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Some questions on quasinilpotent groups

and related classes

M. J. Iranzo, J. Medina and F. Pérez-Monasor

Abstract

In this paper we will prove that if G is a finite group, X a sub-
normal subgroup of X F*(G) such that X F*(G) is quasinilpotent
and Y is a quasinilpotent subgroup of Ng(X), then Y F*(Ng(X))
is quasinilpotent if and only if Y F*(G) is quasinilpotent. Also we
will obtain that F*(G) controls its own fusion in G if and only if
G =F*(G).

The generalized Fitting subgroup F*(G) of a finite group G is the product
of the Fitting subgroup and the semisimple radical of G.

This generalized Fitting subgroup satisfies Co(F*(G)) < F*(G), for ev-
ery finite group G. This property is similar to the corresponding one for
the Fitting subgroup of a soluble group: Cg(F(G)) < F(G). Quasinilpo-
tent groups are those groups which coincide with their generalized Fitting
subgroup. A group G such that F*(G) = F(G) is a nilpotent-constrained
group.

H. Bender stated that if G is a nilpotent-constrained group, X a subgroup
of G such that X F(G) is nilpotent and Y < Ng(X), then Y F(Ng(X)) is
nilpotent if and only if Y F(G) is nilpotent.

A well known theorem of Frobenius states that if a p-Sylow subgroup of
GG controls its own fusion in G, then G has a normal p-complement.

In this paper we will prove that if G is a finite group, X a subnor-
mal subgroup of X F*(G) such that X F*(G) is quasinilpotent and Y is a
quasinilpotent subgroup of Ng(X), then Y F*(Ng(X)) is quasinilpotent if
and only if Y F*(G) is quasinilpotent. Also we characterize when a nilpotent
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injector controls its own fusion in a nilpotent-constrained group or when a
quasinilpotent injector controls its own fusion in a finite group.

Notations. All groups considered in this paper are assumed to be finite.
The non-explicit notations are standard, see for instance [3]. We quote
nevertheless the following:

N: class of nilpotent groups,
G: class of soluble groups,
9*: class of quasinilpotent groups,

F(G) is the Fitting subgroup of G, i.e., the largest nilpotent normal subgroup
of G.

If § is a class of groups,

sn5 = {G; G<X forsome X € F},
NS = {G; G=(Xy,...,X,) forsome X; I<J G, X; €5, 1<i<n},

A Fitting class § is an s,- and Ng-closed class, that is, a class such that
§ = sp§ = NoS-

If § is a Fitting class, a subgroup H of G is an §-injector of G whenever
H N N is an §-maximal subgroup of N, for every subnormal subgroup N of
G. We denote by Injz(G) the set of all §-injectors of G. The quasinilpo-
tent injectors of a group G are characterized as the maximal quasinilpotent
subgroups containing the generalized Fitting subgroup of G' ([3]).

A group G is said to be quasisimple if G is perfect and G/ Z(G) is simple.

The quasisimple subnormal subgroups of a (finite) group G are called
the components of G. The semisimple radical E(G) of G is the join of its
components.

We will need the description of some properties about the semisimple
radical of a group. As we did not find any complete reference to it in the
literature, for the sake of being selfcontained, we include the following:

Lemma 1 Let G be a group. Then:
(1) If F*(G) < H < G it follows that E(H) = E(G).

(2) If H is a subnormal subgroup of G then E(H) is the product of all com-
ponents Q of G such that [Q, H] # 1. In particular E(G) < Ng(H).

(3) If H << HF*(G), then E(Ng(H)) = E(G).
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Proof. (1) Clearly E(G) < E(H). As F*(G) < Ng(E(H)) then E(H) <
E(G) ([2] 4.25), thus E(G) = E(H).

(2) If @ is a component of G and H < G, then either [Q, H] = 1 or
Q < [Q,H] ([7], X 13.18). When H << G the second alternative implies
that @ < H. Therefore E(H) is the product of all components @ of G such
that [Q, H| # 1. In consequence E(G) < Ng(H).

(3) By ([2], 4.26) E(Ng(H)) < E(G). On the other hand, by (1) and
(2) we have that E(H F*(G)) = E(G) < Ng(H), thus E(G) < E(Ng(H)).
Therefore E(G) = E(Ng(H)). [

In [8] we proved the following result:

Suppose that N is a nilpotent normal subgroup of G and let X
be a nilpotent subgroup of G satisfying Co(N N X) < X. Then
N X is nilpotent.

As a consequence of this result, it is easy to obtain:

If X is a subgroup of F(G) and Y is a nilpotent subgroup of
Ng(X) containing F(Ng(X)), then Y F(G) is nilpotent.

A generalization of this result would be:

If X F(G) is a nilpotent subgroup of G and Y a subgroup of
N¢(X) satistying Y F(Ng(X)) is nilpotent, then Y F(G) is nilpo-
tent.

In [1] H. Bender had given an affirmative answer when G is a nilpotent-
constrained group. Next we will prove that this result is true without any
restriction:

Proposition 2 Let X < G with X F(G) nilpotent and let Y < Ng(X) with
Y F(Ng (X)) nilpotent, then Y F(QG) is nilpotent.

Proof. Work by induction on the order of G.

If R = F(G)Ne(X) < G then X F(G) < R thus X F(G) < F(R) and
X F(R) = F(R). Therefore, since Ng(X) = Ng(X), by the inductive hy-
pothesis, it follows that Y F(R) is nilpotent, so Y F(G) is nilpotent.

Thus we can suppose that G = F(G) Ng(X), so X F(G) 9 G, then X <
F(G) and by the consequence of ([8], 2.2), it follows that Y F(Ng (X)) F(G)
is nilpotent, so Y F(G) is nilpotent. [ |
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Proposition 3 Let X be a quasinilpotent subgroup of G satisfying X N
F*(G) < F*(G). If Cpe)(XNF*(G)) < X then X F*(G) is quasinilpotent.

Proof. Since U = X NF*(G) <
15.1) it follows that U = E(G)(U

Then

< FH(G) and Cpe()(U) < U, by ([7], X

NF(G)) and Cpe) (U NF(G)) < U.

Crie)(F(X) NF(G)) = Cre)(X NF(G)) = Cre(U NF(G)) < UNF(G)
— F(X) NF(G).

Next, we will prove that F(X)F(G) is nilpotent. It suffices to show that
F(X)O,(G) is nilpotent for every prime p in order of F(G). Consider the
action of (0,(G) N O,H(X)) x Oy (F(X)) on O,(G). Since

Co,@(0,(G) N 0,(X)) < Cr()(F(G) NF(X)) < F(X),

we have Co,)(0,(G) N O,(X)) < Oy(X) and O, (F(X)) acts trivially
on Co,(@)(0p(G) N O,(X)). The Thompson’s P x @-lemma implies that
O, (F(X)) also acts trivially on O,(G). Then F(X) O,(G) is nilpotent.

On the other hand, since E(X) is a quasinilpotent perfect U-invariant
subgroup, by ([7], X 15.2), it follows that E(X) < E(G) so E(X) = E(G),
then X F*(G)= E(X)(F(X) F(G)) that is quasinilpotent. |

Remarks.

1. Notice that, as the following example shows, the condition of subnor-
mality in the above result is necessary.

Let G = GL(2,5) and Z = Z(G). By ([6], II 7.3) there exists X < G,
X = Cyy satisfying Cq(X) = X. If D = X NSL(2,5) then |D| = 6 and
if (x) < D such that o(z) f4 then by ([10], page 163) Csr25)((z)) = D.
Since F*(G) = SL(2,5)Z, then:

Cr)(F*(G) N X) = Z Cs255)(SL(2,5) Z N X)
= Z Cg1,02,5)(SL(2,5) N X) < Z Cs a5 ((2) = ZD < X.

As | X SL(2,5)| = |G|, it follows that G = X SL(2,5) = X F*(G), that
is not quasinilpotent.

2. It is easy to prove that Proposition 3 is equivalent to the following:

Let H < G such that Cp+)(H NF*(G)) < H and HN
F*(G) << F*(G). If X is a quasinilpotent subgroup of G,
such that F*(H) < X < H, then X F*(G) is quasinilpotent.
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Next we will obtain a version for quasinilpotent groups of ([12], 2.1).

Recall that if N is a normal subgroup of G and 6 € Irr(N), then I5(0) =
{g € G|#9 = 0} is the stabilizer of 6 in G.

Corollary 4 Let N be a quasinilpotent normal subgroup of G. Let 6 €
Irr(N) and let T = 15(0) the stabilizer of 6 in G. If T NF*(G) << F*(GQ)
and X is a quasinilpotent subgroup of G satisfying F*(T) < X < T then
X F*(G) is quasinilpotent.

Proof. Since N Cg(N) < T we have
Ce)(F(G)NT) < Cpry(NNT) = Cpr (e (N) < T
Now, by Remark 2, we obtain that X F*(G) is quasinilpotent. [ |

Corollary 5 If X I F*(G) and Y is a quasinilpotent subgroup satisfying
F*(Ng(X)) <Y < Ng(X), then Y F*(G) is quasinilpotent.

Proof. Since X << F*(G), by Lemma 1 (3), it follows that E(G) =
E(Ng(X)), thus

Na(X) NFY(G) = E(G)(Ne(X) NF(G)) < E(G)F(Na(X))

Hence,

Then

Cr-(o)(Y NF*(G)) = Cp+(6)(Na(X) NF(G)) < Cpr)(X) < N (X)
— F*(G) NNg(X) < Y.

Therefore, by Proposition 3, it follows that Y F*(G) is quasinilpotent. W

The following example shows that, in the above result, the subnormality
condition is necessary:

Example. Let ¥; = A;((6,7)) and A5 < A7 = E(X;) = F*(2;) (where Aj
is considered as the group of all even permutations of the set {1,2,3,4,5}).

Clearly Nyx.(Ajs) = X5((6,7)) and F*(Ng.(A5)) = A5((6,7)) however
F*(Ng,(As)) F*(X27) coincides with 7, that is not quasinilpotent.
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Theorem 6 Let X I< X F*(G) where X F*(Q) is quasinilpotent and let Y
be a quasinilpotent subgroup of No(X). ThenY F*(Ng(X)) is quasinilpotent
if and only if Y F*(G) is quasinilpotent.

Proof. Suppose that Y F*(Ng(X)) is quasinilpotent. We argue by induction
on |G|.

If R = Ng(X)F*(G) < G, then XF*(G) < R and X F*(G) < F*(R),
thus X << X F*(G) < F*(R). Since Ng(X) = Ng(X), by induction we
obtain that Y F*(R) is quasinilpotent. Since F*(G) < Y F*(R), by Lemma
1 (1) we have E(Y F*(R)) = E(G), thus Y F*(G)/E(G) < YF*(R)/E(G)
that is nilpotent so Y F*(G) 949 Y F*(R), then Y F*(G) is quasinilpotent.

Thus we can suppose that G = Ng(X)F*(G). Then XF*(G) 9 G
and X << F*(G). Using Corollary 5 it follows that Y F*(Ng(X)) F*(G) is
quasinilpotent. Since E(Y F*(Ng (X)) F*(G)) = E(G) we have Y F*(G) is a
subnormal subgroup of Y F*(Ng(X)) F*(G) and Y F*(G) is quasinilpotent
as desired.

Assume now that Y F*(G) is quasinilpotent. As Y F*(G)/ E(G) is nilpo-
tent, then Y E(G) is a subnormal quasinilpotent subgroup of Y F*(G). Write
Y1 =Y E(G). Then Y; < Ng(X) by Lemma 1 (3). Notice that F(X), F(Y7),
F(Ng(X)) are subgroups of C' = C¢(E(G)), that is the nilpotent-constrained
radical of G. As F(X)F(G), F(Y1) F(G) are nilpotent subgroups of C' and
F(Y)) < Ne(F(X)) it follows from ([1]) that F(Y;) F(N¢(F(X))) is nilpotent.

On the other hand, as X = F(X) E(X) and E(X) < E(X F*(G)) = E(G)
it follows that No(F(X)) = Ne(X). Moreover, No(X) = C N Ng(X) <
Ng(X), thus F(Ng(X)) < F(Ng(X)) < C, hence F(Ng(X)) = F(Ng(X))
and F(Y;)F(Ng(X)) is nilpotent. As Y; F*(G)/E(G) is nilpotent, it fol-
lows that E(Y;) < E(G). Therefore Y F*(Ng(X)) = Y1 F'(Ng(X)) =
F(Y1) F(Ng(X)) E(G) is quasinilpotent. |

Corollary 7 Let X << X F*(G), where X F*(G) is a quasinilpotent sub-
group of G and let Y be a quasinilpotent injector of Ng(X). Then there
exists a quasinilpotent injector K of G satisfying K N Ng(X) =Y.

Proof. By Theorem 6, Y F*(G) is quasinilpotent. Let K be a maximal
quasinilpotent subgroup of G containing Y F*(G), then K is a quasinilpotent
injector of G. Thus K = E(G)I, where [ is a nilpotent injector of Co(E(G));
hence Y < KNNg(X) = E(G)(INNg(X)), that is quasinilpotent. Therefore
Y = K nNg(X). n

Recall that, if H < G, it is said that H controls its own G-fusion (briefly
H is c-closed in GG), if any two elements of H, that are G-conjugate, are
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already H-conjugate. It is well known the Frobenius theorem , that states
that in a finite group G, a Sylow p-subgroup of G is c-closed in G if and
only if G has a normal p-complement. Also, C. Sah proved, in w-separable
groups, an analogous result for Hall m-subgroups. We will prove correspond-
ing results for nilpotent injectors in nilpotent-constrained groups and for
quasinilpotent injectors in finite groups.

Lemma 8 Let H be c-closed in G. Then:

(i) H < K < G implies that H is c-closed in K.

(i) If K < H <G and K is c-closed in H then K is c-closed in G.
(1)) If K < H and K QG then H/K is c-closed in G/K.

(i) If N <G and (|N|,|H|) =1 then HN/N ‘s c-closed G/N.

Proof. See ([13], 2.2) |

Theorem 9 Let G be a nilpotent-constrained group and let I be a nilpotent
injector of G. The following conditions are equivalent:

(i) G is nilpotent.
(i1) I is c-closed in G.
(i1i) F(G) is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) = (ili) Let p € w(|I]). As I is c-closed in G it follows that I, is
c-closed in G. Since I, € Syl (Cg(O,(F(G)))) by ([11], 1), then I, is c-
closed in C, = Cg(Oy(F(G))), thus C, is p-nilpotent C, = I,0,(C,) =
I, Z(0y(F(Q))), therefore I, < C, and then I, = O,(C,) = O,(G).

Hence F(G) = I and F(G) is c-closed in G.

(iii) = (i) Suppose that there exists p € 7(|G|) \ 7(|F(G)|). Let P €
Syl,(G), then F(G) is a Hall p’-subgroup of F(G)P and F(G) is c-closed in
F(G)P. Then, by ([13], 1) , we obtain that P < F(G)P so P < C¢(F(G)) <
F(G), that is a contradiction. Consequently, =(|F(G)|) = 7(|G|).

As F(G) is c-closed in G, it follows that O, (F(G)) is c-closed in G,
for every p € 7n(|G|). Take P € Syl,(G), then Oy (F(G)) is c-closed in
PO, (F(G)), thus P < PO, (F(G)) by ([13],1). Then P < Cg(0,(F(G)))
and by ([11], 1), we conclude that G is nilpotent. |
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Theorem 10 Let I be a quasinilpotent injector of G. The following condi-
tions are equivalent:

(i) G is quasinilpotent.
(ii) I is c-closed in G.

(i1i) F*(G) is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) = (iii) We know that I = E(G)V where V is a nilpotent injector of
Ca(E(G)) -

Since V' is c-closed in C4(E(G)) , by Theorem 9, it follows that Cq(E(G))
is nilpotent. Therefore C4(E(G)) = F(G), and I = E(G) F(G) = F*(G).

(iii) = (i) By induction on order of G. Suppose that Z = Z(G) #
1. Then, by Lemma 8 (iii) and the inductive hypothesis, we obtain that
G/Z =F(G/Z) =F*(GQ)/Z so G = F*(G). Therefore, we can suppose that
Z =1. Since G = F*(G) Cg(x) , for every z € F*(G), we can conclude that
Z(F(G)) < Z(G) =1, thus F(G) = 1 and F*(G) = E(G).

Suppose that E(G) < L, where L is a maximal subgroup of G. By Lemma
1 (1) it follows that E(G) = E(L), and as F(L) < C4(E(G)) = Z(E(G)) = 1
we conclude , by induction, that E(G) = L. Then E(G) is a maximal
subgroup of G, so there exists a prime p such that |G/ E(G)| = p.

Let @ be a component of G. Since G = E(G) Cg(x) for all x € E(G), it
follows that Z(Q) = 1. Therefore E(G) = Q1 X ... X @, where Q1 ...,Q,
are the components of G which are nonabelian simple groups. Also they are
c-closed in G.

Let ¢ € {1,...,r} g € G and let o, be the inner automorphism of G
determined by g. Since @); < G, one has that the restriction g0, is an
automorphism of ();. Note that o, (C') = C for any conjugacy class C' of Q;;
hence, by ([4], Theorem C), there exists z; € (); such that ay(x) = 2 for
every ¢ € @Q;. If z € E(G), then x = zy..x,, x; € Q;, 1 < i < r. Thus,
29 = x99 = v a = xfx, = xf ) where z = 2.2, € E(G).
Therefore o, |g(q) is the inner automorphism of E(G) of G determined by
Z2=21..... 2. It follows from ([7] , X 13.1) that G is quasinilpotent. |

Corollary 11 If G is a group then



SOME QUESTIONS ON QUASINILPOTENT GROUPS AND RELATED CLASSES 7H5

Proof. Work by induction on |G|. We know that
@< () le®)=N<G.
oelrr(F*(Q))
Suppose that N < G; since F*(G) = F*(N), by induction , it follows that
F{(G)=F(N)= () Ila(6)=N.
Ockrr(F*(N))

Therefore, we can suppose that N = G. Then Ig(0) = G, for all § €
Irr(F*(G)). Let Irr(F*(G)) = {01,0s,..,0,,}. Suppose that z,y € F*(G)
with 9 = y, for some g € GG, then

O;(x) =67 () =0;(29) =0;(y), 1 <i<m.

Thus Y 0:(x)0;(y™") = > 0:(y)0;(y~) # 0. Then z and y are conjugate in
F*(G) and, in consequence, F*(G) is c-closed in G. Then, using Theorem
10, it follows that G = F*(G) as desired. |

Corollary 12 If G is a nilpotent-constrained group then

FG)= (] L)

ochrr(F(G))

Proof. Since G is a nilpotent-constrained group, we have F*(G) = F(G).
Now apply the above result. [

Corollary 13 Let § be a Fitting class such that 90t C § C " and let G be
an §-constrained group (i.e. Cq(Gg) < Gg). If I € Injz(G), the following
statements are equivalent:

(i) G €§.
(i1) I is c-closed in G.
(i1i) Gg is c-closed in G.

Proof. Note that, as G is an §-constrained group, by ([9], 2), we have
F*(G) = G and, by (9], 8), Injz(G) = Injy.(G). Now the result follows
from Theorem 10. u



756 M. J. IRANzO, J. MEDINA AND F. PEREZ-MONASOR

Remarks.

1. The last results suggest that, perhaps, one can obtain a general result
for any Fitting class, but there exist Fitting classes of full characteristic and
finite groups, do not belong to the corresponding Fitting class, but whose
injectors are c-closed:

Consider G = Ay and § = &. If S € Syl;(G) then Ng(S) = Dy is an §-
injector of G. Moreover Ng(5) is c-closed in As. Indeed, let z € Ng(S)\ {1}
and g € G such that 29 € Ng(9).

If o(z) =5, then (x) = S and we obtain that g € Ng(5).
If o(z) = 2, then (z), (x9) are Sylow 2-subgroups of Ng(S), thus there
exists h € Ng(S) such that {1,29} = (29) = ()" = {1,2"} and so 29 = z".

2. Even more, there exist Fitting classes of soluble groups with full
characteristic and soluble groups, do not belong to the corresponding Fitting
class, but whose injectors are c-closed:

If G is a soluble group, we define an homomorphism dg : G — GF(5)*
as follows: let My, Ms, ..., M, the 5-chief factors of a prefixed chief series of
G. If g € G and d;(g) denotes the determinant of the linear map which g
induces on M;, then

da(g) = H di(9)

The class § = {G € & | dg(G) = 1} is a normal Fitting class ([3], IX 2.14).

Let A:<((2)g)7<(1)(1)),<2g))SGL(2,5).

Consider A acting in the natural way on Cs x C5. Let GG be the semidirect
product of C5 x C5 by A:

G:[C5><C5]<<g 8)(? (1))((2) g>>

s:[c5x051<(3 g)’(g (2))>

Observe that |G| = 2* - 52 = 400 and |S| = 23 - 52.
We will see that S is c-closed in G.

WehavethatGIS(<g g))aﬂdif52=<(g (2)>’(g g)>€

sy1o(8) then (( & 5 )) < Ca(s)

and let
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Hence, if x € Sy y g € G, we have g = ¢s, where ¢ € (< g g )), SO
x9 = x° = x°. Therefore G = Cg(z)S.

Let x € S. Since S does not have composed order elements, = is a
2-element or a 5-element.

If x is a 2-element then z = y* where y € S, and s € S.

Hence Cg(z)S = Ca(y®)S = (Cq(y))*S = (Cq(y)S)® = G. Thus, if
g € G, it follows that g = Is , where | € Cg(x), s € S . Then 29 = 2! = 2°.

If x is a 5-element, then x € Cy x Cs5. We will see that G = Cg(x)S . Tt
is enough to prove that there exists g € G \ S such that g € Cg(x).

If H <G write H* = H \ {1}. Then
(C5 x C5)" = (h1)" U ()™ U (h3)" U (ha)" U (h5)" U (he)"

where hl = (1,0), hg = (0,1), hg = (1,1), h4 = (2,1), h5 = (1,2), h6 =
(4,1).

Notice that if A € (h;), then Cg(h) = Cg(h;) 1 < i < 6 and it is enough
to show that G = Cg(h;)S ,1 <i <6.

We have,
10 4 0 01
(o 4)ecamns. (o) ecatmns. (] ) ecamns.
0 2 0 3 0 4
(3 O)ece(h4>\s,(2 O)ece<h5)\s,<4 O)ecc<h6>\s,
Hence G = Cg(z)S. Therefore, if ¢ € G, g = ¢s, where ¢ € Cg(z) and

s € S. Then x9 = x° = z*.Thus, S is c-closed in G.

Now consider the chief series of G:

0 4

gl[C5xC5](<g 2)(3 g)>§15§1(}.

The only 5-chief factor of this series is C5 x Cs.

1§IC5><C5§1[C5><C5](<4 0)>

Notice that G ¢ § since det ( g g ) =441

The part of the above series from 1 to S is a chief series of S and the
only 5-chief factor of this series is Cy x Cs.
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Since det < g g ) = 1 and det ( (2) (2) ) = 1, it follows that S € §,

then S € Iny(G) is c-closed in G, but G ¢ §.

3. It is said that a subgroup H in a group G has property CR (Char-
acter Restriction) if every ordinary irreducible character § € Irr(H) is the
restriction g of some y € Irr(G). It is well known that if H satisfies CR
property in G then H is c-closed in G.

A number of authors have shown that property CR, together with suit-
able additional hypothesis on H and G, does imply the existence of a normal
complement for H. For instance Hawkes and Humphreys ([5]) prove that
CR yields a normal complement if GG is solvable and H is an §-projector
for G, where § is any saturated formation. The last example shows that
the corresponding result for Fitting classes and injectors satisfying property
CR, does not work.
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