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Algebro-Geometric Solutions of the
Camassa–Holm hierarchy

Fritz Gesztesy and Helge Holden

Abstract

We provide a detailed treatment of the Camassa–Holm (CH) hi-
erarchy with special emphasis on its algebro-geometric solutions. In
analogy to other completely integrable hierarchies of soliton equa-
tions such as the KdV or AKNS hierarchies, the CH hierarchy is
recursively constructed by means of a basic polynomial formalism
invoking a spectral parameter. Moreover, we study Dubrovin-type
equations for auxiliary divisors and associated trace formulas, con-
sider the corresponding algebro-geometric initial value problem, and
derive the theta function representations of algebro-geometric solu-
tions of the CH hierarchy.

1. Introduction

Very recently, the Camassa–Holm (CH) equation, also known as the disper-
sive shallow water equation, as isolated, for instance, in [17] and [18],

(1.1) 4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0, (x, t) ∈ R
2

(chosing a scaling of x, t that’s convenient for our purpose), with u rep-
resenting the fluid velocity in x-direction, received considerable attention.
Actually, (1.1) represents the limiting case κ → 0 of the general Camassa–
Holm equation,

(1.2) 4vt − vxxt − 2vvxxx − 4vxvxx +24vvx +4κvx = 0, κ ∈ R, (x, t) ∈ R
2.

However, in our formalism the general Cammassa–Holm equation (1.2) just
represents a linear combination of the first two equations in the CH hierarchy
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and hence we consider without loss of generality (1.1) as the first nontrivial
element of the Camassa–Holm hierarchy. Alternatively, one can transform

(1.3) v(x, t) �→ u(x, t) = v(x − (κ/2)t, t) + (κ/4)

and thereby reduce (1.2) to (1.1).

Various aspects of local existence, global existence, and uniqueness of
solutions of (1.1) are treated in [27], [24], [25], [30], [52], [53], [58], [59],
[61], wave breaking phenomena are discussed in [23], [26], [28]. Soliton-type
solutions (called “peakons”) were extensively studied due to their unusual
non-meromorphic (peak-type) behavior, which features a discontinuity in
the x-derivative of u with existing left and right derivatives of opposite sign
at the peak. In this context we refer, for instance, to [3], [5], [7], [8], [10], [12],
[13], [14], [17], [18], [51]. Integrability aspects such as infinitely many conser-
vation laws, (bi-)Hamiltonian formalism, Bäcklund transformations, infinite
dimensional symmetry groups, etc., are discussed, for instance, in [17], [18],
[38], [41] (see also [42]), [57]. The general CH equation (1.2) is shown to give
rise to a geodesic flow of a certain right invariant metric on the Bott-Virasoro
group in [54]. In the case κ = 0, the CH equation (1.1) corresponds to the
geodesic flow on the group of orientation preserving diffeomorphisms of the
circle. This follows from the Lie-Poisson structure established in [18] and
is also remarked upon in [54]. That the equations define a smooth vector
field was first observed by Shkoller in the case of periodic [58] and Dirichlet
[59] boundary conditions, which directly leads to the corresponding local
existence theory. Scattering data and their evolution under the CH flow are
determined in [11] and intimate relations with the classical moment prob-
lem and the finite Toda lattice are worked out in [12], [13], and [14]. The
case of spatially periodic solutions, the corresponding inverse spectral prob-
lem, isospectral classes of solutions, and quasi-periodicity of solutions with
respect to time are discussed in [20], [21], [22], and [29]. Moreover, algebro-
geometric solutions of (1.1) and their properties are studied in [1], [2], [3],
[4], [5], [6], [7], [8] (connections as well as differences between the latter
references and our own approach to algebro-geometric solutions will be out-
lined in the following paragraph). Moreover, even though the following very
recent developments are not directly related to the principal topic of this
paper, they put the CH equation in a broader context: In [34], a basic in-
tegrable shallow water equation, originally introduced in [17], is analyzed in
detail. It combines the linear dispersion of the KdV equation with the non-
linear/nonlocal dispersion of the CH equation and contains the KdV and CH
equations (as well as an equation studied by Fornberg and Whitham [40]) as
special limiting cases. Finally, the three-dimensional viscous Camassa–Holm
equations, their connection with the Navier-Stokes equations, estimates for
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the Hausdorff and fractal dimension of the associated global attractor, and
turbulence theory according to Kolmogorov, Landau, and Lifshitz, are dis-
cussed in [39].

Our own approach to algebro-geometric solutions of the CH hierarchy
differs from the ones pursued in [1], [2], [3], [4], [5], [6], [7], [8] in several
aspects and we will outline some of the differences next. Following previous
treatments of the KdV, AKNS, Toda, and Boussinesq hierarchies and the
sine-Gordon and massive Thirring models (cf., e.g., [16], [31], [32], [35], [45],
[46], [47], [48], [49], [50]), we develop a systematic polynomial recursion for-
malism for the CH hierarchy and its algebro-geometric solutions. In contrast
to the treatments in [3], [7], and [8], we rely on a zero-curvature approach
Ut −Vx = [V, U ] (as the compatibility requirement for the system Ψx = UΨ,
Ψt = V Ψ) as opposed to their Lax formalism. However, we incorporate
important features of the recursion formalism developed in [5] into our zero-
curvature approach. Our treatment is comprehensive and self-contained in
the sense that it includes Dubrovin-type equations for auxiliary divisors on
the associated compact hyperelliptic curve, trace formulas, and theta func-
tion representations of solutions, the usual ingredients of such a formalism.
Moreover, while [3], [7], [8] focus on solutions of the CH equation itself, we
simultaneously derive theta function formulas for solutions of any equation
of the CH hierarchy. The key element in our formalism is the solution φ
of a Riccati-type equation associated with the zero-curvature representa-
tion of the CH equation (1.1). Roughly speaking, φ = −zψ2/ψ1, where
Ψ = (ψ1, ψ2)

t and z denotes a spectral parameter in U and V (cf. (2.42) for
more details). φ is then used to introduce appropriate auxiliary divisors on
the underlying hyperelliptic curve, the Baker-Akhizer vector in the station-
ary case, etc. Combining φ with the polynomial recursion formalism for the
CH hierarchy then leads to Dubrovin-type differential equations and trace
formulas for u in terms of auxiliary divisors. Explicit theta function repre-
sentations for symmetric functions of (projections of) these auxiliary divisors
then yield the theta function representations for any algebro-geometric so-
lution u of the CH hierarchy. Here our strategy differs somewhat from that
employed in [3], [7], [8] for the CH equation. While the latter references also
employ the trace formula for u in terms of (projections of) auxiliary divisors,
they subsequently rely on generalized theta functions and generalized Jaco-
bians (going back to investigations of Clebsch and Gordan [19]), whereas we
stay within the traditional framework familiar from the KdV, AKNS, Toda
hierarchies, etc. Finally, we point out a novel feature of our treatment of
the CH hierarchy that appears to be without precedent. In Theorems 3.11
and 4.10 we formulate and solve the algebro-geometric initial value prob-
lem for the stationary and time-dependent CH hierarchy, in the following
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sense. Starting from the initial value problem for auxiliary divisors induced
by the Dubrovin-type equations, we define u in terms of the trace formula
involving the (projections of) auxiliary divisors and then prove directly that
u so defined satisfies the corresponding (stationary, resp., time-dependent)
equation of the CH hierarchy.

Without going into further details, we note that our constructions extend
in a straightforward manner to a closely related hierarchy of completely
integrable nonlinear evolution equations, the Dym hierarchy. For different
approaches to algebro-geometric solutions of the latter we refer to [3], [6],
[9], [33], and [56].

In Section 2 we develop the basic polynomial recursion formalism that
defines the CH hierarchy using a zero-curvature approach. Section 3 then
treats the stationary CH hierarchy and its algebro-geometric solutions. The
corresponding time-dependent results are the subject of Section 4. Ap-
pendix Appendix A summarizes the necessary results needed from the the-
ory of compact Riemann surfaces and also serves to establish the notation
used throughout this paper. Appendix Appendix B contains a few tech-
nical results concerning the polynomial recursion formalism and associated
high-energy expansions. Finally, Appendix Appendix C provides a detailed
discussion of elementary symmetric functions associated with Dirichlet di-
visors and their representations in terms of theta functions associated with
the underlying hyperelliptic curve. It contains several core results needed
in our derivation of algebro-geometric solutions of the CH hierarchy. The
results of this appendix apply to a variety of soliton equations and hence are
of independent interest.

2. The CH hierarchy, recursion relations, and hyperel-
liptic curves

In this section we provide the basic construction of a completely integrable
hierarchy of nonlinear evolution equations in which the Camassa–Holm equa-
tion, or dispersive shallow water equation, is the first element in the hierarchy
(the higher-order CH equations will turn out to be nonlocal with respect to
x). We will use a zero-curvature approach and combine it with a polynomial
recursion formalism containing a spectral parameter.

Throughout this section we will suppose the following hypothesis.

Hypothesis 2.1 In the stationary case we assume that

(2.1) u ∈ C∞(R),
dmu

dxm
∈ L∞(R), m ∈ N0.
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In the time-dependent case we suppose

u( · , t) ∈ C∞(R),
∂mu

∂xm
( · , t) ∈ L∞(R), m ∈ N0, t ∈ R,(2.2)

u(x, · ), uxx(x, · ) ∈ C1(R), x ∈ R.

We start by formulating the basic polynomial setup taken essentially
from [5]. One defines {f�}�∈N0 recursively by

f0 = 1,(2.3)

f�,x = −2G(
2(4u − uxx)f�−1,x + (4ux − uxxx)f�−1

)
, � ∈ N,

where G is given by
(2.4)

G : L∞(R) → L∞(R), (Gv)(x) =
1

4

∫
R

dy e−2|x−y|v(y), x ∈ R, v ∈ L∞(R).

One observes that G is the resolvent of minus the one-dimensional Laplacian
at energy parameter equal to −4, that is,

(2.5) G =
(
− d2

dx2
+ 4

)−1

.

The first coefficient reads

(2.6) f1 = −2u + c1,

where c1 is an integration constant. Subsequent coefficients are non local
with respect to u. At each level a new integration constant, denoted by c�,
is introduced. Moreover, we introduce coefficients {g�}�∈N0 and {h�}�∈N0 by

g� = f� +
1

2
f�,x, � ∈ N0,(2.7)

h� = (4u − uxx)f� − g�+1,x , � ∈ N0.(2.8)

Explicitly, one computes

f0 = 1,(2.9)

f1 = −2u + c1,

f2 = 2u2 + 2G(
u2

x + 8u2
)

+ c1(−2u) + c2,

g0 = 1,

g1 = −2u − ux + c1,

g2 = 2u2 + 2uux + 2G(
u2

x + uxuxx + 8uux + 8u2
)

+ c1(−2u − ux) + c2,
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h0 = 4u + 2ux,

h1 = −2u2
x − 4uux − 8u2

− 2G(
uxuxxx + u2

xx + 2uxuxx + 8uuxx + 8u2
x + 16uux

)
+ c1(4u + 2ux), etc.

For later use it is convenient also to introduce the corresponding homo-
geneous coefficients f̂�, ĝ�, and ĥ� defined by the vanishing of the integration
constants ck, k = 1, . . . , �,

f̂0 = f0 = 1, f̂� = f�

∣∣
ck=0, k=1,...,�

, � ∈ N,(2.10)

ĝ0 = g0 = 1, ĝ� = g�

∣∣
ck=0, k=1,...,�

, � ∈ N,(2.11)

ĥ0 = h0 = (4u + 2ux), ĥ� = h�

∣∣
ck=0, k=1,...,�

, � ∈ N.(2.12)

Hence,

(2.13) f� =
�∑

k=0

c�−kf̂k, g� =
�∑

k=0

c�−kĝk, h� =
�∑

k=0

c�−kĥk, � ∈ N0,

defining

(2.14) c0 = 1.

Next, given Hypothesis 2.1, one introduces the 2 × 2 matrix U by

U(z, x) =

( −1 1
z−1(4u(x) − uxx(x)) 1

)
, x ∈ R,(2.15)

and for each n ∈ N0 the following 2 × 2 matrix Vn by

(2.16) Vn(z, x) =

( −Gn(z, x) Fn(z, x)
z−1Hn(z, x) Gn(z, x)

)
, n ∈ N0, z ∈ C \ {0}, x ∈ R,

assuming Fn, Gn, and Hn to be polynomials of degree n with respect to z
and C∞ in x. Postulating the zero-curvature condition

(2.17) −Vn,x(z, x) + [U(z, x), Vn(z, x)] = 0 ,

one finds

Fn,x(z, x) = 2Gn(z, x) − 2Fn(z, x),(2.18)

z Gn,x(z, x) = (4u(x) − uxx(x))Fn(z, x) − Hn(z, x),(2.19)

Hn,x(z, x) = 2Hn(z, x) − 2(4u(x) − uxx(x))Gn(z, x).(2.20)
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From (2.18)–(2.20) one infers that

(2.21)
d

dx
det(Vn(z, x)) = −1

z

d

dx

(
zGn(z, x)2 + Fn(z, x)Hn(z, x)

)
= 0,

and hence

(2.22) zGn(z, x)2 + Fn(z, x)Hn(z, x) = Q2n+1(z),

where the polynomial Q2n+1 of degree 2n + 1 is x-independent. Actually it
turns out that it is more convenient to define

(2.23) R2n+2(z) = zQ2n+1(z) =

2n+1∏
m=0

(z−Em), E0 = 0, E1, . . . , E2n+1 ∈ C

so that (2.22) becomes

(2.24) z2Gn(z, x)2 + zFn(z, x)Hn(z, x) = R2n+2(z).

Next one makes the ansatz that Fn, Hn, and Gn are polynomials of degree
n, related to the coefficients f�, h�, and g� by

Fn(z, x) =
n∑

�=0

fn−�(x)z�,(2.25)

Gn(z, x) =

n∑
�=0

gn−�(x)z�,(2.26)

Hn(z, x) =

n∑
�=0

hn−�(x)z�.(2.27)

Insertion of (2.25)–(2.27) into (2.18)–(2.20) then yields the recursion rela-
tions (2.3)–(2.4) and (2.7) for f� and g� for � = 0, . . . , n. For fixed n ∈ N we
obtain the recursion (2.8) for h� for � = 0, . . . , n − 1 and

(2.28) hn = (4u − uxx)fn.

(When n = 0 one directly gets h0 = (4u − uxx)). Moreover, taking z = 0 in
(2.24) yields

(2.29) fn(x)hn(x) = −
2n+1∏
m=1

Em.
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In addition, one finds

(2.30) hn,x(x) − 2hn(x) + 2(4u(x) − uxx(x))gn(x) = 0, n ∈ N0.

Using the relations (2.7) and (2.28) permits one to write (2.30) as

s-CHn(u) = (uxxx − 4ux)fn − 2(4u − uxx)fn,x = 0, n ∈ N0.(2.31)

Varying n ∈ N0 in (2.31) then defines the stationary CH hierarchy. We
record the first few equations explicitly,

s-CH0(u) = uxxx − 4ux = 0,

(2.32)

s-CH1(u) = −2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux) = 0,

s-CH2(u) = 2u2uxxx − 8uuxuxx − 40u2ux + 2(uxxx − 4ux)G
(
u2

x + 8u2
)

− 8(4u − uxx)G
(
uxuxx + 8uux

)
+ c1(−2uuxxx − 4uxuxx + 24uux) + c2(uxxx − 4ux) = 0, etc.

By definition, the set of solutions of (2.31), with n ranging in N0, rep-
resents the class of algebro-geometric CH solutions. If u satisfies one of the
stationary CH equations in (2.31) for a particular value of n, then it satis-
fies infinitely many such equations of order higher than n for certain choices
of integration constants c�. At times it will be convenient to abbreviate
algebro-geometric stationary CH solutions u simply as CH potentials.

For later use we also introduce the corresponding homogeneous polyno-
mials F̂�, Ĝ�, and Ĥ� defined by

F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,�

=

�∑
k=0

f̂�−kz
k, � = 0, . . . , n,(2.33)

Ĝ�(z) = G�(z)
∣∣
ck=0, k=1,...,�

=

�∑
k=0

ĝ�−kz
k, � = 0, . . . , n,(2.34)

Ĥ�(z) = H�(z)
∣∣
ck=0, k=1,...,�

=

�∑
k=0

ĥ�−kz
k, � = 0, . . . , n − 1,(2.35)

Ĥn(z) = (4u − uxx)f̂n +

n∑
k=1

ĥn−kz
k.(2.36)
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In accordance with our notation introduced in (2.10)–(2.12) and (2.33)–
(2.36), the corresponding homogeneous stationary CH equations are then
defined by

s-ĈHn(u) = s-CHn(u)
∣∣
c�=0, �=1,...,n

= 0, n ∈ N0.(2.37)

Using equations (2.18)–(2.20) one can also derive individual differential
equations for Fn and Hn. Focusing on Fn only, one obtains

Fn,xxx(z, x) − 4
(
z−1(4u(x) − uxx(x)) + 1

)
Fn,x(z, x)(2.38)

−2z−1(4ux(x) − uxxx(x))Fn(z, x) = 0.

This is of course consistent with (2.25) and (2.3) (applying G−1 to (2.3)).
Multiplying (2.38) with Fn and integrating the result yields

(2.39) Fn,xxFn − 2−1F 2
n,x − 2F 2

n − 2z−1(4u − uxx)F
2
n = C(z),

for some C(z), constant with respect to x. Differentiating (2.18), inserting
(2.19) into the resulting equation, and comparing with (2.18) and (2.24)
then yields

(2.40) C(z) = −2z−2R2n+2(z).

Thus,

−(z2/2)Fn,xx(z, x)Fn(z, x) + (z2/4)Fn,x(z, x)2(2.41)

+z2Fn(z, x)2 + z(4u(x) − uxx(x))Fn(z, x)2 = R2n+2(z).

Next, we turn to the time-dependent CH hierarchy. Introducing a defor-
mation parameter tn ∈ R into u (replacing u(x) by u(x, tn)), the definitions
(2.15), (2.16), and (2.25)–(2.27) of U , Vn, and Fn, Gn, and Hn, respectively,
still apply. The corresponding zero-curvature relation reads

(2.42) Utn(z, x, tn) − Vn,x(z, x, tn) + [U(z, x, tn), Vn(z, x, tn)] = 0, n ∈ N0,

which results in the following set of equations

4utn(x, tn)−uxxtn(x, tn) − Hn,x(z, x, tn) + 2Hn(z, x, tn)(2.43)

− 2(4u(x, tn) − uxx(x, tn))Gn(z, x, tn) = 0,

Fn,x(z, x, tn) = 2Gn(z, x, tn) − 2Fn(z, x, tn),(2.44)

zGn,x(z, x, tn) = (4u(x, tn) − uxx(x, tn))Fn(z, x, tn) − Hn(z, x, tn).(2.45)
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Inserting the polynomial expressions for Fn, Hn, and Gn into (2.44) and
(2.45), respectively, first yields recursion relations (2.3) and (2.7) for f� and
g� for � = 0, . . . , n. For fixed n ∈ N we obtain from (2.43) the recursion (2.8)
for h� for � = 0, . . . , n − 1 and

(2.46) hn = (4u − uxx)fn.

(When n = 0 one directly gets h0 = (4u − uxx)). In addition, one finds

4utn(x, tn) − uxxtn(x, tn) − hn,x(x, tn) + 2hn(x, tn)(2.47)

− 2(4u(x, tn) − uxx(x, tn))gn(x, tn) = 0, n ∈ N0.

Using relations (2.7) and (2.46) permits one to write (2.47) as

CHn(u) = 4utn − uxxtn + (uxxx − 4ux)fn − 2(4u − uxx)fn,x = 0, n ∈ N0.
(2.48)

Varying n ∈ N0 in (2.48) then defines the time-dependent CH hierarchy. We
record the first few equations explicitly,

CH0(u) = 4ut0 − uxxt0 + uxxx − 4ux = 0,

(2.49)

CH1(u) = 4ut1 − uxxt1 − 2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux) = 0,

CH2(u) = 4ut2 − uxxt2 + 2u2uxxx − 8uuxuxx − 40u2ux

+ 2(uxxx − 4ux)G
(
u2

x + 8u2
) − 8(4u − uxx)G

(
uxuxx + 8uux

)
+ c1(−2uuxxx − 4uxuxx + 24uux) + c2(uxxx − 4ux) = 0, etc.

Similarly, one introduces the corresponding homogeneous CH hierarchy by

ĈHn(u) = CHn(u)
∣∣
c�=0, �=1,...,n

= 0, n ∈ N0.(2.50)

Up to an inessential scaling of the (x, t1) variables, ĈH1(u) = 0 represents
the Camassa–Holm equation as discussed in [17], [18].

We note that our zero-curvature approach is similar (but not identical)
to that sketched in [57]. This is in contrast to almost all other treatments of
the CH equation where a Lax equation approach appears to be preferred.

Our recursion formalism was introduced under the assumption of a suffi-
ciently smooth function u in Hypothesis 2.1. The actual existence of smooth
global solutions of the initial value problem associated with the CH hierar-
chy (2.49) is a nontrivial issue and various aspects of it are discussed, for
instance, in [23], [24], [25], [26], [30], [52], [53], [58], [59], [61].
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3. The stationary CH formalism

This section is devoted to a detailed study of the stationary CH hierarchy
and its algebro-geometric solutions. Our principal tool will be a combina-
tion of the polynomial recursion formalism introduced in Section 2 and a
meromorphic function φ (the solution of a Riccati-type equation associated
with the zero-curvature representation of (1.1)) on a hyperelliptic curve Kn

defined in terms of the polynomial R2n+2.

For major parts of this section we suppose

(3.1) u ∈ C∞(R),
dmu

dxm
∈ L∞(R), m ∈ N0,

and assume (2.3), (2.4), (2.7), (2.8), (2.15)–(2.17), (2.23), (2.24), (2.25)–
(2.27), (2.28)–(2.31), keeping n ∈ N0 fixed.

Returning to (2.24) we infer from (2.26) and (2.9) that R2n+2(z) =
z Q2n+1(z) is a monomial of degree 2n + 2 of the form

(3.2) R2n+2(z) =
2n+1∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n+1 ∈ C.

Computing

det(wI2 − iVn(z, x)) = w2 − det(Vn(z, x))(3.3)

= w2 + Gn(z, x)2 +
1

z
Fn(z, x)Hn(z, x)

= w2 +
1

z2
R2n+2(z),

that is,

(3.4) R2n+2(z) = z2Gn(z, x)2 + zFn(z, x)Hn(z, x)

(with I2 the identity matrix in C
2), we are led to introduce the (possibly

singular) hyperelliptic curve Kn of arithmetic genus n defined by

(3.5) Kn : Fn(z, y) = y2 − R2n+2(z) = 0.

In the following we will occasionally impose further constraints on the zeros
Em of R2n+2 introduced in (3.2) and assume that

(3.6) E0 = 0, E1, . . . , E2n+1 ∈ C \ {0}.
We compactify Kn by adding two points at infinity, P∞+ , P∞− , with P∞+ �=
P∞− , still denoting its projective closure by Kn. Hence Kn becomes a two-
sheeted Riemann surface of arithmetic genus n. Points P on Kn \ {P∞±}
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are denoted by P = (z, y), where y( · ) denotes the meromorphic function
on Kn satisfying Fn(z, y) = 0. For additional facts on Kn and further nota-
tion freely employed throughout this paper, the reader may want to consult
Appendix Appendix A.

For notational simplicity we will usually tacitly assume that n ∈ N. (The
case n = 0 is explicitly treated in Example 3.10).

In the following the roots of the polynomials Fn and Hn will play a special
role and hence we introduce on C × R

(3.7) Fn(z, x) =

n∏
j=1

(z − µj(x)), Hn(z, x) = h0(x)

n∏
j=1

(z − νj(x)).

Moreover, we introduce

µ̂j(x) = (µj(x),−µj(x)Gn(µj(x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R,(3.8)

ν̂j(x) = (νj(x), νj(x)Gn(νj(x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R,(3.9)

and

(3.10) P0 = (0, 0).

The branch of y( · ) near P∞± is fixed according to

(3.11) lim
|z(P )|→∞
P→P∞±

y(P )

z(P )Gn(z(P ), x)
= ∓1.

Due to assumption (3.1), u is smooth and bounded, and hence Fn(z, · ) and
Hn(z, · ) share the same property. Thus, one concludes

(3.12) µj , νk ∈ C(R), j, k = 1, . . . , n,

taking multiplicities (and appropriate reordering) of the zeros of Fn and Hn

into account.

Next, define the fundamental meromorphic function φ( · , x) on Kn by

φ(P, x) =
y − zGn(z, x)

Fn(z, x)
(3.13)

=
zHn(z, x)

y + zGn(z, x)
, P = (z, y) ∈ Kn, x ∈ R.(3.14)

Assuming (3.6), the divisor (φ( · , x)) of φ( · , x) is given by

(3.15) (φ( · , x)) = DP0ν̂(x) −DP∞+ µ̂(x),
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taking into account (3.11). Here we abbreviated

(3.16) µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ σnKn.

Given φ( · , x ), one defines the associated vector Ψ( · , x , x0 ) on
Kn \ {P∞+ , P∞− , P0 } by
(3.17)

Ψ(P, x, x0) =

(
ψ1(P, x, x0)
ψ2(P, x, x0)

)
, P ∈ Kn \ {P∞+ , P∞− , P0}, (x, x0) ∈ R

2,

where

ψ1(P, x, x0) = exp

(
−(1/z)

∫ x

x0

dx′ φ(P, x′) − (x − x0)

)
,(3.18)

ψ2(P, x, x0) = −ψ1(P, x, x0)φ(P, x)/z.(3.19)

Although Ψ is formally the analog of the stationary Baker–Akhiezer vector
of the stationary CH hierarchy when compared to analogous definitions in
the context of the KdV or AKNS hierarchies, its actual properties in a
neighborhood of its essential singularity will feature characteristic differences
to standard Baker–Akhiezer vectors (cf. Remark 3.5). We summarize the
fundamental properties of φ and Ψ in the following result.

Lemma 3.1 Suppose (3.1), assume the nth stationary CH equation (2.31)
holds, and let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0}, (x, x0) ∈ R2. Then φ
satisfies the Riccati-type equation

(3.20) φx(P, x) − z−1φ(P, x)2 − 2φ(P, x) + 4u(x) − uxx(x) = 0,

as well as

φ(P, x)φ(P ∗, x) = −zHn(z, x)

Fn(z, x)
,(3.21)

φ(P, x) + φ(P ∗, x) = −2
zGn(z, x)

Fn(z, x)
,(3.22)

φ(P, x) − φ(P ∗, x) =
2y

Fn(z, x)
,(3.23)

while Ψ fulfills

Ψx(P, x, x0) = U(z, x)Ψ(P, x, x0),(3.24)

− yΨ(P, x, x0) = zVn(z, x)Ψ(P, x, x0),(3.25)

ψ1(P, x, x0) =

(
Fn(z, x)

Fn(z, x0)

)1/2

exp

(
− (y/z)

∫ x

x0

dx′Fn(z, x′)−1

)
,(3.26)
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ψ1(P, x, x0)ψ1(P
∗, x, x0) =

Fn(z, x)

Fn(z, x0)
,(3.27)

ψ2(P, x, x0)ψ2(P
∗, x, x0) = − Hn(z, x)

zFn(z, x0)
,(3.28)

ψ1(P, x, x0)ψ2(P
∗, x, x0) + ψ1(P

∗, x, x0)ψ2(P, x, x0) = 2
Gn(z, x)

Fn(z, x0)
,(3.29)

ψ1(P, x, x0)ψ2(P
∗, x, x0) − ψ1(P

∗, x, x0)ψ2(P, x, x0) =
2y

zFn(z, x0)
.(3.30)

In addition, as long as the zeros of Fn( · , x) are all simple for x ∈ Ω, Ω ⊆ R

an open interval, Ψ( · , x, x0), x, x0 ∈ Ω, is meromorphic on Kn \ {P0}.
Proof: Equation (3.20) follows using the definition (3.13) of φ as well
as relations (2.18)–(2.20). The other relations, (3.21)–(3.23), are easy con-
sequences of y(P ∗) = −y(P ), (3.13) and (3.14). By (3.17)–(3.19), Ψ is
meromorphic on Kn \ {P∞±} away from the poles µ̂j(x

′) of φ( · , x′). By
(2.18), (3.8), and (3.13),

(3.31) −1

z
φ(P, x′) =

P→µ̂j(x′)

∂

∂x′ ln(Fn(z, x′)) + O(1) as z → µj(x
′),

and hence ψ1 is meromorphic on Kn \ {P∞±} by (3.18) as long as the zeros
of Fn( · , x) are all simple. This follows from (3.18) by restricting P to a
sufficiently small neighborhood Uj of {µ̂j(x

′) ∈ Kn | x′ ∈ Ω, x′ ∈ [x0, x]}
such that µ̂k(x

′) /∈ Uj for all x′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ {j}. Since
φ is meromorphic on Kn by (3.13), ψ2 is meromorphic on Kn \ {P∞±} by
(3.19). The remaining properties of Ψ can be verified by using the definition
(3.17)–(3.19) as well as relations (3.20)–(3.23). In particular, equation (3.26)
follows by inserting the definition of φ, (3.13), into (3.18), using (2.18). �

Next, we derive Dubrovin-type equations for µj and νj. Since in the
remainder of this section we will frequently assume Kn to be nonsingular,
we list all restrictions on Kn in this case,

(3.32) E0 = 0, Em ∈ C\{0}, Em �= Em′ for m �= m′, m,m′ = 1, . . . , 2n+1.

Lemma 3.2 Suppose (3.1) and the nth stationary CH equation (2.31) holds

subject to the constraint (3.32) on an open interval Ω̃µ ⊆ R. Moreover,
suppose that the zeros µj, j = 1, . . . , n, of Fn( · ) remain distinct and nonzero

on Ω̃µ. Then {µ̂j}j=1,...,n, defined by (3.8), satisfies the following first-order
system of differential equations

(3.33) µj,x(x) = 2
y(µ̂j(x))

µj(x)

n∏
�=1
��=j

(µj(x) − µ�(x))−1, j = 1, . . . , n, x ∈ Ω̃µ.
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Next, assume Kn to be nonsingular and introduce the initial condition

(3.34) {µ̂j(x0)}j=1,...,n ⊂ Kn

for some x0 ∈ R, where µj(x0) �= 0, j = 1, . . . , n, are assumed to be distinct.
Then there exists an open interval Ωµ ⊆ R, with x0 ∈ Ωµ, such that the
initial value problem (3.33), (3.34) has a unique solution {µ̂j}j=1,...,n ⊂ Kn

satisfying

(3.35) µ̂j ∈ C∞(Ωµ,Kn), j = 1, . . . , n,

and µj, j = 1, . . . , n, remain distinct and nonzero on Ωµ.
For the zeros {νj}j=1,...,n of Hn( · ) similar statements hold with µj and Ωµ

replaced by νj and Ων, etc. In particular, {ν̂j}j=1,...,n, defined by (3.9), sat-
isfies the system

νj,x(x) = 2
(4u(x) − uxx(x))y(ν̂j(x))

(4u(x) + 2ux(x))νj(x)

n∏
�=1
��=j

(νj(x) − ν�(x))−1,(3.36)

j = 1, . . . , n, x ∈ Ων .

Proof: We only prove equation (3.33) since the proof of (3.36) follows in
an identical manner. Inserting z = µj into equation (2.18), one concludes
from (3.8),

(3.37) Fn,x(µj) = −µj,x

n∏
�=1
��=j

(µj − µ�) = 2Gn(µj) = −2y(µ̂j)/µj ,

proving (3.33). The smoothness assertion (3.35) is clear as long as µ̂j stays
away from the branch points (Em, 0). In case µ̂j hits such a branch point,
one can use the local chart around (Em, 0) (with local coordinate ζ = σ(z −
Em)1/2, σ ∈ {1,−1}) to verify (3.35). �

Combining the polynomial approach in Section 2 with (3.7) readily yields
trace formulas for the CH invariants. For simplicity we just record the
simplest case.

Lemma 3.3 Suppose (3.1), assume the nth stationary CH equation (2.31)
holds, and let x ∈ R. Then

u(x) =
1

2

n∑
j=1

µj(x) − 1

4

2n+1∑
m=0

Em.(3.38)
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Proof: Equation (3.38) follows by considering the coefficient of zn−1 in Fn

in (2.25) which yields

(3.39) u =
1

2

n∑
j=1

µj +
c1

2
.

The constant c1 can be determined by considering the coefficient of the term
z2n+1 in (2.24), which results in

(3.40) c1 = −1

2

2n+1∑
m=0

Em.
�

Next we turn to asymptotic properties of φ and ψj, j = 1, 2.

Lemma 3.4 Suppose (3.1), assume the nth stationary CH equation (2.31)
holds, and let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0}, x ∈ R. Then
(3.41)

φ(P, x) =
ζ→0

{
−2ζ−1 − 2u(x) + ux(x) + O(ζ), P → P∞+ ,

2u(x) + ux(x) + O(ζ), P → P∞− ,
ζ = z−1,

(3.42)

φ(P, x) =
ζ→0

(∏2n+1
m=1 Em

)1/2

fn(x)
ζ + O(ζ2), P → P0, ζ = z1/2,

and

ψ1(P, x, x0) =
ζ→0

exp(±(x − x0))(1 + O(ζ)), P → P∞± , ζ = 1/z,(3.43)

ψ2(P, x, x0) =
ζ→0

exp(±(x − x0))

{
−2 + O(ζ), P → P∞+ ,

(2u(x) + ux(x))ζ + O(ζ2), P → P∞− ,

(3.44)

ζ = 1/z,

ψ1(P, x, x0) =
ζ→0

exp

(
− 1

ζ

∫ x

x0

dx′

(∏2n+1
m=1 Em

)1/2

fn(x′)
+ O(1)

)
, P → P0,

(3.45)

ζ = z1/2,

ψ2(P, x, x0) =
ζ→0

O
(
ζ−1

)
exp

(
− 1

ζ

∫ x

x0

dx′

(∏2n+1
m=1 Em

)1/2

fn(x′)
+O(1)

)
, P → P0,

(3.46)

ζ = z1/2.
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Proof: The existence of the asymptotic expansions of φ in terms of the
appropriate local coordinates ζ = 1/z near P∞± and ζ = z1/2 near P0 is
clear from the explicit form of φ in (3.13). Insertion of the polynomials Fn,
Gn, and Hn into (3.13) then, in principle, yields the explicit expansion coef-
ficients in (3.41) and (3.42). However, a more efficient way to compute these
coefficients consists in utilizing the Riccati-type equation (3.20). Indeed,
inserting the ansatz

(3.47) φ =
z→∞

φ1z + φ0 + O
(
z−1

)
into (3.20) and comparing the leading powers of 1/z immediately yields the
first line in (3.41). Similarly, the ansatz

(3.48) φ =
z→∞

φ0 + φ1z
−1 + O

(
z−2

)
inserted into (3.20) then yields the second line in (3.41). Finally, the ansatz

(3.49) φ =
z→0

φ1z
1/2 + φ2z + O

(
z3/2

)
inserted into (3.20) yields (3.42). Expansions (3.43)–(3.46) then follow from
(3.18), (3.19), (3.41), and (3.42). �

Remark 3.5 We note the unusual fact that P0, as opposed to P∞± , is
the essential singularity of ψj, j = 1, 2. What makes matters worse is the
intricate x-dependence of the leading-order exponential term in ψj, j = 1, 2,
near P0, as displayed in (3.45), (3.46). This is in sharp contrast to standard
Baker-Akhiezer functions that feature a linear behavior with respect to x in
connection with their essential singularities of the type exp

(
c(x − x0)ζ

−1
)

near ζ = 0.

Introducing

B̂Q0
: K̂n \ {P∞+ , P∞−} → C

n,(3.50)

P �→ B̂Q0
(P ) =

(
B̂Q0,1, . . . , B̂Q0,n

)
=


∫ P

Q0
ω̃

(3)
P∞+ ,P∞−

, n = 1,( ∫ P

Q0
η2, . . . ,

∫ P

Q0
ηn,

∫ P

Q0
ω̃

(3)
P∞+ ,P∞−

)
, n ≥ 2,

where ω̃
(3)
P∞+ ,P∞−

= zndz/y (cf. (C.42)) and

β̂
Q0

: σn
(K̂n \ {P∞+ , P∞−}

) → C
n,(3.51)

DQ �→ β̂
Q0

(DQ) =

n∑
j=1

B̂Q0
(Qj), Q = {Q1, . . . , Qn} ∈ σnK̂n \ {P∞+ , P∞−},
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choosing identical paths of integration from Q0 to P in all integrals in (3.50)
and (3.51). Then one obtains the following result, which indicates a charac-
teristic difference between the CH hierarchy and other completely integrable
systems such as the KdV and AKNS hierarchies.

Lemma 3.6 Assume (3.32) and suppose that {µ̂j}j=1,...,n satisfies the sta-
tionary Dubrovin equations (3.33) on an open interval Ωµ ⊆ R such that µj,
j = 1, . . . , n, remain distinct and nonzero on Ωµ. Introducing the associated

divisor Dµ̂ ∈ σnK̂n, µ̂ = {µ̂1, . . . , µ̂n} ∈ σnK̂n, one computes

(3.52)
d

dx
αQ0

(Dµ̂(x)) = − 2

Ψn(µ(x))
c(1), x ∈ Ωµ.

In particular, the Abel map does not linearize the divisor Dµ̂( · ) on Ωµ. In
addition,

d

dx

n∑
j=1

∫ µ̂j(x)

Q0

η1 = − 2

Ψn(µ(x))
, x ∈ Ωµ,(3.53)

d

dx
β̂(Dµ̂(x)) =

{
2, n = 1,

2(0, . . . , 0, 1), n ≥ 2,
x ∈ Ωµ.(3.54)

Proof: Let x ∈ Ωµ. Then, using

(3.55)
1

µj

=

∏n
p=1
p�=j

µp∏n
m=1 µm

= −Φ
(j)
n−1(µ)

Ψn(µ)
, j = 1, . . . , n,

(cf. (C.3), (C.4)) one obtains

d

dx

( n∑
j=1

∫ µ̂j

Q0

ω

)
=

n∑
j=1

µj,x

n∑
k=1

c(k)
µk−1

j

y(µ̂j)
= 2

n∑
j=1

n∑
k=1

c(k)
µk−2

j∏n
�=1
��=j

(µj − µ�)

(3.56)

= − 2

Ψn(µ)

n∑
j=1

n∑
k=1

c(k)
µk−1

j∏n
�=1
��=j

(µj − µ�)
Φ

(j)
n−1(µ)

= − 2

Ψn(µ)

n∑
j=1

n∑
k=1

c(k)(Un(µ))k,j(Un(µ))−1
j,1

= − 2

Ψn(µ)

n∑
k=1

c(k)δk,1 = − 2

Ψn(µ)
c(1),

using (C.14) and (C.15). (3.53) is just a special case of (3.52) and (3.54)
follows as in (3.56) using (C.10). �
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The analogous results hold for the corresponding divisor Dν̂(x) associated
with φ( · , x).

The fact that the Abel map does not provide the proper change of vari-
ables to linearize the divisor Dµ̂(x) in the CH context is in sharp contrast to
standard integrable soliton equations such as the KdV and AKNS hierarchies
(cf. also Remark 3.5). The change of variables

(3.57) x �→ x̃ =

∫ x

dx′ Ψn(µ(x′))−1

linearizes the Abel map AQ0
(D ˆ̃µ(x̃)), µ̃j(x̃) = µj(x), j = 1, . . . , n. These

facts are well-known and discussed (by different methods) by Constantin and
McKean [29], Alber [1], Alber, Camassa, Fedorov, Holm, and Marsden [3],
and Alber and Fedorov [7], [8]. The intricate relation between the variables x
and x̃ is detailed in (3.70). Our approach follows a route similar to Novikov’s
treatment of the Dym equation [56].

Next we turn to representations of φ and u in terms of the Riemann
theta function associated with Kn, assuming Kn to be nonsingular. In the
following, the notation established in Appendices Appendix A–Appendix
C will be freely employed. In fact, given the preparatory work collected in
Appendices Appendix A–Appendix C, the proof of Theorem 3.7 below will
be reduced to a few lines.

We choose a fixed base point Q0 on Kn \ {P∞+ , P0}. Let ω
(3)
P∞+ ,P0

be a

normal differential of the third kind holomorphic on Kn \ {P∞+ , P0} with
simple poles at P∞ and P0 and residues 1 and −1, respectively (cf. (A.22)–
(A.27)),

ω
(3)
P∞+ ,P0

=
1

y

n∏
j=1

(z − λj)dz,(3.58)

ω
(3)
P∞+ ,P0

=
ζ→0

(ζ−1 + O(1))dζ as P → P∞+ ,(3.59)

ω
(3)
P∞+ ,P0

=
ζ→0

(−ζ−1 + O(1))dζ as P → P0,(3.60)

where the local coordinates are given by

(3.61) ζ = 1/z for P near P∞+ , ζ = σz1/2 for P near P0, σ ∈ {1,−1}.
Moreover, ∫

aj

ω
(3)
P∞+ ,P0

= 0, j = 1, . . . , n,(3.62)
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∫ P

Q0

ω
(3)
P∞+ ,P0

=
ζ→0

ln(ζ) + e0 + O(ζ) as P → P∞+ ,(3.63)

∫ P

Q0

ω
(3)
P∞+ ,P0

=
ζ→0

− ln(ζ) + d0 + O(ζ) as P → P0(3.64)

for some constants e0, d0 ∈ C. We also record

(3.65) AQ0
(P ) − AQ0

(P∞±) =
ζ→0

±c(n)ζ + O(ζ2) as P → P∞± .

In the following it will be convenient to introduce the abbreviations

z(P,Q) = ΞQ0
− AQ0

(P ) + αQ0
(DQ), P ∈ Kn,(3.66)

Q = {Q1, . . . , Qn} ∈ σnKn,

and analogously,

ẑ(P,Q) = Ξ̂Q0
− ÂQ0

(P ) + α̂Q0
(DQ), P ∈ K̂n,(3.67)

Q = {Q1, . . . , Qn} ∈ σnK̂n.

Theorem 3.7 Suppose u ∈ C∞(Ω), u(m) ∈ L∞(Ω), m ∈ N0, and assume
the nth stationary CH equation (2.31) holds on Ω subject to the constraint
(3.32). Moreover, let P ∈ Kn \ {P∞+ , P0} and x ∈ Ω, where Ω ⊆ R is
an open interval. In addition, suppose that Dµ̂(x), or equivalently, Dν̂(x), is
nonspecial for x ∈ Ω. Then φ and u admit the representations

φ(P, x) = −2
θ(z(P∞+ , µ̂(x)))θ(z(P, ν̂(x)))

θ(z(P∞+ , ν̂(x)))θ(z(P, µ̂(x)))
exp

(
−

∫ P

Q0

ω
(3)
P∞+ ,P0

+ e0

)
,

(3.68)

u(x)=
1

2

n∑
j=1

λj− 1

4

2n+1∑
m=0

Em+
1

2

n∑
j=1

Uj
∂

∂wj

ln

(
θ
(
z(P∞+ , µ̂(x)) + w

)
θ
(
z(P∞− , µ̂(x)) + w

))∣∣∣∣
w=0

.

(3.69)

Moreover, let Ω̃ ⊆ Ω be such that µj, j = 1, . . . , n, are nonvanishing on Ω̃.
Then, the constraint

2(x − x0) = −2

∫ x

x0

dx′∏n
k=1 µk(x′)

n∑
j=1

(∫
aj

ω̃
(3)
P∞+ ,P∞−

)
cj(1)(3.70)

+ ln

(
θ
(
z(P∞+ , µ̂(x))

)
θ
(
z(P∞− , µ̂(x0))

)
θ
(
z(P∞− , µ̂(x))

)
θ
(
z(P∞+ , µ̂(x0))

))
, x, x0 ∈ Ω̃



The Camassa–Holm hierarchy 93

holds, with

ẑ(P∞± , µ̂(x)) = Ξ̂Q0
− ÂQ0

(P∞±) + α̂Q0
(Dµ̂(x))

= Ξ̂Q0
− ÂQ0

(P∞±) + α̂Q0
(Dµ̂(x0)) − 2

∫ x

x0

dx′

Ψn(µ(x′))
c(1),(3.71)

x ∈ Ω̃.

Proof: First we temporarily assume that

(3.72) µj(x) �= µj′(x), νk(x) �= νk′(x) for j �= j′, k �= k′ and x ∈ Ω̃,

for appropriate Ω̃ ⊆ Ω. Since by (3.15), DP0ν̂(x) ∼ DP∞+ µ̂(x), and P∞− =
(P∞+)∗ /∈ {µ̂1(x), . . . , µ̂n(x)} by hypothesis, one can apply Theorem A.6
to conclude that Dν̂(x) ∈ σnKn is nonspecial. This argument is of course
symmetric with respect to µ̂(x) and ν̂(x). Thus, Dµ̂(x) is nonspecial if and
only if Dν̂(x) is. The representation (3.68) for φ, subject to (3.72), then
follows by combining (3.15), (3.41), (3.42), and Theorem A.5 since Dµ̂ and

Dν̂ are nonspecial. The representation (3.69) for u on Ω̃ follows from the
trace formula (3.38) and (C.46) (taking k = 1). By continuity, (3.68) and

(3.69) extend from Ω̃ to Ω. Assuming µj �= 0, j = 1, . . . , n, in addition to
(3.72), the constraint (3.70) follows by combining (3.53), (3.54), and (C.45).
Equation (3.71) is clear from (3.52). Again the extra assumption (3.72) can

be removed by continuity and hence (3.70) and (3.71) extend to Ω̃. �

Remark 3.8 While the stationary CH solution u in (3.69) is of course a
meromorphic quasi-periodic function with respect to the new variable x̃ in
(3.57), u may exhibit a rather intricate behavior with respect to the original
variable x. Generically, u has an infinite number of branch points of the
type

(3.73) u(x) =
x→x0

O((x − x0)
2/3)

and

(3.74) x̃ − x̃0 =
x→x0

O((x − x0)
1/3).

Moreover, real-valued bounded stationary CH solutions fall into two cate-
gories and are either smooth quasi-periodic functions in x, or else (3.73) and
(3.74) hold at infinitely many points (depending on whether or not Ψn(µ) is
zero-free, cf. (3.57)), as discussed in [3], [7], [8]). We note that (3.70) relates
the variables x and x̃.
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Remark 3.9 We emphasized in Remark 3.5 that Ψ in (3.17)–(3.19) mark-
edly differs from standard Baker-Akhiezer vectors. Hence one cannot expect
the usual theta function representation of ψj, j = 1, 2, in terms of ratios of
theta functions times an exponential term containing a meromorphic differ-
ential with a pole at the essential singularity of ψj multiplied by (x − x0).
However, combining (C.7) and (C.46), one computes

Fn(z, x) = zn +
n−1∑
�=0

Ψn−�(µ(x))z�

(3.75)

= zn +
n∑

k=1

(
Ψn+1−k(λ)

−
n∑

j=1

cj(k)
∂

∂wj

ln

(
θ(z(P∞+ , µ̂(x)) + w)

θ(z(P∞− , µ̂(x)) + w)

)∣∣∣∣
w=0

zk−1

)

=

n∏
j=1

(z − λj)−
n∑

j=1

n∑
k=1

cj(k)
∂

∂wj

ln

(
θ(z(P∞+ , µ̂(x)) + w)

θ(z(P∞− , µ̂(x)) + w)

)∣∣∣∣
w=0

zk−1,

and hence obtains a theta function representation of ψ1 upon inserting (3.75)
into (3.26). The corresponding theta function representation of ψ2 is then
clear from (3.19) and (3.68).

Next we briefly consider the trivial case n = 0 excluded in Theorem 3.7.

Example 3.10 Assume n = 0, P = (z, y) ∈ K0 \ {P∞+ , P∞− , P0}, and let
(x, x0) ∈ R

2. Then

K0 : F0(z, y) = y2 − R2(z) = y2 − z(z − E1) = 0,(3.76)

E0 = 0, E1 ∈ C, u(x) = −E1/4,

φ(P, x) = y − z = − E1z

y + z
,

ψ1(P, x, x0) = exp(−(y/z)(x − x0)),

ψ2(P, x, x0) = (1 − (y/z)) exp(−(y/z)(x − x0)).

Actually, the general solution of s-CH0(u) = uxxx − 4ux = 0 is given by

(3.77) u(x) = a1e
2x + a2e

−2x − (E1/4), aj ∈ C, j = 1, 2.

However, the requirement u(m) ∈ L∞(R), m ∈ N0, according to (3.1), ne-
cessitates the choice a1 = a2 = 0 and hence leads to (3.76). The latter
corresponds to the trace formula (3.38) in the special case n = 0.
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Finally, we will show that solvability of the Dubrovin equations (3.33)
on Ωµ ⊆ R in fact implies equation (2.31) on Ωµ.

Theorem 3.11 Fix n ∈ N, assume (3.32), and suppose that {µ̂j}j=1,...,n

satisfies the stationary Dubrovin equations (3.33) on an open interval Ωµ ⊆
R such that µj, j = 1, . . . , n, remain distinct and nonzero on Ωµ. Then
u ∈ C∞(Ωµ) defined by

(3.78) u(x) =
1

2

n∑
j=1

µj(x) − 1

4

2n+1∑
m=0

Em

satisfies the nth stationary CH equation (2.31), that is,

(3.79) s-CHn(u) = 0 on Ωµ.

Proof: Given the solutions µ̂j = (µj , y(µ̂j)) ∈ C∞(Ωµ,Kn), j = 1, . . . , n
of (3.33) we introduce

Fn(z) =
n∏

j=1

(z − µj),(3.80)

Gn(z) = Fn(z) +
1

2
Fn,x(z)(3.81)

on C × Ωµ. The Dubrovin equations imply

(3.82) y(µ̂j) =
1

2
µjµj,x

n∏
�=1
��=j

(µj − µ�) = −1

2
µjFn,x(µj) = −µjGn(µj).

Thus

(3.83) R2n+2(µj) − µ2
jGn(µj)

2 = 0, j = 1, . . . , n.

Furthermore R2n+2(0) = 0, and hence there exists a polynomial Hn such
that

(3.84) R2n+2(z) − z2Gn(z)2 = zFn(z)Hn(z).

Computing the coefficient of the term z2n+1 in (3.84) one finds

(3.85) Hn(z) = (4u + 2ux)z
n + O(zn−1) as |z| → ∞.

Next, one defines a polynomial Pn−1 by

(3.86) Pn−1(z) = (4u − uxx)Fn(z) − Hn(z) − zGn,x(z).
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Using (3.78), (3.80), (3.81), and (3.85) one infers that indeed Pn−1 has degree
at most n − 1. Multiplying (3.86) by Gn, and replacing the term GnGn,x

with the result obtained upon differentiating (3.84) with respect to x, yields

Gn(z)Pn−1(z) = Fn(z)
(
(4u − uxx)Gn(z) + 1

2
Hn,x(z)

)
+

(
1
2
Fn,x(z) − Gn(z)

)
Hn(z),(3.87)

and hence

(3.88) Gn(µj)Pn−1(µj) = 0, j = 1, . . . , n

on Ωµ.

Restricting x ∈ Ωµ temporarily to x ∈ Ω̃µ, where

Ω̃µ = {x ∈ Ωµ | Fn,x(µj(x), x) = 2i y
µ̂j(x)

µj(x)
�= 0, j = 1, . . . , n}(3.89)

= {x ∈ Ωµ | µj(x) /∈ {E0, . . . , E2n}, j = 1, . . . , n}

one infers that

(3.90) Pn−1(µj) = 0, j = 1, . . . , n

on C × Ω̃µ. Since Pn−1(z) has degree at most n − 1, one concludes

(3.91) Pn−1 = 0 on C × Ω̃µ,

and hence (2.19), that is,

(3.92) zGn,x(z) = (4u − uxx)Fn(z) − Hn(z)

on C × Ω̃µ. Differentiating (3.84) with respect to x and using equations
(3.92) and (3.81) one finds

(3.93) Hn,x(z) = 2Fn(z) − 2(4u − uxx)Gn(z)

on C × Ω̃µ. In order to extend these results to Ωµ we next investigate the
case where µ̂j hits a branch point (Em, 0), m �= 0. Hence we suppose

(3.94) µj0(x) → Em0 as x → x0 ∈ Ωµ,

for some j0 ∈ {1, . . . , n}, m0 ∈ {1, . . . , 2n + 1}. Introducing

(3.95) ζj0(x) = σ(µj0(x)−Em0)
1/2, σ ∈ {1,−1}, µj0(x) = Em0+ζj0(x)2,
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for some x in an open interval centered around x0, the Dubrovin equation
(3.33) for µj0 becomes

(3.96)

ζj0,x(x) =
x→x0

c(σ)

Em0

( 2n+1∏
m=0

m�=m0

(Em0 − Em)

)1/2 n∏
k=1
k �=j0

(
Em0−µk(x)

)−1(
1+O

(
ζj0(x)2

))

for some |c(σ)| = 1 and hence relations (3.91)–(3.93) extend to Ωµ. We have
now established relations (2.18)–(2.20) on C×Ωµ, and one can now proceed
as in Section 2 to obtain (3.79). �

4. The time-dependent CH formalism

In this section we extend the algebro-geometric formalism of Section 3 to
the time-dependent CH hierarchy. For most of this section we will assume
the following hypothesis.

Hypothesis 4.1 Suppose that u : R
2 → C satisfies

u( · , t) ∈ C∞(R),
∂mu

∂xm
( · , t) ∈ L∞(R), m ∈ N0, t ∈ R,(4.1)

u(x, · ), uxx(x, · ) ∈ C1(R), x ∈ R.

The basic problem in the analysis of algebro-geometric solutions of the
CH hierarchy consists in solving the time-dependent rth CH flow with ini-
tial data a stationary solution of the nth equation in the hierarchy. More
precisely, given n ∈ N0, consider a solution u(0) of the nth stationary CH
equation s-CHn(u(0)) = 0 associated with Kn and a given set of integra-
tion constants {c�}�=1,...,n ⊂ C. Next, let r ∈ N0; we intend to construct
a solution u of the rth CH flow CHr(u) = 0 with u(t0,r) = u(0) for some
t0,r ∈ R.

To emphasize that the integration constants in the definitions of the
stationary and the time-dependent CH equations are independent of each
other, we indicate this by adding a tilde on all the time-dependent quantities.
Hence we shall employ the notation Ṽr, F̃r, G̃r, H̃r, f̃s, g̃s, h̃s, c̃s, etc., in
order to distinguish them from Vn, Fn, Gn, Hn, f�, g�, h�, c�, etc., in the
following. In addition, we will follow a more elaborate notation inspired by
Hirota’s τ -function approach and indicate the individual rth CH flow by a
separate time variable tr ∈ R.
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Summing up, we are seeking a solution u of

C̃Hr(u) = 4utr − uxxtr + (uxxx − 4ux)f̃r − 2(4u − uxx)f̃r,x = 0,(4.2)

u(x, t0,r) = u(0)(x), x ∈ R,

s-CHn(u(0)) = (uxxx − 4ux)fn − 2(4u − uxx)fn,x = 0,(4.3)

for some t0,r ∈ R, n, r ∈ N0, where u satisfies (4.1). Actually, relying on the
isospectral property of the CH flows, we will go a step further and assume
(4.3) not only at tr = t0,r but for all tr ∈ R. Hence, we start with

Utr(z, x, tr) − Ṽr,x(z, x, tr) + [U(z, x, tr), Ṽr(z, x, tr)] = 0,(4.4)

−Vn,x(z, x, tr) + [U(z, x, tr), Vn(z, x, tr)] = 0,(4.5)

(z, x, tr) ∈ C × R
2,

where (cf. (2.25)–(2.27))

U(z, x, tr) =

( −1 1
z−1(4u(x, tr) − uxx(x, tr)) 1

)
,

Ṽr(z, x, tr) =

(
−G̃r(z, x, tr) F̃r(z, x, tr)

z−1H̃r(z, x, tr) G̃r(z, x, tr)

)
,(4.6)

Ṽn(z, x, tr) =

( −Gn(z, x, tr) Fn(z, x, tr)
z−1Hn(z, x, tr) Gn(z, x, tr)

)
,

and

Fn(z, x, tr) =

n∑
�=0

fn−�(x, tr)z
� =

n∏
j=1

(z − µj(x, tr)),(4.7)

Gn(z, x, tr) =

n∑
�=0

gn−�(x, tr)z
�,(4.8)

Hn(z, x, tr) =
n∑

�=0

hn−�(x, tr)z
� = h0(x, tr)

n∏
j=1

(z − νj(x, tr)),(4.9)

h0(x, tr) = 4u(x, tr) + 2ux(x, tr),(4.10)

F̃r(z, x, tr) =
r∑

s=0

f̃r−s(x, tr)z
s,(4.11)

G̃r(z, x, tr) =

r∑
s=0

g̃r−s(x, tr)z
s,(4.12)
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H̃r(z, x, tr) =

r∑
s=0

h̃r−s(x, tr)z
s,(4.13)

h̃0(x, tr) = 4u(x, tr) + 2ux(x, tr),(4.14)

for fixed n, r ∈ N0. Here f�(x, tr), f̃s(x, tr), g�(x, tr), g̃s(x, tr), h�(x, tr), and
h̃s(x, tr) for � = 0, . . . , n, s = 0, . . . , r, are defined as in (2.3), (2.7), and
(2.8) with u(x) replaced by u(x, tr), etc., and with appropriate integration
constants. Explicitly, (4.4), (4.5) are equivalent to

4utr(x, tr)−uxxtr(x, tr) − H̃r,x(z, x, tr) + 2H̃r(z, x, tr)(4.15)

− 2(4u(x, tr) − uxx(x, tr))G̃r(z, x, tr) = 0,

F̃r,x(z, x, tr) = 2G̃r(z, x, tr) − 2F̃r(z, x, tr),(4.16)

zG̃r,x(z, x, tr) = (4u(x, tr) − uxx(x, tr))F̃r(z, x, tr) − H̃r(z, x, tr)(4.17)

and

Fn,x(z, x, tr) = 2Gn(z, x, tr) − 2Fn(z, x, tr),(4.18)

Hn,x(z, x, tr) = 2Hn(z, x, tr) − 2(4u(x, tr) − uxx(x, tr))Gn(z, x, tr),(4.19)

zGn,x(z, x, tr) = (4u(x, tr) − uxx(x, tr))Fn(z, x, tr) − Hn(z, x, tr),(4.20)

First we will assume the existence of a solution of equations (4.15)–(4.20)
and derive an explicit formula for u in terms of Riemann theta functions.
In addition, we will show in Theorem 4.10 that (4.15)–(4.20) and hence the
algebro-geometric initial value problem (4.2), (4.3) has a solution at least
locally, that is, for (x, tr) ∈ Ω for some open and connected set Ω ⊆ R2.

One observes that equations (2.3)–(2.41) apply to Fn, Gn, Hn, f�, g�,
and h� and (2.3)–(2.9), (2.25)–(2.27), with n replaced by r and c� replaced

by c̃�, apply to F̃r, G̃r, H̃r, f̃�, g̃�, and h̃�. In particular, the fundamental
identity (2.24) holds,

(4.21) z2Gn(z, x, tr)
2 + zFn(z, x, tr)Hn(z, x, tr) = R2n+2(z),

and the hyperelliptic curve Kn is still given by

(4.22) Kn : Fn(z, y) = y2 − R2n+2(z) = 0, R2n+2(z) =
2n+1∏
m=0

(z − Em),

assuming (3.6) for the remainder of this section, that is,

(4.23) E0 = 0, E1, . . . , E2n+1 ∈ C \ {0}.
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In analogy to equations (3.8), (3.9) we define

µ̂j(x, tr) = (µj(x, tr),−µj(x, tr)Gn(µj(x, tr), x, tr)) ∈ Kn,(4.24)

j = 1, . . . , n, (x, tr) ∈ R
2,

ν̂j(x, tr) = (νj(x, tr), νj(x, tr)Gn(νj(x, tr), x, tr)) ∈ Kn,(4.25)

j = 1, . . . , n, (x, tr) ∈ R
2.

As in Section 3, the regularity assumptions (4.1) on u imply analogous reg-
ularity properties of Fn, Hn, µj, and νk.

Next, one defines the meromorphic function φ( · , x, tr) on Kn by

φ(P , x, tr) =
y − zGn(z, x, tr)

Fn(z, x, tr)
(4.26)

=
zHn(z, x, tr)

y + zGn(z, x, tr)
, P = (z, y) ∈ Kn \ {P∞±}, (x, tr) ∈ R

2.(4.27)

Assuming (4.23), the divisor (φ( · , x, tr)) of φ( · , x, tr) reads

(4.28) (φ( · , x, tr)) = DP0ν̂(x,tr) −DP∞+ µ̂(x,tr),

with

(4.29) µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ σnKn.

The corresponding time-dependent vector Ψ,

Ψ(P, x, x0, tr, t0,r) =

(
ψ1(P, x, x0, tr, t0,r)

ψ2(P, x, x0, tr, t0,r)

)
,(4.30)

P ∈ Kn \ {P∞±}, (x, x0, tr, t0,r) ∈ R
4

is defined by

ψ1(P, x, x0, tr, t0,r)=exp

(
−

∫ tr

t0,r

ds
(
(1/z)F̃r(z, x0, s)φ(P, x0, s)+G̃r(z, x0, s)

)(4.31)

− (1/z)

∫ x

x0

dx′ φ(P, x′, tr) − (x − x0)

)
,

ψ2(P, x,x0, tr, t0,r) = −ψ1(P, x, x0, tr, t0,r)φ(P, x, tr)/z.(4.32)



The Camassa–Holm hierarchy 101

The properties of φ can now be summarized as follows.

Lemma 4.2 Assume Hypothesis 4.1 and (4.4), (4.5). Moreover, let P =
(z, y) ∈ Kn \ {P∞+ , P∞− , P0} and (x, tr) ∈ R

2. Then φ satisfies

φx(P, x, tr) − z−1φ(P, x, tr)
2 − 2φ(P, x, tr)(4.33)

+ 4u(x, tr) − uxx(x, tr) = 0,

φtr(P, x, tr) = (4u(x, tr) − uxx(x, tr))F̃r(z, x, tr)(4.34)

− H̃r(z, x, tr) + 2(F̃r(z, x, tr)φ(P, x, tr))x

= (1/z)F̃r(z, x, tr)φ(P, x, tr)
2 + 2G̃r(z, x, tr)φ(P, x, tr)(4.35)

− H̃r(z, x, tr),

φ(P, x, tr) φ(P ∗, x, tr) = −zHn(z, x, tr)

Fn(z, x, tr)
,(4.36)

φ(P, x, tr) + φ(P ∗, x, tr) = −2
zGn(z, x, tr)

Fn(z, x, tr)
,(4.37)

φ(P, x, tr) − φ(P ∗, x, tr) =
2y

Fn(z, x, tr)
.(4.38)

Proof: Equations (4.33) and (4.36)–(4.38) are proved as in Lemma 3.1. To
prove (4.35) one first observes that

(4.39)
(
∂x − 2((1/z)φ + 1)

)(
φtr − (1/z)F̃rφ

2 − 2G̃rφ + H̃r

)
= 0

using (4.33) and relations (4.15)–(4.17) repeatedly. Thus,

(4.40) φtr −
1

z
F̃rφ

2 − 2G̃rφ + H̃r = C exp

(
2

∫ x

dx′ ((1/z)φ + 1)

)
,

where the left-hand side is meromorphic in a neighborhood of P∞− , while the
right-hand side is meromorphic near P∞− only if C = 0. This proves (4.35).

Using (4.16) and (4.33) one obtains

(4.41) (4u − uxx)F̃r + 2(F̃rφ)x = 2G̃rφ + (1/z)φ2F̃r.

Combining this result with (4.35) one concludes that (4.34) holds. �
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Using relations (4.18)–(4.20) and (4.15)–(4.17), we next determine the
time evolution of Fn, Gn, and Hn.

Lemma 4.3 Assume Hypothesis 4.1 and (4.4), (4.5). In addition, let
(z, x, tr) ∈ C × R

2. Then

Fn,tr(z, x, tr) = 2(Gn(z, x, tr)F̃r(z, x, tr) − Fn(z, x, tr)G̃r(z, x, tr)),(4.42)

zGn,tr(z, x, tr) = Fn(z, x, tr)H̃r(z, x, tr) − Hn(z, x, tr)F̃r(z, x, tr),(4.43)

Hn,tr(z, x, tr) = 2(Hn(z, x, tr)G̃r(z, x, tr) − Gn(z, x, tr)H̃r(z, x, tr)).(4.44)

Equations (4.42)–(4.44) are equivalent to

(4.45) −Vn,tr(z, x, tr) + [Ṽr(z, x, tr), Vn(z, x, tr)] = 0.

Proof: We prove (4.42) by using (4.38) which shows that

(4.46) (φ(P ) − φ(P ∗))tr = −2
yFn,tr

F 2
n

.

However, the left-hand side of (4.46) also equals

(4.47) φ(P )tr − φ(P ∗)tr =
4y

F 2
n

(G̃rFn − F̃rGn),

using (4.35), (4.37), and (4.38). Combining (4.46) and (4.47) proves (4.42).
Similarly, to prove (4.43), we use (4.37) to write

(4.48) (φ(P ) + φ(P ∗))tr = − 2z

F 2
n

(
Gn,trFn − GnFn,tr

)
.

Here the left-hand side can be expressed as

(4.49) φ(P )tr + φ(P ∗)tr = 2
zGn

F 2
n

Fn,tr +
2

Fn

(F̃rHn − H̃rFn),

using (4.35), (4.36), and (4.37). Combining (4.48) and (4.49), using (4.42),
proves (4.43). Finally, (4.44) follows by differentiating (2.24), that is,

(zGn)2 + zFnHn = R2n+2,

with respect to tr, and using (4.42) and (4.43). �
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Lemmas 4.2 and 4.3 permit one to characterize Ψ.

Lemma 4.4 Assume Hypothesis 4.1 and (4.4), (4.5). Moreover, let P =
(z, y) ∈ Kn \ {P∞+ , P∞− , P0} and (x, x0, tr, t0,r) ∈ R

4. Then the Baker–
Akhiezer vector Ψ satisfies

Ψx(P, x, x0, tr, t0,r) = U(z, x, tr)Ψ(P, x, x0, tr, t0,r),(4.50)

−yΨ(P, x, x0, tr, t0,r) = zVn(z, x, tr)Ψ(P, x, x0, tr, t0,r),(4.51)

Ψtr(P, x, x0, tr, t0,r) = Ṽr(z, x, tr)Ψ(P, x, x0, tr, t0,r),(4.52)

ψ1(P, x, x0, tr, t0,r) =

(
Fn(z, x, tr)

Fn(z, x0, t0,r)

)1/2

×(4.53)

× exp

(
− (y/z)

∫ tr

t0,r

dsF̃r(z, x0, s)Fn(z, x0, s)
−1−(y/z)

∫ x

x0

dx′Fn(z, x′, tr)−1

)
,

ψ1(P, x, x0, tr, t0,r)ψ1(P
∗, x, x0, tr, t0,r) =

Fn(z, x, tr)

Fn(z, x0, t0,r)
,(4.54)

ψ2(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r) = − Hn(z, x, tr)

zFn(z, x0, t0,r)
,(4.55)

ψ1(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r)(4.56)

+ψ1(P
∗, x, x0, tr, t0,r)ψ2(P, x, x0, tr, t0,r) = 2

Gn(z, x, tr)

Fn(z, x0, t0,r)
,

ψ1(P, x, x0, tr, t0,r)ψ2(P
∗, x, x0, tr, t0,r)(4.57)

−ψ1(P
∗, x, x0, tr, t0,r)ψ2(P, x, x0, tr, t0,r) =

2y

zFn(z, x0, t0,r)
.

In addition, as long as the zeros of Fn( · , x, tr) are all simple for (x, tr),
(x0 , t0,r) ∈ Ω, Ω ⊆ R2 open and connected, Ψ( · , x , x0 , tr , t0,r), (x , tr),
(x0, t0,r) ∈ Ω, is meromorphic on Kn \ {P0, P∞±}.
Proof: By (4.31), ψ1( · , x, x0, tr, t0,r) is meromorphic on Kn \ {P∞±} away
from the poles µ̂j(x0, s) of φ( · , x0, s) and µ̂k(x

′, tr) of φ( · , x′, tr). That
ψ1( · , x, x0, tr, t0,r) is meromorphic on Kn \ {P∞±} if Fn( · , x, tr) has only
simple zeros is a consequence of (cf. (3.31))

(4.58) −1

z
φ(P, x′, tr) =

P→µ̂j(x′,tr)

∂

∂x′ ln
(
Fn(z, x′, tr)

)
+ O(1)

as z → µj(x
′, tr), and

(4.59) −1

z
F̃r(z, x0, s)φ(P, x0, s) =

P→µ̂j(x0,s)

∂

∂s
ln

(
Fn(z, x0, s)

)
+O(1)

as z→µj(x0, s), using (4.24), (4.26), and (4.42).
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This follows from (4.31) by restricting P to a sufficiently small neigh-
borhood Uj(x0) of {µ̂j(x0, s) ∈ Kn | (x0, s) ∈ Ω, s ∈ [t0,r, tr]} such that
µ̂k(x0, s) /∈ Uj(x0) for all s ∈ [t0,r, tr] and all k ∈ {1, . . . , n} \ {j} and by
simultaneously restricting P to a sufficiently small neighborhood Uj(tr) of
{µ̂j(x

′, tr) ∈ Kn | (x′, tr) ∈ Ω, x′ ∈ [x0, x]} such that µ̂k(x
′, tr) /∈ Uj(tr) for

all x′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ {j}. By (4.32) and the fact that φ is
meromorphic on Kn one concludes that ψ2 is meromorphic on Kn \ {P∞±}
as well. Relations (4.50) and (4.51) follow as in Lemma 3.1, while the time
evolution (4.52) is a consequence of the definition of Ψ in (4.31), (4.32) as
well as (4.35), rewriting

(4.60) (1/z)φtr =
(
(1/z)2φF̃r + G̃r

)
x
,

using (4.17) and (4.34). To prove (4.53) we recall the definition (4.31),
that is,

ψ1(P, x, x0, tr, t0,r) = exp

(
− (x − x0) − (1/z)

∫ x

x0

dx′ φ(P, x′, tr)

−
∫ tr

t0,r

ds
(
(1/z)F̃r(z, x0, s)φ(P, x0, s)+G̃r(z, x0, s)

))

=

(
Fn(z, x, tr)

Fn(z, x0, tr)

)1/2

exp

(
− (y/z)

∫ x

x0

dx′Fn(z, x′, tr)−1(4.61)

−
∫ tr

t0,r

ds
(
(1/z)F̃r(z, x0, s)φ(P, x0, s)+G̃r(z, x0, s)

))
,

using the calculation leading to (3.26). Equations (4.26) and (4.42) show that

1

z
F̃r(z, x0, s)φ(P, x0, s) + G̃r(z, x0, s) =(4.62)

=
y

z

F̃r(z, x0, s)

Fn(z, x0, s)
− 1

2

Fn,tr(z, x0, s)

Fn(z, x0, s)
,

which inserted into (4.61) yields (4.53). Evaluating (4.53) at the points P
and P ∗ and multiplying the resulting expressions yields (4.54). The remain-
ing statements are direct consequences of (4.36)–(4.38) and (4.53). �

Next, we turn to the time evolution of the quantities µj and νj assuming
(3.32), that is,

(4.63) E0 =0, Em∈C \ {0}, Em �= Em′ for m �= m′, m,m′ = 1, . . . , 2n+1.
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Lemma 4.5 Assume Hypothesis 4.1, (4.63), and (4.4), (4.5) on an open

and connected set Ω̃µ⊆R2. Moreover, suppose that the zeros µj, j=1, . . . , n,

of Fn( · ) remain distinct and nonzero on Ω̃µ. Then {µ̂j}j=1,...,n, defined
by (4.24), satisfies the following first-order system of differential equations

(4.64) µj,x(x, tr) = 2
y(µ̂j(x, tr))

µj(x, tr)

n∏
�=1
��=j

(µj(x, tr) − µ�(x, tr))
−1,

µj,tr(x, tr) = 2F̃r(µj(x, tr), x, tr)
y(µ̂j(x, tr))

µj(x, tr)
×(4.65)

×
n∏

�=1
��=j

(µj(x, tr) − µ�(x, tr))
−1, j =1, . . . , n, (x, tr) ∈ Ω̃µ.

Next, assume Kn to be nonsingular and introduce the initial condition

(4.66) {µ̂j(x0, t0,r)}j=1,...,n ⊂ Kn

for some (x0, t0,r) ∈ R2, where µj(x0, t0,r) �= 0, j = 1, . . . , n, are assumed
to be distinct. Then there exists an open and connected set Ωµ ⊆ R

2, with
(x0, t0,r) ∈ Ωµ, such that the initial value problem (4.64)–(4.66) has a unique
solution {µ̂j}j=1,...,n ⊂ Kn satisfying

(4.67) µ̂j ∈ C∞(Ωµ,Kn), j = 1, . . . , n,

and µj, j = 1, . . . , n, remain distinct and nonzero on Ωµ.

For the zeros {νj}j=1,...,n of Hn( · ) similar statements hold with µj and
Ωµ replaced by νj and Ων, etc. In particular, {ν̂j}j=1,...,n, defined by (4.25),
satisfies the system

νj,x(x, tr) =
2(4u(x, tr) − uxx(x, tr))

4u(x, tr) + 2ux(x, tr)

y(ν̂j(x, tr))

νj(x, tr)

n∏
�=1
��=j

(νj(x, tr) − ν�(x, tr))
−1,

(4.68)

νj,tr(x, tr) =
2H̃r(νj(x, tr), x, tr)

4u(x, tr) + 2ux(x, tr)

y(ν̂j(x, tr))

νj(x, tr)

n∏
�=1
��=j

(νj(x, tr) − ν�(x, tr))
−1,

(4.69)

j = 1, . . . , n, (x, tr) ∈ Ων .
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Proof: It suffices to prove (4.65) since the argument for (4.69) is analogous
and that for (4.64) and (4.68) has been given in the proof of Lemma 3.2.
Inserting z = µj(x, tr) into (4.42), observing (4.24), yields

(4.70) Fn,tr(µj) = −µj,tr

n∏
�=1
��=j

(µj − µ�) = 2F̃r(µj)Gn(µj) = −2
F̃r(µj)

µj

y(µ̂j).

The rest is analogous to the proof of Lemma 3.2. �

Next we note the following trace formula, the tr-dependent analog of (3.38).

Lemma 4.6 Assume Hypothesis 4.1, (4.4), (4.5), and let (x, tr) ∈ R2. Then

u(x, tr) =
1

2

n∑
j=1

µj(x, tr) − 1

4

2n+1∑
m=1

Em.(4.71)

We also record the asymptotic properties of φ, the analogs of (3.41) and (3.42).

Lemma 4.7 Assume Hypothesis 4.1, (4.4), (4.5), and let P = (z, y) ∈
Kn \ {P∞+ , P∞− , P0}, (x, tr) ∈ R2. Then

φ(P, x, tr) =
ζ→0

−2ζ−1 − 2u(x, tr) + ux(x, tr) + O(ζ), P → P∞+ ,

2u(x, tr) + ux(x, tr) + O(ζ), P → P∞− ,
ζ = z−1,

(4.72)

(4.73) φ(P, x, tr) =
ζ→0

( 2n+1∏
m=1

Em

)1/2

fn(x, tr)
ζ + O(ζ2), P → P0, ζ = z1/2.

Since the proofs of Lemmas 4.6 and 4.7 are identical to the corresponding
stationary results in Lemmas 3.3 and 3.4 we omit the corresponding details.

Next, recalling the definition of d̃r,k and F̃r(µj) introduced in (C.24) and

(C.27) and also the definition of B̂Q0
and β̂

Q0
in (3.50) and (3.51), respec-

tively, we now state the analog of Lemma 3.6, thereby underscoring the
marked differences between the CH hierarchy and other completely inte-
grable systems such as the KdV and AKNS hierarchies.
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Lemma 4.8 Assume (4.63) and suppose that {µ̂j}j=1,...,n satisfies the Dubro-
vin equations (4.64), (4.65) on an open set Ωµ⊆R2 such that µj, j=1, . . . , n,

remain distinct and nonzero on Ωµ and that F̃r(µj) �= 0 on Ωµ, j=1, . . . , n.

Introducing the associated divisor Dµ̂ ∈σnK̂n, µ̂={µ̂1, . . . , µ̂n}∈ σnK̂n, one
computes

∂

∂x
αQ0

(Dµ̂(x,tr)) = − 2

Ψn(µ(x, tr))
c(1), (x, tr) ∈ Ωµ,(4.74)

∂

∂tr
αQ0

(Dµ̂(x,tr)) = − 2

Ψn(µ(x, tr))

( r∧n∑
k=0

d̃r,k(E)Ψk(µ(x, tr))

)
c(1)(4.75)

+ 2

( n∑
�=1∨(n+1−r)

d̃r,n+1−�(E)c(�)

)
, (x, tr) ∈ Ωµ.

In particular, the Abel map does not linearize the divisor Dµ̂( · , · ) on Ωµ. In
addition,

∂

∂x

n∑
j=1

∫ µ̂j(x,tr)

Q0

η1 = − 2

Ψn(µ(x, tr))
, (x, tr) ∈ Ωµ,(4.76)

∂

∂x
β̂(Dµ̂(x,tr)) =

{
2, n = 1,

2(0, . . . , 0, 1), n ≥ 2,
(x, tr) ∈ Ωµ,(4.77)

∂

∂tr

n∑
j=1

∫ µ̂j(x,tr)

Q0

η1 =− 2

Ψn(µ(x, tr))

r∧n∑
k=0

d̃r,k(E)Ψk(µ(x, tr))(4.78)

+ 2d̃r,n(E)δn,r∧n, (x, tr) ∈ Ωµ,

∂

∂tr
β̂(Dµ̂(x,tr)) = 2

( r∑
s=0

c̃r−sĉs+1−n(E), . . . ,

r∑
s=0

c̃r−sĉs+1(E),(4.79)

r∑
s=0

c̃r−sĉs(E)

)
, ĉ−�(E) = 0, � ∈ N, (x, tr) ∈ Ωµ.

Proof: Let (x, tr) ∈ Ωµ. Since (4.74), (4.76), and (4.77) are proved as in
in the stationary context of Lemma 3.6, we focus on the proofs of (4.75),
(4.78), and (4.79).
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Then, using (4.65), (3.55), (C.11), and (C.9), (C.14), and (C.15) one
obtains1

∂

∂tr

( n∑
j=1

∫ µ̂j

Q0

ω

)
=

n∑
j=1

µj,tr

n∑
k=1

c(k)
µk−1

j

y(µ̂j)

= 2

n∑
j=1

n∑
k=1

c(k)
µk−1

j∏n
�=1
��=j

(µj − µ�)

F̃r(µj)

µj

= 2

n∑
j=1

n∑
k=1

c(k)
µk−1

j∏n
�=1
��=j

(µj − µ�)
×

×
(
−

r∧n∑
m=0

d̃r,m(E)Ψm(µ)
Φ

(j)
n−1(µ)

Ψn(µ)
+

r∧n∑
m=1

d̃r,m(E)Φ
(j)
m−1(µ)

)

= −2

r∧n∑
m=0

d̃r,m(E)
Ψm(µ)

Ψn(µ)

n∑
k=1

n∑
j=1

c(k)(Un(µ))k,j(Un(µ))−1
j,1

+ 2
r∧n∑
m=1

d̃r,m(E)
n∑

k=1

n∑
j=1

c(k)(Un(µ))k,j(Un(µ))−1
j,n−m+1

=− 2

Ψn(µ)

r∧n∑
m=0

d̃r,m(E)Ψm(µ)c(1)+2

r∧n∑
m=1

d̃r.m(E)c(n−m+1)

=− 2

Ψn(µ)

r∧n∑
m=0

d̃r,m(E)Ψm(µ)c(1)+2
n∑

m=1∨(n+1−r)

d̃r,n+1−m(E)c(m).(4.80)

Equation (4.78) is just a special case of (4.75) and (4.79) follows as in (4.80)
using again (C.9). �

The analogous results hold for the corresponding divisor Dν̂(x,tr) associ-
ated with φ( · , x, tr).

The fact that the Abel map does not effect a linearization of the divisor
Dµ̂(x,tr) in the CH context is well-known and discussed (using different ap-
proaches) by Constantin and McKean [29], Alber, Camassa, Fedorov, Holm,
and Marsden [3], Alber and Fedorov [7], [8]. A change of the variable t1 in
analogy to that in (3.57) in the stationary context, which avoids the use of
a meromorphic differential (cf. (3.50), (3.51)) and linearizes the Abel map
when considering the CH1 flow, is discussed in [1]. That change of variables
corresponds to the case r = 1 in (4.83).

1m ∧ n = min(m,n).
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Next we turn to one of the principal results of this section, the represen-
tations of φ and u in terms of the Riemann theta function associated with
Kn, assuming Kn to be nonsingular. Recalling (3.58)–(3.67), the analog of
Theorem 3.7 in the stationary case then reads as follows.

Theorem 4.9 Suppose Hypothesis 4.1 and (4.2), (4.3) on Ω subject to the
constraint (4.63). In addition, let P ∈ Kn\{P∞+ , P0} and (x, tr), (x0, t0,r) ∈
Ω, where Ω ⊆ R

2 is open and connected. Moreover, suppose that Dµ̂(x,tr), or
equivalently, Dν̂(x,tr), is nonspecial for (x, tr) ∈ Ω. Then φ and u admit the
representations

φ(P, x, tr) = −2
θ(z(P∞+ , µ̂(x, tr)))θ(z(P, ν̂(x, tr)))

θ(z(P∞+ , ν̂(x, tr)))θ(z(P, µ̂(x, tr)))
×(4.81)

× exp

(
−

∫ P

Q0

ω
(3)
P∞+ ,P0

+ e0

)
,

u(x, tr) =
1

2

n∑
j=1

λj − 1

4

2n+1∑
m=0

Em(4.82)

+
1

2

n∑
j=1

Uj
∂

∂wj

ln

(
θ
(
z(P∞+ , µ̂(x, tr)) + w

)
θ
(
z(P∞− , µ̂(x, tr)) + w

))∣∣∣∣
w=0

.

Moreover, let Ω̃ ⊆ Ω be such that µj, j = 1, . . . , n, are nonvanishing on Ω̃.

Then, the constraint

2(x − x0) + 2(tr − t0,r)

r∑
s=0

c̃r−sĉs(E) =(4.83)

=

(
− 2

∫ x

x0

dx′∏n
k=1 µk(x′, tr)

− 2
r∧n∑
k=0

d̃r,k(E)

∫ tr

t0,r

Ψk(µ(x0, t
′)

Ψn(µ(x0, t′)
dt′

) n∑
j=1

( ∫
aj

ω̃
(3)
P∞+ ,P∞−

)
cj(1)

+ 2(tr − t0,r)
n∑

�=1∨(n+1−�)

d̃r,n+1−�(E)
n∑

j=1

( ∫
aj

ω̃
(3)
P∞+ ,P∞−

)
cj(�)

+ ln

(
θ
(
z(P∞+ , µ̂(x, tr))

)
θ
(
z(P∞− , µ̂(x0, t0,r))

)
θ
(
z(P∞− , µ̂(x, tr))

)
θ
(
z(P∞+ , µ̂(x0, t0,r))

))
,

(x, tr), (x0, t0,r) ∈ Ω̃
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holds, with

ẑ(P∞± , µ̂(x, tr)) = Ξ̂Q0
− ÂQ0

(P∞±) + α̂Q0
(Dµ̂(x,tr))(4.84)

= Ξ̂Q0
− ÂQ0

(P∞±) + α̂Q0
(Dµ̂(x0,tr))

− 2

( ∫ x

x0

dx′

Ψn(µ(x′, tr))

)
c(1)

= Ξ̂Q0
− ÂQ0

(P∞±) + α̂Q0
(Dµ̂(x,t0,r))(4.85)

− 2

( r∧n∑
k=0

d̃r,k(E)

∫ tr

t0,r

Ψk(µ(x, t′))

Ψn(µ(x, t′))
dt′

)
c(1)

+ 2(tr − t0,r)

( n∑
�=1∨(n+1−r)

d̃r,n+1−�(E)c(�)

)
,

(x, tr), (x0, t0,r) ∈ Ω̃.

Proof: First, let
˜̃
Ω ⊆ Ω be defined by requiring that µj, j = 1, . . . , n, are

distinct and nonvanishing on
˜̃
Ω and F̃r(µj) �= 0 on

˜̃
Ω, j = 1, . . . , n. The

representation (4.81) for φ on
˜̃
Ω then follows by combining (4.28), (4.72),

(4.73), and Theorem A.5 since Dµ̂ and Dν̂ are simultaneously nonspecial
as discussed in the proof of Theorem 3.7. The representation (4.82) for u

on
˜̃
Ω follows from the trace formula (4.71) and (C.46) (taking k = 1). By

continuity, (4.81) and (4.82) extend from
˜̃
Ω to Ω. The constraint (4.83) then

holds on
˜̃
Ω by combining (4.76)–(4.79), and (C.45). Equations (4.84) and

(4.85) are clear from (4.74) and (4.75). Again by continuity, (4.83)–(4.85)

extend from
˜̃
Ω to Ω̃. �

As discussed by Alber, Camassa, Fedorov, Holm, and Marsden [3], Alber
and Fedorov [7], [8], the algebro-geometric CH solution u in (4.82) is not
meromorphic with respect to x, tr, in general. In more geometrical terms, the
CHr flows evolve on a nonlinear subvariety (corresponding to the constraint
(4.83)) of a generalized Jacobian, topologically given by J(Kn) × C

∗ (C∗ =
C \ {0}). For discussions of generalized Jacobians in this context we refer,
for instance, to [37], [43], [44]. Smooth (i.e., C1 with respect to t1 and C3

and hence C∞ with respect to x) spatially periodic CH1 solutions u are
quasi-periodic in t1 as shown by Constantin [22].

Without going into details we mention that our approach extends in a
straightforward manner to the Dym-type equation,

(4.86) vxxt + 2vvxxx + 4vxvxx − 4κv = 0, κ ∈ R, (x, t) ∈ R
2.
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The corresponding zero-curvature formalism leads to a trace formula analo-
gous to (4.71) (cf. [3], [7], [8]). One needs to replace the polynomial R2n+2(z)
by R2n+1(z)=

∏2n
m=0(z−Em), which results in a branch point P∞ at infinity,

and replaces the (non-normalized) differential ω̃
(3)
P∞+ ,P∞−

of the third kind

by the (non-normalized) differential ω̃
(2)
P∞ = zndz/y of the second kind, etc.

This approach (applied to the Dym equation 4ρt = ρ3ρxxx, related to (4.86)
by proper variable transformations) was first realized by Novikov [56] and
inspired our treatment of the CH hierarchy.

Expressing F̃r in terms of Ψk(µ) and hence in terms of the theta function
associated with Kn, one can use (4.53) to derive a theta function represen-
tation of ψj , j = 1, 2, in analogy to the stationary case discussed in Remark
3.9. We omit further details.

Up to this point we assumed Hypothesis 4.1 together with the basic
equations (4.4) and (4.5). Next, we will show that solvability of the Dubrovin
equations (4.64) and (4.65) on Ωµ ⊆ R

2 in fact implies equations (4.4) and
(4.5) on Ωµ and hence solves the algebro-geometric initial value problem

(4.2), (4.3) on Ωµ. In this context we recall the definition of F̃r(µj) in terms
of µ1, . . . , µn, introduced2 in (C.24), (C.27),

F̃r(µj) =

r∧n∑
k=0

d̃r,k(E)Φ
(j)
k (µ), r ∈ N0, c̃0 = 1,(4.87)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−sĉs(E), k = 0, . . . , r ∧ n,(4.88)

in terms of a given set of integration constants {c̃1, . . . , c̃r} ⊂ C.

Theorem 4.10 Fix n ∈ N and assume (4.63). Suppose that {µ̂j}j=1,...,n

satisfies the Dubrovin equations (4.64), (4.65) on an open and connected set

Ωµ ⊆ R
2, with F̃r(µj) in (4.65) expressed in terms of µk, k = 1, . . . , n, by

(4.87), (4.88). Moreover, assume that µj, j = 1, . . . , n, remain distinct and
nonzero on Ωµ. Then u ∈ C∞(Ωµ) defined by

(4.89) u(x, tr) =
1

2

n∑
j=1

µj(x, tr) − 1

4

2n+1∑
m=0

Em,

satisfies the rth CH equation (4.2), that is,

(4.90) C̃Hr(u) = 0 on Ωµ,

with initial values satisfying the nth stationary CH equation (4.3).

2m ∧ n = min(m,n).
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Proof: Given solutions µ̂j = (µj , y(µ̂j)) ∈ C∞(Ωµ,Kn), j = 1, . . . , n of
(4.64) and (4.65), we define polynomials Fn, Gn, and Hn on Ωµ as in the
stationary case, cf. Theorem 3.11, with properties

Fn(z) =
n∏

j=1

(z − µj),(4.91)

Gn(z) = Fn(z) + (1/2)Fn,x(z),(4.92)

zGn,x(z) = (4u − uxx)Fn(z) − Hn(z),(4.93)

Hn,x(z) = 2Hn(z) − 2(4u − uxx)Gn(z),(4.94)

R2n+2(z) = z2Gn(z)2 + zFn(z)Hn(z),(4.95)

treating tr as a parameter.

Define polynomials G̃r and H̃r by

G̃r(z) = F̃r(z) + (1/2)F̃r,x(z),(4.96)

H̃r(z) = (4u − uxx)F̃r(z) − zG̃r,x(z),(4.97)

respectively. We claim that

(4.98) Fn,tr(z) = 2
(
Gn(z)F̃r(z) − Fn(z)G̃r(z)

)
.

To prove (4.98) one computes from (4.64) and (4.65) that

Fn,tr(z) = −Fn(z)

n∑
j=1

F̃r(µj)µj,x(z − µj)
−1,(4.99)

Fn,x(z) = −Fn(z)

n∑
j=1

µj,x(z − µj)
−1.(4.100)

Using (4.92) and (4.96) one sees that (4.98) is equivalent to

(4.101) F̃r,x(z) =
n∑

j=1

(
F̃r(z) − F̃r(µj)

)
µj,x(z − µj)

−1.

Equation (4.101) is proved in Lemma C.5. This in turn proves (4.98). Next,
taking the derivative of (4.98) with respect to x and inserting (4.92) and
(4.93), yields

Fn,trx(z) = 2
(
(1/z)(4u − uxx)Fn(z)F̃r(z) − (1/z)Hn(z)F̃r(z)(4.102)

+Gn(z)F̃r,x(z)−2(Gn(z)−Fn(z))G̃r(z)−Fn(z)G̃r,x(z)
)
.

On the other hand, by differentiating (4.92) with respect to tr, using (4.98)
one obtains

Fn,trx(z) = 2
(
Gn,tr(z) − 2(Gn(z)F̃r(z) − Fn(z)G̃r(z))

)
.(4.103)
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Combining (4.92), (4.96), (4.102), and (4.103) one concludes

(4.104) zGn,tr(z) = Fn(z)H̃r(z) − F̃r(z)Hn(z).

Next, taking the derivative of (4.95) with respect to tr and using expressions
(4.98) and (4.104) for Fn,tr and Gn,tr , respectively, one obtains

(4.105) Hn,tr(z) = 2
(
G̃r(z)Hn(z) − Gn(z)H̃r(z)

)
.

Finally, we compute Gn,xtr in two different ways. Differentiating (4.104)
with respect to x, using (4.92), (4.96), and (4.94), one finds

zGn,xtr(z) = H̃r,x(z)Fn(z) + 2(Gn(z)H̃r(z) − G̃r(z)Hn(z))

+ 2(4u − uxx)Gn(z)F̃r(z) − 2Fn(z)H̃r(z).(4.106)

Differentiating (4.93) with respect to tr, using (4.98) and (4.105), results in

zGn,xtr(z) = (utr − uxxtr)Fn(z) − 2(G̃r(z)Hn(z) − Gn(z)H̃r(z))

+ 2(4u − uxx)(Gn(z)F̃r(z) − Fn(z)G̃r(z)).(4.107)

Combining (4.106) and (4.107) one concludes

(4.108) utr − uxxtr = H̃r(z) + 2(4u − uxx)G̃r(z) − H̃r(z)

which is equivalent to (4.90). �

Appendix A. Hyperelliptic curves and their theta

functions

We provide a brief summary of some of the fundamental properties and
notations needed from the theory of hyperelliptic curves. More details can be
found in some of the standard textbooks [36] and [55], as well as monographs
dedicated to integrable systems such as [15, Ch. 2], [46, App. A–C].

Fix n ∈ N. The hyperelliptic curve Kn of genus n used in Sections 3
and 4 is defined by

Kn : Fn(z, y) = y2 − R2n+2(z) = 0, R2n+2(z) =
2n+1∏
m=0

(z − Em),(A.1)

{Em}m=0,...,2n+1 ⊂ C, Em �= Em′ for m �=m′, m,m′= 0, . . . , 2n+1.(A.2)
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The curve (A.2) is compactified by adding the points P∞+ and P∞− , P∞+ �=
P∞− , at infinity. One then introduces an appropriate set of n + 1 noninter-
secting cuts Cj joining Em(j) and Em′(j). We denote

(A.3) C =
n+1⋃
j=1

Cj, Cj ∩ Ck = ∅, j �= k.

Define the cut plane

(A.4) Π = C \ C,

and introduce the holomorphic function

(A.5) R2n+2( · )1/2 : Π → C, z �→
(

2n+1∏
m=0

(z − Em)

)1/2

on Π with an appropriate choice of the square root branch in (A.5). Define

(A.6) Mn = {(z, σR2n+2(z)1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞+ , P∞−}

by extending R2n+2( · )1/2 to C. The hyperelliptic curve Kn is then the set
Mn with its natural complex structure obtained upon gluing the two sheets
of Mn crosswise along the cuts. The set of branch points B(Kn) of Kn is
given by

(A.7) B(Kn) = {(Em, 0)}m=0,...,2n+1

and finite points P on Kn are denoted by P = (z, y), where y(P ) denotes
the meromorphic function on Kn satisfying Fn(z, y) = y2 − R2n+2(z) = 0.
Local coordinates near P0 = (z0, y0) ∈ Kn \ {B(Kn) ∪ {P∞+ , P∞−}} are
given by ζP0 = z − z0, near P∞± by ζP∞± = 1/z, and near branch points

(Em0 , 0) ∈ B(Kn) by ζ(Em0 ,0) = (z − Em0)
1/2. The Riemann surface Kn

defined in this manner has topological genus n. Moreover, we introduce the
holomorphic sheet exchange map (involution)

(A.8) ∗ : Kn → Kn, P = (z, y) �→ P ∗ = (z,−y), P∞± �→ P ∗
∞± = P∞∓

One verifies that dz/y is a holomorphic differential on Kn with zeros of
order n − 1 at P∞± and hence

(A.9) ηj =
zj−1dz

y
, j = 1, . . . , n
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form a basis for the space of holomorphic differentials on Kn. Introducing
the invertible matrix C in Cn,

C = (Cj,k)j,k=1,...,n, Cj,k =

∫
ak

ηj ,(A.10)

c(k) = (c1(k), . . . , cn(k)), cj(k) = C−1
j,k , j, k = 1, . . . , n,(A.11)

the corresponding basis of normalized holomorphic differentials ωj, j =
1, . . . , n on Kn is given by

(A.12) ωj =

n∑
�=1

cj(�)η�,

∫
ak

ωj = δj,k, j, k = 1, . . . , n.

Here {aj , bj}j=1,...,n is a homology basis for Kn with intersection matrix of
the cycles satisfying

(A.13) aj ◦ bk = δj,k, j, k = 1, . . . , n.

Near P∞± one infers

ω = (ω1, . . . , ωn) = ±
( n∑

j=1

c(j)ζn−j(∏2n+1
m=0 (1 − Emζ)

)1/2

)
dζ(A.14)

=
ζ→0

±
(

c(n) +

(
1

2
c(n)

2n+1∑
m=0

Em + c(n − 1)

)
ζ + O(ζ2)

)
dζ

as P → P∞± , ζ = 1/z,

and

(A.15) y(P ) =
ζ→0

∓
(

1 − 1

2

( 2n+1∑
m=0

Em

)
ζ + O(ζ2)

)
ζ−n−1 as P → P∞± .

Similarly, near P0 one computes

ω =
ζ→0

−2i
(
Q̃−1/2c(1) + O(ζ2)

)
dζ as P → P0,(A.16)

Q̃1/2 =

( 2n+1∏
m=1

Em

)1/2

, ζ = σz1/2, σ ∈ {1,−1},

using

(A.17) y(P ) =
ζ→0

iQ̃1/2ζ + O(ζ3) as P → P0, ζ = σz1/2, σ ∈ {1,−1},

with the sign of Q̃1/2 determined by the compatibility of charts.
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Associated with the homology basis {aj , bj}j=1,...,n we also recall the
canonical dissection of Kn along its cycles yielding the simply connected
interior K̂n of the fundamental polygon ∂K̂n given by

(A.18) ∂K̂n = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · a−1
n b−1

n .

Let M(Kn) and M1(Kn) denote the set of meromorphic functions (0-forms)
and meromorphic differentials (1-forms) on Kn. The residue of a meromor-
phic differential ν ∈ M1(Kn) at a point Q ∈ Kn is defined by

(A.19) resQ(ν) =
1

2πi

∫
γQ

ν,

where γQ is a counterclockwise oriented smooth simple closed contour encir-
cling Q but no other pole of ν.

Holomorphic differentials are also called Abelian differentials of the first
kind (dfk). Abelian differentials of the second kind (dsk) ω(2) ∈ M1(Kn)
are characterized by the property that all their residues vanish. They will
usually be normalized by demanding that all their a-periods vanish, that is,

(A.20)

∫
aj

ω(2) = 0, j = 1, . . . , n.

If ω
(2)
P1,n is a dsk on Kn whose only pole is P1 ∈ K̂n with principal part

ζ−n−2 dζ, n ∈ N0 near P1 and ωj = (
∑∞

m=0 dj,m(P1)ζ
m) dζ near P1, then

(A.21)
1

2πi

∫
bj

ω
(2)
P1,m =

dj,m(P1)

m + 1
, m = 0, 1, . . .

Any meromorphic differential ω(3) on Kn not of the first or second kind
is said to be of the third kind (dtk). A dtk ω(3) ∈ M1(Kn) is usually
normalized by the vanishing of its a-periods, that is,

(A.22)

∫
aj

ω(3) = 0, j = 1, . . . , n.

A normal dtk ω
(3)
P1,P2

associated with two points P1, P2 ∈ K̂n, P1 �= P2

by definition has simple poles at Pj with residues (−1)j+1, j = 1, 2 and

vanishing a-periods. If ω
(3)
P,Q is a normal dtk associated with P , Q ∈ K̂n,

holomorphic on Kn \ {P,Q}, then

(A.23)
1

2πi

∫
bj

ω
(3)
P,Q =

∫ P

Q

ωj, j = 1, . . . , n,

where the path from Q to P lies in K̂n (i.e., does not touch any of the cycles
aj , bj).
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Explicitly, one obtains

ω
(3)
P∞+ ,P∞−

=
zndz

y
+

n∑
j=1

γjωj =

∏n
j=1(z − λj) dz

y
,(A.24)

ω
(3)
P1,P∞+

=
1

2

y + y1

z − z1

dz

y
−

∏n
j=1(z − λ̃j) dz

2y
,(A.25)

ω
(3)
P1,P∞−

=
1

2

y + y1

z − z1

dz

y
+

∏n
j=1(z − λ′

j) dz

2y
,(A.26)

ω
(3)
P1,P2

=

(
y + y1

z − z1

− y + y2

z − z2

)
dz

2y
+ λ′′

n

∏n−1
j=1 (z − λ′′

j )dz

y
,(A.27)

P1, P2 ∈ Kn \ {P∞+ , P∞−},

where γj, λj , λ̃j , λ
′
j , λ

′′
j ∈ C, j = 1, . . . , n, are uniquely determined by the re-

quirement of vanishing a-periods and we abbreviated Pj = (zj , yj), j = 1, 2.
(If n = 0, we use the standard convention that the product over an empty
index set is replaced by 1.) We shall always assume (without loss of gener-

ality) that all poles of dsk’s and dtk’s on Kn lie on K̂n (i.e., not on ∂K̂n).
Define the matrix τ = (τj,�)j,�=1,...,n by

(A.28) τj,� =

∫
bj

ω�, j, � = 1, . . . , n.

Then

(A.29) Im(τ) > 0, and τj,� = τ�,j, j, � = 1, . . . , n.

Associated with τ one introduces the period lattice

(A.30) Ln = {z ∈ C
n | z = m + τn, m, n ∈ Z

n}
and the Riemann theta function associated with Kn and the given homology
basis {aj , bj}j=1,...,n,

(A.31) θ(z) =
∑
n∈Zn

exp
(
2πi(n, z) + πi(n, τn)

)
, z ∈ C

n,

where (u, v) =
∑n

j=1 ujvj denotes the scalar product in Cn. It has the
fundamental properties

θ(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = θ(z),(A.32)

θ(z + m + τn) = exp
( − 2πi(n, z) − πi(n, τn)

)
θ(z), m, n ∈ Z

n.(A.33)
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Next, fix a base point Q0 ∈ Kn \ {P0± , P∞±}, denote by J(Kn) = C
n/Ln the

Jacobi variety of Kn, and define the Abel map AQ0
by

(A.34)

AQ0
: Kn → J(Kn), AQ0

(P ) =

(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωn

)
(mod Ln), P ∈ Kn.

Similarly, we introduce

(A.35) αQ0
: Div(Kn) → J(Kn), D �→ αQ0

(D) =
∑

P∈Kn

D(P )AQ0
(P ),

where Div(Kn) denotes the set of divisors on Kn. Here D : Kn → Z is called
a divisor on Kn if D(P ) �= 0 for only finitely many P ∈ Kn. (In the main
body of this paper we will choose Q0 to be one of the branch points, i.e.,
Q0 ∈ B(Kn), and for simplicity we will always choose the same path of
integration from Q0 to P in all Abelian integrals.) For subsequent use in
Remark A.7 we also introduce

ÂQ0
: K̂n → C

n,(A.36)

P �→ÂQ0
(P )=

(
ÂQ0,1(P ), . . . , ÂQ0,n(P )

)
=

(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωn

)
and

(A.37) α̂Q0
: Div(K̂n) → C

n, D �→ α̂Q0
(D) =

∑
P∈K̂n

D(P )ÂQ0
(P ).

In connection with divisors on Kn we shall employ the following (addi-
tive) notation,

DQ0Q = DQ0 + DQ, DQ = DQ1 + · · · + DQm ,(A.38)

Q = {Q1, . . . , Qm} ∈ σmKn, Q0 ∈ Kn, m ∈ N,

where for any Q ∈ Kn,

(A.39) DQ : Kn → N0, P �→ DQ(P ) =

{
1 for P = Q,

0 for P ∈ Kn \ {Q},

and σmKn denotes the mth symmetric product of Kn. In particular, σmKn

can be identified with the set of nonnegative divisors 0 ≤ D ∈ Div(Kn) of
degree m ∈ N.
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For f ∈ M(Kn) \ {0}, ω ∈ M1(Kn) \ {0} the divisors of f and ω are
denoted by (f) and (ω), respectively. Two divisors D, E ∈ Div(Kn) are
called equivalent, denoted by D ∼ E , if and only if D − E = (f) for some
f ∈ M(Kn) \ {0}. The divisor class [D] of D is then given by [D] = {E ∈
Div(Kn) | E ∼ D}. We recall that

(A.40)
deg((f)) = 0, deg((ω)) = 2(n − 1),

f ∈ M(Kn) \ {0}, ω ∈ M1(Kn) \ {0},
where the degree deg(D) of D is given by deg(D) =

∑
P∈Kn

D(P ). It is
customary to call (f) (respectively, (ω)) a principal (respectively, canonical)
divisor.

Introducing the complex linear spaces

L(D) = {f ∈ M(Kn) | f = 0 or (f) ≥ D}, r(D) = dimC L(D),(A.41)

L1(D) = {ω ∈ M1(Kn) | ω = 0 or (ω) ≥ D}, i(D) = dimC L1(D),(A.42)

(i(D) the index of specialty of D) one infers that deg(D), r(D), and i(D)
only depend on the divisor class [D] of D. Moreover, we recall the following
fundamental facts.

Theorem A.1 Let D ∈ Div(Kn), ω ∈ M1(Kn) \ {0}. Then

(A.43) i(D) = r(D − (ω)), n ∈ N0.

The Riemann-Roch theorem reads

(A.44) r(−D) = deg(D) + i(D) − n + 1, n ∈ N0.

By Abel’s theorem, D ∈ Div(Kn), n ∈ N, is principal if and only if

(A.45) deg(D) = 0 and αQ0
(D) = 0.

Finally, assume n ∈ N. Then αQ0
: Div(Kn) → J(Kn) is surjective (Jacobi’s

inversion theorem).

Next we introduce

(A.46) W 0 = {0} ⊂ J(Kn), Wm = αQ0
(σmKn), m ∈ N

and note that while σmKn �⊂ σnKn for m < n, one has Wm ⊆ W n for m < n.
Thus Wm = J(Kn) for m ≥ n by Jacobi’s inversion theorem.

Denote by ΞQ0
= (ΞQ0,1 , . . . ,ΞQ0,n) the vector of Riemann constants,

(A.47) ΞQ0,j
=

1

2
(1 + τj,j) −

n∑
�=1
��=j

∫
a�

ω�(P )

∫ P

Q0

ωj, j = 1, . . . , n.
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Theorem A.2 The set W n−1 +ΞQ0
⊂ J(Kn) is the complete set of zeros of

θ on J(Kn), that is,

(A.48) θ(X) = 0 if and only if X ∈ W n−1 + ΞQ0

(i.e., if and only if X = (αQ0
(D) + ΞQ0

) (mod Ln) for some D ∈ σn−1Kn).
The set W n−1 + ΞQ0

has complex dimension n − 1.

Theorem A.3 Let DQ ∈ σnKn, Q = {Q1, . . . , Qn}. Then

(A.49) 1 ≤ i(DQ) = s

if and only if there are s pairs of the type {P, P ∗} ⊆ {Q1, . . . , Qn} (this
includes, of course, branch points for which P = P ∗). Obviously, one has
s ≤ n/2.

Remark A.4 While θ(z) is well-defined (in fact, entire) for z ∈ Cn, it is
not well-defined on J(Kn) = Cn/Ln because of (A.33). Nevertheless, θ is
a “multiplicative function” on J(Kn) since the multipliers in (A.33) cannot
vanish. In particular, if z1 = z2 (mod Ln), then θ(z1) = 0 if and only if
θ(z2) = 0. Hence it is meaningful to state that θ vanishes at points of J(Kn).
Since the Abel map AQ0

maps Kn into J(Kn), the function θ(AQ0
(P ) − ξ)

for ξ ∈ Cn, becomes a multiplicative function on Kn. Again it makes sense
to say that θ(AQ0

( · ) − ξ) vanishes at points of Kn.

Theorem A.5 Let Q = {Q1, . . . , Qn} ∈ σnKn and assume DQ to be non-
special, that is, i(DQ) = 0. Then

(A.50) θ(ΞQ0
− AQ0

(P ) + αQ0(DQ)) = 0 if and only if P ∈ {Q1, . . . , Qn}.

Theorem A.6 Suppose Dµ̂ ∈ σnKn is nonspecial, µ̂ = {µ̂1, . . . , µ̂n}, and

µ̂n+1 ∈ Kn with µ̂∗
n+1 �∈ {µ̂1, . . . , µ̂n}. Let {λ̂1, . . . , λ̂n+1} ⊂ Kn with Dλ̂λ̂n+1

∼
Dµ̂µ̂n+1 (i.e., Dλ̂λ̂n+1

∈ [Dµ̂µ̂n+1 ]). Then any n points ν̂j ∈ {λ̂1, . . . , λ̂n+1},
j = 1, . . . , n define a nonspecial divisor Dν̂ ∈ σnKn, ν̂ = {ν̂1, . . . , ν̂n}.

Proof: Since i(DP ) = 0 for all P ∈ K1, there is nothing to prove in the
special case n = 1. Hence we assume n ≥ 2. Let Q0 ∈ B(Kn) be a fixed
branch point of Kn and suppose that Dν̂ is special. Then by Theorem A.3
there is a pair {ν̂, ν̂∗} ⊂ {ν̂1, . . . , ν̂n} such that

(A.51) αQ0
(Dν̂) = αQ0

(Dν̂),
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where ν̂ = {ν̂1, . . . , ν̂n} \ {ν̂, ν̂∗} ∈ σn−2Kn. Let ν̂n+1 ∈ {λ̂1, . . . , λ̂n+1} \
{ν̂1, . . . , ν̂n} so that {ν̂1, . . . , ν̂n+1} = {λ̂1, . . . , λ̂n+1} ⊂ σn+1Kn. Then

αQ0
(Dν̂ν̂n+1) = αQ0

(Dν̂ν̂n+1) = αQ0
(Dλ̂λ̂n+1

)(A.52)

= αQ0
(Dµ̂µ̂n+1) = −AQ0

(µ̂∗
n+1) + αQ0

(Dµ̂),

and hence by Theorem A.2 and (A.52),

(A.53) 0 = θ(ΞQ0
+ αQ0

(Dν̂ν̂n+1)) = θ(ΞQ0
− AQ0

(µ̂∗
n+1) + αQ0

(Dµ̂)).

Since by hypothesis Dµ̂ is nonspecial and µ̂∗
n+1 �∈ {µ̂1, . . . , µ̂n}, (A.53) con-

tradicts Theorem A.5. Thus, Dν̂ is nonspecial. �

Remark A.7 In Sections 3 and 4 we frequently deal with theta function
expressions of the type

(A.54) φ(P ) =
θ(ΞQ0

− AQ0
(P ) + αQ0

(D1))

θ(ΞQ0
− AQ0

(P ) + αQ0
(D2))

exp

(∫ P

Q0

ω
(3)
Q1,Q2

)
, P ∈ Kn

and

(A.55) ψ(P ) =
θ(ΞQ0

− AQ0
(P ) + αQ0

(D1))

θ(ΞQ0
− AQ0

(P ) + αQ0
(D2))

exp

(
− c

∫ P

Q0

Ω(2)

)
, P ∈ Kn,

where Dj ∈ σnKn, j = 1, 2, are nonspecial positive divisors of degree n, c ∈ C

is a constant, Qj ∈ Kn \ {P∞1 , . . . , P∞N
}, where {P∞1 , . . . , P∞N

}, N ∈ N,

denotes the set of points of Kn at infinity, ω
(3)
Q1,Q2

is a normal differential of

the third kind, and Ω(2) a normalized differential of the second kind with
singularities contained in {P∞1 , . . . , P∞N

}. In particular, one has

(A.56)

∫
aj

ω
(3)
Q1,Q2

=

∫
aj

Ω(2) = 0, j = 1, . . . , n.

Even though we agree to always choose identical paths of integration from
P0 to P in all Abelian integrals (A.54) and (A.55), this is not sufficient
to render φ and ψ single-valued on Kn. To achieve single-valuedness, one
needs to replace Kn by its simply connected canonical dissection K̂n and
then replace AQ0

, αQ0
in (A.54) and (A.55), with ÂQ0

, α̂Q0
as introduced in

(A.36) and (A.37). In particular, one regards aj , bj, j = 1, . . . , n, as curves

(being a part of ∂K̂n, cf. (A.18)) and not as homology classes. Moreover, to

render φ single-valued on K̂n one needs to assume in addition that

(A.57) α̂Q0
(D1) − α̂Q0

(D2) = 0
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(as opposed to merely αQ0
(D1) − αQ0

(D2) = 0 (mod Ln)). Similarly, in

connection with ψ, one introduces the vector of b-periods U (2) of Ω(2) by

(A.58) U (2) = (U
(2)
1 , . . . , U (2)

g ), U
(2)
j =

1

2πi

∫
bj

Ω(2), j = 1, . . . , n,

and then renders ψ single-valued on K̂n by requiring

(A.59) α̂Q0
(D1) − α̂Q0

(D2) = c U (2)

(as opposed to merely αQ0
(D1)−αQ0

(D2) = c U (2) (mod Ln)). These state-
ments easily follow from (A.23) and (A.33) in the case of φ and simply from
(A.33) in the case of ψ. In fact, by (A.33),

(A.60) α̂Q0
(D1 + DQ1) − α̂Q0

(D2 + DQ2) ∈ Z
n,

respectively,

(A.61) α̂Q0
(D1) − α̂Q0

(D2) − c U (2) ∈ Z
n,

suffice to guarantee single-valuedness of φ, respectively, ψ on K̂n. Without
the replacement of AQ0

and αQ0
by ÂQ0

and α̂Q0
in (A.54) and (A.55) and

without the assumptions (A.57) and (A.59) (or (A.60) and (A.61)), φ and ψ
are multiplicative (multi-valued) functions on Kn, and then most effectively
discussed by introducing the notion of characters on Kn (cf. [36, Sect. III.9]).
For simplicity, we decided to avoid the latter possibility and throughout this
paper will tacitly always assume (A.57) and (A.59) without particularly
emphasizing this convention each time it is used.

Appendix B. High-Energy Expansions

In this appendix we study the relationship between the homogeneous coeffi-
cients f̂� and nonhomogeneous coefficients f� of the polynomial Fn, discuss
the high-energy expansion of Fn/y, and use it to derive a nonlinear recursion
relation for f̂�, � ∈ N0.

Let

{Em}m=0,...,2n+1 for some n ∈ N0(B.1)

and η ∈ C such that |η| < min{|E0|−1, . . . , |E2n+1|−1}.(B.2)

Then

(B.3)

( 2n+1∏
m=0

(
1 − Emη

))−1/2

=
∞∑

k=0

ĉk(E)ηk,
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where

ĉ0(E) = 1,(B.4)

ĉk(E) =

k∑
j0,...,j2n+1=0

j0+···+j2n+1=k

(2j0 − 1)!! · · · (2j2n+1 − 1)!!

2kj0! · · · j2n+1!
Ej0

0 · · ·EjN
2n+1, k ∈ N.

The first few coefficients explicitly read

ĉ0(E) = 1, ĉ1(E) =
1

2

2n+1∑
m=0

Em,(B.5)

ĉ2(E) =
1

4

2n+1∑
m1,m2=0
m1<m2

Em1Em2 +
3

8

2n+1∑
m=0

E2
m, etc.

Similarly,

(B.6)

( 2n+1∏
m=0

(
1 − Emη

))1/2

=

∞∑
k=0

ck(E)ηk,

where

c0(E) = 1,(B.7)

ck(E) =
k∑

j0,...,j2n+1=0
j0+···+j2n+1=k

(2j0 − 3)!! · · · (2j2n+1 − 3)!!

2kj0! · · · j2n+1!
Ej0

0 · · ·Ej2n+1

2n+1 , k ∈ N.

The first few coefficients explicitly are given by

c0(E) = 1, c1(E) = −1

2

2n+1∑
m=0

Em,(B.8)

c2(E) =
1

4

2n+1∑
m1,m2=0
m1<m2

Em1Em2 −
1

8

2n+1∑
m=0

E2
m, etc.

Here we used the abbreviations

(B.9) (2q − 1)!! = 1 · 3 · · · (2q − 1), q ∈ N, (−3)!! = −1, (−1)!! = 1.
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Theorem B.1 Assume

u ∈ C∞(R), dmu/dxm ∈ L∞(R),m ∈ N0, s-CHn(u) = 0,

and suppose P = (z, y) ∈ Kn \ {P∞+ , P∞−}. Then Fn/y has the following
convergent expansion as P → P∞±,

(B.10)
Fn(z)

y
=

ζ→0
∓

∞∑
�=0

f̂� ζ�+1,

with ζ = 1/z the local coordinate near P∞± described in Appendix Appendix

A and f̂� the homogeneous coefficients f� in (2.10). In particular, f̂� can be
computed from the nonlinear recursion relation

f̂0 = 1, f̂1 = −2u,(B.11)

f̂�+1 = G
( �∑

k=1

(
f̂�+1−k,xxf̂k − 1

2
f̂�+1−k,xf̂k,x − 2f̂�+1−kf̂k

)
+2(uxx − 4u)

�∑
k=0

f̂�−kf̂k

)
, � ∈ N,

assuming

(B.12) f̂� ∈ L∞(R), � ∈ N.

Moreover, one infers for the Em-dependence of the integration constants c�,
� = 0, . . . , n, in Fn,

(B.13) c� = c�(E), � = 0, . . . , n

and

f� =

�∑
k=0

c�−k(E)f̂k, � = 0, . . . , n,(B.14)

f̂� =

�∑
k=0

ĉ�−k(E)fk, � = 0, . . . , n.(B.15)

Proof: Dividing Fn by R
1/2
2n+2 (temporarily fixing the branch of R2n+2(z)1/2

as zn+1 near infinity), one obtains

(B.16)
Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k

)( n∑
�=0

f�z
−�−1

)
=

∞∑
�=0

f̌�z
−�−1
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for some coefficients f̌� to be determined next. Dividing (2.41) by R2n+2,
and inserting the expansion (B.16) into the resulting equation then yields
the recursion relation (B.11) (with f̂� replaced by f̌�). More precisely, for f̌1

one originally obtains the relation

(B.17) −f̌1,xx + 4f̌1 = 2(uxx − 4u), that is,

(
− d2

dx2
+ 4

)(
f̌1 + 2u

)
= 0.

Thus,

(B.18) f̌1(x) = −2u(x) + a1e
2x + b1e

−2x

for some a1, b1 ∈ C, and hence the requirement f̌1 ∈ L∞(R) then yields
a1 = b1 = 0. The open sign of f̌0 has been chosen such that f̌0 = f̂0 = 1.

For � ≥ 2 one obtains similarly

−f̌�+1,xx + 4f̌�+1 =

( �∑
k=1

(
f̌�+1−k,xxf̌k − 1

2
f̌�+1−k,xf̌k,x − 2f̌�+1−kf̌k

)
(B.19)

+ 2(uxx − 4u)

�∑
k=0

f̌�−kf̌k

)
, � ≥ 1,

and hence,

f̌�+1 = G
( �∑

k=1

(
f̌�+1−k,xxf̌k − 1

2
f̌�+1−k,xf̌k,x − 2f̌�+1−kf̌k

)
(B.20)

+ 2(uxx − 4u)
�∑

k=0

f̌�−kf̌k

)
+ a�+1e

2x + b�+1e
−2x, � ≥ 1

for some a�+1, b�+1 ∈ C. Again the requirement f̌�+1 ∈ L∞(R) then yields
a�+1 = b�+1 = 0, � ≥ 1. Introducing f̂� by (2.10) with ck = 0, k ∈ N, and f̌�

by (B.11), a straightforward computation shows that

f̌�,x = G
( �−1∑

k=1

(
f�−k,xxx − 4f�−k,x

)
fk −

�−1∑
k=0

2
( − 2(uxx − 4u)f�−k−1,x(B.21)

+ (4ux − uxxx)f�−k−1

))
fk

= G
(
−

�−1∑
k=1

G−1f�−k,xfk +

�−1∑
k=0

(G−1f�−k,x

)
fk

)
= f̂�,x, � ∈ N.
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Hence,

(B.22) f̌� = f̂� + d�, � ∈ N

for some constants d� ∈ C, � ∈ N. Since d0 = d1 = 0 by inspection, we next
proceed by induction on � and suppose that

(B.23) dk = 0 and hence f̌k = f̂k for k = 0, . . . , �.

Thus, (B.11) and (B.22) imply

(B.24) f̌�+1 = G{. . . } = f̂�+1 + d�+1,

where {. . . } denotes the expression on the right-hand side of (B.11) in terms
of f̌k = f̂k, k = 0, . . . , �. Hence,

(B.25) {. . . } − f̂�+1 + α�+1e
2x + β�+1e

−2x = G−1d�+1 = 4d�+1

for some constants α�+1, β�+1 ∈ C. Since {. . . } − f̂�+1 ∈ L∞(R), one con-
cludes once more that α�+1 = β�+1 = 0. Moreover, since {. . . }−f̂�+1 contains
no constants by construction, one concludes d�+1 = 0 and hence

(B.26) f̌� = f̂� for all � ∈ N0.

Thus, we proved

(B.27)
Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k

)( n∑
�=0

f�z
−�−1

)
=

∞∑
�=0

f̂�z
−�−1

and hence (B.10). A comparison of coefficients in (B.27) then proves (B.15).
Next, multiplying (B.3) and (B.6), a comparison of coefficients of z−k yields

(B.28)

k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0.

Thus, one computes

�∑
m=0

c�−m(E)f̂m =

�∑
m=0

m∑
k=0

c�−m(E)ĉm−k(E)fk(B.29)

=

�∑
k=0

�∑
p=k

c�−p(E)ĉp−k(E)fk

=

�∑
k=0

( �−k∑
m=0

c�−k−m(E)ĉm(E)

)
fk

= f�, � = 0, . . . , n,

applying (B.28). Hence one obtains (B.14) and thus (B.13). �
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Appendix C. Symmetric Functions and their Theta
Function Representations

In this appendix we consider Dubrovin-type equations for auxiliary divisors
Dµ̂ of degree n on Kn and study in detail elementary symmetric functions
associated with the projections µj of µ̂j , j = 1, . . . , n. In addition to various
applications of Lagrange interpolation formulas we derive explicit theta func-
tion representations of elementary symmetric functions of µj, j = 1, . . . , n.
While some of the material of this appendix is classical, some parts are taken
from [45] (cf. also [46, App. F and G]), and [56]. Proofs are only presented
for results that do not appear to belong to the standard arsenal of the lit-
erature on hierarchies of soliton equations. Our principal results on theta
function representations derived in Sections 3 and 4 are based on Theorem
C.6. The results of this appendix apply to a variety of soliton equations and
hence are of independent interest.

Assuming n ∈ N to be fixed and introducing

Sk = {� = (�1, . . . , �k) ∈ N
k | �1 < · · · < �k ≤ n}, 1 ≤ k ≤ n,(C.1)

I(j)
k = {� = (�1, . . . , �k) ∈ Sk | �m �= j}, 1 ≤ k ≤ n − 1, 1 ≤ j ≤ n,(C.2)

one defines

Ψ0(µ) = 1, Ψk(µ) = (−1)k
∑
�∈Sk

µ�1 · · ·µ�k
, 1 ≤ k ≤ n,(C.3)

Φ
(j)
0 (µ) = 1, Φ

(j)
k (µ) = (−1)k

∑
�∈I(j)

k

µ�1 · · ·µ�k
, 1 ≤ k ≤ n − 1,(C.4)

Φ(j)
n (µ) = 0, 1 ≤ j ≤ n,

where µ = (µ1, . . . , µn) ∈ Cn. Explicitly, one verifies

Ψ1(µ) = −
n∑

�=1

µ�, Ψ2(µ) =
n∑

�1,�2=1
�1<�2

µ�1µ�2 , etc.,(C.5)

Φ
(j)
1 (µ) = −

n∑
�=1
��=j

µ�, Φ
(j)
2 (µ) =

n∑
�1,�2=1
�1,�2 �=j
�1<�2

µ�1µ�2 , etc.(C.6)
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Introducing

(C.7) Fn(z) =
n∏

j=1

(z − µj) =
n∑

�=0

fn−�z
� =

n∑
�=0

Ψn−�(µ)z�,

one infers (F ′
n(z) = ∂Fn(z)/∂z)

(C.8) F ′
n(µk) =

n∏
j=1
j �=k

(µk − µj).

The general form of Lagrange’s interpolation theorem (cf., e.g., [46, App. F],
[60, App. E]) then reads as follows.

Theorem C.1 Assume that µ1, . . . , µnare n distinctcomplexnumbers. Then
n∑

j=1

µm−1
j

F ′
n(µj)

Φ
(j)
k (µ) = δm,n−k − Ψk+1(µ)δm,n+1,(C.9)

m = 1, . . . , n + 1, k = 0, . . . , n − 1.

The simplest Lagrange interpolation formula reads in the case k = 0,

(C.10)

n∑
j=1

µm−1
j

F ′
n(µj)

= δm,n, m = 1, . . . , n.

For use in the main text we also recall the following results.

Lemma C.2 ([45], [46, App. F] ) Assume that µ1, . . . , µn are n distinct
complex numbers. Then

(i) Ψk+1(µ) + µjΦ
(j)
k (µ) = Φ

(j)
k+1(µ), k = 0, . . . , n − 1,(C.11)

j = 1, . . . , n.

(ii)
k∑

�=0

Ψk−�(µ)µ�
j = Φ

(j)
k (µ), k = 0, . . . , n, j = 1, . . . , n.(C.12)

(iii)

k−1∑
�=0

Φ
(j)
k−1−�(µ)z� =

1

z − µj

( k∑
�=0

Ψk−�(µ)z� − Φ
(j)
k (µ)

)
,(C.13)

k = 0, . . . , n, j = 1, . . . , n.

Next, assuming µj �= µj′ for j �= j′, introduce the n×n matrix Un(µ) by

(C.14) U1(µ) = 1, Un(µ) =

 µj−1
k∏n

m=1
m�=k

(µk − µm)

n

j,k=1

,

where µ = (µ1, . . . , µn) ∈ C
n.
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Lemma C.3 ([45], [46, App. G]) Suppose µj ∈ C, j = 1, . . . , n, are n
distinct complex numbers. Then

(C.15) Un(µ)−1 =
(
Φ

(j)
n−k(µ)

)n

j,k=1
.

Next, we express f�, Fn(µj), and F̃r(µj) in terms of elementary symmetric
functions of µ1, . . . , µn. We start with the homogeneous expressions denoted
by f̂� and F̂r(µj), where ck = 0, k = 0, . . . , � and c̃s = 0, s = 1, . . . , r. Let
ĉk(E), k ∈ N0, be defined as in (B.4) and suppose r ∈ N0. Then, combining
(B.15) and (C.7) one infers

(C.16) f̂� =

�∑
k=0

ĉ�−k(E)Ψk(µ), � = 0, . . . , n.

Next, we turn to F̂r(µj).

Lemma C.4 Let r ∈ N0. Then3,

(C.17) F̂r(µj) =
r∑

s=(r−n)∨0

ĉs(E)Φ
(j)
r−s(µ).

Proof: By definition

(C.18) F̂r(z) =

r∑
�=0

f̂r−�z
� =

r∑
�=0

z�

(r−�)∧n∑
m=0

Ψm(µ)ĉr−�−m(E).

Consider first the case r ≤ n. Then

(C.19) F̂r(z) =

r∑
s=0

ĉs(E)

r−s∑
�=0

Ψr−�−s(µ)z�

and hence

(C.20) F̂r(µj) =
r∑

s=0

ĉs(E)Φ
(j)
r−s(µ),

using (C.12).

3m ∨ n = max{m,n}.
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In the case where r ≥ n + 1 we find (applying (C.7))

F̂r(z) =
n∑

m=0

Ψm(µ)
r−m∑
s=0

zr−m−sĉs(E)(C.21)

=

r−n∑
s=0

ĉs(E)

( n∑
�=0

Ψ�(µ)zn−�

)
zr−n−s

+

r∑
s=r−n+1

ĉs(E)

r−s∑
�=0

Ψ�(µ)zr−s−�

= Fn(z)
r−n∑
s=0

ĉs(E)zr−n−s +
r∑

s=r−n+1

ĉs(E)
r−s∑
�=0

Ψ�(µ)zr−s−�

= Fn(z)

r−n∑
s=0

ĉs(E)zr−n−s +

r∑
s=r−n+1

ĉs(E)

r−s∑
�=0

Ψr−s−�(µ)z�.

Hence

(C.22) F̂r(µj) =

r∑
s=r−n+1

ĉs(E)Φ
(j)
r−s(µ),

using (C.12) again. �

Introducing

d�,k(E) =
�−k∑
m=0

c�−k−m(E)ĉm(E), k = 0, . . . , �, � = 0, . . . , n,(C.23)

d̃r,k(E) =

r−k∑
s=0

c̃r−k−sĉs(E), k = 0, . . . , r ∧ n,(C.24)

for a given set of constants {c̃s}s=1,...,r ⊂ C, the corresponding nonhomoge-

neous quantities f�, Fn(µj), and F̃r(µj) are then given by4

f� =
�∑

k=0

c�−k(E)f̂k =
�∑

k=0

d�,k(E)Ψk(µ), � = 0, . . . , n,(C.25)

Fn(µj) =

n∑
�=0

cn−�(E)F̂�(µj) =

n∑
�−0

dn,�(E)Φ
(j)
� (µ), c0 = 1,(C.26)

F̃r(µj) =

r∑
s=0

c̃r−sF̂s(µj) =

r∧n∑
k=0

d̃r,k(E)Φ
(j)
k (µ), r ∈ N0, c̃0 = 1,(C.27)

using (B.13) and (B.14). Here ck(E), k ∈ N0, is defined by (B.7).

4m ∧ n = min{m,n}.
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Next, we prove a result needed in the proof of Theorem 4.10.

Lemma C.5 Suppose r ∈ N0, (x, tr) ∈ Ωµ, where Ωµ ⊆ R2 is open and
connected, and assume µj �= µj′ on Ωµ for j �= j′, j, j′ = 1, . . . , n. Then,

(C.28) F̃r,x(z, x, tr) =

n∑
j=1

(
F̃r(µj(x, tr), x, tr) − F̃r(z, x, tr)

) µj,x(x, tr)

(z − µj(x, tr))
.

Proof: It suffices to prove (C.28) for the homogeneous case where F̃r is

replaced by F̂r. Using

(C.29) Ψk,x(µ) = −
n∑

j=1

µj,xΦ
(j)
k−1(µ), k = 0, . . . , n,

with the convention

(C.30) Φ
(j)
−1(µ) = 0, j = 1, . . . , n,

one computes for r ≤ n,

F̂r,x(z) =

r∑
s=0

ĉs(E)

r−s∑
�=0

Ψr−s−�,x(µ)z�(C.31)

= −
n∑

j=1

µj,x

r∑
s=0

ĉs(E)

r−s∑
�=0

Φ
(j)
r−s−�−1(µ)z�

=

n∑
j=1

µj,x(z − µj)
−1

r∑
s=0

ĉs(E)

(
Φ

(j)
r−s(µ) −

r−s∑
�=0

Ψr−s−�(µ)z�

)

=

n∑
j=1

(
F̂r(µj) − F̂r(z)

)
µj,x(z − µj)

−1,

applying (C.13), (C.19), and (C.20). For r ≥ n+1 one obtains from (C.13),
(C.21), and (C.22),

F̂r,x(z) = Fn,x(z)
r−n∑
s=0

ĉs(E)zr−n−s +
r∑

s=r−n+1

ĉs(E)
r−s∑
�=0

Ψr−s−�,x(µ)z�(C.32)

= −Fn(z)
n∑

j=1

µj,x(z − µj)
−1

r−n∑
s=0

ĉs(E)zr−n−s

−
n∑

j=1

µj,x

r∑
s=r−n+1

ĉs(E)

r−s∑
�=0

Φ
(j)
r−s−�−1(µ)z�
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= −Fn(z)
n∑

j=1

µj,x(z − µj)
−1

r−n∑
s=0

ĉs(E)zr−n−s

+

n∑
j=1

µj,x(z − µj)
−1

r∑
s=r−n+1

ĉs(E)

(
Φ

(j)
r−s(µ) −

r−s∑
�=0

Ψr−s−�(µ)z�

)

=

n∑
j=1

(
F̂r(µj) − F̂r(µ)

)
µj,x(z − µj)

−1.

�
Next we turn to a detailed discussion of elementary symmetric functions

of {µ1, . . . , µn}. Given the nonsingular hyperelliptic curve Kn in (A.1), (A.2),
we introduce the first-order Dubrovin-type system

∂µj(v)

∂vk

= Φ
(j)
n−k(µ(v))

y(µ̂j(v))∏n
m=1
m�=j

(µj(v) − µm(v))
,(C.33)

j, k = 1, . . . , n, v = (v1, . . . , vn) ∈ V,

with initial conditions

(C.34) {µ̂j(v0)}j=1,...,n ⊂ Kn

for some v0 ∈ V, where V ⊆ C
n is an open connected set such that µj remain

distinct on V, µj �= µj′ for j �= j′, j, j′ = 1, . . . , n. One then obtains, using
(C.33) and (C.9),

∂

∂vk

n∑
j=1

∫ µ̂j(v)

Q0

zk−1dz

y
=

n∑
j=1

µj(v)k−1

y(µ̂j(v))

∂µj(v)

∂vk

(C.35)

=

n∑
j=1

µj(v)k−1

y(µ̂j(v))
Φ

(j)
n−k(µ(v))

y(µ̂j(v))∏n
m=1
m�=j

(µj(v) − µm(v))

=

n∑
j=1

Φ
(j)
n−k(µ(v))

µj(v)k−1∏n
m=1
m�=j

(µj(v) − µm(v))
= 1,

implying

n∑
j=1

∫ µ̂j(v)

Q0

zk−1dz

y
−

n∑
j=1

∫ µ̂j(v0)

Q0

zk−1dz

y
= (v)k − (v0)k,(C.36)

k = 1, . . . , n, v, v0 ∈ V.
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Moreover, introducing

(C.37) vn+1(v) =

n∑
j=1

∫ µ̂j(v)

Q0

zndz

y
,

one then computes as in (C.35)

(C.38)
∂vn+1(v)

∂vk

= −Ψn+1−k(µ(v)), k = 1, . . . , n,

using

(C.39)
n∑

�=1

Φ
(�)
n−p(µ)

µn
�∏n

q=1
q �=�

(µ� − µq)
= −Ψn+1−p(µ), p = 1, . . . , n

(cf. (C.9)). Thus, one concludes

(C.40)

n∏
j=1

(z−µj(v))=

n∑
�=0

Ψn−�(µ(v))z� =zn −
n∑

k=1

∂vn+1(v)

∂vk

zk−1, v ∈ V,

whenever µ satisfies (C.33).

In order to derive theta function representations of the elementary sym-
metric functions Ψk(µ) of µ1(v), . . . , µn(v), k = 1, . . . , n we recall that Kn

corresponds to the curve y2 =
∏2n+2

m=0 (z−Em) with pairwise distinct Em ∈ C,
m = 0, . . . , 2n + 2 (cf. (A.1) and (A.2)). Using the notation established in
Appendix Appendix A, vn+1(v) can be written as

(C.41) vn+1(v) =

n∑
j=1

∫ µ̂j(v)

Q0

zndz

y
=

n∑
j=1

∫ µ̂j(v)

Q0

ω̃
(3)
P∞+ ,P∞−

,

where

(C.42) ω̃
(3)
P∞+ ,P∞−

= zndz/y

represents a differential of the third kind with simple poles at P∞+ and P∞−
and corresponding residues +1 and −1, respectively. This differential is not
normalized, that is, the a-periods of ω̃

(3)
P∞+ ,P∞−

are not all vanishing. We also

introduce the notation

z(P,Q) = ΞQ0
− AQ0

(P ) + αQ0
(DQ),(C.43)

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ σnKn,
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ẑ(P,Q) = Ξ̂Q0
− ÂQ0

(P ) + α̂Q0
(DQ),(C.44)

P ∈ K̂n, Q = {Q1, . . . , Qn} ∈ σnK̂n

in connection with Kn and K̂n, respectively. Moreover, we conveniently
choose Q0 ∈ ∂K̂n (e.g., the initial point of the curve a1 ⊂ ∂K̂n).

Theorem C.6 Suppose Dµ̂ ∈ σnK̂n is nonspecial, µ̂ = {µ̂1, . . . , µ̂n} ∈
σnK̂n. Then,

n∑
j=1

∫ µ̂j

Q0

ω̃
(3)
P∞+ ,P∞−

=
n∑

j=1

(∫
aj

ω̃
(3)
P∞+ ,P∞−

)( n∑
k=1

∫ µ̂k

Q0

ωj−
n∑

k=1

∫
ak

(
ÂQ0

)
j
ωk

)(C.45)

+ ln

(
θ(ẑ(P∞+ , µ̂))

θ(ẑ(P∞− , µ̂))

)
and

(C.46) Ψn+1−k(µ) = Ψn+1−k(λ)−
n∑

j=1

cj(k)
∂

∂wj

ln

(
θ(z(P∞+ , µ̂) + w)

θ(z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

,

k = 1, . . . , n, with λ = (λ1, . . . , λn) ∈ Cn introduced in (A.24).

Proof: Let Dµ̂ ∈ σnK̂n be a nonspecial divisor on K̂n, µ̂ = {µ̂1, . . . , µ̂n} ∈
σnK̂n. Introducing

(C.47) Ω̃(3)(P ) =

∫ P

Q0

ω̃
(3)
P∞+ ,P∞−

, P ∈ Kn \ {P∞+ , P∞−},

we can render Ω̃(3)( · ) single-valued on

(C.48)
̂̂Kn = K̂n \ Σ,

where Σ denotes the union of cuts

(C.49) Σ = Σ(P∞+) ∪ Σ(P∞−), Σ(P∞+) ∩ Σ(P∞−) = {Q0},

with Σ(P∞+) (resp., Σ(P∞−)) a cut connecting Q0 and P∞+ (resp., P∞−)

through the open interior K̂n (i.e., avoiding all curves aj , bj , a
−1
j , b−1

j , j =

1, . . . , n, with the exception of the point Q0 ∈ ∂K̂n), avoiding the points µ̂j,
j = 1, . . . , n. The left and right side of the cut Σ(P∞±) is denoted by
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Σ(P∞±)� and Σ(P∞±)r. The oriented boundary ∂
̂̂Kn of

̂̂Kn, in obvious no-
tation, is then given by

(C.50) ∂
̂̂Kn = Σ(P∞+)� ∪ Σ(P∞+)r ∪ Σ(P∞−)� ∪ Σ(P∞−)r ∪ ∂K̂n,

that is, it consists of ∂K̂n together with the piece from Q0 to P∞+ along
the left side of the cut Σ(P∞+) and then back to Q0 along the right side
of Σ(P∞+), plus the corresponding pieces from Q0 to P∞− and back to Q0

along the cut Σ(P∞−), preserving orientation. Introducing the meromorphic
differential,

(C.51) ν = d ln(θ(z( · , µ̂))),

the residue theorem applied to Ω̃(3)ν yields

∫
∂

̂̂Kn

Ω̃(3)ν =
n∑

j=1

((∫
aj

ω̃
(3)
P∞+ ,P∞−

)(∫
bj

ν

)
−

( ∫
bj

ω̃
(3)
P∞+ ,P∞−

)(∫
aj

ν

))(C.52)

+

∫
Σ

Ω̃(3)ν = 2πi
∑

P∈ ̂̂Kn

res
P

(
Ω̃(3)ν

)
.

Investigating separately the items occurring in (C.52) then yields the follow-
ing facts:

∑
P∈ ̂̂Kn

res
P

(Ω̃(3)ν) =
n∑

j=1

Ω̃(3)(µ̂j) =
n∑

j=1

∫ µ̂j

Q0

ω̃
(3)
P∞+ ,P∞−

,(C.53)

∫
aj

ν = 0, j = 1, . . . , n,(C.54) ∫
bj

ν = 2πi
((

Ξ̂Q0

)
j
− (

ÂQ0
(R(aj))

)
j
+

(
α̂Q0

(Dµ̂)
)

j

)
− iπτj,j ,(C.55)

j = 1, . . . , n,

applying (A.33) in (C.54) and (C.55). Here R(aj) denotes the end point of

aj ⊂ ∂K̂n, j = 1, . . . , n. In addition, the cut Σ produces the contribution

(C.56)∫
Σ

Ω̃(3)ν = 2πi

( ∫ P∞+

Q0

ν−
∫ P∞−

Q0

ν

)
= 2πi

∫ P∞+

P∞−

ν = 2πi ln

(
θ(ẑ(P∞+ , µ̂))

θ(ẑ(P∞− , µ̂))

)
,
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since (by an application of the residue theorem)

(C.57) Ω̃(3)(µ̂�) − Ω̃(3)(µ̂r) = ±2πi, µ̂� ∈ Σ(P∞±)�, µ̂r ∈ Σ(P∞±)r,

where µ̂� ∈ Σ(P∞±)� and µ̂ ∈ Σ(P∞±)r are on opposite sides of the cut
Σ(P∞±).

Recalling the well-known results,

(
ÂQ0

(R(aj))
)

j
=

1

2
+

∫
aj

(
ÂQ0

)
j
ωj, j = 1, . . . , n,(C.58)

(
Ξ̂Q0

)
j
=

1

2
(1 + τj,j) −

n∑
k=1
k �=j

∫
ak

(
ÂQ0

)
j
ωk, j = 1, . . . , n,(C.59)

equations (C.52)–(C.59) imply

n∑
j=1

∫ µ̂j

Q0

ω̃
(3)
P∞+ ,P∞−

=
n∑

j=1

( ∫
aj

ω̃
(3)
P∞+ ,P∞−

)
×(C.60)

( n∑
k=1

∫ µ̂k

Q0

ωj−
n∑

k=1

∫
ak

(
ÂQ0

)
j
ωk

)
+ ln

(
θ(ẑ(P∞+ , µ̂))

θ(ẑ(P∞− , µ̂))

)
.

This proves (C.45).

In the following we will apply (C.60) to µ̂j, j = 1, . . . , n satisfying the
first-order system (C.33), (C.34) on some open connected set V such that

µj , j = 1, . . . , n, remain distinct on V and Φ
(j)
n−k(µ) �= 0 on V, j, k = 1, . . . , n.

Using (A.12), (C.35), and (C.9) one computes

∂

∂vk

(
α̂Q0

(Dµ̂(v))
)

j
=

∂

∂vk

n∑
�=1

∫ µ̂�(v)

Q0

ωj =

n∑
�,m=1

∂

∂vk

∫ µ̂�(v)

Q0

cj(m)ηm(C.61)

=
n∑

�,m=1

cj(m)
µ�(v)m−1

y(µ̂�(v))

∂

∂vk

µ�(v)

=

n∑
�,m=1

cj(m)Φ
(�)
n−k

µ�(v)m−1∏n
�′=1
�′ �=�

(µ�(v) − µ�′(v))

= cj(k), v ∈ V.
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Thus, (C.40) and (C.61) imply

Ψn+1−k(µ(v)) = −∂vn+1(v)

∂vk

= −
n∑

j=1

cj(k)

( ∫
aj

ω̃
(3)
P∞+ ,P∞−

)
(C.62)

−
n∑

j=1

cj(k)
∂

∂wj

ln

(
θ(z(P∞+ , µ̂(v)) + w)

θ(z(P∞− , µ̂(v)) + w)

)∣∣∣∣
w=0

,

v ∈ V, k = 1, . . . , n.

We replaced ẑ by z to arrive at (C.62) using properties (A.33) of θ. If

µ̂j , j = 1, . . . , n, are distinct and Φ
(j)
n−k(µ) �= 0, j, k = 1, . . . , n, we can

choose µ̂j(v0) = µ̂j , j = 1, . . . , n, and obtain (C.46). The general case where
Dµ̂ is nonspecial, then follows from (C.62) by continuity, choosing V such
that there exists a sequence vp ∈ V with µ̂(vp) → µ̂ as p → ∞. Finally,

invoking the normal differential of the third kind in (A.24), ω
(3)
P∞+ ,P∞−

=∏n
j=1(z − λj)dz/y, corresponding to ω̃

(3)
P∞+ ,P∞−

= zndz/y, a simple com-

putation, combining (A.9), (A.10), (A.11), (A.24), and the normalization∫
aj

ω
(3)
P∞+ ,P∞−

= 0, j = 1, . . . , n, yields

(C.63)

n∑
j=1

cj(k)

( ∫
aj

ω̃
(3)
P∞+ ,P∞−

)
= Ψn+1−k(λ), k = 1, . . . , n.

Equations (C.62) and (C.63) complete the proof of (C.46). �

Formulas (C.40), (C.45), and (C.46) (without explicit proofs and without
the explicit form of the constant terms on the right-hand sides of (C.45) and
(C.46)) have been used in [56] in the course of deriving algebro-geometric
solutions of the Dym equation. Our approach based on the Dubrovin-type
system (C.33) appears to be new. It can easily be adapted to the case of
KdV-type hyperelliptic curves branched at infinity (cf. [46, App. F]). Since
solutions of 1+1-dimensional soliton equations typically can be expressed in
terms of trace formulas involving elementary symmetric functions of (pro-
jections of) auxiliary divisors, results of the type of (C.46) are of general
interest in this context.

Acknowledgments. We are indebted to Mark Alber, Darryl Holm, and
Jerry Marsden for helpful comments and many hints regarding the literature.
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Holden, J. Jost, S. Paycha, M.Röckner, and S. Scarlatti, editors). CMS Con-
ference Proceedings 28, Amer. Math. Soc., Providence, RI, 2000, 163–200.

[36] Farkas, H.M. and Kra, I.: Riemann Surfaces, second edition, Springer,
New York, 1992.

[37] Fedorov, Yu.: Classical integrable systems and billiards related to gen-
eralized Jacobians. Acta Appl. Math. 55 (1999), 251–301.

[38] Fisher, M. and Schiff, J.: The Camassa Holm equation: conserved
quantities and the initial value problem. Phys. Lett.A 259 (1999), 371–376.

[39] Foias, C., Holm, D.D. and Titi, E. S.: The three dimensional viscous
Camassa–Holm equations, and their relation to the Navier–Stokes equations
and turbulence theory. J. Dynam. Diff. Eq. 14 (2002), 1–35.

[40] Fornberg, B. and Witham, G.B.: A numerical and theoretical study
of certain nonlinear wave phenomena. Philos. Trans. Roy. Soc. London Ser.
A 289 (1978), 373–404.

[41] Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlin-
ear equations: generalizations of the Camassa–Holm equation. Phys. D 95
(1996), 229–243.

[42] Fuchssteiner, B. and Fokas, A. S.: Symplectic structures, their
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