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Lebesgue points for Sobolev functions
on metric spaces

Juha Kinnunen and Visa Latvala

Abstract

Our main objective is to study the pointwise behaviour of Sobolev
functions on a metric measure space. We prove that a Sobolev func-
tion has Lebesgue points outside a set of capacity zero if the mea-
sure is doubling. This result seems to be new even for the weighted
Sobolev spaces on Euclidean spaces. The crucial ingredient of our
argument is a maximal function related to discrete convolution ap-
proximations. In particular, we do not use the Besicovitch covering
theorem, extension theorems or representation formulas for Sobolev
functions.

1. Introduction

By the classical Lebesgue differentiation theorem almost every point is a
Lebesgue point for a locally integrable function. It is natural to expect that
if the function is more regular, the exceptional set is smaller. The main
objective of our note is to study Lebesgue points for Sobolev functions on
a metric measure space. The concept of capacity plays a key role in under-
standing the pointwise behaviour of Sobolev functions and it is a substitute
for the measure in Lusin and Egorov type theorems. Sobolev functions are
defined only up to a set of measure zero, but they can be defined pointwise
up to a set of capacity zero. Indeed, every Sobolev function has a unique
quasicontinuous representative for which there is a set of arbitrarily small
capacity so that the function is continuous when restricted to the comple-
ment of the exceptional set. Our main theorem shows that Sobolev functions
on a doubling metric measure space have Lebesgue points outside a set of
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capacity zero and the quasicontinuous representative can be obtained by
taking the limit of integral averages over small balls.

Recently there has been some interest in defining the first order Sobolev
spaces in a very general context, see [3], [6], [8], [12], [13] and [21]. Our
argument is based on a general principle and with suitable modifications
it applies to any of the definitions. Our result seems to be new even for
weighted Sobolev spaces on Euclidean spaces defined in [6] and [12]. The
result has applications to the regularity theory for minimizers of variational
integrals on metric measure spaces, see [2].

Standard proofs of refinements of Lebesgue’s theorem are based on a
capacitary weak type estimate for the Hardy-Littlewood maximal function,
see [5], [7], [15], [19] or [22]. This estimate is usually proved by using the
Besicovitch covering theorem, extension results or representation formulas
for Sobolev functions. We do not have these tools available. In the classical
case we can also use the fact that the Hardy-Littlewood maximal operator is
bounded in the Sobolev space, see [16]. However, examples in [1] show that
the Hardy-Littlewood maximal operator does not have the required regu-
larity properties in metric spaces. Our proof is based on a construction of
a maximal function which is related to discrete convolution approximations
of the original function. The defined discrete maximal operator is smoother
than the standard Hardy-Littlewood maximal operator and it can be used
as a test function for the capacity.

For simplicity, we have chosen the definition of Sobolev spaces on a metric
measure space due to Haj�lasz [8]. A general outline of the theory and further
references can be found in [11]. However, it is easy to modify our argument
to cover the spaces defined in [3], [6], [12], [13] and [21]. Then we have to
assume, in addition, that the space supports a Poincaré inequality. We leave
the details for the interested reader.

Acknowledgements. The authors wish to thank Professor Juha Heinonen
for fruitful discussions. A part of the research was done when the authors
visited the Mittag-Leffler Institute. The authors wish to thank the Academy
of Finland and the Institute for the support.

2. Sobolev spaces on metric spaces

In this section we recall the definition due to Haj�lasz [8] of the first order
Sobolev space on an arbitrary metric measure space. Let (X, d) be a metric
space and let µ be a non-negative Borel regular outer measure on X. In the
following, we keep the metric measure space (X, d, µ) fixed, and for short, we
denote it by X. The Lebesgue space Lp(X) with 1 < p < ∞ is the Banach
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space of all µ−a.e. defined µ−measurable functions u : X → [−∞,∞] with
the norm

‖u‖Lp(X) =
(∫

X

|u|p dµ
)1/p

.

Let 1 < p ≤ ∞ and suppose that u ∈ Lp(X). We denote by D(u) the
set of all µ−measurable functions gu : X → [0,∞] such that

(2.1) |u(x) − u(y)| ≤ d(x, y)
(
gu(x) + gu(y)

)
for every x, y ∈ X \ N , x �= y, with µ(N) = 0. In the metric setting,
instead of having the gradient, we have the whole set D(u) of maximal
gradients of u. A function u ∈ Lp(X) belongs to the Sobolev space M1,p(X)
if D(u)∩Lp(X) �= ∅. The Sobolev space M1,p(X) is equipped with the norm

(2.2) ‖u‖M1,p(X) =
(‖u‖p

Lp(X) + ‖u‖p
L1,p(X)

)1/p
,

where

(2.3) ‖u‖L1,p(X) = inf
{‖g‖Lp(X) : g ∈ D(u) ∩ Lp(X)

}
.

We recall some basic properties of the Sobolev space M1,p(X). If X = R
n

with the Euclidean metric and the Lebesgue measure, then

M1,p(Rn) = W 1,p(Rn), 1 < p ≤ ∞.

Moreover, the norms are comparable (see [8]). Here W 1,p(Rn) is the first
order Sobolev space of functions in Lp(Rn), whose first distributional deriva-
tives belong to Lp(Rn) with the norm

‖u‖W 1,p(Rn) =
(‖u‖p

Lp(Rn) + ‖Du‖p
Lp(Rn)

)1/p
.

Indeed, if u ∈ W 1,p(Rn), then we have the pointwise inequality

|u(x) − u(y)| ≤ c|x − y|(M |Du|(x) + M |Du|(y)
)

for Lebesgue almost every x, y ∈ R
n. Here M |Du| is the Hardy-Littlewood

maximal function of |Du|. The Hardy-Littlewood maximal function theorem
implies that the maximal operator is bounded in Lp(Rn) when 1 < p ≤ ∞.
This shows that M |Du| ∈ D(u) ∩ Lp(Rn) and hence W 1,p(Rn) ⊂ M1,p(Rn).
The reverse inclusion follows from the characterization of W 1,p(Rn) with the
integrated difference quotients. Since the maximal operator is not bounded
in L1(Rn) we exclude the case p = 1 in the definition. This also suggests
that gu ∈ D(u) corresponds to the maximal function of the gradient of u
rather than the gradient itself.



688 J. Kinnunen and V. Latvala

The Sobolev space M1,p(X) with the norm (2.2) is a Banach space, see
Theorem 3 in [8]. By Theorem 5 in [8] Lipschitz continuous functions are
dense in M1,p(X) and hence M1,p(X) can be characterized as the completion
of C(X) ∩ M1,p(X) with respect to the norm (2.2).

If u ∈ M1,p(X) and gu ∈ D(u), then the Poincaré inequality

(2.4)

∫
B(x,r)

∣∣u − uB(x,r)

∣∣ dµ ≤ c r

∫
B(x,r)

gu dµ

holds for every x ∈ X and r > 0. Here we use the standard notation

uB(x,r) =

∫
B(x,r)

u dµ =
1

µ(B(x, r))

∫
B(x,r)

u dµ

and B(x, r) denotes the open ball with the center x and the radius r > 0. The
Poincaré inequality is easily proved by integrating the pointwise inequality
(2.1) twice over the ball.

It is clear that if gu ∈ D(u) and gv ∈ D(v), then gu + gv ∈ D(u + v).
Moreover, it follows directly from (2.1) and the triangle inequality that if
u ∈ M1,p(X), then |u| ∈ M1,p(X) and that D(u) ⊂ D(|u|). The following
lemma is a version of the Leibniz differentiation rule, see Lemma 5.20 in [9].

Lemma 2.5 Let u ∈ M1,p(X) and φ be a bounded Lipschitz function. Then
uφ ∈ M1,p(X). Moreover, if L is the Lipschitz constant of φ and E ⊂ X
such that φ = 0 in X \ E, then(

gu‖φ‖∞ + L|u|)χE ∈ D(uφ) ∩ Lp(X)

for every gu ∈ D(u) ∩ Lp(X).

Proof. A straightforward computation shows that

|u(x)φ(x) − u(y)φ(y)| ≤ d(x, y)
((

gu(x) + gu(y)
)|φ(x)| + L|u(y)|)

and

|u(x)φ(x) − u(y)φ(y)| ≤ d(x, y)
((

gu(x) + gu(y)
)|φ(y)| + L|u(x)|).

The claim follows from these inequalities easily. �
It is also clear that the space M1,p(X) is closed under taking maximum

and minimum over finitely many functions. The following simple lemma
is a useful tool in showing that the supremum of countably many Sobolev
functions belongs to the Sobolev space under some conditions.
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Lemma 2.6 Suppose that ui, i = 1, 2, . . . , are µ−measurable functions, let
gi ∈ D(ui), i = 1, 2, . . . , and denote g = supi gi and u = supi ui. Then
g ∈ D(u) provided u < ∞ µ−almost everywhere.

Proof. Let x, y ∈ X \ N with u(y) ≤ u(x) < ∞. Here N is the union of
exceptional sets for the functions ui as in (2.1). Let ε > 0 and choose i such
that u(x) < ui(x) + ε. Since u(y) ≥ ui(y), we obtain

|u(x) − u(y)| = u(x) − u(y) ≤ ui(x) + ε − ui(y)

≤ d(x, y)
(
gi(x) + gi(y)

)
+ ε ≤ d(x, y)

(
g(x) + g(y)

)
+ ε.

Letting ε → 0 we obtain the result. �

2.7 Sobolev embeddings. A metric measure space X is said to be dou-
bling if there is a constant cµ ≥ 1 so that

(2.8) µ(B(z, 2r)) ≤ cµµ(B(z, r))

for every open ball B(z, r) in X. The constant cµ in (2.8) is called the
doubling constant of µ. Note that an iteration of the doubling property
implies, that if B(y,R) is a ball in X, z ∈ B(y,R) and 0 < r ≤ R < ∞,
then

(2.9)
µ(B(z, r))

µ(B(y,R))
≥ c

( r

R

)Q

for some c = c(cµ) and Q = log cµ/ log 2. The exponent Q serves as a
counterpart of dimension related to the measure and, for example, in R

n

with the Lebesgue measure Q is equal to the dimension n.

A result of [10] (see also Theorem 5.1 in [11]) shows that in a doubling
measure space a Poincaré inequality implies a Sobolev-Poincaré inequality.
More precisely, if 1 < p < Q and 1 ≤ κ < Q/(Q−p), there is c = c(p, κ, cµ) >
0 such that

(2.10)
(∫

B(z,r)

|u − uB(z,r)|κp dµ
)1/(κp)

≤ cr
(∫

B(z,5r)

gp
u dµ

)1/p

for every gu ∈ D(u) ∩ Lp(X). If p > Q, then

(2.11) |u(x) − u(y)| ≤ crQ/pd(x, y)1−Q/p
(∫

B(z,5r)

gp
u dµ

)1/p

for every x, y ∈ B(z, r) \ N with µ(N) = 0 and gu ∈ D(u) ∩ Lp(X). In
particular, this implies that, after a redefinition on a set of measure zero,
functions in M1,p(X) with p > Q are Hölder continuous on bounded subsets
of X. See also [9]. In the borderline case p = Q there is an exponential
estimate, but we do not need it here. These are the counterparts of Sobolev
embedding theorems on a metric measure space.
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3. Maximal operator on Sobolev spaces

Let r > 0. We are interested in approximating the function u at the scale
of 3r. We begin by constructing a family of balls which cover the space and
which do not overlap too much. Indeed, there is a family of balls B(xi, r),
i = 1, 2, . . . , such that

X ⊂
∞⋃
i=1

B(xi, r)

and ∞∑
i=1

χB(xi,6r) ≤ c < ∞.

This means that the dilated balls B(xi, 6r) are of bounded overlap. The
constant c depends only on the doubling constant cµ and, in particular, it is
independent of r.

Then we construct a partition of unity subordinate to the cover {B(xi, r)}
of X. There is a family of functions φi, i = 1, 2, . . . , on X such that
0 ≤ φi ≤ 1, φi = 0 on X \B(xi, 6r), φi ≥ c on B(xi, 3r), φi is Lipschitz with
constant c/ri with c depending only on the doubling constant, and

∞∑
i=1

φi = 1

on X. The partition of unity can be constructed by first choosing auxiliary
cutoff functions φ̃i so that 0 ≤ φ̃i ≤ 1, φ̃i = 0 on X \ B(xi, 6r), φ̃i = 1 on

B(xi, 3r) and each φ̃i is Lipschitz with constant c/r. We can for example take

φ̃i(x) =




1, x ∈ B(xi, 3r),

2 − d(x, xi)

3r
, x ∈ B(xi, 6r) \ B(xi, 3r),

0, x ∈ X \ B(xi, 6r).

Then we can define the functions φi, i = 1, 2, . . . , in the partition of unity by

φi(x) =
φ̃i(x)∑∞

j=1 φ̃j(x)
.

It is not hard to see that the defined functions satisfy the required properties.

Now we are ready to define the approximation of u at the scale of 3r by
setting

ur(x) =

∞∑
i=1

φi(x)uB(xi,3r)
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for every x ∈ X. Sometimes ur is called the discrete convolution of u.
The partition of unity and the discrete convolution are standard tools in
harmonic analysis on homogeneous spaces, see for example [4] and [18]. See
also pages 290–292 of [20].

Let rj, j = 1, 2, . . . , be an enumeration of the positive rationals. For
every radius rj we choose a covering {B(xi, rj)}, i = 1, 2, . . . , of X as above.
Observe that for each radius there are many possible choices for the covering
but we simply take one of those. We define the discrete maximal function
related to the coverings {B(xi, rj)}, i, j = 1, 2, . . . , by

M∗u(x) = sup
j

|u|rj
(x)

for every x ∈ X. We emphasize the fact that the defined maximal operator
depends on the chosen coverings. This does not matter, since we prove and
use estimates which are independent of the coverings.

As a supremum of continuous functions, the discrete maximal function
is lower semicontinuous and hence measurable. We observe that the defined
maximal function is equivalent to the Hardy-Littlewood maximal function

Mu(x) = sup
r>0

∫
B(x,r)

|u| dµ,

which is a commonly used tool in analysis.

Lemma 3.1 There is a constant c ≥ 1, which depends only on the doubling
constant, such that

c−1Mu(x) ≤ M∗u(x) ≤ cMu(x)

for every x ∈ X.

Proof. We begin by proving the second inequality. Let x ∈ X and rj be a
positive rational number. Since φi = 0 on X \ B(xi, 6rj) and B(xi, 3rj) ⊂
B(x, 9rj) for every x ∈ B(xi, 6rj), we have by the doubling condition (2.8)
that

|u|rj
(x) =

∞∑
i=1

φi(x)|u|B(xi,3rj)

≤
∞∑
i=1

φi(x)
µ(B(x, 9rj))

µ(B(xi, 3rj))

∫
B(x,9rj)

|u| dµ ≤ cMu(x),

where c depends only on the doubling constant cµ. The second inequality
follows by taking the supremum on the left side.
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To prove the first inequality we observe that for each x ∈ X there exists
i = ix such that x ∈ B(xi, rj). This implies that B(x, rj) ⊂ B(xi, 2rj) and
hence ∫

B(x,rj)

|u| dµ ≤ c

∫
B(xi,3rj)

|u| dµ

≤ cφi(x)

∫
B(xi,3rj)

|u| dµ ≤ cM∗u(x).

In the second inequality we used the fact that φi ≥ c on B(xi, rj). Again
the claim follows by taking the supremum on the left side. �

By the Hardy-Littlewood maximal function theorem for doubling mea-
sures (see [4]) we see that the Hardy-Littlewood maximal operator is bound-
ed on Lp(X) when 1 < p ≤ ∞ and maps L1(X) into the weak L1(X). Since
the maximal operators are comparable we conclude that the same results
hold for the discrete maximal operator M∗. In particular, there is a con-
stant c = c(p, cµ) > 0 such that

(3.2) ‖M∗u‖Lp(X) ≤ c‖Mu‖Lp(X) ≤ c‖u‖Lp(X)

whenever p > 1.

Our goal is to show that the operator M∗ preserves the smoothness of
the function in the sense that it is a bounded operator in M1,p(X). We begin
by proving the corresponding result in a frozen scale.

Lemma 3.3 Suppose that u ∈ M1,p(X) with p > 1 and let r > 0. Then
ur ∈ M1,p(X) and

cMgu ∈ D(ur) ∩ Lp(X)

for every gu∈D(u)∩Lp(X). Here c depends only on the doubling constant cµ.

Proof. We have

ur(x) =
∞∑
i=1

φi(x)uB(xi,3r) = u(x) +
∞∑
i=1

φi(x)(uB(xi,3r) − u(x)).

Observe that at each x the sum is only over finitely many balls so that the
convergence of the series is clear. This implies that

gu +

∞∑
i=1

gφi(uB(xi,3r)−u) ∈ D(ur),
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where by Lemma 2.5 we have(c

r
|u − uB(xi,3r)| + gu

)
χB(xi,6r) ∈ D(φi(uB(xi,3r) − u)).

Here we also used the fact that 0 ≤ φi ≤ 1 for every i = 1, 2, . . . From this
we conclude that

(3.4) gu +

∞∑
i=1

(c

r
|u − uB(xi,3r)| + gu

)
χB(xi,6r) ∈ D(ur).

Let x ∈ B(xi, 6r). Then B(xi, 3r) ⊂ B(x, 9r) and

(3.5) |u(x) − uB(xi,3r)| ≤ |u(x) − uB(x,9r)| + |uB(x,9r) − uB(xi,3r)|.
We estimate the second term on the right side by the Poincaré inequality
(2.4) and the doubling condition (2.8) as

|uB(x,9r) − uB(xi,3r)| ≤
∫

B(xi,3r)

|u − uB(x,9r)| dµ

≤ c

∫
B(x,9r)

|u − uB(x,9r)| dµ ≤ cr

∫
B(x,9r)

gu dµ.

The first term on the right side of (3.5) is estimated by a standard telescoping
argument. Since µ-almost every point is a Lebesgue point for u, we have

|u(x) − uB(x,9r)| ≤
∞∑

j=0

|uB(x,32−jr) − uB(x,31−jr)|

≤
∞∑

j=0

∫
B(x,31−jr)

|u − uB(x,32−jr)| dµ

≤ c
∞∑

j=0

∫
B(x,32−jr)

|u − uB(x,32−jr)| dµ

≤ c
∞∑

j=0

32−jr

∫
B(x,32−jr)

gu dµ ≤ crMgu(x)

for µ-almost every x ∈ X. Here we used the Poincaré inequality and the
doubling condition again.

Hence by (3.5) and the definition of the Hardy-Littlewood maximal func-
tion we have

|u(x) − uB(xi,3r)| ≤ cr

∫
B(x,9r)

gu dµ + crMgu(x) ≤ crMgu(x)

for µ-almost every x ∈ X.
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We observe that gu(x) ≤ Mgu(x) for µ-almost every x ∈ X by the
Lebesgue density theorem for doubling measures and using (3.4) we see
that cMgu ∈ D(ur) with c depending only on the doubling constant. The
maximal function theorem shows that there is c = c(p, cµ) > 0 such that

‖Mgu‖Lp(X) ≤ c‖gu‖Lp(X)

and hence cMgu ∈ D(ur) ∩ Lp(X) for p > 1. By Lemma 3.1 we have
ur ≤ cMu from which we conclude that ur ∈ Lp(X) by the maximal function
theorem. This completes the proof. �

Now we are ready to conclude that the maximal operator M∗ preserves
the Sobolev space.

Theorem 3.6 Suppose that u ∈ M1,p(X) with p > 1. Then M∗u ∈ M1,p(X)
and

cMgu ∈ D(M∗u) ∩ Lp(X)

where gu ∈ D(u) ∩ Lp(X) and c > 0 depends only on the doubling constant.

Proof. By (3.2) we see that M∗u ∈ Lp(X) and, in particular, M∗u < ∞
µ-almost everywhere. The claim follows directly from Lemma 2.6, since
cMgu ∈ D(urj

) ⊂ D(|u|rj
) for every j = 1, 2, . . . �

Remarks 3.7

(1) Since the maximal operators M∗ and M are equivalent by Lemma 3.1,
we see that we can replace the Hardy-Littlewood maximal operator in
the claims of Lemma 3.3 and Theorem 3.6 by M∗.

(2) By Theorem 3.6 and the Hardy-Littlewood maximal theorem we con-
clude that the discrete maximal operator M∗ is bounded in M1,p(X).

(3) Classical maximal function arguments show that ur → u pointwise
µ-almost everywhere as r → 0. A similar argument as in the proof of
Lemma 3.3 shows that ur → u in M1,p(X) as r → 0. Hence the discrete
convolution approximates the function also in the Sobolev norm.

4. Lebesgue theorem for Sobolev functions

There is a natural capacity in the Sobolev space. For 1 < p < ∞, the Sobolev
p-capacity of the set E ⊂ X is the number

Cp(E) = inf
{‖u‖p

M1,p(X) : u ∈ A(E)
}
,

where

A(E) =
{
u ∈ M1,p(X) : u ≥ 1 on a neighbourhood of E

}
.
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If A(E) = ∅, we set Cp(E) = ∞. The Sobolev capacity is a monotone
and countably subadditive set function, see [17]. It is easy to see (Remark
3.3 in [17]) that the Sobolev capacity is an outer capacity, which means that

Cp(E) = inf{Cp(O) O ⊃ E, O open}.

The capacity measures the exceptional sets for Sobolev functions. To tell
what we mean by this we need a definition. A function uX → [−∞,∞] is p-
quasicontinuous in X if for every ε > 0 there is a set E such that Cp(E) < ε
and the restriction of u to X \E is continuous. By outer regularity, we may
assume that E is open. Functions in M1,p(X) are defined only up to a set
of measure zero, but the following result (Corollary 3.7 in [17]) shows that
we may talk about the values of Sobolev functions outside a set of capacity
zero.

Theorem 4.1 For each u ∈ M1,p(X) there is a p-quasicontinuous function
v ∈ M1,p(X) such that u = v µ-a.e. in X.

Moreover, the quasicontinuous representative is unique in the sense that
if two quasicontinuous functions coincide µ-almost everywhere, then they
actually coincide outside a set of capacity zero. For a very nice proof of this
we refer to [14].

Our objective is to show that the quasicontinuous representative can be
obtained explicitely by looking at the integral averages of the function over
small balls. We begin by proving a measure theoretic lemma. Roughly
speaking it says that the capacity of the set where an integrable function is
large is small. The proof is an easy modification of the corresponding result
for Hausdorff measures, see for example Theorem 3 on page 77 of [5]. Since
we do not know the measure of the ball, we do not get the Hausdorff measure
estimate. The key point is that we have an estimate for the capacity of a
ball. By ([17], Theorem 4.6) there is a constant c = c(p, cµ) such that

(4.2) Cp

(
B(x, r)

) ≤ c r−pµ
(
B(x, r)

)
, 0 < r ≤ 1.

The proof of (4.2) is not difficult: We simply test the capacity by a Lipschitz
cutoff function which vanishes outside the ball B(x, 2r).

Lemma 4.3 Let 1 < p < ∞, suppose that g ∈ Lp(X) with g ≥ 0, and define

E =
{

x ∈ X : lim sup
r→0

rp

∫
B(x,r)

gp dµ > 0
}

.

Then Cp(E) = 0.
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Proof. Let ε > 0 and

Eε =
{

x ∈ X : lim sup
r→0

rp

∫
B(x,r)

gp dµ > ε
}
.

We show that Cp(Eε) = 0 for every ε > 0, then the claim follows by subad-
ditivity. Let 0 < δ < 1. For every x ∈ Eε there is rx with 0 < rx < δ such
that

rp
x

∫
B(x,rx)

gp dµ > ε.

By the Vitali covering theorem (see [4]), there exists a subfamily of countably
many pairwise disjoint balls B(xi, ri), i = 1, 2, . . . , such that

Eε ⊂
∞⋃
i=1

B(xi, 5ri).

Hence by subadditivity of the capacity, estimate (4.2) and the doubling
condition we have

Cp(Eε) ≤
∞∑
i=1

Cp(B(xi, 5ri)) ≤ c

∞∑
i=1

(5ri)
−pµ(B(xi, 5ri))

≤ c

∞∑
i=1

r−p
i µ(B(xi, ri)) ≤ c

ε

∞∑
i=1

∫
B(xi,ri)

gp dµ

=
c

ε

∫
⋃∞

i=1 B(xi,ri)

gp dµ.

Here c = c(p, cµ) > 0. Finally we observe that by the disjointness of the
balls

µ
( ∞⋃

i=1

B(x, ri)
)

=

∞∑
i=1

µ(B(xi, ri)) ≤
∞∑
i=1

rp
i

ε

∫
B(x,ri)

gp dµ ≤ δp

ε

∫
X

gp dµ

which tends to zero as δ → 0. Hence the claim follows by absolute continuity
of the integral. �

The following capacitary weak type estimate for the maximal function
is a crucial tool in the proof of the Lebesgue point theorem for Sobolev
functions.

Lemma 4.4 Suppose that u ∈ M1,p(X) with p > 1. Then

Cp({x ∈ X Mu(x) > λ}) ≤ cλ−p‖u‖p
M1,p(X)

for every λ > 0 with c = c(p, cµ) > 0.
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Proof. By Lemma 3.1 we have

{x ∈ X Mu(x) > λ} ⊂ Eλ,

where Eλ = {x ∈ X cM∗u(x) > λ} is open by lower semicontinuity of
M∗u and c is a constant depending only on the doubling constant such that
cM∗u ≥ Mu. The function cM ∗u/λ is admissible for Eλ.

Therefore from Theorem 3.6 we conclude that

Cp(Eλ) ≤ ‖cM∗u/λ‖p
M1,p(X) ≤ cλ−p

(‖M∗u‖p
Lp(X) + ‖Mgu‖p

Lp(X)

)
≤ cλ−p

(‖u‖p
Lp(X) + ‖gu‖p

Lp(X)

)
.

The claim follows by taking the infimum over all maximal gradients of u on
the right side. �

Now we are ready to prove our main result. If u ∈ M1,p(X) with p > Q,
then using (2.11) we see that there is a locally Hölder continuous function
which coincides with u µ-almost everywhere. This implies that every point
x ∈ X is a Lebesgue point of u. This is consistent with the fact that even
singletons have positive capacity when p > Q. Then we consider the case
1 < p ≤ Q. The proof is rather straightforward adaptation of the Euclidean
argument after having the capacitary weak type estimate and the estimate
for the capacity of the set where the function is large, see for example the
proof of Theorem 1 on pages 161–162 in [5].

Theorem 4.5 Suppose that u ∈ M1,p(X) with 1 < p ≤ Q. Then there is
E ⊂ X such that Cp(E) = 0 and

lim
r→0

∫
B(x,r)

u dµ = u∗(x)

exists for every x ∈ X \ E. Moreover

lim
r→0

∫
B(x,r)

|u − u∗(x)|κp dµ = 0

for every x ∈ X \ E with 1 ≤ κ < Q/(Q − p) and the function u∗ is the
p-quasicontinuous representative of u.

Proof. Since continuous functions are dense in M1,p(X), we may choose
ui ∈ C(X) ∩ M1,p(X) such that

‖u − ui‖p
M1,p(X) ≤ 2−i(p+1) for i = 1, 2, . . .

Denote Ai = {x ∈ XM(u−ui)(x) > 2−i} for i = 1, 2, . . . Lemma 4.4 implies
that

Cp(Ai) ≤ c2ip‖u − ui‖p
M1,p(X) ≤ c2−i.
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Clearly

|ui(x) − uB(x,r)| ≤
∫

B(x,r)

|ui(x) − ui| dµ +

∫
B(x,r)

|ui − u| dµ,

which implies that

lim sup
r→0

|ui(x) − uB(x,r)| ≤ M(ui − u)(x) ≤ c2−i

when x ∈ X \ Ai. Let Bk =
⋃∞

i=k Ai, k = 1, 2, . . . Then by subadditivity of
the capacity we have

Cp(Bk) ≤
∞∑

i=k

Cp(Ai) ≤ c
∞∑

i=k

2−i.

If x ∈ X \ Bk and i, j ≥ k, then

|ui(x)−uj(x)| ≤ lim sup
r→0

|ui(x) − uB(x,r)|
+ lim sup

r→0
|uB(x,r) − uj(x)| ≤ c(2−i + 2−j).

Hence {ui} converges uniformly in X \ Bk to a continuous function v. Now

lim sup
r→0

|v(x) − uB(x,r)| ≤ |v(x) − ui(x)| + lim sup
r→0

|ui(x) − uB(x,r)|

so that

v(x) = lim
r→0

∫
B(x,r)

u dµ = u∗(x)

for every x ∈ X \ Bk. Define C =
⋂∞

k=1 Bk. Then

Cp(C) ≤ lim
k→∞

Cp(Bk) = 0

and

lim
r→0

∫
B(x,r)

u dµ = u∗(x)

exists for every x ∈ X \ C. This completes the proof of the first claim.

To prove the second claim, let gu ∈ D(u) ∩ Lp(X) and

D =
{
x ∈ X lim sup

r→0
rp

∫
B(x,r)

gp
u dµ > 0

}
.

Lemma 4.3 shows that Cp(D) = 0. By the Sobolev-Poincaré inequality (see
(2.10)) we have

lim
r→0

∫
B(x,r)

|u − uB(x,r)|κp dµ = 0

for every x ∈ X \ D.
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We observe that

lim
r→0

(∫
B(x,r)

|u − u∗(x)|κp dµ
)1/(κp)

≤ lim
r→0

(∫
B(x,r)

|u − uB(x,r)|κp dµ
)1/(κp)

+ lim
r→0

|uB(x,r) − u∗(x)| = 0

whenever x ∈ X \ (C ∪ D) and Cp(C ∪ D) = 0.

The final claim follows by fixing ε > 0 and choosing k large enough so
that Cp(Bk) < ε/2. Then by outer regularity of the capacity there is an open
set O containing Bk so that Cp(O) < ε. Since {ui} converges uniformly to
u∗ on X \ O we conclude that u∗|X\O is continuous. �
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[18] Maćıas, R.A. and Segovia, C.: A decomposition into atoms of distri-
butions on spaces of homogeneous type. Adv. Math. 33 (1979), 271–309.

[19] Maz’ya, V.G. and Khavin, V.P.: Nonlinear potential theory. Russian
Math. Surveys 27 (1972), 71–148.

[20] Semmes, S.: Finding curves on general spaces through quantitative topol-
ogy with applications to Sobolev and Poincaré inequalities. Selecta Math.
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