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Some questions on quasinilpotent groups
and related classes

M. J. Iranzo, J. Medina and F. Pérez-Monasor

Abstract

In this paper we will prove that if G is a finite group, X a sub-
normal subgroup of X F∗(G) such that X F∗(G) is quasinilpotent
and Y is a quasinilpotent subgroup of NG(X), then Y F∗(NG(X))
is quasinilpotent if and only if Y F∗(G) is quasinilpotent. Also we
will obtain that F∗(G) controls its own fusion in G if and only if
G = F∗(G).

The generalized Fitting subgroup F∗(G) of a finite group G is the product
of the Fitting subgroup and the semisimple radical of G.

This generalized Fitting subgroup satisfies CG(F∗(G)) ≤ F∗(G), for ev-
ery finite group G. This property is similar to the corresponding one for
the Fitting subgroup of a soluble group: CG(F(G)) ≤ F(G). Quasinilpo-
tent groups are those groups which coincide with their generalized Fitting
subgroup. A group G such that F∗(G) = F(G) is a nilpotent-constrained
group.

H. Bender stated that if G is a nilpotent-constrained group, X a subgroup
of G such that X F(G) is nilpotent and Y ≤ NG(X), then Y F(NG(X)) is
nilpotent if and only if Y F(G) is nilpotent.

A well known theorem of Frobenius states that if a p-Sylow subgroup of
G controls its own fusion in G, then G has a normal p-complement.

In this paper we will prove that if G is a finite group, X a subnor-
mal subgroup of X F∗(G) such that X F∗(G) is quasinilpotent and Y is a
quasinilpotent subgroup of NG(X), then Y F∗(NG(X)) is quasinilpotent if
and only if Y F∗(G) is quasinilpotent. Also we characterize when a nilpotent
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injector controls its own fusion in a nilpotent-constrained group or when a
quasinilpotent injector controls its own fusion in a finite group.

Notations. All groups considered in this paper are assumed to be finite.
The non-explicit notations are standard, see for instance [3]. We quote
nevertheless the following:

N: class of nilpotent groups,

S: class of soluble groups,

N∗: class of quasinilpotent groups,

F(G) is the Fitting subgroup of G, i.e., the largest nilpotent normal subgroup
of G.

If F is a class of groups,

SnF = {G ; G � X for some X ∈ F },
N0F = {G ; G = 〈X1, . . . , Xn 〉 for some Xi �� G, Xi ∈ F, 1 ≤ i ≤ n},

A Fitting class F is an Sn- and N0-closed class, that is, a class such that
F = SnF = N0F.

If F is a Fitting class, a subgroup H of G is an F-injector of G whenever
H ∩N is an F-maximal subgroup of N , for every subnormal subgroup N of
G. We denote by InjF(G) the set of all F-injectors of G. The quasinilpo-
tent injectors of a group G are characterized as the maximal quasinilpotent
subgroups containing the generalized Fitting subgroup of G ([3]).

A group G is said to be quasisimple if G is perfect and G/ Z(G) is simple.

The quasisimple subnormal subgroups of a (finite) group G are called
the components of G. The semisimple radical E(G) of G is the join of its
components.

We will need the description of some properties about the semisimple
radical of a group. As we did not find any complete reference to it in the
literature, for the sake of being selfcontained, we include the following:

Lemma 1 Let G be a group. Then:

(1) If F∗(G) ≤ H ≤ G it follows that E(H) = E(G).

(2) If H is a subnormal subgroup of G then E(H) is the product of all com-
ponents Q of G such that [Q,H] �= 1. In particular E(G) ≤ NG(H).

(3) If H �� H F∗(G), then E(NG(H)) = E(G).
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Proof. (1) Clearly E(G) ≤ E(H). As F∗(G) ≤ NG(E(H)) then E(H) ≤
E(G) ([2] 4.25), thus E(G) = E(H).

(2) If Q is a component of G and H ≤ G, then either [Q,H] = 1 or
Q ≤ [Q,H] ([7], X 13.18). When H �� G the second alternative implies
that Q ≤ H. Therefore E(H) is the product of all components Q of G such
that [Q,H] �= 1. In consequence E(G) ≤ NG(H).

(3) By ([2], 4.26) E(NG(H)) ≤ E(G). On the other hand, by (1) and
(2) we have that E(H F∗(G)) = E(G) ≤ NG(H), thus E(G) ≤ E(NG(H)).
Therefore E(G) = E(NG(H)). �

In [8] we proved the following result:

Suppose that N is a nilpotent normal subgroup of G and let X
be a nilpotent subgroup of G satisfying CG(N ∩ X) ≤ X. Then
NX is nilpotent.

As a consequence of this result, it is easy to obtain:

If X is a subgroup of F(G) and Y is a nilpotent subgroup of
NG(X) containing F(NG(X)), then Y F(G) is nilpotent.

A generalization of this result would be:

If X F(G) is a nilpotent subgroup of G and Y a subgroup of
NG(X) satisfying Y F(NG(X)) is nilpotent, then Y F(G) is nilpo-
tent.

In [1] H. Bender had given an affirmative answer when G is a nilpotent-
constrained group. Next we will prove that this result is true without any
restriction:

Proposition 2 Let X ≤ G with X F(G) nilpotent and let Y ≤ NG(X) with
Y F(NG(X)) nilpotent, then Y F(G) is nilpotent.

Proof. Work by induction on the order of G.

If R = F(G) NG(X) < G then X F(G) � R thus X F(G) ≤ F(R) and
X F(R) = F(R). Therefore, since NG(X) = NR(X), by the inductive hy-
pothesis, it follows that Y F(R) is nilpotent, so Y F(G) is nilpotent.

Thus we can suppose that G = F(G) NG(X), so X F(G) � G, then X ≤
F(G) and by the consequence of ([8], 2.2), it follows that Y F(NG(X)) F(G)
is nilpotent, so Y F(G) is nilpotent. �
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Proposition 3 Let X be a quasinilpotent subgroup of G satisfying X ∩
F∗(G) �� F∗(G). If CF∗(G)(X∩F∗(G)) ≤ X then X F∗(G) is quasinilpotent.

Proof. Since U = X ∩ F∗(G) �� F∗(G) and CF∗(G)(U) ≤ U , by ([7], X
15.1) it follows that U = E(G)(U ∩ F(G)) and CF(G)(U ∩ F(G)) ≤ U .

Then

CF(G)(F(X) ∩ F(G)) = CF(G)(X ∩ F(G)) = CF(G)(U ∩ F(G)) ≤ U ∩ F(G)

= F(X) ∩ F(G) .

Next, we will prove that F(X) F(G) is nilpotent. It suffices to show that
F(X) Op(G) is nilpotent for every prime p in order of F(G). Consider the
action of (Op(G) ∩ Op(X)) × Op′(F(X)) on Op(G). Since

COp(G)(Op(G) ∩ Op(X)) ≤ CF(G)(F(G) ∩ F(X)) ≤ F(X),

we have COp(G)(Op(G) ∩ Op(X)) ≤ Op(X) and Op′(F(X)) acts trivially
on COp(G)(Op(G) ∩ Op(X)). The Thompson’s P × Q-lemma implies that
Op′(F(X)) also acts trivially on Op(G). Then F(X) Op(G) is nilpotent.

On the other hand, since E(X) is a quasinilpotent perfect U -invariant
subgroup, by ([7], X 15.2), it follows that E(X) � E(G) so E(X) = E(G),
then X F∗(G)= E(X)(F(X) F(G)) that is quasinilpotent. �

Remarks.

1. Notice that, as the following example shows, the condition of subnor-
mality in the above result is necessary.

Let G = GL(2, 5) and Z = Z(G). By ([6], II 7.3) there exists X ≤ G,
X ∼= C24 satisfying CG(X) = X. If D = X ∩SL(2, 5) then |D| = 6 and
if 〈x〉 ≤ D such that o(x) � |4 then by ([10], page 163) CSL(2,5)(〈x〉) = D.
Since F∗(G) = SL(2, 5)Z, then:

CF∗(G)(F
∗(G) ∩ X) = Z CSL(2,5)(SL(2, 5)Z ∩ X)

= Z CSL(2,5)(SL(2, 5) ∩ X) ≤ Z CSL(2,5)(〈x〉) = ZD ≤ X.

As |X SL(2, 5)| = |G| , it follows that G = X SL(2, 5) = X F∗(G), that
is not quasinilpotent.

2. It is easy to prove that Proposition 3 is equivalent to the following:

Let H ≤ G such that CF∗(G)(H ∩ F∗(G)) ≤ H and H ∩
F∗(G) �� F∗(G). If X is a quasinilpotent subgroup of G,
such that F∗(H) ≤ X ≤ H, then X F∗(G) is quasinilpotent.
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Next we will obtain a version for quasinilpotent groups of ([12], 2.1).

Recall that if N is a normal subgroup of G and θ ∈ Irr(N), then IG(θ) =
{g ∈ G|θg = θ} is the stabilizer of θ in G.

Corollary 4 Let N be a quasinilpotent normal subgroup of G. Let θ ∈
Irr(N) and let T = IG(θ) the stabilizer of θ in G. If T ∩ F∗(G) �� F∗(G)
and X is a quasinilpotent subgroup of G satisfying F∗(T ) ≤ X ≤ T then
X F∗(G) is quasinilpotent.

Proof. Since N CG(N) ≤ T we have

CF∗(G)(F
∗(G) ∩ T ) ≤ CF∗(G)(N ∩ T ) = CF∗(G)(N) ≤ T.

Now, by Remark 2, we obtain that X F∗(G) is quasinilpotent. �

Corollary 5 If X �� F∗(G) and Y is a quasinilpotent subgroup satisfying
F∗(NG(X)) ≤ Y ≤ NG(X), then Y F∗(G) is quasinilpotent.

Proof. Since X �� F∗(G), by Lemma 1 (3), it follows that E(G) =
E(NG(X)), thus

NG(X) ∩ F∗(G) = E(G)(NG(X) ∩ F(G)) ≤ E(G) F(NG(X))

= F∗(NG(X)) ≤ Y.

Hence,
Y ∩ F∗(G) = NG(X) ∩ F∗(G) �� F∗(G)

Then

CF∗(G)(Y ∩ F∗(G)) = CF∗(G)(NG(X) ∩ F∗(G)) ≤ CF∗(G)(X) ≤ NF∗(G)(X)

= F∗(G) ∩ NG(X) ≤ Y.

Therefore, by Proposition 3, it follows that Y F∗(G) is quasinilpotent. �

The following example shows that, in the above result, the subnormality
condition is necessary:

Example. Let Σ7 = A7〈(6, 7)〉 and A5 ≤ A7 = E(Σ7) = F∗(Σ7) (where A5

is considered as the group of all even permutations of the set {1, 2, 3, 4, 5}).
Clearly NΣ7(A5) = Σ5〈(6, 7)〉 and F∗(NΣ7(A5)) = A5〈(6, 7)〉 however

F∗(NΣ7(A5)) F∗(Σ7) coincides with Σ7, that is not quasinilpotent.
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Theorem 6 Let X �� X F∗(G) where X F∗(G) is quasinilpotent and let Y
be a quasinilpotent subgroup of NG(X). Then Y F∗(NG(X)) is quasinilpotent
if and only if Y F∗(G) is quasinilpotent.

Proof. Suppose that Y F∗(NG(X)) is quasinilpotent. We argue by induction
on |G|.

If R = NG(X) F∗(G) < G, then X F∗(G) � R and X F∗(G) ≤ F∗(R),
thus X �� X F∗(G) � F∗(R). Since NG(X) = NR(X), by induction we
obtain that Y F∗(R) is quasinilpotent. Since F∗(G) ≤ Y F∗(R), by Lemma
1 (1) we have E(Y F∗(R)) = E(G), thus Y F∗(G)/E(G) ≤ Y F∗(R)/E(G)
that is nilpotent so Y F∗(G) �� Y F∗(R), then Y F∗(G) is quasinilpotent.

Thus we can suppose that G = NG(X) F∗(G). Then X F∗(G) � G
and X �� F∗(G). Using Corollary 5 it follows that Y F∗(NG(X)) F∗(G) is
quasinilpotent. Since E(Y F∗(NG(X)) F∗(G)) = E(G) we have Y F∗(G) is a
subnormal subgroup of Y F∗(NG(X)) F∗(G) and Y F∗(G) is quasinilpotent
as desired.

Assume now that Y F∗(G) is quasinilpotent. As Y F∗(G)/E(G) is nilpo-
tent, then Y E(G) is a subnormal quasinilpotent subgroup of Y F∗(G). Write
Y1 = Y E(G). Then Y1 ≤ NG(X) by Lemma 1 (3). Notice that F(X), F(Y1),
F(NG(X)) are subgroups of C = CG(E(G)), that is the nilpotent-constrained
radical of G. As F(X) F(G), F(Y1) F(G) are nilpotent subgroups of C and
F(Y1) ≤ NC(F(X)) it follows from ([1]) that F(Y1) F(NC(F(X))) is nilpotent.

On the other hand, as X = F(X) E(X) and E(X) ≤ E(X F∗(G)) = E(G)
it follows that NC(F(X)) = NC(X). Moreover, NC(X) = C ∩ NG(X) �
NG(X), thus F(NC(X)) ≤ F(NG(X)) ≤ C, hence F(NC(X)) = F(NG(X))
and F(Y1) F(NG(X)) is nilpotent. As Y1 F∗(G)/E(G) is nilpotent, it fol-
lows that E(Y1) ≤ E(G). Therefore Y F∗(NG(X)) = Y1 F∗(NG(X)) =
F(Y1) F(NG(X)) E(G) is quasinilpotent. �

Corollary 7 Let X �� X F∗(G), where X F∗(G) is a quasinilpotent sub-
group of G and let Y be a quasinilpotent injector of NG(X). Then there
exists a quasinilpotent injector K of G satisfying K ∩ NG(X) = Y .

Proof. By Theorem 6, Y F∗(G) is quasinilpotent. Let K be a maximal
quasinilpotent subgroup of G containing Y F∗(G), then K is a quasinilpotent
injector of G. Thus K = E(G)I, where I is a nilpotent injector of CG(E(G));
hence Y ≤ K∩NG(X) = E(G)(I∩NG(X)), that is quasinilpotent. Therefore
Y = K ∩ NG(X). �

Recall that, if H ≤ G, it is said that H controls its own G-fusion (briefly
H is c-closed in G), if any two elements of H, that are G-conjugate, are
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already H-conjugate. It is well known the Frobenius theorem , that states
that in a finite group G, a Sylow p-subgroup of G is c-closed in G if and
only if G has a normal p-complement. Also, C. Sah proved, in π-separable
groups, an analogous result for Hall π-subgroups. We will prove correspond-
ing results for nilpotent injectors in nilpotent-constrained groups and for
quasinilpotent injectors in finite groups.

Lemma 8 Let H be c-closed in G. Then:

(i) H ≤ K ≤ G implies that H is c-closed in K.

(ii) If K ≤ H ≤ G and K is c-closed in H then K is c-closed in G.

(iii) If K ≤ H and K � G then H/K is c-closed in G/K.

(iv) If N � G and (|N |, |H|) = 1 then HN/N is c-closed G/N .

Proof. See ([13], 2.2) �

Theorem 9 Let G be a nilpotent-constrained group and let I be a nilpotent
injector of G. The following conditions are equivalent:

(i) G is nilpotent.

(ii) I is c-closed in G.

(iii) F(G) is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) ⇒ (iii) Let p ∈ π(|I|). As I is c-closed in G it follows that Ip is
c-closed in G. Since Ip ∈ Sylp(CG(Op′(F(G)))) by ([11], 1), then Ip is c-
closed in Cp = CG(Op′(F(G))), thus Cp is p-nilpotent Cp = Ip Op′(Cp) =
Ip Z(Op′(F(G))), therefore Ip � Cp and then Ip = Op(Cp) = Op(G).

Hence F(G) = I and F(G) is c-closed in G.

(iii) ⇒ (i) Suppose that there exists p ∈ π(|G|) \ π(|F(G)|). Let P ∈
Sylp(G), then F(G) is a Hall p′-subgroup of F(G)P and F(G) is c-closed in
F(G)P . Then, by ([13], 1) , we obtain that P � F(G)P so P ≤ CG(F(G)) ≤
F(G), that is a contradiction. Consequently, π(|F(G)|) = π(|G|).

As F(G) is c-closed in G, it follows that Op′(F(G)) is c-closed in G,
for every p ∈ π(|G|). Take P ∈ Sylp(G), then Op′(F(G)) is c-closed in
P Op′(F(G)), thus P � P Op′(F(G)) by ([13],1). Then P ≤ CG(Op′(F(G)))
and by ([11], 1), we conclude that G is nilpotent. �
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Theorem 10 Let I be a quasinilpotent injector of G. The following condi-
tions are equivalent:

(i) G is quasinilpotent.

(ii) I is c-closed in G.

(iii) F∗(G) is c-closed in G.

Proof. Clearly (i) implies (ii).

(ii) ⇒ (iii) We know that I = E(G)V where V is a nilpotent injector of
CG(E(G)) .

Since V is c-closed in CG(E(G)) , by Theorem 9, it follows that CG(E(G))
is nilpotent. Therefore CG(E(G)) = F(G), and I = E(G) F(G) = F∗(G).

(iii) ⇒ (i) By induction on order of G. Suppose that Z = Z(G) �=
1. Then, by Lemma 8 (iii) and the inductive hypothesis, we obtain that
G/Z = F∗(G/Z) = F∗(G)/Z so G = F∗(G). Therefore, we can suppose that
Z = 1. Since G = F∗(G) CG(x) , for every x ∈ F∗(G), we can conclude that
Z(F(G)) ≤ Z(G) = 1, thus F(G) = 1 and F∗(G) = E(G).

Suppose that E(G) ≤ L, where L is a maximal subgroup of G. By Lemma
1 (1) it follows that E(G) = E(L), and as F(L) ≤ CG(E(G)) = Z(E(G)) = 1
we conclude , by induction, that E(G) = L. Then E(G) is a maximal
subgroup of G, so there exists a prime p such that |G/ E(G)| = p.

Let Q be a component of G. Since G = E(G) CG(x) for all x ∈ E(G), it
follows that Z(Q) = 1. Therefore E(G) = Q1 × . . . × Qr, where Q1 . . . , Qr

are the components of G which are nonabelian simple groups. Also they are
c-closed in G.

Let i ∈ {1, . . . , r} g ∈ G and let αg be the inner automorphism of G
determined by g. Since Qi � G, one has that the restriction αg |Qi

is an

automorphism of Qi. Note that αg(C) = C for any conjugacy class C of Qi;
hence, by ([4], Theorem C), there exists zi ∈ Qi such that αg(x) = xzi for
every x ∈ Qi. If x ∈ E(G), then x = x1...xr, xi ∈ Qi, 1 ≤ i ≤ r. Thus,
xg = x1

g...xr
g = x1

z1 ...xr
zr = x1

z...xr
z = xz , where z = z1...zr ∈ E(G).

Therefore αg |E(G) is the inner automorphism of E(G) of G determined by
z = z1. . . . .zr. It follows from ([7] , X 13.1) that G is quasinilpotent. �

Corollary 11 If G is a group then

F∗(G) =
⋂

θ∈Irr(F∗(G))

IG(θ).
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Proof. Work by induction on |G|. We know that

F∗(G) ≤
⋂

θ∈Irr(F∗(G))

IG(θ) = N � G.

Suppose that N < G; since F∗(G) = F∗(N), by induction , it follows that

F∗(G) = F∗(N) =
⋂

θ∈Irr(F∗(N))

IG(θ) = N.

Therefore, we can suppose that N = G. Then IG(θ) = G, for all θ ∈
Irr(F∗(G)). Let Irr(F∗(G)) = {θ1, θ2, .., θm}. Suppose that x, y ∈ F∗(G)
with xg = y, for some g ∈ G, then

θi(x) = θg−1

i (x) = θi(x
g) = θi(y), 1 ≤ i ≤ m.

Thus
∑

θi(x)θi(y
−1) =

∑
θi(y)θi(y

−1) �= 0. Then x and y are conjugate in
F∗(G) and, in consequence, F∗(G) is c-closed in G. Then, using Theorem
10, it follows that G = F∗(G) as desired. �

Corollary 12 If G is a nilpotent-constrained group then

F(G) =
⋂

θ∈Irr(F(G))

IG(θ).

Proof. Since G is a nilpotent-constrained group, we have F∗(G) = F(G).
Now apply the above result. �

Corollary 13 Let F be a Fitting class such that N ⊆ F ⊆ N∗ and let G be
an F-constrained group ( i.e. CG(GF) ≤ GF). If I ∈ InjF(G), the following
statements are equivalent:

(i) G ∈ F.

(ii) I is c-closed in G.

(iii) GF is c-closed in G.

Proof. Note that, as G is an F-constrained group, by ([9], 2), we have
F∗(G) = GF and, by ([9], 8), InjF(G) = InjN∗(G). Now the result follows
from Theorem 10. �
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Remarks.

1. The last results suggest that, perhaps, one can obtain a general result
for any Fitting class, but there exist Fitting classes of full characteristic and
finite groups, do not belong to the corresponding Fitting class, but whose
injectors are c-closed:

Consider G = A5 and F = S. If S ∈ Syl5(G) then NG(S) ∼= D10 is an F-
injector of G. Moreover NG(S) is c-closed in A5. Indeed, let x ∈ NG(S)\{1}
and g ∈ G such that xg ∈ NG(S).

If o(x) = 5 , then 〈x〉 = S and we obtain that g ∈ NG(S).

If o(x) = 2 , then 〈x〉, 〈xg〉 are Sylow 2-subgroups of NG(S), thus there
exists h ∈ NG(S) such that {1, xg} = 〈xg〉 = 〈x〉h = {1, xh} and so xg = xh.

2. Even more, there exist Fitting classes of soluble groups with full
characteristic and soluble groups, do not belong to the corresponding Fitting
class, but whose injectors are c-closed:

If G is a soluble group, we define an homomorphism dG : G −→ GF(5)∗

as follows: let M1,M2, . . . ,Mr the 5-chief factors of a prefixed chief series of
G. If g ∈ G and di(g) denotes the determinant of the linear map which g
induces on Mi, then

dG(g) =

r∏
i=1

di(g)

The class F = {G ∈ S | dG(G) = 1} is a normal Fitting class ([3], IX 2.14).
Let

A = 〈
(

2 0
0 2

)
,

(
0 1
1 0

)
,

(
0 3
2 0

)
〉 ≤ GL(2, 5) .

Consider A acting in the natural way on C5 ×C5. Let G be the semidirect
product of C5 ×C5 by A:

G = [C5 ×C5]〈
(

2 0
0 2

)
,

(
0 1
1 0

)
,

(
0 3
2 0

)
〉

and let

S = [C5 ×C5]〈
(

3 0
0 2

)
,

(
0 2
2 0

)
〉

Observe that |G| = 24 · 52 = 400 and |S| = 23 · 52.

We will see that S is c-closed in G.

We have that G = S〈
(

2 0
0 2

)
〉 and if S2 = 〈

(
3 0
0 2

)
,

(
0 2
2 0

)
〉 ∈

Syl2(S) then 〈
(

2 0
0 2

)
〉 ≤ CG(S2).
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Hence, if x ∈ S2 y g ∈ G, we have g = cs, where c ∈ 〈
(

2 0
0 2

)
〉, so

xg = xcs = xs. Therefore G = CG(x)S.

Let x ∈ S. Since S does not have composed order elements, x is a
2-element or a 5-element.

If x is a 2-element then x = ys where y ∈ S2 and s ∈ S.

Hence CG(x)S = CG(ys)S = (CG(y))sS = (CG(y)S)s = G. Thus, if
g ∈ G, it follows that g = ls , where l ∈ CG(x), s ∈ S . Then xg = xls = xs.

If x is a 5-element, then x ∈ C5 ×C5. We will see that G = CG(x)S . It
is enough to prove that there exists g ∈ G \ S such that g ∈ CG(x).

If H ≤ G write H∗ = H \ {1}. Then

(C5 ×C5)
∗ = 〈h1〉∗ ∪ 〈h2〉∗ ∪ 〈h3〉∗ ∪ 〈h4〉∗ ∪ 〈h5〉∗ ∪ 〈h6〉∗

where h1 = (1, 0), h2 = (0, 1), h3 = (1, 1), h4 = (2, 1), h5 = (1, 2), h6 =
(4, 1).

Notice that if h ∈ 〈hi〉, then CG(h) = CG(hi) 1 ≤ i ≤ 6 and it is enough
to show that G = CG(hi)S , 1 ≤ i ≤ 6.

We have,

(
1 0
0 4

)
∈ CG(h1)\ S ,

(
4 0
0 1

)
∈ CG(h2)\ S ,

(
0 1
1 0

)
∈ CG(h3)\ S ,

(
0 2
3 0

)
∈ CG(h4)\ S ,

(
0 3
2 0

)
∈ CG(h5)\ S ,

(
0 4
4 0

)
∈ CG(h6)\ S ,

Hence G = CG(x)S. Therefore, if g ∈ G, g = cs, where c ∈ CG(x) and
s ∈ S. Then xg = xcs = xs.Thus, S is c-closed in G.

Now consider the chief series of G:

1 � C5 ×C5 � [C5 ×C5]〈
(

4 0
0 4

)
〉

� [C5 ×C5]〈
(

4 0
0 4

)
,

(
0 2
2 0

)
〉 � S � G.

The only 5-chief factor of this series is C5 ×C5.

Notice that G /∈ F since det

(
2 0
0 2

)
= 4 �= 1.

The part of the above series from 1 to S is a chief series of S and the
only 5-chief factor of this series is C5 ×C5.
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Since det

(
3 0
0 2

)
= 1 and det

(
0 2
2 0

)
= 1, it follows that S ∈ F,

then S ∈ InyF(G) is c-closed in G, but G /∈ F.

3. It is said that a subgroup H in a group G has property CR (Char-
acter Restriction) if every ordinary irreducible character θ ∈ Irr(H) is the
restriction χH of some χ ∈ Irr(G). It is well known that if H satisfies CR
property in G then H is c-closed in G.

A number of authors have shown that property CR, together with suit-
able additional hypothesis on H and G, does imply the existence of a normal
complement for H. For instance Hawkes and Humphreys ([5]) prove that
CR yields a normal complement if G is solvable and H is an F-projector
for G, where F is any saturated formation. The last example shows that
the corresponding result for Fitting classes and injectors satisfying property
CR, does not work.
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Universidad De Valencia

C/ Dr. Moliner, 50
46100 Burjasot, Valencia, Spain

M.Jesus.Iranzo@uv.es

J. Medina
Departamento de Matemática Aplicada
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