Some questions on quasinilpotent groups and related classes

M. J. Iranzo, J. Medina and F. Pérez-Monasor

Abstract

In this paper we will prove that if G is a finite group, X a subnormal subgroup of $X F^*(G)$ such that $X F^*(G)$ is quasinilpotent and Y is a quasinilpotent subgroup of $N_G(X)$, then $Y F^*(N_G(X))$ is quasinilpotent if and only if $Y F^*(G)$ is quasinilpotent. Also we will obtain that $F^*(G)$ controls its own fusion in G if and only if $G = F^*(G)$.

The generalized Fitting subgroup $F^*(G)$ of a finite group G is the product of the Fitting subgroup and the semisimple radical of G.

This generalized Fitting subgroup satisfies $C_G(F^*(G)) \leq F^*(G)$, for every finite group G. This property is similar to the corresponding one for the Fitting subgroup of a soluble group: $C_G(F(G)) \leq F(G)$. Quasinilpotent groups are those groups which coincide with their generalized Fitting subgroup. A group G such that $F^*(G) = F(G)$ is a nilpotent-constrained group.

H. Bender stated that if G is a nilpotent-constrained group, X a subgroup of G such that X F(G) is nilpotent and $Y \leq N_G(X)$, then $Y F(N_G(X))$ is nilpotent if and only if Y F(G) is nilpotent.

A well known theorem of Frobenius states that if a p-Sylow subgroup of G controls its own fusion in G, then G has a normal p-complement.

In this paper we will prove that if G is a finite group, X a subnormal subgroup of $X F^*(G)$ such that $X F^*(G)$ is quasinilpotent and Y is a quasinilpotent subgroup of $N_G(X)$, then $Y F^*(N_G(X))$ is quasinilpotent if and only if $Y F^*(G)$ is quasinilpotent. Also we characterize when a nilpotent

2000 Mathematics Subject Classification: 20D10, 20F19.

Keywords: Nilpotent group, quasinilpotent group, injector, fusion.

injector controls its own fusion in a nilpotent-constrained group or when a quasinilpotent injector controls its own fusion in a finite group.

Notations. All groups considered in this paper are assumed to be finite. The non-explicit notations are standard, see for instance [3]. We quote nevertheless the following:

 \mathfrak{N} : class of nilpotent groups,

 \mathfrak{S} : class of soluble groups,

 \mathfrak{N}^* : class of quasinilpotent groups,

F(G) is the Fitting subgroup of G, i.e., the largest nilpotent normal subgroup of G.

If \mathfrak{F} is a class of groups,

$$\mathbf{s}_n \mathfrak{F} = \{G; G \subseteq X \text{ for some } X \in \mathfrak{F}\},\$$

$$\mathbf{N}_0 \mathfrak{F} = \{G; G = \langle X_1, \dots, X_n \rangle \text{ for some } X_i \subseteq G, X_i \in \mathfrak{F}, 1 \le i \le n\},\$$

A Fitting class \mathfrak{F} is an \mathbf{s}_n - and \mathbf{n}_0 -closed class, that is, a class such that $\mathfrak{F} = \mathbf{s}_n \mathfrak{F} = \mathbf{n}_0 \mathfrak{F}$.

If \mathfrak{F} is a Fitting class, a subgroup H of G is an \mathfrak{F} -injector of G whenever $H \cap N$ is an \mathfrak{F} -maximal subgroup of N, for every subnormal subgroup N of G. We denote by $\mathrm{Inj}_{\mathfrak{F}}(G)$ the set of all \mathfrak{F} -injectors of G. The quasinilpotent injectors of a group G are characterized as the maximal quasinilpotent subgroups containing the generalized Fitting subgroup of G ([3]).

A group G is said to be quasisimple if G is perfect and G/Z(G) is simple.

The quasisimple subnormal subgroups of a (finite) group G are called the *components* of G. The *semisimple radical* $\mathcal{E}(G)$ of G is the join of its components.

We will need the description of some properties about the semisimple radical of a group. As we did not find any complete reference to it in the literature, for the sake of being selfcontained, we include the following:

Lemma 1 Let G be a group. Then:

- (1) If $F^*(G) \le H \le G$ it follows that E(H) = E(G).
- (2) If H is a subnormal subgroup of G then E(H) is the product of all components Q of G such that $[Q, H] \neq 1$. In particular $E(G) \leq N_G(H)$.
- (3) If $H \leq \leq H F^*(G)$, then $E(N_G(H)) = E(G)$.

- **Proof.** (1) Clearly $E(G) \leq E(H)$. As $F^*(G) \leq N_G(E(H))$ then $E(H) \leq E(G)$ ([2] 4.25), thus E(G) = E(H).
- (2) If Q is a component of G and $H \leq G$, then either [Q, H] = 1 or $Q \leq [Q, H]$ ([7], X 13.18). When $H \leq \subseteq G$ the second alternative implies that $Q \leq H$. Therefore E(H) is the product of all components Q of G such that $[Q, H] \neq 1$. In consequence $E(G) \leq N_G(H)$.
- (3) By ([2], 4.26) $E(N_G(H)) \leq E(G)$. On the other hand, by (1) and (2) we have that $E(H F^*(G)) = E(G) \leq N_G(H)$, thus $E(G) \leq E(N_G(H))$.

In [8] we proved the following result:

Suppose that N is a nilpotent normal subgroup of G and let X be a nilpotent subgroup of G satisfying $C_G(N \cap X) \leq X$. Then NX is nilpotent.

As a consequence of this result, it is easy to obtain:

If X is a subgroup of F(G) and Y is a nilpotent subgroup of $N_G(X)$ containing $F(N_G(X))$, then Y F(G) is nilpotent.

A generalization of this result would be:

If X F(G) is a nilpotent subgroup of G and Y a subgroup of $N_G(X)$ satisfying $Y F(N_G(X))$ is nilpotent, then Y F(G) is nilpotent.

In [1] H. Bender had given an affirmative answer when G is a nilpotent-constrained group. Next we will prove that this result is true without any restriction:

Proposition 2 Let $X \leq G$ with X F(G) nilpotent and let $Y \leq N_G(X)$ with $Y F(N_G(X))$ nilpotent, then Y F(G) is nilpotent.

Proof. Work by induction on the order of G.

If $R = F(G) N_G(X) < G$ then $X F(G) \leq R$ thus $X F(G) \leq F(R)$ and X F(R) = F(R). Therefore, since $N_G(X) = N_R(X)$, by the inductive hypothesis, it follows that Y F(R) is nilpotent, so Y F(G) is nilpotent.

Thus we can suppose that $G = F(G) N_G(X)$, so $X F(G) \leq G$, then $X \leq F(G)$ and by the consequence of ([8], 2.2), it follows that $Y F(N_G(X)) F(G)$ is nilpotent, so Y F(G) is nilpotent.

Proposition 3 Let X be a quasinilpotent subgroup of G satisfying $X \cap F^*(G) \leq F^*(G)$. If $C_{F^*(G)}(X \cap F^*(G)) \leq X$ then $X F^*(G)$ is quasinilpotent.

Proof. Since $U = X \cap F^*(G) \leq \subseteq F^*(G)$ and $C_{F^*(G)}(U) \leq U$, by ([7], X 15.1) it follows that $U = E(G)(U \cap F(G))$ and $C_{F(G)}(U \cap F(G)) \leq U$. Then

$$C_{F(G)}(F(X) \cap F(G)) = C_{F(G)}(X \cap F(G)) = C_{F(G)}(U \cap F(G)) \le U \cap F(G)$$
$$= F(X) \cap F(G).$$

Next, we will prove that F(X) F(G) is nilpotent. It suffices to show that $F(X) O_p(G)$ is nilpotent for every prime p in order of F(G). Consider the action of $(O_p(G) \cap O_p(X)) \times O_{p'}(F(X))$ on $O_p(G)$. Since

$$C_{\mathcal{O}_p(G)}(\mathcal{O}_p(G)\cap\mathcal{O}_p(X))\leq C_{\mathcal{F}(G)}(\mathcal{F}(G)\cap\mathcal{F}(X))\leq \mathcal{F}(X),$$

we have $C_{O_p(G)}(O_p(G) \cap O_p(X)) \leq O_p(X)$ and $O_{p'}(F(X))$ acts trivially on $C_{O_p(G)}(O_p(G) \cap O_p(X))$. The Thompson's $P \times Q$ -lemma implies that $O_{p'}(F(X))$ also acts trivially on $O_p(G)$. Then $F(X) O_p(G)$ is nilpotent.

On the other hand, since E(X) is a quasinilpotent perfect U-invariant subgroup, by ([7], X 15.2), it follows that $E(X) \subseteq E(G)$ so E(X) = E(G), then $X F^*(G) = E(X)(F(X)F(G))$ that is quasinilpotent.

Remarks.

1. Notice that, as the following example shows, the condition of subnormality in the above result is necessary.

Let G = GL(2,5) and Z = Z(G). By ([6], II 7.3) there exists $X \leq G$, $X \cong C_{24}$ satisfying $C_G(X) = X$. If $D = X \cap SL(2,5)$ then |D| = 6 and if $\langle x \rangle \leq D$ such that $o(x) \not A$ then by ([10], page 163) $C_{SL(2,5)}(\langle x \rangle) = D$. Since $F^*(G) = SL(2,5)Z$, then:

$$C_{F^*(G)}(F^*(G) \cap X) = Z C_{SL(2,5)}(SL(2,5)Z \cap X)$$

= $Z C_{SL(2,5)}(SL(2,5) \cap X) \le Z C_{SL(2,5)}(\langle x \rangle) = ZD \le X.$

As $|X \operatorname{SL}(2,5)| = |G|$, it follows that $G = X \operatorname{SL}(2,5) = X \operatorname{F}^*(G)$, that is not quasinilpotent.

2. It is easy to prove that Proposition 3 is equivalent to the following:

Let $H \leq G$ such that $C_{F^*(G)}(H \cap F^*(G)) \leq H$ and $H \cap F^*(G) \leq F^*(G)$. If X is a quasinilpotent subgroup of G, such that $F^*(H) \leq X \leq H$, then $X F^*(G)$ is quasinilpotent.

Next we will obtain a version for quasinilpotent groups of ([12], 2.1).

Recall that if N is a normal subgroup of G and $\theta \in Irr(N)$, then $I_G(\theta) = \{g \in G | \theta^g = \theta\}$ is the stabilizer of θ in G.

Corollary 4 Let N be a quasinilpotent normal subgroup of G. Let $\theta \in \operatorname{Irr}(N)$ and let $T = \operatorname{I}_G(\theta)$ the stabilizer of θ in G. If $T \cap \operatorname{F}^*(G) \leq \leq \operatorname{F}^*(G)$ and X is a quasinilpotent subgroup of G satisfying $\operatorname{F}^*(T) \leq X \leq T$ then $X \operatorname{F}^*(G)$ is quasinilpotent.

Proof. Since $N C_G(N) \leq T$ we have

$$C_{F^*(G)}(F^*(G) \cap T) \le C_{F^*(G)}(N \cap T) = C_{F^*(G)}(N) \le T.$$

Now, by Remark 2, we obtain that $X F^*(G)$ is quasinilpotent.

Corollary 5 If $X \leq \subseteq F^*(G)$ and Y is a quasinilpotent subgroup satisfying $F^*(N_G(X)) \leq Y \leq N_G(X)$, then $Y F^*(G)$ is quasinilpotent.

Proof. Since $X \leq F^*(G)$, by Lemma 1 (3), it follows that $E(G) = E(N_G(X))$, thus

$$N_G(X) \cap F^*(G) = E(G)(N_G(X) \cap F(G)) \le E(G) F(N_G(X))$$

= $F^*(N_G(X)) \le Y$.

Hence,

$$Y \cap \mathcal{F}^*(G) = \mathcal{N}_G(X) \cap \mathcal{F}^*(G) \leq \leq \mathcal{F}^*(G)$$

Then

$$C_{F^*(G)}(Y \cap F^*(G)) = C_{F^*(G)}(N_G(X) \cap F^*(G)) \le C_{F^*(G)}(X) \le N_{F^*(G)}(X)$$

= $F^*(G) \cap N_G(X) \le Y$.

Therefore, by Proposition 3, it follows that $Y F^*(G)$ is quasinilpotent.

The following example shows that, in the above result, the subnormality condition is necessary:

Example. Let $\Sigma_7 = A_7 \langle (6,7) \rangle$ and $A_5 \leq A_7 = E(\Sigma_7) = F^*(\Sigma_7)$ (where A_5 is considered as the group of all even permutations of the set $\{1, 2, 3, 4, 5\}$).

Clearly $N_{\Sigma_7}(A_5) = \Sigma_5 \langle (6,7) \rangle$ and $F^*(N_{\Sigma_7}(A_5)) = A_5 \langle (6,7) \rangle$ however $F^*(N_{\Sigma_7}(A_5)) F^*(\Sigma_7)$ coincides with Σ_7 , that is not quasinilpotent.

Theorem 6 Let $X \subseteq \subseteq X F^*(G)$ where $X F^*(G)$ is quasinilpotent and let Y be a quasinilpotent subgroup of $N_G(X)$. Then $Y F^*(N_G(X))$ is quasinilpotent if and only if $Y F^*(G)$ is quasinilpotent.

Proof. Suppose that $Y F^*(N_G(X))$ is quasinilpotent. We argue by induction on |G|.

If $R = N_G(X) F^*(G) < G$, then $X F^*(G) \leq R$ and $X F^*(G) \leq F^*(R)$, thus $X \leq A F^*(G) \leq F^*(R)$. Since $N_G(X) = N_R(X)$, by induction we obtain that $Y F^*(R)$ is quasinilpotent. Since $F^*(G) \leq Y F^*(R)$, by Lemma 1 (1) we have $E(Y F^*(R)) = E(G)$, thus $Y F^*(G)/E(G) \leq Y F^*(R)/E(G)$ that is nilpotent so $Y F^*(G) \leq Y F^*(R)$, then $Y F^*(G)$ is quasinilpotent.

Thus we can suppose that $G = N_G(X) F^*(G)$. Then $X F^*(G) \leq G$ and $X \leq \subseteq F^*(G)$. Using Corollary 5 it follows that $Y F^*(N_G(X)) F^*(G)$ is quasinilpotent. Since $E(Y F^*(N_G(X)) F^*(G)) = E(G)$ we have $Y F^*(G)$ is a subnormal subgroup of $Y F^*(N_G(X)) F^*(G)$ and $Y F^*(G)$ is quasinilpotent as desired.

Assume now that $Y F^*(G)$ is quasinilpotent. As $Y F^*(G)/E(G)$ is nilpotent, then Y E(G) is a subnormal quasinilpotent subgroup of $Y F^*(G)$. Write $Y_1 = Y E(G)$. Then $Y_1 \leq N_G(X)$ by Lemma 1 (3). Notice that F(X), $F(Y_1)$, $F(N_G(X))$ are subgroups of $C = C_G(E(G))$, that is the nilpotent-constrained radical of G. As F(X) F(G), $F(Y_1) F(G)$ are nilpotent subgroups of C and $F(Y_1) \leq N_C(F(X))$ it follows from ([1]) that $F(Y_1) F(N_C(F(X)))$ is nilpotent.

On the other hand, as X = F(X) E(X) and $E(X) \leq E(X F^*(G)) = E(G)$ it follows that $N_C(F(X)) = N_C(X)$. Moreover, $N_C(X) = C \cap N_G(X) \leq N_G(X)$, thus $F(N_C(X)) \leq F(N_G(X)) \leq C$, hence $F(N_C(X)) = F(N_G(X))$ and $F(Y_1) F(N_G(X))$ is nilpotent. As $Y_1 F^*(G) / E(G)$ is nilpotent, it follows that $E(Y_1) \leq E(G)$. Therefore $Y F^*(N_G(X)) = Y_1 F^*(N_G(X)) = F(Y_1) F(N_G(X)) E(G)$ is quasinilpotent.

Corollary 7 Let $X \subseteq \subseteq X F^*(G)$, where $X F^*(G)$ is a quasinilpotent subgroup of G and let Y be a quasinilpotent injector of $N_G(X)$. Then there exists a quasinilpotent injector K of G satisfying $K \cap N_G(X) = Y$.

Proof. By Theorem 6, $Y F^*(G)$ is quasinilpotent. Let K be a maximal quasinilpotent subgroup of G containing $Y F^*(G)$, then K is a quasinilpotent injector of G. Thus K = E(G)I, where I is a nilpotent injector of $C_G(E(G))$; hence $Y \leq K \cap N_G(X) = E(G)(I \cap N_G(X))$, that is quasinilpotent. Therefore $Y = K \cap N_G(X)$.

Recall that, if $H \leq G$, it is said that H controls its own G-fusion (briefly H is c-closed in G), if any two elements of H, that are G-conjugate, are

already H-conjugate. It is well known the Frobenius theorem , that states that in a finite group G, a Sylow p-subgroup of G is c-closed in G if and only if G has a normal p-complement. Also, C. Sah proved, in π -separable groups, an analogous result for Hall π -subgroups. We will prove corresponding results for nilpotent injectors in nilpotent-constrained groups and for quasinilpotent injectors in finite groups.

Lemma 8 Let H be c-closed in G. Then:

- (i) $H \leq K \leq G$ implies that H is c-closed in K.
- (ii) If K < H < G and K is c-closed in H then K is c-closed in G.
- (iii) If K < H and $K \triangleleft G$ then H/K is c-closed in G/K.
- (iv) If $N \subseteq G$ and (|N|, |H|) = 1 then HN/N is c-closed G/N.

Proof. See ([13], 2.2)

Theorem 9 Let G be a nilpotent-constrained group and let I be a nilpotent injector of G. The following conditions are equivalent:

- (i) G is nilpotent.
- (ii) I is c-closed in G.
- (iii) F(G) is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) \Rightarrow (iii) Let $p \in \pi(|I|)$. As I is c-closed in G it follows that I_p is c-closed in G. Since $I_p \in \operatorname{Syl}_p(\mathcal{C}_G(\mathcal{O}_{p'}(\mathcal{F}(G))))$ by ([11], 1), then I_p is c-closed in $C_p = \mathcal{C}_G(\mathcal{O}_{p'}(\mathcal{F}(G)))$, thus C_p is p-nilpotent $C_p = I_p \mathcal{O}_{p'}(C_p) = I_p \mathcal{Z}(\mathcal{O}_{p'}(\mathcal{F}(G)))$, therefore $I_p \subseteq C_p$ and then $I_p = \mathcal{O}_p(C_p) = \mathcal{O}_p(G)$. Hence $\mathcal{F}(G) = I$ and $\mathcal{F}(G)$ is c-closed in G.

(iii) \Rightarrow (i) Suppose that there exists $p \in \pi(|G|) \setminus \pi(|F(G)|)$. Let $P \in \operatorname{Syl}_p(G)$, then F(G) is a Hall p'-subgroup of F(G)P and F(G) is c-closed in F(G)P. Then, by ([13], 1), we obtain that $P \subseteq F(G)P$ so $P \subseteq C_G(F(G)) \subseteq F(G)$, that is a contradiction. Consequently, $\pi(|F(G)|) = \pi(|G|)$.

As F(G) is c-closed in G, it follows that $O_{p'}(F(G))$ is c-closed in G, for every $p \in \pi(|G|)$. Take $P \in \operatorname{Syl}_p(G)$, then $O_{p'}(F(G))$ is c-closed in $P \circ O_{p'}(F(G))$, thus $P \subseteq P \circ O_{p'}(F(G))$ by ([13],1). Then $P \subseteq C_G(O_{p'}(F(G)))$ and by ([11], 1), we conclude that G is nilpotent.

Theorem 10 Let I be a quasinilpotent injector of G. The following conditions are equivalent:

- (i) G is quasinilpotent.
- (ii) I is c-closed in G.
- (iii) $F^*(G)$ is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) \Rightarrow (iii) We know that I = E(G)V where V is a nilpotent injector of $C_G(E(G))$.

Since V is c-closed in $C_G(E(G))$, by Theorem 9, it follows that $C_G(E(G))$ is nilpotent. Therefore $C_G(E(G)) = F(G)$, and $I = E(G) F(G) = F^*(G)$.

(iii) \Rightarrow (i) By induction on order of G. Suppose that $Z = \mathbb{Z}(G) \neq 1$. Then, by Lemma 8 (iii) and the inductive hypothesis, we obtain that $G/Z = F^*(G/Z) = F^*(G)/Z$ so $G = F^*(G)$. Therefore, we can suppose that Z = 1. Since $G = F^*(G) \, \mathbb{C}_G(x)$, for every $x \in F^*(G)$, we can conclude that $\mathbb{Z}(F(G)) \leq \mathbb{Z}(G) = 1$, thus F(G) = 1 and $F^*(G) = \mathbb{E}(G)$.

Suppose that $E(G) \leq L$, where L is a maximal subgroup of G. By Lemma 1 (1) it follows that E(G) = E(L), and as $F(L) \leq C_G(E(G)) = Z(E(G)) = 1$ we conclude, by induction, that E(G) = L. Then E(G) is a maximal subgroup of G, so there exists a prime p such that |G/E(G)| = p.

Let Q be a component of G. Since $G = E(G) C_G(x)$ for all $x \in E(G)$, it follows that Z(Q) = 1. Therefore $E(G) = Q_1 \times \ldots \times Q_r$, where $Q_1 \ldots Q_r$ are the components of G which are nonabelian simple groups. Also they are c-closed in G.

Let $i \in \{1, ..., r\}$ $g \in G$ and let α_g be the inner automorphism of G determined by g. Since $Q_i \subseteq G$, one has that the restriction $\alpha_{g|Q_i}$ is an automorphism of Q_i . Note that $\alpha_g(C) = C$ for any conjugacy class C of Q_i ; hence, by ([4], Theorem C), there exists $z_i \in Q_i$ such that $\alpha_g(x) = x^{z_i}$ for every $x \in Q_i$. If $x \in E(G)$, then $x = x_1...x_r$, $x_i \in Q_i$, $1 \le i \le r$. Thus, $x^g = x_1^g...x_r^g = x_1^{z_1}...x_r^{z_r} = x_1^z...x_r^z = x^z$, where $z = z_1...z_r \in E(G)$. Therefore $\alpha_g|_{E(G)}$ is the inner automorphism of E(G) of G determined by $z = z_1....z_r$. It follows from ([7], X 13.1) that G is quasinilpotent.

Corollary 11 If G is a group then

$$F^*(G) = \bigcap_{\theta \in Irr(F^*(G))} I_G(\theta).$$

Proof. Work by induction on |G|. We know that

$$F^*(G) \le \bigcap_{\theta \in Irr(F^*(G))} I_G(\theta) = N \le G.$$

Suppose that N < G; since $F^*(G) = F^*(N)$, by induction, it follows that

$$F^*(G) = F^*(N) = \bigcap_{\theta \in Irr(F^*(N))} I_G(\theta) = N.$$

Therefore, we can suppose that N = G. Then $I_G(\theta) = G$, for all $\theta \in Irr(F^*(G))$. Let $Irr(F^*(G)) = \{\theta_1, \theta_2, ..., \theta_m\}$. Suppose that $x, y \in F^*(G)$ with $x^g = y$, for some $g \in G$, then

$$\theta_i(x) = \theta_i^{g^{-1}}(x) = \theta_i(x^g) = \theta_i(y), \ 1 \le i \le m.$$

Thus $\sum \theta_i(x)\theta_i(y^{-1}) = \sum \theta_i(y)\theta_i(y^{-1}) \neq 0$. Then x and y are conjugate in $F^*(G)$ and, in consequence, $F^*(G)$ is c-closed in G. Then, using Theorem 10, it follows that $G = F^*(G)$ as desired.

Corollary 12 If G is a nilpotent-constrained group then

$$F(G) = \bigcap_{\theta \in Irr(F(G))} I_G(\theta).$$

Proof. Since G is a nilpotent-constrained group, we have $F^*(G) = F(G)$. Now apply the above result.

Corollary 13 Let \mathfrak{F} be a Fitting class such that $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{N}^*$ and let G be an \mathfrak{F} -constrained group (i.e. $C_G(G_{\mathfrak{F}}) \leq G_{\mathfrak{F}}$). If $I \in \operatorname{Inj}_{\mathfrak{F}}(G)$, the following statements are equivalent:

- (i) $G \in \mathfrak{F}$.
- (ii) I is c-closed in G.
- (iii) $G_{\mathfrak{F}}$ is c-closed in G.

Proof. Note that, as G is an \mathfrak{F} -constrained group, by ([9], 2), we have $F^*(G) = G_{\mathfrak{F}}$ and, by ([9], 8), $\operatorname{Inj}_{\mathfrak{F}}(G) = \operatorname{Inj}_{\mathfrak{N}^*}(G)$. Now the result follows from Theorem 10.

Remarks.

1. The last results suggest that, perhaps, one can obtain a general result for any Fitting class, but there exist Fitting classes of full characteristic and finite groups, do not belong to the corresponding Fitting class, but whose injectors are c-closed:

Consider $G = A_5$ and $\mathfrak{F} = \mathfrak{S}$. If $S \in \operatorname{Syl}_5(G)$ then $\operatorname{N}_G(S) \cong \operatorname{D}_{10}$ is an \mathfrak{F} -injector of G. Moreover $\operatorname{N}_G(S)$ is c-closed in A_5 . Indeed, let $x \in \operatorname{N}_G(S) \setminus \{1\}$ and $g \in G$ such that $x^g \in \operatorname{N}_G(S)$.

If o(x) = 5, then $\langle x \rangle = S$ and we obtain that $g \in N_G(S)$.

If o(x) = 2, then $\langle x \rangle$, $\langle x^g \rangle$ are Sylow 2-subgroups of $N_G(S)$, thus there exists $h \in N_G(S)$ such that $\{1, x^g\} = \langle x^g \rangle = \langle x \rangle^h = \{1, x^h\}$ and so $x^g = x^h$.

2. Even more, there exist Fitting classes of soluble groups with full characteristic and soluble groups, do not belong to the corresponding Fitting class, but whose injectors are c-closed:

If G is a soluble group, we define an homomorphism $d_G: G \longrightarrow GF(5)^*$ as follows: let M_1, M_2, \ldots, M_r the 5-chief factors of a prefixed chief series of G. If $g \in G$ and $d_i(g)$ denotes the determinant of the linear map which g induces on M_i , then

$$d_G(g) = \prod_{i=1}^r d_i(g)$$

The class $\mathfrak{F} = \{G \in \mathfrak{S} \mid d_G(G) = 1\}$ is a normal Fitting class ([3], IX 2.14). Let

$$A = \langle \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right) \, , \, \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \, , \, \left(\begin{array}{cc} 0 & 3 \\ 2 & 0 \end{array} \right) \rangle \, \leq GL(2,5) \, .$$

Consider A acting in the natural way on $C_5 \times C_5$. Let G be the semidirect product of $C_5 \times C_5$ by A:

$$G = [C_5 \times C_5] \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \rangle$$

and let

$$S = [C_5 \times C_5] \langle \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \rangle$$

Observe that $|G| = 2^4 \cdot 5^2 = 400$ and $|S| = 2^3 \cdot 5^2$.

We will see that S is c-closed in G.

We have that
$$G = S\left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle$$
 and if $S_2 = \left\langle \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \right\rangle \in Syl_2(S)$ then $\left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle \leq C_G(S_2)$.

Hence, if $x \in S_2$ y $g \in G$, we have g = cs, where $c \in \langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \rangle$, so $x^g = x^{cs} = x^s$. Therefore $G = C_G(x)S$.

Let $x \in S$. Since S does not have composed order elements, x is a 2-element or a 5-element.

If x is a 2-element then $x = y^s$ where $y \in S_2$ and $s \in S$.

Hence $C_G(x)S = C_G(y^s)S = (C_G(y))^sS = (C_G(y)S)^s = G$. Thus, if $g \in G$, it follows that g = ls, where $l \in C_G(x)$, $s \in S$. Then $x^g = x^{ls} = x^s$.

If x is a 5-element, then $x \in C_5 \times C_5$. We will see that $G = C_G(x)S$. It is enough to prove that there exists $g \in G \setminus S$ such that $g \in C_G(x)$.

If $H \leq G$ write $H^* = H \setminus \{1\}$. Then

$$(C_5 \times C_5)^* = \langle h_1 \rangle^* \cup \langle h_2 \rangle^* \cup \langle h_3 \rangle^* \cup \langle h_4 \rangle^* \cup \langle h_5 \rangle^* \cup \langle h_6 \rangle^*$$

where $h_1 = (1,0)$, $h_2 = (0,1)$, $h_3 = (1,1)$, $h_4 = (2,1)$, $h_5 = (1,2)$, $h_6 = (4,1)$.

Notice that if $h \in \langle h_i \rangle$, then $C_G(h) = C_G(h_i)$ $1 \le i \le 6$ and it is enough to show that $G = C_G(h_i)S$, $1 \le i \le 6$.

We have,

$$\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \in C_G(h_1) \setminus S, \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \in C_G(h_2) \setminus S, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in C_G(h_3) \setminus S,$$
$$\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \in C_G(h_4) \setminus S, \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \in C_G(h_5) \setminus S, \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} \in C_G(h_6) \setminus S,$$

Hence $G = C_G(x)S$. Therefore, if $g \in G$, g = cs, where $c \in C_G(x)$ and $s \in S$. Then $x^g = x^{cs} = x^s$. Thus, S is c-closed in G.

Now consider the chief series of G:

$$1 \leq C_5 \times C_5 \leq [C_5 \times C_5] \langle \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \rangle$$
$$\leq [C_5 \times C_5] \langle \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \rangle \leq S \leq G.$$

The only 5-chief factor of this series is $C_5 \times C_5$.

Notice that
$$G \notin \mathfrak{F}$$
 since $\det \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 4 \neq 1$.

The part of the above series from 1 to S is a chief series of S and the only 5-chief factor of this series is $C_5 \times C_5$.

Since
$$\det\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} = 1$$
 and $\det\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = 1$, it follows that $S \in \mathfrak{F}$, then $S \in \operatorname{Iny}_{\mathfrak{F}}(G)$ is c-closed in G , but $G \notin \mathfrak{F}$.

3. It is said that a subgroup H in a group G has property CR (Character Restriction) if every ordinary irreducible character $\theta \in Irr(H)$ is the restriction χ_H of some $\chi \in Irr(G)$. It is well known that if H satisfies CR property in G then H is c-closed in G.

A number of authors have shown that property CR, together with suitable additional hypothesis on H and G, does imply the existence of a normal complement for H. For instance Hawkes and Humphreys ([5]) prove that CR yields a normal complement if G is solvable and H is an \mathfrak{F} -projector for G, where \mathfrak{F} is any saturated formation. The last example shows that the corresponding result for Fitting classes and injectors satisfying property CR, does not work.

References

- [1] Bender, H.: Nilpotent π -subgroups behaving like p-subgroups. Proceedings of the Rutgers group theory year, 1983–1984 1 (1984), 119–125, Cambridge Univ. Press, Cambridge, 1985.
- [2] Bender, H.: On the normal p-structure of a finite group and related topics. Hokkaido Math. J. 7 (1978), 271–288.
- [3] DOERK, K. AND HAWKES, T.: Finite Soluble Groups. Walter de Gruyter, Berlin-New York, 1992.
- [4] Feit, W. and Seitz, G.M.: On finite rational matrix groups and related topics. *Illinois J. Math.* **33** (1988), 103–131.
- [5] HAWKES, T. O. AND HUMPHREYS, J. F.: A character Theoretic criterion for the existence of normal complements to subgroups of finite groups. J. Algebra 94 (1985), 382–387.
- [6] HUPPERT, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin-New York, 1967.
- [7] HUPPERT, B. AND BLACKBURN, N.: Finite Groups III. Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [8] Iranzo, M.J., Medina, J. and Pérez-Monasor, F.: Product of nilpotent subgroups. *Arch. Math. (Basel)* **74** (2000), 246–252.
- [9] IRANZO, M.J. AND PÉREZ-MONASOR, F.: \mathfrak{F} -constraint with respect to a Fitting class. Arch. Math. (Basel) 46 (1986), 205–210.
- [10] Kurzweil, H.: Endliche Gruppen Eine Einfhrung in die Theorie der endlichen Gruppen. Hochschultext, Springer-Verlag, Berlin-New York, 1977.
- [11] Mann, A.: Injectors and normal subgroups of finite groups. *Israel J. Math.* **9** (1971), 554–558.

- [12] NAVARRO, G. AND SANUS, L.: A partition of characters associated to nilpotent subgroups. *Israel J. Math.* **114** (1999), 359–380.
- [13] Sah, C.: Existence of normal complements and extension of characters in finite groups. *Illinois J. Math* **6** (1962), 282–291.

Recibido: 25 de mayo de 2001

M. J. Iranzo
Departamento de Álgebra
Universidad De Valencia
C/ Dr. Moliner, 50
46100 Burjasot, Valencia, Spain
M. Jesus . Iranzo@uv . es

J. Medina Departamento de Matemática Aplicada Universidad Politécnica de Cartagena P. Alfonso XIII, 52 30203 Cartagena, Murcia, Spain juan.medina@upct.es

F. Pérez-Monasor¹
Departamento de Álgebra
Universidad De Valencia
C/ Dr. Moliner, 50
46100 Burjasot, Valencia, Spain
F.Perez.Monasor@uv.es

¹Supported in part by DGICYT, PB97-0674-C02.