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Lp Estimates for singular integrals with
kernels belonging to certain block spaces

Hussain Al-Qassem and Yibiao Pan

Abstract

We establish the Lp boundedness of singular integrals with kernels
which belong to block spaces and are supported by subvarieties.

1. Introduction

Let Rn, n ≥ 2, be the n-dimensional Euclidean space and Sn−1 be the unit
sphere in Rn equipped with the normalized Lebesgue measure dσ = dσ (u).
Let K (·) be a singular kernel defined by

(1.1) K (y) = Ω (y) |y|−n h (|y|) ,

where h is a measurable function on R+ and Ω is a homogeneous function
of degree 0 which satisfies Ω ∈ L1(Sn−1) and

(1.2)

∫
Sn−1

Ω (u) dσ (u) = 0.

For γ > 1, let ∆γ (R+) denote the set of all measurable functions h on R+

such that

(1.3) sup
R>0

1

R

∫ R

0

|h (t)|γ dt < ∞.

It is easy to see that the following inclusions hold and are proper.

(1.4) L∞ (
R

+
) ⊂ ∆γ2

(
R

+
) ⊂ ∆γ1

(
R

+
)

for γ1 < γ2.
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Let P = (P1, . . . , Pm) be a mapping from R
n into R

m with Pj being
polynomials on Rn for 1 ≤ j ≤ m. To P we associate a singular integral
operator T = TP,h and a related maximal operator MP,Ω defined initially
for C∞

0 functions on R
m as follows:

Tf(x) = p.v.

∫
Rn

f (x − P (u))K (u) du ,(1.5)

MP,Ωf(x) = sup
r>0

1

rn

∫
|y|≤r

|f(x − P (y)| |Ω (y)| |h(|y|)| dy.(1.6)

Also, we define the maximal truncated singular integral operator T ∗ by

(1.7) T ∗f (x) = sup
ε>0

∣∣∣ ∫
|u|>ε

f (x − P (u))K (u) du
∣∣∣

Whenever m = n and P (y) = (y1, . . . , yn) we shall denote T by Tc,h and T ∗

by T ∗
c,h. Namely,

(1.8) Tc,hf(x) = p.v.

∫
Rn

f (x − y)K (y) dy ,

and

(1.9) T ∗
c,hf(x) = sup

ε>0

∣∣∣ ∫
|u|>ε

f (x − y)K (y) dy
∣∣∣.

There has been a considerable amount of research concerning the Lp

boundedness of T and T ∗. For relevant results one may consult [3], [4], [6],
[7], [11], [10], [15], [16], [19], among others. We shall content ourselves here
with recalling only the following pertinent results:

Jiang and Lu introduced a special class of block spaces Bκ,υ
q (Sn−1) with

respect to the study of the Lp mapping properties of the class of singular
integral operators Tc,h (see [13]). In fact, they obtained the following L2

boundedness result.

Theorem A ([13]) Let K, Tc,h and T ∗
c,h be given as in (1.1)-(1.2), and

(1.8)-(1.9). Suppose that h ∈ L∞ (R+). For n ≥ 2 we have

(i) if Ω ∈ B0,0
q (Sn−1), then Tc,h is a bounded operator on L2 (Rn);

and

(ii) if Ω ∈ B0,1
q (Sn−1), then T ∗

c,h is a bounded operator on L2 (Rn).
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One of our main results in this paper is that the Lp boundedness of T
and T ∗ hold for arbitrary polynomial mappings P and Ω’s in B0,0

q (Sn−1),
q > 1. By specializing into the case P(y) ≡ y, one obatins that Tc,h and
T ∗

c,h are bounded on Lp for all p ∈ (1,∞) and Ω ∈ B0,0
q (Sn−1), q > 1, which

improve Theorem A in both the range of p (in (i) and (ii)) and Ω (in (ii)).

They can also be considered as improvements over the Lp boundedness
theorems obtained independently by Duoandikoetxea-Rubio de Francia [7]
and Namazi [15] under the stronger condition that Ω ∈ Lq(Sn−1) for some
q > 1. After the completion of our paper, we learned that these results on
the operators Tc,h and T ∗

c,h had also been obtained by Al-Hasan and Fan (see
[1] and [2]).

In addition, we shall improve a result in [10] dealing with operators
associated to a special class of polynomial mappings. Let us first recall the
relevant results in [10].

Theorem B ([10]) Let T , T ∗ and K be given as in (1.1)-(1.2), (1.5), and
(1.7). Suppose that Ω ∈ H1 (Sn−1) (the Hardy space on the unit sphere in
the sense of Coifman and Weiss [5]).

(i) If h ∈ ∆γ (R+) for some and γ > 1, then for
∣∣1
p
− 1

2

∣∣ < min
{

1
2
, 1

γ′
}

there exists a constant Cp > 0 such that

‖T (f)‖Lp(Rm) ≤ Cp ‖Ω‖H1(Sn−1) ‖f‖Lp(Rm)

for any f ∈ Lp (Rm).

(ii) If h ∈ L∞(R+), then for 1 < p < ∞, there exists a constant Cp > 0
such that

‖T ∗ (f)‖Lp(Rm) ≤ Cp ‖Ω‖H1(Sn−1) ‖f‖Lp(Rm)

for any f ∈ Lp(Rm).

In both (i) and (ii) the constant Cp may depend on n,m, h (.) and deg (Pj),
but it is independent of the coefficients of {Pj}.

Clearly, the range for p in Theorem B becomes a tiny open interval
around 2 as γ approaches 1. Fan and Pan showed that, if Ω ∈ Lq(Sn−1) and
P lies in a certain class of mappings, then the Lp boundedness of T and T ∗

can be preserved for the full range 1< p <∞, regardless how close γ is to 1.
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Theorem C ([10]) Let K, T , MP,Ω, and T ∗ be given as in (1.1)-(1.2), and
(1.5)-(1.8). Suppose that P ∈ F(n,m), Ω ∈ Lq(Sn−1) and h ∈ ∆γ (R+) for
some q > 1 and γ > 1. Then for 1 < p < ∞ there exists a constant Cp > 0
such that

(i) ‖T (f)‖Lp(Rm) ≤ Cp ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rm) ;

(ii) ‖MP,Ω‖Lp(Rm) ≤ Cp ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rm) ;

(iii) ‖T ∗(f)‖Lp(Rm) ≤ Cp ‖Ω‖Lq(Sn−1) ‖f‖Lp(Rm) ;

for any f ∈ Lp(Rm). Furthermore, if P(−x) = −P(x), x ∈ Rn, then the
constant Cp may depend on n, m, h(·), deg(Pj, but it is independent of the
coefficients of {Pj}.

The class F (n,m) contains the class of odd polynomial mappings as a
proper subset. Its definition will be reviewed in Section 7. A question which

arises naturally in light of Theorem C is the following:

Question: Does the Lp boundedness of the operators in Theorem C still hold
under a weaker condition on Ω for 1 < p < ∞?

We use the method of block decomposition for functions to obtain an
answer to this question. The actual statements of our results will be given
in the next section.

We would like to thank the referee for some helpful comments.

2. Statements of results

We shall start with the following result, which gives the Lp boundedness of
the operator T whose kernel is allowed to be very rough on the unit sphere
as well as in the radial direction. In fact, we have the following:

Theorem 2.1 Let T and K be given as in (1.1)-(1.2), and (1.5). Suppose:

(i) Ω ∈ B0,0
q (Sn−1) for some q > 1; and

(ii) h ∈ ∆γ (R+) for some γ > 1.

Then for any p satisfying
∣∣1
p
− 1

2

∣∣ < min
{

1
2
, 1

γ′
}

there exists a constant Cp > 0
such that

(2.1) ‖T (f)‖Lp(Rm) ≤ Cp ‖f‖Lp(Rm)

for any f ∈ Lp (Rm). The constant Cp may depend on n, m, h(·) and
deg(Pj), but it is independent of the coefficients of {Pj}.
It is worth noting that the range of p given in Theorem 2.1 is the full range
(1, ∞) whenever γ ≥ 2.
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For T ∗ we have the following:

Theorem 2.2 Let T ∗ and K be given as in (1.1)-(1.2), and (1.7). Suppose
that:

(i) Ω ∈ B0,0
q (Sn−1) for some q > 1; (ii) and h ∈ L∞(R+).

Then for 1 < p < ∞ there exists a constant Cp > 0 such that

(2.2) ‖T ∗ (f)‖Lp(Rm) ≤ Cp ‖f‖Lp(Rm)

for any f ∈ Lp (Rm). The constant Cp may depend on n, m, h(.) and
deg(Pj), but it is independent of the coefficients of {Pj}.
With regard to the special class of polynomial mappings F (n,m) we have
the following result.

Theorem 2.3 Let K, T , MP,Ω and T ∗ be given as in (1.1)-(1.2), and (1.5)-
(1.7). Suppose that:

(i) P ∈ F(n,m);

(ii) Ω ∈ B0,0
q (Sn−1) for some q > 1;

(iii) and h ∈ ∆γ(R
+) for some γ > 1.

Then for 1 < p < ∞ there exists a constant Cp > 0 such that

(2.3) ‖T (f)‖Lp(Rm) ≤ Cp ‖f‖Lp(Rm) ,

(2.4) ‖MP,Ω(f)‖Lp(Rm) ≤ Cp ‖f‖Lp(Rm) ,

and

(2.5) ‖T ∗ (f)‖Lp(Rm) ≤ Cp ‖f‖Lp(Rm)

for any f ∈ Lp (Rm). Furthermore, if P (−x) = −P (x) , x ∈ R
n, then the

constant Cp may depend on n, m, h (.) and deg(Pj), but it is independent of
the coefficients of {Pj}.
One observes that Theorem 2.3 represents an improvement over Theorem C
because Ω is allowed to be in the space B0,0

q (Sn−1) and bearing in mind the
following relation

Lq
(
Sn−1

) ⊂ B0,0
q

(
Sn−1

)
.

Also, notice that for the class of odd polynomials, Theorem 2.3 gives the Lp

boundedness of the operator T for the full range 1 < p < ∞ which is much
better than the range

∣∣1
p
− 1

2

∣∣ < min
{

1
2
, 1

γ′
}

as γ → 1 if we apply Theorem
2.1. Furthermore, Theorem 2.3 gives that T ∗ is bounded on Lp for 1 < p
< ∞ even if h ∈ ∆γ (R+) for some γ > 1 which is considerably better than
the condition h ∈ L∞ (R+) as assumed in both Theorem A (for the special
class of operators T ∗

c,h) and Theorem 2.2.
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3. Some technical lemmas

All the results are obtained on the basis of the following general lemmas.
These lemmas are similar in spirit to the general results established in [7]
and [10].

By following exactly the proofs of Theorem B in [7] and Lemma 5.2 in
[8] and keeping track of the constants we obtain the following:

Lemma 3.1 Let n, N ∈ N, {al : 1 ≤ l ≤ N} ⊆ R+ \ {1}, {αl : 1 ≤
l ≤ N} ⊆ R+, {ml : 1 ≤ l ≤ N} ⊆ N, and let Ll : Rn → Rml linear

transformations for 1 ≤ l ≤ N . Let {σ(l)
k : 0 ≤ l ≤ N, k ∈ Z} be a family

of Borel measures which satisfies the following: For all k ∈ Z, 1 ≤ l ≤ N ,
ξ ∈ Rn with ξ 
= 0 and for some constant A > 1, p0 ∈ (2,∞),

(i) σ
(0)
k = 0 ;

(ii)
∥∥∥σ

(l)
k

∥∥∥ ≤ 1;

(iii)
∣∣∣σ̂(l)

k (ξ)
∣∣∣ ≤ C

∣∣ak
l Ll (ξ)

∣∣−αl/A ;

(iv)
∣∣∣σ̂(l)

k (ξ) − σ̂
(l−1)
k (ξ)

∣∣∣ ≤ C
∣∣ak

l Ll (ξ)
∣∣αl/A ;

(iv)
∥∥∥(∑

k∈Z

∣∣∣σ(l)
k ∗ gk

∣∣∣2 ) 1
2

∥∥∥
p0

≤ C
∥∥∥( ∑

k∈Z

|gk|2
) 1

2

∥∥∥
p0

(3.1)

for arbitrary functions {gk} on Rn.

Then for p′0 < p < p0 there exists a constant Cp such that

(3.2)
∥∥∥∑

k∈Z

σ
(N)
k ∗ f

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

and

(3.3)
∥∥∥(

∑
k∈Z

∣∣∣σ(N)
k ∗ f

∣∣∣2) 1
2

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

for all f in Lp(Rn). The constant Cp is independent of A and the linear

transformations {Ll}N
l=1.

The above lemma will be used in the proof of Theorem 2.1. To prove
Theorem 2.2 and Theorem 2.3 we need to take a somewhat different ap-
proach. We first need a little more notation. Let η be a fixed positive
integer. For 1 ≤ s ≤ η we define the projection operator πη

s : R
η → R

s by
πη

s (ξ) = (ξ1, . . . , ξs) . Also, let t±α = inf (tα, t−α).
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Lemma 3.2 Let {σk : k ∈ Z} be a sequence of Borel measures on R
n. Let

L : Rn → Rm be a linear transformation. Suppose that for all k ∈ Z, ξ ∈ Rn,
for some a ≥ 2, α,C > 0, A > 1 and p0 ∈ (2,∞) we have

(i) |σ̂k(ξ)| ≤ CA(akA |L(ξ)| )± α
A

(ii)
∥∥∥(

∑
k∈Z

|σk ∗ gk|2) 1
2

∥∥∥
p0

≤ CA
∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p0

(3.4)

for arbitrary functions {gk} on R
n.

Then for p′0 < p < p0 there exists a positive constant Cp such that

(3.5)
∥∥∥∑

k∈Z

σk ∗ f
∥∥∥

Lp(Rn)
≤ CpA ‖f‖Lp(Rn)

and

(3.6)
∥∥∥(

∑
k∈Z

|σk ∗ f |2) 1
2

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

hold for all f in Lp(Rn). The constant Cp is independent of A and the linear
transformation L.

Proof. We shall use a variation of the methods in [7] and [10]. Without
loss of generality, we may assume that 0 < α ≤ 1. By the arguments in the
proof of Lemma 6.2 in [10], we may assume without loss of generality that
m ≤ n and L = πn

m . Let {Φj}∞−∞ be a smooth partition of unity in (0, ∞)

adapted to the intervals [a−(j+1)A, a−(j−1)A]. More precisely, we require the
following:

Φj ∈ C∞, 0 ≤ Φj ≤ 1,
∑

j

[Φj (t)]2 = 1,

supp Φj ⊆
{
t : a−(j+1)A < t < a−(j−1)A

}
and ∣∣∣∣dsΦj (t)

dts

∣∣∣∣ ≤ C

ts

where C can be chosen to be independent of the lacunary sequence {ajA}
(We would like to thank Ahmad Al-Salman for a useful discussion about the
construction of such partition of unity).

Let F (f) =
∑

k∈Z
σk ∗ f and let Sk be the multiplier operators in R

n

given by
(Ŝkf) (ξ) = Φk (|πn

m ξ|) f̂(ξ).
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Define Fj(f) =
∑

k∈Z
Sk+j(σk ∗ Sk+j f). Then it is easy to see that the

following identity

F (f) =
∑
j∈Z

Fj(f)

holds for f ∈ S(Rn). Now

‖Fj(f)‖p0
≤ C

∥∥∥(∑
k∈Z

|σk ∗ Sk+jf |2
) 1

2
∥∥∥

p0

≤ CA
∥∥∥( ∑

k∈Z

|Sk+jf |2
) 1

2
∥∥∥

p0

≤ CA‖f‖p0(3.7)

for all j ∈ Z and f ∈ Lp0(Rn) with C independent of the essential variables.
The middle inequality is a consequence of (3.4) whereas the first and the
last inequalities follow from both Littlewood-Paley theory and Theorem 3
along with the remark that follows its statement in [18], p. 96.

On the other hand, by Plancherel’s theorem we have

‖Fj(f)‖2
L2 ≤

∑
k∈Z

∫
∆k,j

∣∣∣f̂ (ξ)
∣∣∣2 |σ̂k (ξ)|2 dξ

where
∆k,j = {ξ ∈ R

n : (aA)−k−j−1 ≤ |πn
mξ| < (aA)−k−j+1}.

Then by (i) we get easily

(3.8) ‖Fj(f)‖L2 ≤ CA a−α|j| ‖f‖L2 .

Now, if p ∈ (p′0, p0), we have

1

p
=

θ

2
+

1 − θ

p0

for some θ, 0 < θ ≤ 1,

and by interpolating between estimates (3.7) and (3.8) we get

‖F (f)‖p ≤
∑

j

‖Fj(f)‖p ≤ CA
∑

j

a−α|j| ‖f‖p = CpA ‖f‖p .

The proof of (3.6) is similar. Alternatively, we can deduce it easily from the
above proof by observing that for every sequence ε = {εk} , εk = +1 or −1,
the linear operator

Fε(f) =
∑
k∈Z

εkσk ∗ f

has the same bound in Lp as that of F (f) and this bound is independent of
the sequence of signs {εk} . Then, the inequality (3.6) can be obtained by
the usual argument using Rademacher functions. This completes the proof
of our lemma. �
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Lemma 3.3 Let N ∈ N and {σ(l)
k : k ∈ Z, 0 ≤ l ≤ N} be a family of

Borel measures on Rn with σ
(0)
k = 0 for every k ∈ Z. Let {al : 1 ≤ l ≤

N} ⊆ [2,∞), {ml : 1 ≤ l ≤ N} ⊆ N, {αl : 1 ≤ l ≤ N} ⊆ R+, and let
Ll : Rn → Rml be linear transformations for 1 ≤ l ≤ N . Suppose that for all
k ∈ Z, 1 ≤ l ≤ N , for all ξ ∈ R

n and for some C > 0, A > 1, p0 ∈ (2,∞),
we have the following:

(i)
∥∥σ

(l)
k

∥∥ ≤ CA ;

(ii)
∣∣∣σ̂(l)

k (ξ)
∣∣∣ ≤ CA

∣∣akA
l Ll(ξ)

∣∣−αl/A ;

(iii)
∣∣∣σ̂(l)

k (ξ) − σ̂
(l−1)
k (ξ)

∣∣∣≤ CA
∣∣akA

l Ll (ξ)
∣∣αl/A ;

(iv)
∥∥∥(

∑
k∈Z

∣∣∣σ(l)
k ∗ gk

∣∣∣2) 1
2

∥∥∥
p0

≤ CA
∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p0

(3.9)

holds for all functions {gk} on Rn.

Then for p′0 < p < p0 there exists a positive constant Cp such that

(3.10)
∥∥∥∑

k∈Z

σ
(N)
k ∗ f

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

and

(3.11)
∥∥∥(

∑
k∈Z

∣∣∣σ(N)
k ∗ f

∣∣∣2) 1
2

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

hold for all f in Lp(Rn). The constant Cp is independent of the linear

transformations {Ll}N
l=1.

Proof. The idea of the proof will be very similar to the one appearing in
the proof of Theorem 7.6 in [10]. Without loss of generality, we may assume
that 0 < αl ≤ 1, ml ≤ n and Ll = πn

ml
for 1 ≤ l ≤ N .

Define the sequence of measures {λ(l)
k : 1 ≤ l ≤ N, k ∈ Z} as follows:

choose and fix a function θ ∈ C∞
0 (R) such that θ(t) = 1 for |t| ≤ 1

2
and

θ(t) = 0 for |t| ≥ 1. Let ζ(t) = θ(t2) and for k ∈ Z, let

(3.12) λ̂
(l)
k (ξ) = σ̂

(l)
k (ξ)

∏
l<i≤N

ζ(akA
i

∣∣πn
mi

ξ
∣∣) − σ̂

(l−1)
k (ξ)

∏
l−1<i≤N

ζ(akA
i

∣∣πn
mi

ξ
∣∣)

when 1 ≤ l ≤ N − 1 and

(3.13) λ̂
(N)
k (ξ) = σ̂

(N)
k (ξ) − σ̂

(N−1)
k (ξ) ζ(akA

N

∣∣πn
mN

ξ
∣∣).
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By the assumptions of the lemma one obtains that

(3.14)
∣∣∣λ̂(l)

k (ξ)
∣∣∣ ≤ CA(akA

l

∣∣πn
ml

(ξ)
∣∣)±αl/A

for all 1 ≤ l ≤ N. By condition (iv), it is easy to see that

(3.15)
∥∥∥(

∑
k∈Z

∣∣∣λ(l)
k ∗ gk

∣∣∣2) 1
2

∥∥∥
p0

≤ CpA
∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p0

for 1 ≤ l ≤ N and for arbitrary functions {gk} on R
n. By (3.14)-(3.15) and

Lemma 3.2, for p′0 < p < p0, there exists a positive constant Cp such that

(3.16)
∥∥∥∑

k∈Z

λ
(l)
k ∗ f

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

and

(3.17)
∥∥∥(

∑
k∈Z

∣∣∣λ(l)
k ∗ f

∣∣∣2) 1
2

∥∥∥
Lp(Rn)

≤ CpA ‖f‖Lp(Rn)

hold for all f in Lp(Rn). By (3.16)-(3.17) and observing that

(3.18) σ
(N)
k =

N∑
l=1

λ
(l)
k

we get (3.10)-(3.11). This completes the proof of the lemma. �

By a quick examination of the proof given in [7], page 544, it is easy to
see that the following result holds.

Lemma 3.4 Let {Υk} be a sequence of Borel measures in R
n and let Υ∗ be

the maximal operator given by Υ∗ (f) = supk∈Z
||Υk| ∗ f |. Assume that

(3.19) ‖Υ∗ (f)‖q ≤ C ‖f‖q for some q > 1 and C > 0.

Then the following vector valued inequality

(3.20)
∥∥∥(

∑
k∈Z

|Υk ∗ gk|2) 1
2

∥∥∥
p0

≤
√

C sup
k∈Z

‖Υk‖
∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p0

holds for
∣∣∣ 1
p0

− 1
2

∣∣∣ = 1
2q

and for arbitrary functions {gk} on Rn.
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Remark: It is worth pointing out that the constant on the right hand
side of the original version of (3.20) in [7] didn’t appear explicitly in the

form of
(
C supk∈Z

‖Υk|
)1/2

, since it is not significant for the applications
given there. However, this newly introduced constant will play a major and
indispensable role in the proofs of both Theorems 2.2 and 2.3.

For a given sequence of measures {σ(l)
k : k ∈ Z, 0 ≤ l ≤ N}, define Sk

and S∗ by

Skf(x) =

∞∑
j=k

σ
(N)
j ∗ f(x)

and

S∗f(x) = sup
k∈Z

|Skf(x)| .

To study the Lp boundedness of the maximal truncated singular integral we
need to establish the following result.

Lemma 3.5 Let N ∈ N and {σ(l)
k : k ∈ Z, 0 ≤ l ≤ N} be a family of

Borel measures on Rn with σ
(0)
k = 0 for every k ∈ Z. Let {al : 1 ≤ l ≤

N} ⊆ [2,∞), {ml : 1 ≤ l ≤ N} ⊆ N, {αl : 1 ≤ l ≤ N} ⊆ R
+, and let

Ll : R
n → R

ml be linear transformations for 1 ≤ l ≤ N . Suppose that for
all k ∈ Z, 1 ≤ l ≤ N , for all ξ ∈ R

n and for some C > 0, A > 1, we have

(i)
∥∥σ

(l)
k

∥∥ ≤ CA ;

(ii)
∣∣∣σ̂(l)

k (ξ)
∣∣∣≤ CA

∣∣akA
l Ll (ξ)

∣∣−αl/A ;

(iii)
∣∣∣σ̂(l)

k (ξ) − σ̂
(l−1)
k (ξ)

∣∣∣≤ CA
∣∣akA

l Ll (ξ)
∣∣αl/A .

Assume that

(3.21)
∥∥σ∗(l)f

∥∥
p
≤ CpA ‖f‖p

for 1 < p < ∞ and every f ∈ Lp(Rn), where σ∗(l)(f) = supk∈Z

∣∣∣∣∣σ(l)
k

∣∣ ∗ f
∣∣∣,

1 ≤ l ≤ N .

Then for every 1 < p < ∞ there exists a constant Cp > 0 which is
independent of the linear transformations {Ll} such that

(3.22) ‖S∗f‖p ≤ CpA ‖f‖p

for every f ∈ Lp(Rn).
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Proof. As above, there is no loss of generality in assuming that 0 < αl ≤ 1,
ml ≤ n and Ll = πn

ml
. Let {λ(l)

k : 1 ≤ l ≤ N, k ∈ Z} be defined by
(3.12)-(3.13). For each 1 ≤ l ≤ N , let

S(l)f(x) =

∞∑
k=−∞

λ
(l)
k ∗ f(x), λ∗(l)(f) = sup

k∈Z

∣∣∣∣∣λ(l)
k

∣∣ ∗ f
∣∣∣ ,

S
(l)
k f(x) =

∞∑
j=k

λ
(l)
j ∗ f(x) and S(l)

∗ f(x) = sup
k∈Z

∣∣∣S(l)
k f(x)

∣∣∣ .
By the definition of λ

(l)
k and (3.21) we have

(3.23)
∥∥λ∗(l)f

∥∥
p
≤ CpA ‖f‖p

for 1 < p < ∞, f ∈ Lp(Rn) and 1 ≤ l ≤ N . Then by (3.23) and Lemma 3.4

in conjunction with ‖λ(l)
k ‖ ≤ CA we get

(3.24)
∥∥∥(

∑
k∈Z

∣∣∣λ(l)
k ∗ gk

∣∣∣2) 1
2

∥∥∥
p
≤ CpA

∥∥∥(
∑
k∈Z

|gk|2) 1
2

∥∥∥
p

for 1 < p < ∞, f ∈ Lp(Rn), 1 ≤ l ≤ N and for arbitrary functions {gk} on
R

n. By (3.14), (3.24) together with Lemma 3.2 we have

(3.25)
∥∥S(l)f

∥∥
p
≤ CpA ‖f‖p

for some constant Cp > 0, 1 < p < ∞, f ∈ Lp(Rn) and 1 ≤ l ≤ N .

Now, by (3.18) we have

‖S∗f‖p ≤
N∑

l=1

∥∥S(l)
∗ f

∥∥
p

and hence we need to prove only that

(3.26)
∥∥S(l)

∗ f
∥∥

p
≤ CpA ‖f‖p

for some constant Cp, 1 < p < ∞, f ∈ Lp(Rn) and 1 ≤ l ≤ N .

The proof of (3.26) follows now by using (3.14), (3.23), (3.25) and the
same line of arguments as in the proof of Lemma 6.3 in [10]. We omit the
details. The lemma is proved. �
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4. Block spaces on Sn−1

The method of block decomposition for functions was invented by M. H.
Taibleson and G. Weiss in their study of the convergence of the Fourier se-
ries (see [20]). Later on, many applications of the block decomposition to
harmonic analysis were discovered (see [14], [17], etc.). For further back-
ground and information about the theory of spaces generated by blocks and
its applications to harmonic analysis one can consult the book [13]. Let us
first recall the definition of a block function on Sn−1.

Definition 4.1 For 1 < q ≤ ∞ we say that a measurable function b (x) on
Sn−1 is a q−block if it satisfies the following:

(i) supp(b) ⊆ I where I is an interval on Sn−1; i.e.,

I =
{
x′ ∈ Sn−1 : |x′ − x′

0| < α
}

with x′
0 ∈ Sn−1 and α > 0;

(ii) ‖b‖Lq ≤ |I|−1/q′ where 1
q

+ 1
q′ = 1.

The class of block spaces Bκ,υ
q (Sn−1) for κ ≥ 0 and υ ∈ R is defined as

follows.

Definition 4.2. Bκ,υ
q = Bκ,υ

q (Sn−1) = {Ω ∈ L1 (Sn−1): Ω =
∑∞

µ=1 cµbµ

where each cµ is a complex number; each bµ is a q−block supported in an
interval Iµ; and Mκ,υ

q ({cµ}) < ∞} where

Mκ,υ
q ({cµ}) =

∞∑
µ=1

|cµ| (1 + φκ,υ (|Iµ|))

and

(4.1) φκ,υ (t) =


∫ 1

t

u−1−κ logυ
(
u−1

)
du, if 0 < t < 1;

0, if t ≥ 1.

One observes that φκ,υ (t) ∼ t−κ logυ(t−1) as t → 0 for κ > 0, υ ∈ R, and
φ0,υ (t) ∼ logυ+1 (t−1) as t → 0 for υ > −1.

The following properties of Bκ,υ
q can be found in [13] and [12]: for 1 <

q ≤ ∞ we have

Bκ,υ2
q ⊂ Bκ,υ1

q (υ2 > υ1 > −1 and κ ≥ 0),(4.2)

Bκ2,υ2
q ⊂ Bκ1,υ1

q (υi > −1, i = 1, 2, and 0 ≤ κ1 < κ2)(4.3)

Bκ,υ
q2

⊂ Bκ,υ
q1

(1 < q1 < q2)(4.4)
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and

(4.5) Lq
(
Sn−1

) ⊆ Bκ,υ
q

(
Sn−1

)
(for υ > −1, and κ ≥ 0).

Also, Keitoku and Sato in [12] proved the following interesting results which
give a clear relation between the spaces Bκ,υ

q and the Lq-space on the unit
sphere:

Theorem 4.3 (i) If 1 < p ≤ q ≤ ∞, then for κ > 1
p′ we have

(4.6) Bκ,υ
q

(
Sn−1

) ⊆ Lp
(
Sn−1

)
for any υ > −1;

(4.7) (ii) Bκ,υ
q

(
Sn−1

)
= Lq

(
Sn−1

)
if and only if κ ≥ 1

q′
and υ ≥ 0;

and
(iii) for any υ > −1, we have

(4.8) B0,υ
q

(
Sn−1

) 
⊆
⋃
p>1

Lp
(
Sn−1

)
.

5. Certain maximal functions

Let Ek = {x ∈ Rn : 2k ≤ |x| < 2k+1}. For suitable mappings Γ : Rn → Rm

and ϑ : Sn−1 → R, we define the measures {σΓ,ϑ,k : k ∈ Z} and {|σΓ,ϑ,k| :
k ∈ Z} on R

m by

(5.1)

∫
Rm

f dσΓ,ϑ,k =

∫
Ek

f (Γ (u)) h (|u|) ϑ (u′)
|u|n du

and

(5.2)

∫
Rm

f d |σΓ,ϑ,k| =

∫
Ek

f (Γ (u)) |h (|u|)| |ϑ (u′)|
|u|n du.

Also, define the maximal operator σ∗
Γ,ϑ on Rm by

(5.3) σ∗
Γ,ϑ (f) = sup

k∈Z

∣∣ |σΓ,ϑ,k| ∗ f
∣∣.

For l ∈ N, let Al denote the class of polynomials of l variables with real
coefficients. Let Q (t) = (Q1 (t) , . . . ,Qm (t)) be a mapping defined on R

with Qi ∈ A1 for 1 ≤ i ≤ m. Let

MQf (x) = sup
r>0

1

r

∫
|t|<r

|f (x −Q (t))| dt.
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We need the following Lp boundedness result which can be found in [19],
pp. 476-478.

Lemma 5.1 For every 1 < p ≤ ∞, there exists a positive constant Cp such
that

‖MQf‖p ≤ Cp ‖f‖p

for f ∈ Lp(Rm). The constant Cp may depend on the degrees of the poly-
nomials {Qi}, but it is independent of the coefficients of {Qi}.

Also, we shall need the following two results from [10], pp. 823-824.

Theorem 5.2 Let Γ : Rn → Rm be a mapping and let Qx(t) = Γ(tx) for
t ∈ R, x ∈ Sn−1. Suppose that ϑ ∈ L1(Sn−1) and h ∈ ∆γ(R

+) for some
γ > 1. If Qx(·) ∈ A1 for every x ∈ Sn−1, Λ(Γ) = supx∈Sn−1{deg(Qx)} < ∞,
then for any p, γ′ < p ≤ ∞, there exists a constant Cp such that∥∥σ∗

Γ,ϑ (f)
∥∥

p
≤ Cp ‖ϑ‖L1(Sn−1) ‖f‖p

for f ∈ Lp(Rm). The constant Cp depends on p, n, m, h(·) and Λ(Γ).

Theorem 5.3 Let Γ : Rn → Rm be a mapping and let Qx(t) = Γ(tx) for
t ∈ R, x ∈ Sn−1. Suppose that

K(x) =
ϑ(x′)
|x|n h(|x|)

where ϑ ∈ L1(Sn−1) and h ∈ ∆γ(R
+) for some 1 < γ ≤ 2. If Qx(·) ∈ A1 for

every x ∈ Sn−1 and

Λ(Γ) = sup
x∈Sn−1

{deg(Qx)} < ∞ ,

then for any
∣∣1
p
− 1

2

∣∣ < 1
γ′ , there exists a constant Cp such that

∥∥∥(
∑
k∈Z

|σΓ,ϑ,k ∗ gk|2) 1
2

∥∥∥
p
≤ Cp ‖ϑ‖L1(Sn−1)

∥∥∥(
∑
k∈Z

|gk|2) 1
2

∥∥∥
p

holds for arbitrary functions {gk} on Rm. The constant Cp depends on p, n,
m, h(·) and Λ(Γ).



716 H. Al-Qassem and Y. Pan

6. Oscillatory integrals

For a positive integer l, we let Vl denotes the space of real-valued homoge-
neous polynomials of degree l on Rn and for P (x) =

∑
|α|=d aαxα, we let

‖P‖ =
∑

|α|=l |aα|. Let Zn
l : Vl → Vl be the linear transformation defined as

in [10], p. 807. The following result can be found in [10], p. 810.

Proposition 6.1 Let h ∈ ∆γ(R
+), Ω ∈ Lq(Sn−1) for some γ > 1, q > 1

and let ω = min{2, γ, q}. Suppose F : Rn → R is a function given by

F (x) =

l∑
j=0

Pj (x) + W (|x|)

where Pj(·) is a homogeneous polynomial of degree j for 0 ≤ j ≤ l and W (·)
is an arbitrary function. Let

Jk(Ω) =

∫ 2k+1

2k

∫
Sn−1

eiF (tx)Ω (x)h (t) dσ (x)
dt

t

for k ∈ Z. Then we have

(6.1) |Jk(Ω)| ≤ C ‖Ω‖Lq(Sn−1) (2kl ‖Zn
l (Pl)‖)−1/(4 l ω′).

The constant C is independent of Ω(·), k, W (·) and the coefficients of
{Pj(·)}.

If G is a subspace of Vl with |x|l /∈ G, then there exists a constant C ′

such that

(6.2) |Jk(Ω)| ≤ C ′ ‖Ω‖Lq(Sn−1) (2kl ‖Pl‖)−1/(4 l ω′)

holds for all k ∈ Z and F with Pl(·) ∈ G. The constant C ′ may depend on
the subspace G if l is even, but it is independent of G if l is odd.

One thing which makes working with block functions difficult is the lack
of mean zero property. In order to remove this obstacle and elaborate on
the proofs of certain known results on block spaces (see, for example, [9]),
we find it is useful to introduce the following notion:

Definition 6.2 A function b̃(·) on Sn−1 is called a q−blocklike function
associated with an interval I on Sn−1, 1 < q ≤ ∞, if it satisfies the following
conditions:

(i)

∫
Sn−1

b̃ (u) dσ(u) = 0 ;

(ii) ‖b̃‖Lq(Sn−1) ≤ |I|−1/q′ ;

(iii) ‖b̃‖L1(Sn−1) ≤ 1.
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Let b be a q-block function on Sn−1 supported in an interval I with
q > 1 and ‖b‖Lq(Sn−1) ≤ |I|−1/q′, 1

q
+ 1

q′ = 1. To each function b we associate

a function b̃ defined by

(6.3) b̃(x) = b(x) −
∫

Sn−1

b(u)dσ(u).

Then the function b̃ enjoys the following properties:∫
Sn−1

b̃(u) dσ(u) = 0(6.4)

‖b̃‖Lq(Sn−1) ≤ 2 |I|−1/q′(6.5)

‖b̃‖L1(Sn−1) ≤ 2.(6.6)

We notice that, with the exception of a constant factor, the function b̃ is
a q−blocklike function associated with the interval I on Sn−1. We call the
function b̃ the blocklike function corresponding to the block function b.

Our aim now is to establish the necessary Fourier transform estimates
related to blocklike functions b̃.

Proposition 6.3 Let h ∈ ∆γ (R+) for some γ > 1, b̃ be a q-blocklike func-
tion associated with an interval I on Sn−1 and ω = min{2, γ, q}. Suppose
that F : R

n → R is a function given by F (x) =
∑l

j=0 Pj (x)+W (|x|) where
Pj (·) is a homogeneous polynomial of degree j for 0 ≤ j ≤ l and W (·) is an
arbitrary function. Let Jk = Jk(b̃) for k ∈ Z. Then

(6.7) |Jk| ≤ C
(
2kl ‖Zn

l (Pl)‖
)1/(4 l ω′ log |I|)

if |I| < e−2

and

(6.8) |Jk| ≤ C
(
2kl ‖Zn

l (Pl)‖
)−1/(4 l ω′)

if |I| ≥ e−2.

The constant C is independent of b̃(·), k, W (·) and the coefficients of the
polynomials {Pj(·) : 0 ≤ j ≤ l}.
Proof. By Proposition 6.1 and the definition of b̃, property (ii) we have

(6.9) |Jk| ≤ C |I|−1/q′ (2kl
∥∥Z

(n,1)
l (Pl)

∥∥)−1/(8 l ω′)
.

Also, by the definition of b̃, property (iii), we get

|Jk| ≤ C‖b̃‖L1(Sn−1)

[
sup
R>0

1

R

∫ R

0

|h (t)| dt

]
≤ C.

If |I| < e−2, then by interpolating between the preceding estimates of |Jk|
we get (6.7). On the other hand, if |I| ≥ e−2, (6.8) follows easily from (6.9).

�
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The oscillatory estimates in Proposition 6.3 will be used in the proof
of Theorem 2.1. To prove Theorems 2.2 and 2.3 we need to use somewhat
different measures for decomposing our operators at hand. For this purpose,
we define the following class of measures related to blocklike functions b̃.

Definition 6.4 For a suitable mapping Γ : Rn → Rm we define the measures
{ΥΓ,b̃,k : k ∈ Z} and the maximal operators Υ∗

Γ,b̃
on Rm by

(6.10)

∫
Rm

f dΥΓ,b̃,k =

∫
βk≤|u|<βk+1

f (Γ (u))
b̃ (u′)
|u|n h (|u|) du

and

(6.11) Υ∗
Γ,b̃

f (x) = sup
k∈Z

∣∣∣ ∣∣ΥΓ,b̃,k

∣∣ ∗ f (x)
∣∣∣

where β = 2 log(1/|I|) and |I| < e−2.

We would like to thank Ahmad Al-salman for a very fruitful discussion
concerning the usefulness of decomposing our operator T using the measures
{ΥΓ,b̃,k}.

Now let us establish the following proposition which will provide us with
the necessary Fourier transform estimates related to b̃ whenever |I| < e−2.

Proposition 6.5. Let h ∈ ∆γ (R+) for some γ, 1 < γ ≤ 2 and b̃ be a
q-blocklike associated with an interval I. Let F : Rn → R be a function given
by F (x) =

∑l
j=0 Pj (x) + W (|x|) where Pj(·) is a homogeneous polynomial

of degree j for 0 ≤ j ≤ l and W (·) is an arbitrary function. Let

Jk(b̃) =

∫ βk+1

βk

∫
Sn−1

eiF (tx)b̃(x)h(t)dσ (x)
dt

t

for k ∈ Z. If |I| < e−2, then there exists a constant C such that

(6.12)
∣∣∣Jk(b̃)

∣∣∣ ≤ C log

(
1

|I|
) (

2lk(log 1
|I| ) ‖Zl(Pl)‖

)1/(4 l γ′ q′ log |I|)

holds for all k ∈ Z. The constant C is independent of k, b̃, W (·) and the
coefficients of Pj(·).

If G is a subspace of Vl satisfying |x|l /∈ G for some l ∈ N then for
|I| < e−2 there exists a constant C ′ such that

(6.13)
∣∣∣Jk(b̃)

∣∣∣ ≤ C ′ log

(
1

|I|
) (

2lk(log 1
|I| ) ‖Pl‖

)1/(4 l γ′ q′ log |I|)

holds for all k ∈ Z and Pl ∈ G. The constant C ′ may depend on the subspace
G if l is even, but it is independent of G if l is odd.
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Proof. By Hölder’s inequality we have∣∣∣Jk(b̃)
∣∣∣ ≤ (∫ βk+1

βk

|h(t)|γ dt

t

)1/γ (∫ β

1

|Sk (t)|γ′ dt

t

)1/γ′

,

where

Sk (t) =

∫
Sn−1

eiF(βktx) b̃(x)dσ (x) .

Since ∫ βk+1

βk

|h(t)|γ dt

t
≤

[log 1
|I| ]+1∑

s=1

∫ βk2s

βk2s−1

|h(t)|γ dt

t
and |Sk (t)| ≤ 2,

we obtain ∣∣∣Jk(b̃)
∣∣∣ ≤ C

(
log

1

|I|
)1/γ

(∫ β

1

|Sk (t)|2 dt

t

)1/γ′

.

where [·] denotes the usual greatest integer function. By writing

|Sk (t)|2 =

∫
Sn−1

∫
Sn−1

b̃(x) b̃(y)ei(F(βktx)−F(βkty)) dσ (x) dσ (y)

and using Van der Corput’s lemma we obtain∣∣∣∣∫ β

1

ei(F(βktx)−F(βkty)) dt

t

∣∣∣∣ ≤ C min

{
log

(
1

|I|
)

,
∣∣βkl(Pl (x) − Pl(y))

∣∣−1/l
}

≤ C log

(
1

|I|
) ∣∣βkl(Pl (x) − Pl(y))

∣∣−1/(4 l q′)
.

Therefore, by Hölder’s inequality, Lemma 3.3 and Lemma 3.4 in [10] we get∣∣∣Jk(b̃)
∣∣∣ ≤ C log

(
1

|I|
) ∥∥ b̃

∥∥2/γ′

Lq(Sn−1)

(
βkl ‖Zl(Pl)‖

)−1/(4 l γ′ q′)
.

Then by the definition of b̃, property (ii), we get∣∣∣Jk(b̃)
∣∣∣ ≤ C log

(
1

|I|
)
|I|−2/(q′ γ′) (

βkl ‖Zl(Pl)‖
)−1/(4 l γ′ q′)

.

By interpolating between the preceding estimate and the trivial estimate∣∣∣Jk(b̃)
∣∣∣ ≤ C log

(
1

|I|
)

we obtain (6.12). (6.13) can be established by following essentially the same
argument as in the proof of (6.12) and using Lemma 3.7 in [10]. This com-
pletes the proof of our proposition. �
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7. Proofs of Theorems 2.1 and 2.2

Let deg(P) = max{deg(Pj) : 1 ≤ j ≤ m}, 0 < n1 < n2 < . . . , nN = deg(P)
be non-negative integers and polynomials {P l

j : 1 ≤ j ≤ m, 1 ≤ l ≤ N} such
that

P(x) =
N∑

l=1

P l(x) + R(|x|)

where P l(x) = (P l
1(x), . . . , P l

m), x ∈ Rn, W(t) = (W1(t), . . . ,Wm(t)), t ∈ R,
Znl

(P l
j) = P l

j , with P l
j ∈ Vnl

⊆ An and Wj ∈ A1 for 1 ≤ j ≤ m, 1 ≤ l ≤ N.

For 1 ≤ l ≤ N , let ρl denote the number of elements of {β ∈ (N∪ {0})n:
|β| = nl} and write {β ∈ (N ∪ {0})n : |β| = nl} = {β(1), . . . , β(ρl)}. Write

P l
j(x) =

ρl∑
k=1

ηk,j xβ(k)

and define the linear mappings Ll : Rm → Rρl by

(7.1) Ll(ξ) =
( m∑

j=1

ηl
1,j ξj , . . . ,

m∑
j=1

ηl
ρl,j

ξj

)
for 1 ≤ j ≤ m, 1 ≤ l ≤ N.

Let

(7.2) Γl(x) =

l∑
j=1

Pj(x) + W(|x|) for 1 ≤ l ≤ N and Γ0(x) = W(|x|).

Also, let

(7.3) σ
(l)
ϑ,k = σΓl,ϑ,k for ϑ ∈ L1(Sn−1) and for each 1 ≤ l ≤ N.

Since ∆γ(R
+) ⊆ ∆2(R

+) when γ ≥ 2, we may assume that 1 < γ ≤ 2 and
p satisfies

∣∣1
p
− 1

2

∣∣ < 1
γ′ . By assumption Ω can be written as Ω =

∑∞
µ=1 cµbµ

where cµ ∈ C, bµ is a q-block with support on an interval Iµ on Sn−1 and

(7.4) M0,0
q ({cµ}) =

∞∑
µ=1

|cµ|
(

1 +
(

log+ 1

|Iµ|
))

< ∞.

For each µ ≥ 1 let b̃µ be the blocklike function corresponding to the block
function bµ. Then by the mean zero property of Ω, condition (1.2), we have

(7.5) Ω =
∞∑

µ=1

cµb̃µ.
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Thus, the operator T in (1.5) can be decomposed as

(7.6) Tf(x) =

∞∑
µ=1

cµTb̃µ
f(x)

where

(7.7) Tb̃µ
f(x) = p.v.

∫
Rn

f (x − P (u))
b̃µ (u′)
|u|n h (|u|) du.

It is easy to see that, by (6.6),

(7.8)
∥∥σ

(l)

b̃µ,k

∥∥ ≤ C

holds uniformly in l, µ and k. By Proposition 6.3 and (6.5)-(6.6) we have

(7.9)
∣∣∣σ̂(l)

b̃µ,k
(ξ)

∣∣∣ ≤ C(2knl |Ll(ξ)|1/(4 nl log |Iµ|) if |Iµ| < e−2

and

(7.10)
∣∣∣σ̂(l)

b̃µ,k
(ξ)

∣∣∣ ≤ C(2knl |Ll(ξ)| )−1/(4 nl q′) if |Iµ| ≥ e−2,

where C is independent of k ∈ Z, ξ ∈ Rn and the blocklike function b̃µ(·).
We also observe that∣∣∣σ(l)

b̃µ,k
(ξ) − σ

(l−1)

b̃µ,k
(ξ)

∣∣∣ ≤ C‖b̃µ‖L1(Sn−1)

(
sup
R>0

1

R

∫ R

0

|h(t)| dt)(2knl |Ll(ξ)|
)

which, together with (6.6), implies that

(7.11)
∣∣σ̂(l)

b̃µ,k
(ξ) − σ̂

(l−1)

b̃µ,k
(ξ)

∣∣ ≤ C(2knl |Ll(ξ)| )

with a positive constant C independent of k ∈ Z, ξ ∈ R
n and the blocklike

b̃µ(·).
By Theorem 5.3 and (6.6) we have

(7.12)
∥∥∥( ∑

k∈Z

∣∣∣σ(l)

b̃µ,k
∗ gk

∣∣∣2 ) 1
2

∥∥∥
p
≤ Cp

∥∥∥( ∑
k∈Z

|gk|2
) 1

2

∥∥∥
p

for p satisfying
∣∣1
p
− 1

2

∣∣ < 1
γ′ and for arbitrary functions {gk} on R

n with a

Cp independent of the blocklike function b̃µ, µ = 1, 2, . . . .

Now by (7.8)-(7.12) and invoking Lemma 3.1 we get

(7.13)
∥∥∥Tb̃µ

f
∥∥∥

p
=

∥∥∥∑
k∈Z

σ
(N)

b̃µ,k
∗ f

∥∥∥
p
≤ Cp log

(
1

|Iµ|
)
‖f‖p if |Iµ| < e−2,
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and

(7.14)
∥∥∥Tb̃µ

f
∥∥∥

p
=

∥∥∥∑
k∈Z

σ
(N)

b̃µ,k
∗ f

∥∥∥
p
≤ Cp ‖f‖p if |Iµ| ≥ e−2

for p satisfying
∣∣1
p
− 1

2

∣∣ < 1
γ′ and for any f ∈ Lp( R

n). Then by (7.4), (7.6)-

(7.7), (7.13)-(7.14) we get (2.1). This completes the proof of Theorem 2.1.
�

Proof of Theorem 2.2. By (7.5) we have

(7.15) T ∗ (f) ≤
∑
µ=1

|cµ|T ∗
b̃µ

(f)

where T ∗
b̃µ

is the maximal truncated singular integral corresponding to the

operator Tb̃µ
. Thus, it suffices to establish appropriate Lp bounds for T ∗

b̃µ
,

µ = 1, 2, . . . . For the sake of simplicity, we shall work with an arbitrarily
fixed µ and write I = Iµ and b̃ = b̃µ.

By Theorem C (iii) and (6.6) we have

(7.16)
∥∥T ∗

b̃
f
∥∥

p
≤ Cp ‖f‖p

for |I| ≥ e−2 and every p ∈ (1,∞) with Cp independent of b̃.

On the other hand, by Theorem 5.2 and (6.6) we obtain easily that

(7.17)
∥∥∥Υ∗

Γl,b̃
f
∥∥∥

p
≤ Cp(log

1

|I|) ‖f‖p

holds for every f ∈ Lp(Rn), 1 < p < ∞, |I| < e−2 and 1 ≤ l ≤ N. For

1 ≤ l ≤ N, let Υ
(l)

b̃,k
= ΥΓl,b̃,k

. Then by (6.5)-(6.6) and Proposition 6.5 we

get for |I| < e−2 the following estimates:

(7.18)
∥∥∥Υ

(l)

b̃,k

∥∥∥ ≤ C log

(
1

|I|
)

and

(7.19)
∣∣∣Υ̂(l)

b̃,k
(ξ)

∣∣∣ ≤ C log

(
1

|I|
) ∣∣∣2knl(log 1

|I| )Ll (ξ)
∣∣∣1/(4 nl γ′ q′ log |I|)

.

In addition, by interpolating between∣∣∣Υ̂(l)

b̃,k
(ξ) − Υ̂

(l−1)

b̃,k
(ξ)

∣∣∣ ≤ C log

(
1

|I|
) ∣∣∣2knl(log 1

|I| )Ll (ξ)
∣∣∣
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and the trivial estimate∣∣∣Υ̂(l)

b̃,k
(ξ) − Υ̂

(l−1)

b̃,k
(ξ)

∣∣∣ ≤ C log

(
1

|I|
)

we get
(7.20)∣∣∣Υ̂(l)

b̃,k
(ξ) − Υ̂

(l−1)

b̃,k
(ξ)

∣∣∣ ≤ C log

(
1

|I|
) ∣∣∣2knl(log 1

|I| )Ll (ξ)
∣∣∣−1/(4 nl γ′ q′ log |I|)

for all k ∈ Z, ξ ∈ Rm and 1 ≤ l ≤ N. By (7.17)-(7.20) and Lemma 3.5 we
get

(7.21)
∥∥∥ sup

k∈Z

∣∣∣ ∞∑
j=k

Υ
(N)

b̃,j
∗ f

∣∣∣∥∥∥
p
≤ Cp(log

1

|I|) ‖f‖p

for every f ∈ Lp(Rn) and 1 < p < ∞. Since∣∣T ∗
b̃
f(x)

∣∣ ≤ sup
k∈Z

∣∣∣ ∞∑
j=k

Υ
(N)

b̃,j
∗ f(x)

∣∣∣ + Υ∗
ΓN ,b̃

f(x),

by (7.17) and (7.21) we obtain

(7.22)
∥∥T ∗

b̃
f
∥∥

p
≤ Cp(log

1

|I|) ‖f‖p

for every p ∈ (1, ∞). Hence by (7.4), (7.15), (7.16), and (7.22) we get (2.2).
This concludes the proof of Theorem 2.2. �

8. Classes of maximal functions and singular integrals
associated to special polynomial mappings

Let us start with the definition of the special class of polynomial mappings
F (n,m) . This class was introduced by Fan and Pan in their study of singular
integral operators in [10], p. 833. It is defined as follows: for n,m, l ∈ N let
Fn,m,0 = Rm,

Fn,m,l =
{

(P1, . . . , Pm) ∈ (Vl)
m : |x|l /∈ span {P1, . . . , Pm}

}
and

F (n,m) = {
m∑

l=0

P l
j : m ≥ 0,P l ∈ Fn,m,l for 0 ≤ l ≤ m}

where Vl represents the linear space of real-valued homogeneous polynomials
of degree l on R

n. It is clear that Fn,m,l = (Vl)
m if l is odd. Also, notice that

if P = (P1, . . . , Pm) with Pj ∈ An and P (−x) = −P (x), then P ∈ F (n,m) .
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Our purpose in this section is to study singular integrals and maximal
functions associated to polynomial mappings which belong to the special
class F (n,m) . The main thrust in the proof of Theorem 2.3 will be in
establishing the following theorem.

Theorem 8.1. Let h ∈ ∆γ (R+) for some γ, 1 < γ ≤ 2 and b̃ be a q-
blocklike function associated with an interval I with |I| < e−2. Suppose that
P ∈ F (n,m) . Then for 1 < p ≤ ∞ and f ∈ Lp (Rm) there exists a positive
constant Cp > 0 such that

(8.1)
∥∥∥Υ∗

P,b̃
(f)

∥∥∥
Lp(Rm)

≤ Cp log

(
1

|I|
)
‖f‖Lp(Rm) .

Furthermore, if P (−x) = −P (x) , then the constant Cp depends only on p,
n, m, h, deg (P) and neither on the function b̃ nor on the coefficients of the
polynomial components of the mapping P .

Proof. Without loss of generality we may assume that b̃ ≥ 0 and h ≥ 0.
We shall prove (8.1) by induction on deg (P) . First, if deg (P) = 0, then by
the definition of b̃, property (iii),

Υ∗
P,b̃

(f) (x) ≤ C log

(
1

|I|
)
|f (x − P (0))|

and hence (8.1) holds trivially. Next, assume that (8.1) holds for all P ∈
F (n,m) with deg (P) ≤ d − 1.

Now suppose that deg (P) = d. Then P = H (x) + R (x) for some non
zero H ∈ Fn,m,d, R ∈ F (n,m) and with deg (R) ≤ d − 1. By the inductive
hypothesis we have

(8.2)
∥∥∥Υ∗

R,b̃
(f)

∥∥∥
Lp(Rm)

≤ Cp log

(
1

|I|
)
‖f‖Lp(Rm)

for 1 < p < ∞ and f ∈ Lp(Rm).

Let md = dim (Vd) and L : Rm → Rmd be a linear transformation such
that ‖(ξ · H) (·)‖ = |L (ξ)| for ξ ∈ R

m. Then by Proposition 6.5 and the
proof of (7.20) we obtain

(8.3)
∥∥ΥP,b̃,k

∥∥ ≤ C log

(
1

|I|
)

,
∥∥ΥR,b̃,k

∥∥ ≤ C log

(
1

|I|
)

(8.4)
∣∣∣Υ̂P,b̃,k (ξ)

∣∣∣ ≤ C log

(
1

|I|
) (

2kd(log 1
|I| ) |L (ξ)|

)1/(4 d γ′ q′ log |I|)
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and

(8.5)
∣∣∣Υ̂P,b̃,k (ξ) − Υ̂R,b̃,k (ξ)

∣∣∣ ≤ C log

(
1

|I|
) (

2kd(log 1
|I| ) |L (ξ)|

)−1/(log |I| d)

.

Without loss of generality we may assume that L = πm
md

for some md ≤
m. Let φ ∈ S (Rmd) be a Schwartz function such that φ̂ (x) = 1 for |x| ≤ 1

2

and φ̂ (x) = 0 for |x| ≥ 1. Define the functions {φk} and measures {νk} by

(φk )̂(x) = φ̂
(
2kd(log 1

|I| )x
)

,

and

(8.6) ν̂k (ξ) = Υ̂P,b̃,k (ξ) − (φk )̂
(
πm

md
ξ
)
Υ̂R,b̃,k (ξ) .

We observe that

(8.7) |ν̂k (ξ)| ≤ C log

(
1

|I|
) ∣∣∣2kd(log 1

|I| )πm
md

ξ
∣∣∣±1/(4 d q′ γ′ log |I|)

Let
g (f) = (

∑
k∈Z

|νk ∗ f |2) 1
2 and ν∗ (f) = sup

k∈Z

||νk| ∗ f | .

Then by (8.6) we have

(8.8) Υ∗
P,b̃

f(x) ≤ g (f) (x) + sup
k∈Z

∣∣(φk ⊗ δR
m−md ) ∗ ΥR,b̃,k ∗ f(x)

∣∣ .

If we let Ms denote the Hardy-Littlewood maximal function on Rs, then

sup
k∈Z

|[(φk⊗δR
m−md )] ∗ ΥR,b̃,k ∗ f(x)|

≤ C(Mmd
⊗ idR

m−md )(Υ
∗
R,b̃

f(x)).(8.9)

By (8.6) and (8.8)-(8.9) we get

(8.10) ν∗f (x) ≤ g (f) (x) + 2C[(Mmd
⊗ idR

m−md )](Υ∗
R,b̃

f(x)).

It follows from (8.7) and Plancherel’s theorem that

(8.11) ‖g(f)‖L2 ≤ C log

(
1

|I|
)
‖f‖L2 .

By the Lp boundedness of the Hardy-Littlewood maximal function, (8.2),
(8.10)-(8.11) we get

(8.12) ‖ν∗(f)‖L2 ≤ C log

(
1

|I|
)
‖f‖L2
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with a C independent of b̃. By using the fact ‖νk‖ ≤ C log
(

1
|I|

)
together

with Lemma 3.4 (for q = 2) we get

(8.13)
∥∥∥(

∑
k∈Z

(|νk ∗ gk|2) 1
2

∥∥∥
p0

≤ Cp0 log

(
1

|I|
)∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p0

if 1
4

=
∣∣ 1
p0

− 1
2

∣∣.
Now, by (8.7), (8.13) and invoking Lemma 3.2 we get

(8.14) ‖g(f)‖Lp ≤ Cp log

(
1

|I|
)

‖f‖Lp for p ∈
( 4

3
, 4

)
.

By the Lp boundedness of the Hardy-Littlewood maximal function, (8.2)
and (8.10), we get

(8.15) ‖ν∗(f)‖Lp ≤ C log

(
1

|I|
)
‖f‖Lp for p ∈

( 4

3
, 4

)
.

Reasoning as above, (8.7), (8.12), Lemma 3.2 and Lemma 3.4 provide

(8.16) ‖g(f)‖Lp ≤ Cp log

(
1

|I|
)
‖f‖Lp for p ∈

( 8

7
, 8

)
.

By using this argument repeatedly we ultimately obtain that

(8.17) ‖g(f)‖Lp ≤ Cp log

(
1

|I|
)
‖f‖Lp for p ∈ (1,∞).

Therefore, by (8.2) and (8.8)-(8.9) we conclude that

(8.18)
∥∥∥Υ∗

P,b̃
(f)

∥∥∥
Lp

≤ Cp log

(
1

|I|
)
‖f‖Lp for p ∈ (1,∞).

Since ∥∥∥Υ∗
P,b̃

(f)
∥∥∥

L∞
≤ C log

(
1

|I|
)
‖f‖L∞

holds trivially, the proof of (8.1) is complete.

Finally, if P (−x) = −P (x), then at each step of our inductive argument
d is always an odd number. Therefore, by Proposition 6.5 and the above
argument, the constant Cp in (8.1) depends only p, n, m, h, deg(P) and nei-
ther on the function b̃ nor on the coefficients of the polynomial components
of the mapping P . This concludes the proof of our theorem. �
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Sketch of the proof of Theorem 2.3. Since ∆γ(R
+) ⊆ ∆2(R

+) when
γ ≥ 2, we may assume that 1 < γ ≤ 2. Let Ω =

∑∞
µ=1 cµbµ be a block

function, where cµ ∈ C; each bµ is a q-block supported in an interval Iµ;

‖bµ‖Lq(Sn−1) ≤ |I|−1/q′ and M0,0
q ({cµ}) satisfies (7.5). For each µ = 1, 2, . . .

let b̃µ be the blocklike function corresponding to the q-block bµ.

Since P ∈ F (n,m), there are integers 0 < n1 < n2 < · · · < nN =
deg(P), and nonzero Pd ∈ Fn,m,nd

for 1 ≤ d ≤ N such that P(x) = P(0) +∑N
d=1 Pd(x). Let

(8.19) Γ0(x) = P(0) and Γd(x) = P(0) +
d∑

j=1

Pj(x) for 1 ≤ d ≤ N .

Then by Proposition 6.5 and using an argument similar to the one in the
proof of (7.20) we get for suitable linear transformations Gd : R

m → R
ρd

and |Iµ| < e−2 the following:∥∥∥Υ
(d)

b̃µ,k

∥∥∥ ≤ C log
( 1

|Iµ|
)

(8.20) ∣∣∣Υ̂(d)

b̃µ,k
(ξ)

∣∣∣ ≤ C log
( 1

|Iµ|
) ∣∣∣2knd log( 1

|Iµ| )Gd (ξ)
∣∣∣1/(4 nd γ′ q′ log |Iµ|)

(8.21)

(8.22)
∣∣∣Υ̂(d)

b̃µ,k
(ξ) − Υ̂

(d−1)

b̃µ,k
(ξ)

∣∣∣ ≤ C log
( 1

|Iµ|
) ∣∣∣2knd log( 1

|Iµ| )Gd (ξ)
∣∣∣−1/(log |Iµ|)

for all k ∈ Z, ξ ∈ Rm, 1 ≤ d ≤ N.

By Theorem 8.1, (8.21) and Lemma 3.4 we have

(8.23)
∥∥∥Υ∗

Γd,b̃µ
(f)

∥∥∥
Lp(Rm)

≤ Cp log
( 1

|Iµ|
)
‖f‖Lp(Rm)

and

(8.24)
∥∥∥(

∑
k∈Z

∣∣∣Υ(d)

b̃µ,k
∗ gk

∣∣∣2) 1
2

∥∥∥
p
≤ C log

( 1

|Iµ|
)∥∥∥(

∑
k∈Z

|gk|2) 1
2

∥∥∥
p

for 1 < p < ∞, 1 ≤ d ≤ N and for arbitrary functions {gk} on Rm.

By (8.20)-(8.24), Lemma 3.3 and Lemma 3.5 we obtain

(8.25)
∥∥∥T̃b̃µ

f
∥∥∥

p
=

∥∥∥ ∑
k∈Z

Υ
(N)

b̃µ,k
∗ f

∥∥∥
p
≤ Cp log

( 1

|Iµ|
)
‖f‖p

and

(8.26)
∥∥T̃ ∗

b̃µ
f
∥∥

p
≤ Cp log

( 1

|Iµ|
)
‖f‖p

for 1 < p < ∞ and f ∈ Lp(Rm).
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On the other hand, for |Iµ| ≥ e−2 we obtain by Theorem C and (6.5)

(8.27)
∥∥T̃b̃µ

f
∥∥

p
≤ Cp ‖f‖p

and

(8.28)
∥∥T̃ ∗

b̃µ
f
∥∥

p
≤ Cp ‖f‖p .

Now (2.3) and (2.5) follow by combining (7.4), (7.6), (7.15) and (8.25)-(8.28).

Finally, by (7.5), it is easy to see that

MP,Ωf(x) ≤ 2

∞∑
µ=1

|cµ| σ∗
P,b̃µ

(|f |)(x)

≤ 2
∞∑

µ=1,|Iµ|≥e−2

|cµ|MP,b̃µ
(|f |)(x) + 4

∞∑
µ=1,|Iµ|<e−2

|cµ| τ ∗
P,b̃µ

(|f |)(x).(8.29)

Therefore, by Theorem C, (6.5), (7.4), (8.23) and (8.29) we obtain (2.4).
This concludes the proof of our theorem. �

9. Oscillatory singular integrals

By a well-known method we can obtain the Lp boundedness of the following
oscillatory singular integral operator

Sf (x) = p.v.

∫
Rn

eiP (x−y)K (x − y) f(y)dy

where the phase P is a polynomial. In fact, we have the following.

Theorem 8.1 Let K(x) =
Ω(x)

|x|n h(|x|) where Ω satisfies (1.2) and h ∈
∆γ(R

+) for some γ > 1. Then if Ω ∈ B0,0
q (Sn−1) for some q > 1 we have

(i) the operator S is bounded from Lp(Rn) to itself for p satisfying∣∣∣∣1p − 1

2

∣∣∣∣ < min

{
1

2
,

1

γ′

}
.

(ii) If P (−x) = −P (x), x ∈ R
n, then for 1 < p < ∞ the operator S(f) is

bounded from Lp (Rn) to itself.

Moreover, the bound for the operator norm in (i) and (ii) is independent of
the coefficients of the polynomial P .
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