

)1/2 , θn,m = 2−n 2π
(
m +

1
2

)
.

For fixed n ≥ 0, there are 2n points of Z having Euclidean distance Rn

from the center of D and they are equally spaced on the circle {|z| = Rn}.

Theorem 33. Let Z be the symmetric sequence defined in (73).

1) Let 1 < p ≤ 2. If

(74) λ > 21/(p−1)

and c0 = c0(p, λ) is large enough, then Z is interpolating for Bp.

2) Let 2 < p. If

(75) λ > 21/(p′−1)

and c0 = c0(p, C) is large enough, then Z is interpolating for Bp.

3) If Z is interpolating for Bp, then λ > 21/(p−1).

For comparison with the examples at the end of Section 3 note that
(74) is equivalent to

p > 1 +
log 2
log λ

.

The theorem is relatively sharp in the range 1 < p ≤ 2. For p = 2, using
Theorem BMS and Proposition 34 below, it is easy to see that the sequence
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Z in 1) is, in fact, interpolating for all c0 > 0. We think that this is the
case for all p. We suspect the result for p > 2 is less sharp and we discuss
that briefly after the proof.

The proof of 1) and 2) relies on the construction of a right inverse for
Tp, i.e. of a bounded, linear map R : Lp(Z) −→ Bp such that Tp ◦R =Id.
Hence, the solution f ∈ Bp that we provide for the equation

Tpf = g , g ∈ Lp(Z) ,

is linear. The solution of the interpolating problem given in [MS] is indirect
and we do not know if it implicitly contains a linear construction.

The first step in the proof of Theorem 33 is the characterization of
those λ for which Tp is bounded.

Proposition 34. Let 1 < p < ∞ and let Z as above. Tp is bounded from
Bp to Lp(Z) if and only if (74) holds.

Proof. Observe first that, by definition, Tp is bounded from Bp to Lp(Z)
if and only if the measure

(76) µZ =
∑

za∈Z

(
1 + log

1
1 − |za|2

)1−p

δza

is a Carleson measure for Bp. By Theorem 1 and Proposition 5, we can
discretize µZ and study an analogous problem on T2, the tree defined in
(8).

Consider the sequence Z ′ ⊂ T2 defined as follows. ξa ∈ Z ′ if and only
if there exists za ∈ Z such that za ∈ ∆ξa

. If |za| = Rn, by an estimate of
the hyperbolic distance and the properties of the Whitney decomposition,

1 + c0 λn = 1 + log
1

1 − |za|2
∼ 1 + dh(za, 0) ∼ 1 + d(ξa, o) .

As a consequence, 
{za ∈ Z : za ∈ ∆α} is bounded by a constant inde-
pendent of α ∈ T2. These estimates also show that d(ξa)1−p is comparable
with µZ(∆ξa

). Hence, by Proposition 5, µZ is p-Carleson if and only if the
measure

(77) νZ =
∑

ξa∈Z′
d(ξa)1−p δξa

is Carleson for (I, p).
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If νZ is Carleson for (I, p) then it is bounded and hence

∞ > νZ(T2) ∼
∑
n≥0

2nλ(1−p)n .

This forces λ > 21/(p−1).
Suppose, conversely, that λ > 21/(p−1). To show that νZ is Carleson

for (I, p) we verify that it satisfies (6). Let β ∈ T2 and let ξ(β) be an
element ξ in Z ′ ∩ S(β) such that d(ξ) is minimum. We claim that

(78) νZ(S(β)) ∼ d(ξ(β))1−p .

Then, if α ∈ T2,∑
β∈S(α)

|νZ(S(β))|p′ ≤ C
∑

β∈S(α)

d(ξ(β))(1−p)p′

= C
∑

ξ∈S(α)∩Z′

{β ∈ S(α) : ξ = ξ(β)} d(ξ(β))(1−p)p′

≤ C
∑

ξ∈S(α)∩Z′
d(ξ)1−p

= CνZ(S(α)) .

Hence (78) holds and the proposition is proved modulo the claim.
We only have to verify (78). Suppose that d(β, o) = k. Then⋃

γ∈S(β)

∆γ =
{
z ∈ D : 1 − 2−k < |z| < 1, θ(β) < arg(z) ≤ θ(β) +

2π
2k

}
,

where θ(β) is an angle depending on β, by (8). Fix n ≥ 0 and consider
Zn, the set of those ξ ∈ Z ′ corresponding to some za ∈ Z with |za| = Rn.
The terms of Z corresponding to a fixed n are uniformly spaced. Hence,
if Rn ≥ 1 − 2−k then [2n−k] ≤ 
{ξ ∈ Zn ∩ S(β)} ≤ [2n−k] + 1. Now,
Rn ≥ 1−2−k if n > C1 log k+C2, where C1 and C2 are positive constants.
If k is large enough, we can find n so that C1 log k + C2 ≤ n ≤ k. In that
case ξ(β) is unique and it will correspond to za0 with |za0 | = Rn0 , where
n0 is one of such n’s. We can now estimate

νZ(S(β)) ≤ C
∑

n≥n0

([2n−k] + 1)λ(1−p)n

≤ C
∑

n≥n0

2n−n0 λ(1−p)n

≤ C λ(1−p)n0

≤ C d(ξ(β))1−p .
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This shows (78) for k ≥ k0. By increasing the constant we can force (78)
for all k.

Proof of Theorem 33. (3) follows immediately from the only if part of
Proposition 34.

To prove 1) and 2), we construct a right inverse R for Tp. We look for
a map

R0 : Lp(Z) −→ Bp

such that

(79) ‖Tp ◦ R0 − Id‖Lp(Z) < 1 ,

where Id is the identity. Then, Tp◦R0 is invertible and R = R0◦(Tp◦R0)−1

is a right inverse for Tp.
We define R0 acting on sequences

a = {an,m : n ≥ 0, 1 ≤ m ≤ 2n} ∈ Lp(Z)

by the formula

(80) R0(a)(z) =
∑
n≥0

1≤m≤2n

an,m fn,m(z) ,

where

fn,m(z) =
(
1 + log

1
1 − |zn,m|2

)−1/p(
1 + log

1
1 − zn,m z

)
.

This is a reasonable guess for an approximate right inverse for Tp, since
the function

φn,m(z) = 1 + log
1

1 − zn,m z

is the reproducing kernel of Bp at zn,m and ‖fn,m‖Bp
∼ 1 independently

of n, m.
One easily verifies that R∗

0, the adjoint of R0, is the map of Bp′ to
Lp′

(Z) given by

(81) R∗
0f = Tp′f .

Our assumptions (74) and (75) in the theorem imply, by Proposition 34,
that R0 = T ∗

p′ is bounded from Lp(Z) to Bp.
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The operator Tp ◦ R0 : Lp(Z) −→ Lp(Z) is given by

Tp ◦ R0(a)(n, m) =
∑
j≥0

1≤i≤2j

aj,i
fi,j(zn,m)(

1 + log
1

1 − |zn,m|2
)1/p′ .

Thus,

(82) (Tp ◦ R0 − Id)(a)(n, m) =
∑
j≥0

1≤i≤2j

(j,i) �=(n,m)

A((n, m), (j, i)) a(j, i) ,

where

(83)

A((n, m), (j, i))

=
1 + log

1
1 − zj,i zn,m(

1 + log
1

1 − |zn,m|2
)1/p′(

1 + log
1

1 − |zj,i|2
)1/p

.

In order to verify that (79) holds, we need an estimate for A((n, m), (j, i)).

Lemma 35. There exists C = C(λ) > 0 independent of c0 such that

(84) A((n, m), (j, i)) ≤ C

c0

max {n, j}
λn/p′+j/p

.

Proof of the Lemma. We denote by C a constant that does not depend
on c0. Let z = R eiθ, 0 < R < 1, |θ| ≤ π. Then, |1 − R eiθ|2 = (1 − R)2 +
2R (1 − cos θ), and hence |1 − R eiθ| ≥ C R1/2θ. Now, zj,i zn,m = R eiθ,
with θ ≥ π min {2−j , 2−n} and R ≥ 1 − e−c0d1 if n, j ≥ 0, (n, m) �= (j, i).
Thus,

∣∣∣1 + log
1

1 − zj,izn,m

∣∣∣ ≤ C + log
∣∣∣ 1
1 − zj,i zn,m

∣∣∣
≤ C

(
max {n, j} + log

1
1 − e−c0d1

)
.

Estimate (84) follows.
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In order to prove (79), we first show that it suffices to test

A = Tp ◦ R0 − Id

on spherically symmetric sequences; those as ∈ Lp(Z) such that as(n, m) =
as(n) is independent of m. To see this, let a ∈ Lp(Z) and define

as(n) = as(n, m) =
1
2n

2n∑
1

a(n, m) .

Then,

(85) A a = A as and ‖as‖Lp(Z) ≤ ‖a‖Lp(Z) .

The first assertion is a straightforward calculation, while the second follows
from Jensen’s inequality. By (85),

‖A a‖Lp(Z)

‖a‖Lp(Z)
≤

‖A as‖Lp(Z)

‖as‖Lp(Z)

as claimed.
Now let a = as be a radially symmetric sequence.

‖Aa‖p
Lp(Z) =

∑
n,m

∣∣∣∑
j,i

A((n, m), (j, i))a(j)
∣∣∣p

by (84) ≤ C c−p
0

∑
n

2n
∣∣∣ ∑

j,i

max {n, j}λ−(n/p′+j/p)a(j)
∣∣∣p

= C c−p
0

∑
n

2nλ(1−p)n
∣∣∣∑

j

2jmax {n, j}λ−j/p a(j)
∣∣∣p

≤ C c−p
0

∑
n

2nλ(1−p)n
(∑

j

2j |a(j)|p
)

·
(∑

j

2jλ(1−p′)j max {n, j}p′)p/p′

by Hölder’s inequality ≤ C ‖a‖p
Lp(Z)c

−p
0

∑
n

2n λ(1−p)n np

·
(∑

j

2jλ(1−p′)jjp′)p/p′

.
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By (74), (75) and properties of the geometric series,

∑
n

2n λ(1−p)n np
(∑

j

2j λ(1−p′)j jp′)p/p′

≤ C(λ) .

Thus (79) holds if c0 is large enough.

Corollary 36. If the assumptions of Theorem 33, 1), 2) hold then Tp has
a linear the right inverse.

Using our proof we can prove that a sequence is interpolating for Bp

if and only if we can prove it is interpolating for Bp′ . Specifically, we use
estimates for

‖Tp ◦ R0 − Id‖Lp(Z) = ‖Tp′ ◦ T ∗
p − Id‖Lp′ (Z) .

Hence, if our proof that Z is interpolating works for p, it holds for p′ as
well. This is why the sufficient conditions in Theorem 33 involve min {p, p′}
and hence has a different appearance for 1 < p ≤ 2 and p > 2. This is in
contrast with Theorem 26 about interpolating sequences for (I, p), which
is proved by different methods.

In [Wang], Wang presents a necessary conditions for a sequence to be
interpolating for Bp, He conjectured that the condition is sufficient as well.

Theorem W ([Wang]). If a sequence Z ⊂ D is interpolating for Bp, then

1) µZ is a Carleson measure for B p and

2) there are A, B > 0 so that whenever za �= zb are points in Z

d(0, za) ≤ Ad(za, zb) + B .

If 1 < p ≤ 2, the sequences that we consider in Theorem 33 are
interpolating only if they satisfy the conditions of Theorem W, and they
are interpolating if they satisfy the conditions and c0 is large enough. This
fact goes in the direction of Wang’s conjecture. On the other hand, by
Proposition 34, if Wang’s conjecture were true, the sequences we consider
in Theorem 33 would be interpolating under the assumption (74), even in
the case 2 ≤ p. (The result of B. Böe mentioned at the beginning of this
section shows that this conjecture is correct.)
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8. Carleson measures for Hardy spaces on trees.

As we have mentioned, the Carleson measures for the Hardy space
H2 = B2(1−|z|2) are characterized by the single box condition (37) (with
α = 1). That condition is strictly weaker than condition (3), the appropri-
ate examples are given, for instance, in the proof of Theorem 11. In this
section we see that those facts have exact analogs in the discrete context.

First, in analogy with the continuous case, we are going to define
H2(T ), the Hardy space of harmonic functions on the dyadic tree, T . Next,
we show that the Hardy space can be characterized as the space of those
harmonic functions Φ on T such that Φ = Iϕ and ϕ belongs to L2(ρ), where
ρ is a suitable weight on T . We then show that the Carleson measures for
H2(T ) can be characterized by a single box condition analogous to the one
used for the classical Hardy space. We then observe that this condition is
not equivalent to our condition (6). More precisely, there are measures µ
on T that are Carleson for H2(T ), but that are not Carleson for (I, ρ, p).

This shows that for some weights adding structure to the functions
(i.e., harmonicity) affects the set of the Carleson measures in the discrete
case just as it does in the continuous case. It is easy to prove similar
results concerning the Carleson measures for the weighted Bergman spaces
on trees.

Let T = T2 be the dyadic tree, with root o. We say that x, y ∈ T are
adjacent, x ∼ y, if d(x, y) = 1. A function Φ on T is harmonic if it satisfies
the mean value property

(86) Φ(x) =
1
3

∑
y∼x

Φ(y)

(with 3 replaced by 2 if x = o.) The tree T has a boundary, Ω, which is de-
fined as follows. Ω is the set of all infinite geodesics ω = (ω0, ω1, . . . , ωn . . . )
starting at ω0 = o. We can extend the partial order on T to T = T ∪Ω by
letting x ≤ ω whenever x ∈ ω, so that ω can be thought of as a point at
infinity of T . This way we extend the operation x ∧ y to T .

One could think of (T, d) as of a metaphor for the unit disk in the com-
plex plane, endowed with its hyperbolic metric, and continue the metaphor
by thinking of Ω as the boundary of the disk. On T we have a Euclidean
metric, de,

de(x, x) = 0 , de(x, y) =
2
3

2−d(x∧y) , if x �= y, x, y ∈ T ,

with respect to which T and Ω are compact and have diameter 1. For x ∈ T
let S(x) be the closure of S(x) with respect to de and I(x) = S(x) ∩ Ω.
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The sets I(x) are a basis for the topology on Ω induced by de. On Ω, there
is a Borel measure

m(I(x)) =
2
3

2−d(x,0) = diam(I(x)) .

From now on we will use the norm notation

|x| = d(x, o) .

Let 1 ≤ p ≤ ∞. The Hardy space Hp(T ) is the set of functions Φ that
are harmonic on T for which

‖Φ‖p = sup
n≥1

( 1
2n

∑
d(x,o)=n

|Φ(x)|p
)1/p

< ∞ .

From now on we only consider 1 < p < ∞. It is well known that

Φ(ω) = lim
n→∞Φ(ωn)

exists m-almost everywhere and that

‖Φ‖p
p = lim

n→∞
1
2n

∑
d(x,o)=n

|Φ(x)|p =
∫

Ω

|Φ(ω)|p .

We say that a measure µ on T is Carleson for Hp(T ) if

(87)
∑
x∈T

|Φ(x)|p µ(x) ≤ C(µ) ‖Φ‖p
p ,

for all harmonic functions Φ on T , with a constant C(µ) that only depends
on µ. The monographs [DB] or [So], and the articles [Cart], [KPT], and [T]
develop the theory of the harmonic functions on trees and the associated
Hardy spaces in several directions.

We characterize the Carleson measures for Hp(T ), following the proof
in [St, II.2], for the classical case.

Theorem 37. Let 1 < p < ∞. µ is Carleson for Hp(T ) if and only if,
for some C1(µ) that only depends on µ,

(88) µ(S(x)) ≤ C1(µ)m(I(x)) .



504 N. Arcozzi, R. Rochberg and E. Sawyer

Proof. Suppose that µ is Carleson for Hp(T ). Let z ∈ T\{o}, and suppose
that z− is the predecessor of z. Define Φz : T −→ R by

Φz(ξ) =




1 − 2−k−1 , if ξ ≥ z, d(ξ, z) = k ,

−(1 − 2−k−1) , if ξ ∧ z = z−, d(ξ, z−) = k + 1 ,

0 , otherwise .

Φz is harmonic on T . A straightforward calculation shows that

‖Φz‖p
p ∼ 2−|z|

and that ∑
x∈T

|Φz(x)|pµ(x) ≥ 1
2

µ(S(z))

hence, that (88) holds.

Proof. In the proof of the converse, it will be convenient to work with
a sequence of finite trees that, in some sense, approximate T . Let Tn =
{x ∈ T : |x| ≤ n} and Ωn = ∂Tn = {x ∈ Tn : |x| = n}. For x ∈ Ωn, set
λn(x) = 2−n. λn is the harmonic measure on Ωn. If f : Ωn −→ R, the
maximal function of f , Mnf : Ωn → R, is defined by

Mf(x) = sup
o≤z≤x

1
2n−|z|

∑
y∈In(z)

|f(y)| .

Here, In(z) = {y ∈ Ωn : y ≥ z}. Standard arguments show that there
exists a constant Cp only depending on p, in particular independent of n,
such that

(89) ‖Mf‖Lp(λn) ≤ Cp ‖f‖Lp(λn) .

A function Φ on Tn is harmonic if and only if its restriction to Tn\Ωn

satisfies the mean value property. The following lemma says that the
maximal function dominates the Poisson integral.

Lemma 38. There exists a constant C > 0, independent of n, such that,
if Φ is harmonic on Tn and f = Φ|Ωn

,

(90) sup
o≤z≤x

|Φ(z)| ≤ Mf(x) .
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Proof of Lemma. Harmonic functions on trees have the following prob-
abilistic interpretation [Cart], which is analogous to Kakutani’s theorem
on harmonic functions in R

n [Du]. Let X = (X1, . . . , Xn, . . . ) be the sym-
metric, one step random walk on T ; i.e., the random particle in position
x ∈ T at time k ≥ 0 moves with probability 1/3 to each of its neighbors
at time k + 1. In terms of conditional probabilities, if y ∼ x,

P(Xk+1 = y |Xk = x) =
1
3

.

Define the stopping time

τn = min {k ≥ 0 : Xk ∈ Ωn} .

Then, if |z| ≤ n and Φ, f are as above,

(91) Φ(z) = E
zf(Tτ ) .

Denote the points in the geodesic [o, z] from z to o by o = w|z| < w|z|−1 <
· · · < w0 = z. It follows from the strong Markov property of the process
X that there exist numbers cj > 0, depending only on j, such that

(92) E
zf(Xτ ) =

|z|∑
j=0

c
wj

j E(f(Xτ ) |X ∈ S(wj)) .

In fact,

cj = P
wj (Xk ∈ S(wj) for all k ≥ 0)

j∏
l=0

P
wl−1(there exists k : Xk = wl) .

Taking f ≡ 1, since the process X is transient,

|z|∑
j=0

cj = 1 .

By the symmetries of X,

(93) E
wj (f(Xτ ) |X ∈ S(wj)) =

1
2n−|wj |

∑
y∈In(wj)

f(y) .
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Hence,

Mf(z) = sup
j

1
2n−|wj |

∑
y∈In(wj)

|f(y)| ≥ |Φ(z)|

by (91), (92) and the fact that
∑|z|

j=0 cj = 1.

Lemma 8 can be rephrased as follows. Let Ψ(z) = |Φ(z)| and Θ(x) =
Mf(x), z ∈ Tn, x ∈ Ωn. Then

(94) max
o≤z≤x

Ψ(z) ≤ Θ(x) .

The next lemma can be proved by again following the argument of
Stein in [St, II.2].

Lemma 39. If Ψ and Θ are positive functions on Tn and Ωn, respectively,
such that (94) holds and if µ is a positive measure on T such that (88) holds,
then

(95) µ(z ∈ Tn : Ψ(z) > α) ≤ C(µ)λn(x ∈ Ωn : Θ(x) > α) .

Suppose, now, that µ satisfies (88). By Lemma 8, (94), Lemma 39
and (89) we have

∑
|z|≤n

|Φ(z)|p µ(z) ≤ C(µ)
1
2n

∑
|x|=n

|Mf(x)|p ≤ Cp
1
2n

∑
|x|=n

|Φ(z)|p .

Recall that f = fn = Φ|Ωn
. If we let n −→ ∞, we obtain that µ is

Carleson.

For Φ ∈ H2(T ), there exists a unique ϕ such that Φ = Iϕ, ϕ(z) =
Φ(z) − Φ(z−). We again use the notation ϕ = DΦ. Let L2(2−|z|) be the
L2 space corresponding to the measure ν(z) = 2−|z| on T .

Theorem 40. We have the following equivalence of norms on H2(T )

(96) ‖Φ‖2 ∼ ‖DΦ‖L2(2−|z|) .

As a consequence, we have the following corollary.
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Corollary 41. There exists a measure µ on T such that µ is not Carleson
for (I, 2, 2−|z|), but the inequality ‖Φ‖L2(µ) ≤ C ‖Φ‖2, i.e.,

(97)
∑
x∈T

|Φ(x)|p µ(x) ≤ C
∑
z∈T

|ϕ(z)|p 2−|z| ,

holds for all harmonic functions ϕ.

Namely, the requirement that ϕ be harmonic strictly enlarges the set
of those µ for which (97) holds. As mentioned this is analogous to the
fact that the condition 83) does not characterizes the class of the Carleson
measures for the analytic Hardy space.

Proof of the Corollary. By Theorem 37, the Carleson measures for
H2(T ) are characterized by (88), which is equivalent to (19) in Section 3.
Also, Theorem 40 says that the Carleson measures for H2(T ) are exactly
those ϕ for which (88) holds whenever ϕ is harmonic. On the other hand, in
Section 3, Theorem 11, we showed how to construct measures µ for which
(88) holds, that are not, nonetheless, Carleson measures for (I, 2, 2−|z|);
that is, such that (97) fails for some function.

Proof of the Theorem. We only give an outline of the proof. For z ∈ T ,
z �= o, let wj , j = 1, 2, be such that wj > z, d(wj , z) = 1. define ϕz as
follows

ϕz(ξ) =




(3
2

)1/2

2|z|/2 2−d(z,ζ) , if ξ ≥ w1 ,

−
(3

2

)1/2

2|z|/2 2−d(z,ζ) , if ξ ≥ w2 ,

and let ϕz(ξ) = 0 otherwise. The function ϕz is harmonic on T and it is,
in fact, the Poisson integral of the function fz : Ω −→ R that has values
((3/2) 2)1/2 2|z|/2 on I(w1), −(3/2)1/2 2|z|/2 on I(w2), and 0 otherwise. For
z = o, we can similarly define two functions ϕo1 and ϕo2 in such a way
that the set {ϕz : z ∈ T, z �= o} ∪ {ϕo1, ϕo2, 1} is a complete orthonormal
system for H2(T ). Observe that 1 = Iδo, where δo is the characteristic
function of the set {o}.

Now let Φ ∈ H2(T ),

Φ = a0 +
∑

j=1,2

aoj Iϕoj +
∑

z∈T\{o}
az Iϕz .

Then,
‖Φ‖2

2 ∼ |a0|2 +
∑

j=1,2

|aoj |2 +
∑

z∈T\{o}
|az|2
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and Φ = Iϕ, where

‖ϕ‖2
L2(2−|z|)

∼ |a0|2 +
∑

j=1,2

|aoj |2 +
∑

z∈T\{o}
|az|2

∑
j≥0

2−(j+|z|) 2j 22((j+|z|)/2) ∼ ‖Φ‖2
2

as claimed.

References.

[Ad] Adams, D. R., A trace inequality for generalized potentials. Studia Math.

48 (1973), 99-105.

[A] Arcozzi, N., Carleson measures for analytic Besov spaces: the upper

triangle case. Preprint, 2000.

[AR] Arcozzi, N., Rochberg, R., Topics in dyadic Dirichlet spaces. Pre-

print, 2000.
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