On coincidence of p-module of a family of curves and p-capacity on the Carnot group

Irina Markina

Abstract

The notion of the extremal length and the module of families of curves has been studied extensively and has given rise to a lot of applications to complex analysis and the potential theory. In particular, the coincidence of the p-module and the p-capacity plays an important role. We consider this problem on the Carnot group. The Carnot group \mathbb{G} is a simply connected nilpotent Lie group equipped with an appropriate family of dilations. Let Ω be a bounded domain on \mathbb{G} and K_0 , K_1 be disjoint non-empty compact sets in the closure of Ω . We consider two quantities, associated with this geometrical structure $(K_0, K_1; \Omega)$. Let $M_p(\Gamma(K_0, K_1; \Omega))$ stand for the p-module of a family of curves which connect K_0 and K_1 in Ω . Denoting by $\operatorname{cap}_p(K_0, K_1; \Omega)$ the p-capacity of K_0 and K_1 relatively to Ω , we show that

$$M_p(\Gamma(K_0, K_1; \Omega)) = \operatorname{cap}_p(K_0, K_1; \Omega).$$

Introduction

Let D be a domain (an open, connected set) in $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$, and let K_0 , K_1 be disjoint non-empty compact sets in the closure of D. We denote by $M_p(\Gamma(K_0, K_1; D))$ the p-module of a family of curves which connect K_0 and K_1 in D. Next we use the notation $\operatorname{cap}_p(K_0, K_1; D)$ for the p-capacity of the condenser $(K_0, K_1; D)$ relatively to D. The question about coincidence of the p-module of a family of curves and the p-capacity for various geometric configuration has been studied by many authors. For example, in the case

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B15; Secondary 22E30. Keywords: p-module of a family of curves, p-capacity, Carnot–Carathéodory metrics, nilpotent Lie groups.

when K_0 and K_1 do not intersect the boundary of D and either K_0 or K_1 contains the complement to an open n-ball the problem has been solved affirmatively by Ziemer in [23]. Hesse in [10] has generalized this result requiring only $(K_0 \cup K_1) \cap \partial D = \emptyset$. In the series of papers [2, 3, 4] Caraman has been studying the problem under various conditions on the tangency geometry of the sets K_0 and K_1 with the boundary of D, $D \in \mathbb{R}^n$. In 1993 Shlyk [16] proved, that the coincidence of the p-module and p-capacity is valid for an arbitrary condenser $(K_0, K_1; D)$, K_0 , $K_1 \in \overline{D}$, $D \in \mathbb{R}^n$, $(K_0 \cup K_1) \cap \partial D \neq \emptyset$.

A stratified nilpotent group (of which \mathbb{R}^n is the simplest example) is a Lie group equipped with an appropriate family of dilations. Thus, this group forms a natural habitat for extensions of many of the objects studied in the Euclidean space. The fundamental role of such groups in analysis was envisaged by Stein [17, 18]. There has been since a wide development in the analysis of the so-called stratified nilpotent Lie groups, nowadays, also known as Carnot groups. In the present article we are studying the problem of the coincidence between the p-module of a family of curves and the p-capacity of an arbitrary condenser $(K_0, K_1; \Omega)$, Ω is a bounded domain on the Carnot group. In [12] the identity $M_p(\Gamma(K_0, K_1; \Omega)) = \operatorname{cap}_p(K_0, K_1; \Omega)$ was proved for the condenser $(K_0, K_1; \Omega)$ on the Heisenberg group, which is a two-step Carnot group, requiring that the compacts K_0 and K_1 are strictly inside the domain Ω . We would like to mention the result by Heinonen and Koskela [8] which states that on every general metric spaces the p-capacity coincides with the p-module but in comparison with our paper they used different definitions. The use of this general result [8] for the Carnot groups requires the fact that the smallest very weak upper gradient of a Lipschitz function is given by the horizontal gradient (see for instance [9]). However it is not clear that the result of [8] covers the case when the intersection of the compacts K_i , i = 0, 1, with the boundary of Ω is not empty. Moreover the case when Ω is not φ -convex is not obtained from [8].

The author would like to acknowledge Serguei Vodop'yanov for his helpful remarks and observations.

1. Notation and definitions

The Carnot group is a connected, simply connected nilpotent Lie group \mathbb{G} , whose Lie algebra \mathcal{G} splits into the direct sum of vector spaces $V_1 \oplus V_2 \oplus \ldots \oplus V_m$ which satisfy the following relations

$$[V_1, V_k] = V_{k+1}, 1 \le k < m,$$

 $[V_1, V_m] = \{0\}.$

We identify the Lie algebra \mathcal{G} with the space of left-invariant vector fields. Let X_{11}, \ldots, X_{1n_1} be a bases of V_1 , $n_1 = \dim V_1$, and let $\langle \cdot, \cdot \rangle$ be a left-invariant Riemannian metric on V_1 such that

$$\langle X_{1i}, X_{1j} \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Then, V_1 determines a subbundle HT of the tangent bundle $T\mathbb{G}$ with fibers

$$HT_x = span\{X_{11}(x), \dots, X_{1n_1}(x)\}, \quad x \in \mathbb{G}.$$

We call HT the horizontal tangent bundle of \mathbb{G} with HT_x as the horizontal tangent space at $x \in \mathbb{G}$. Respectively, the vector fields X_{1j} , $j = 1, \ldots, n_1$, we will call the horizontal vector fields.

Next, we extend X_{11}, \ldots, X_{1n_1} to an orthonormal basis

$$X_{11},\ldots,X_{1n_1},X_{21},\ldots,X_{2n_2},\ldots,X_{m1},\ldots,X_{mn_m}$$

of \mathcal{G} . Here each vector field X_{ij} , $2 \leq i \leq m$, $1 \leq j \leq n_i = \dim V_i$, is a commutator

$$X_{ij} = [\dots[[X_{1k_1}, X_{1k_2}]X_{1k_3}]\dots X_{1k_i}]$$

of length i-1 generated by the basis vector fields of the space V_1 .

It was proved (see, for instance, [6]) that the exponential map $\exp: \mathcal{G} \to \mathbb{G}$ from the Lie algebra \mathcal{G} into the Lie group \mathbb{G} is a global diffeomorphism. We can identify the points $q \in \mathbb{G}$ with the points $x \in \mathbb{R}^N$, $N = \sum_{i=1}^m \dim V_i$, by the rule $q = \exp(\sum_{i,j} x_{ij} X_{ij})$. The collection $\{x_{ij}\}$ is called the *coordinates* of $q \in \mathbb{G}$. The number $N = \sum_{i=1}^m \dim V_i$ is the topological dimension of the Carnot group. The biinvariant Haar measure on \mathbb{G} is denoted by dx; this is the push-forward of the Lebesgue measure in \mathbb{R}^N under the exponential map. The family of dilations $\{\delta_{\lambda}(x): \lambda > 0\}$ on the Carnot group is defined as

$$\delta_{\lambda}x = \delta_{\lambda}(x_{ij}) = (\lambda x_1, \lambda^2 x_2, \dots, \lambda^m x_m),$$

where $x_i = (x_{i1}, \dots, x_{in_i})$. Moreover, $d(\delta_{\lambda} x) = \lambda^Q dx$ and the quantity $Q = \sum_{i=1}^m i \dim V_i$ is called the homogeneous dimension of \mathbb{G} .

The Euclidean space \mathbb{R}^n with the standard structure is an example of the Abelian Carnot group: the exponential map is the identity and the vector fields $\frac{\partial}{\partial x_i}$, $i = 1, \ldots, n$ have only trivial commutators and form the basis of the corresponding Lie algebra.

The simplest example of a non-abelian Carnot group is the Heisenberg group \mathbb{H}^n . The non-commutative multiplication is defined as

$$pq = (x, y, t)(x', y', t') = (x + x', y + y', t + t' - 2xy' + 2yx'),$$

where $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n, t \in \mathbb{R}$, and the left translation $L_p(q) = pq$ is defined. The left-invariant vector fields

$$X_{i} = \frac{\partial}{\partial x_{i}} + 2y_{i} \frac{\partial}{\partial t}, \quad i = 1, \dots, n,$$

$$Y_{i} = \frac{\partial}{\partial y_{i}} - 2x_{i} \frac{\partial}{\partial t}, \quad i = 1, \dots, n,$$

$$T = \frac{\partial}{\partial t},$$

form the basis of the Lie algebra of the Heisenberg group. All non-trivial relations are of the form $[X_i, Y_i] = -4T$, i = 1, ..., n, and all other commutators vanish. Thus, the Heisenberg algebra has the dimension 2n + 1 and splits into the direct sum $\mathcal{G} = V_1 \oplus V_2$. The vector space V_1 is generated by the vector fields $X_i, Y_i, i = 1, ..., n$, and the space V_2 is the one-dimensional center which is spanned by the vector field T.

We use the Carnot-Carathéodory metric based on the length of horizontal curves. An absolutely continuous map $\gamma:[0,b]\to\mathbb{G}$ is called a curve. A curve $\gamma:[0,b]\to\mathbb{G}$ is said to be *horizontal* if its tangent vector $\dot{\gamma}(s)$ lies in the horizontal tangent space $HT_{\gamma(t)}$, i.e. there exist functions $a_j(s), s \in [0,b]$, such that $\sum_{j=1}^{n_1} a_j^2 \leq 1$ and

$$\dot{\gamma}(s) = \sum_{j=1}^{n_1} a_j(s) X_{1j}(\gamma(s)).$$

The result of [5] implies that one can connect two arbitrary points $x, y \in \mathbb{G}$ by a horizontal curve. We fix on HT_x a quadratic form $\langle \cdot, \cdot \rangle$, so that the vector fields $X_{11}(x), \ldots, X_{1n_1}(x)$ are orthonormal with respect to this form at every $x \in \mathbb{G}$. Then the length of the horizontal curve $l(\gamma)$ is defined by the formula

$$l(\gamma) = \int_0^b \langle \dot{\gamma}(s), \dot{\gamma}(s) \rangle^{1/2} ds = \int_0^b \left(\sum_{j=1}^{n_1} |a_j(s)|^2 \right)^{1/2} ds.$$

The Carnot-Carathéodory distance $d_c(x,y)$ is the infimum of the length over all horizontal curves connecting x and $y \in \mathbb{G}$. Since the quadratic form is left-invariant, the Carnot-Carathéodory metric is also left-invariant. The group \mathbb{G} is connected, therefore, the metric $d_c(x,y)$ is finite (see [19]). A homogeneous norm on \mathbb{G} is, by definition, a continuous non-negative function $|\cdot|$ on \mathbb{G} , such that $|x| = |x^{-1}|$, $|\delta_{\lambda}(x)| = \lambda |x|$, and |x| = 0, if and only if x = 0. Since all homogeneous norms are equivalent, we choose one that satisfies the triangle inequality: $|x^{-1}y| \leq |x| + |y|$. By B(x,r) we denote the open ball of radius r > 0 centered at x in the metric d_c . Note that $B(x,r) = \{y \in \mathbb{G} : |x^{-1}y| < r\}$ is the left translation of the ball B(0,r) by x which is the image of the "unit ball" B(0,1) under δ_r . The Hausdorff dimension of the metric space (\mathbb{G}, d_c) coincides with its homogeneous dimension Q. By |E| we denote the measure of the set E. Our normalizing condition is such that the balls of radius one have measure one:

$$|B(0,1)| = \int_{B(0,1)} dx = 1.$$

We have that $|B(0,r)| = r^Q$ because the Jacobian of the dilation δ_r is r^Q . A curve $\gamma: [0,b] \to \mathbb{G}$ is called rectifiable if the supremum

$$\sup \left\{ \sum_{k=1}^{p-1} d_c(\gamma(t_k), \gamma(t_{k+1})) \right\}$$

is finite where the supremum ranges over all partitions $0 = t_1 \le t_2 \le ... \le t_p = b$ of the segment [0,b]. We remark that the definition of a rectifiable curve is based on the Carnot-Carathéodory metric. That is why a curve is not rectifiable if it is not horizontal [11, 13]. Thus, from now on, we work only with horizontal curves. A horizontal curve γ , which is rectifiable with respect to the Carnot-Carathéodory metric, is differentiable almost everywhere and the tangent vector $\dot{\gamma}$ belongs to V_1 (see [14]).

Let us define the *p*-module $M_p(\Gamma(K_0, K_1; \Omega))$ of the family of curves $\Gamma(K_0, K_1; \Omega)$ and the *p*-capacity $\operatorname{cap}_p(K_0, K_1; \Omega)$ on the Carnot group.

Our assumption is the following. Let $\langle a,b \rangle$ be an interval of one of the following types: [a,b], [a,b), (a,b], or (a,b). From now on, we suppose that a curve $\gamma:\langle a,b \rangle \to \mathbb{G}$ is parameterized by the length element. Let Ω be an open connected set (domain) on \mathbb{G} , K_0 and K_1 be closed non-empty disjoint sets in the closure $\overline{\Omega}$ of Ω . We will call $(K_0, K_1; \Omega)$ the condenser. We will use the symbol $\Gamma(K_0, K_1; \Omega)$ to denote the family of curves $\gamma:\langle a,b \rangle \to \Omega \subseteq \mathbb{G}$ which connect the sets K_0 and K_1 , namely, if $\gamma \in \Gamma(K_0, K_1; \Omega)$, then $\gamma(\langle a,b \rangle) \cap K_i \neq \emptyset$, i=0,1, and $\gamma(t) \in \Omega$, $t \in (a,b)$.

Let $\mathcal{F}(\Gamma(K_0, K_1; \Omega))$ denote the set of Borel functions $\rho : \Omega \to [0; \infty]$, such that for every locally rectifiable $\gamma \in \Gamma(K_0, K_1; \Omega)$ we have

$$\sup \int_{\gamma'} \rho \, ds = \sup \int_0^{l(\gamma')} \rho(\gamma'(t)) \, dt \ge 1.$$

The supremum is taken over all arcs γ' , such that $\gamma' = \gamma|_{[\alpha,\beta]} \to \Omega$, $[\alpha,\beta] \subset \langle a,b \rangle$ and $l(\gamma')$ is the length of γ' . The quantity $\mathcal{F}(\Gamma(K_0,K_1;\Omega))$ is called the set of admissible densities for $\Gamma(K_0,K_1;\Omega)$.

Definition 1.1 Let $p \in (1, \infty)$. The quantity

$$M_p(\Gamma(K_0, K_1; \Omega)) = \inf \int_{\Omega} \rho^p dx$$

is called the *p*-module of the family of curves $\Gamma(K_0, K_1; \Omega)$. The infimum is taken over all functions $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$.

The Vitali–Carathéodory theorem [15] about approximation of a function from L_p implies that the set of admissible densities can be reduced to the set of Borel lower semicontinuous functions. Hence, without loss of generality, we can assume that $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$ is semicontinuous in \mathbb{G} .

The properties of the module of a family of curves in the case of $\mathbb{G} = \mathbb{R}^n$ one can find, for instance, in [7].

If there exists a constant L such that $|\varphi(x) - \varphi(y)| \leq Ld_c(x, y)$ for all $x, y \in D$, $D \subset\subset \Omega$, then the function $\varphi: \Omega \to \mathbb{R}$ is called locally Lipschitz continuous in $\Omega \subset \mathbb{G}$. The Sobolev space $L_p^1(\Omega)$ over the domain Ω is defined as a completion of the class of locally Lipschitz continuous function with respect to the seminorm

$$\|\varphi \mid L_p^1(\Omega)\| = \left(\int_{\Omega} \|X\varphi\|^p \, dx\right)^{1/p} < \infty.$$

Here $X\varphi = (X_{11}\varphi, \dots, X_{1n_1}\varphi)$ is called the horizontal gradient of φ and $||X\varphi|| = \left(\sum_{j=1}^{n_1} |X_{1j}\varphi|^2\right)^{1/2}$. Thus, if u is a smooth function, then Xu is a horizontal component of the usual Riemannian gradient of u.

Let $\mathcal{A}(K_0, K_1; \Omega)$ denote the set of non-negative real valued, locally Lipschitz continuous functions $\varphi \in L^1_p(\Omega) \cap C(\Omega)$, such that $\varphi(x) = 0$ ($\varphi(x) \ge 1$) in a neighborhood of K_0 (K_1).

Definition 1.2 For $p \in (1, \infty)$ we define the p-capacity of $(K_0, K_1; \Omega)$ by

$$cap_p(K_0, K_1; \Omega) = \inf \int_{\Omega} ||X\varphi||^p dx,$$

where the infimum is taken over all $\varphi \in \mathcal{A}(K_0, K_1; \Omega)$.

Our main result is the following theorem.

Theorem. Let Ω be a bounded domain in the Carnot group \mathbb{G} . Suppose that K_0 and K_1 are disjoint non-empty compact sets in the closure of Ω . Then

$$M_p(\Gamma(K_0, K_1; \Omega)) = \operatorname{cap}_p(K_0, K_1; \Omega).$$

2. Preliminary results

We define an absolutely continuous function on curves of the horizontal fibration. For this we consider a family of horizontal curves \mathcal{Y} which form a smooth fibration of an open set $D \subset \mathbb{G}$. Usually, a curve $\gamma \in \mathcal{Y}$ is an orbit of a smooth horizontal vector field $Y \in V_1$. If we denote by φ_s the flow associated with this vector field, then the fiber is of the form $\gamma(s) = \varphi_s(p)$. Here the point p belongs to the surface S which is transversal to the vector field Y. The parameter s ranges over an open interval $J \in \mathbb{R}$. One can assume that there is a measure $d\gamma$ on the fibration \mathcal{Y} of the set $D \subset \mathbb{G}$. The measure $d\gamma$ satisfies the inequalities

$$|k_0|B(x,R)|^{\frac{Q-1}{Q}} \le \int_{\gamma \in \mathcal{Y}, \gamma \cap B(x,R) \ne \emptyset} d\gamma \le k_1|B(x,R)|^{\frac{Q-1}{Q}}$$

for a sufficiently small ball $B(x, R) \subset D$ with constants k_0 , k_1 which do not depend on the ball B(x, R) (see [12, 20, 22]).

Definition 2.1 A function $u: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{G}$, is said to be absolutely continuous on lines $(u \in ACL(\Omega))$ if for any domain $U, \overline{U} \subset \Omega$ and any fibration \mathcal{X} defined by a left-invariant vector field $X_{1j}, j = 1, \ldots, n_1$, the function u is absolutely continuous on $\gamma \cap U$ with respect to the \mathcal{H}^1 -Hausdorff measure for $d\gamma$ -almost all curves $\gamma \in \mathcal{X}$.

For such a function u the derivatives $X_{1j}u$, $j=1,\ldots,n_1$, exist almost everywhere in Ω . If they belong to $L_p(\Omega)$ for all $X_{1j} \in V_1$, then u is said to be in $ACL^p(\Omega)$. If the function f belongs to $L_p^1(\Omega)$, then there exists a function $u \in ACL^p(\Omega)$ such that f = u almost everywhere.

The following lemma and theorem are reformulations of the well known result by Fuglede [7] (see also [21]) for the Carnot group.

Lemma 2.2 Suppose E is a Borel set on the Carnot group \mathbb{G} and $g_k: E \to \mathbb{R}$ is a sequence of Borel functions which converges to a Borel function $g: E \to \mathbb{R}$ in $L_p(E)$. There is a subsequence $\{g_{k_i}\}$, such that the equality

$$\lim_{j \to \infty} \int_{\gamma} |g_{k_j} - g| \, ds = 0$$

holds for all rectifiable horizontal curves $\gamma \subset E$ except for some family whose p-module vanishes.

We will prove the next theorem for completeness.

Theorem 2.1 Let Ω be an open subset of \mathbb{G} , and $u : \Omega \to \mathbb{R}$ be a function from $ACL^p(\Omega)$, $p \in (1, \infty)$. The function u is absolutely continuous on rectifiable closed parts of horizontal curves, except for a family of horizontal curves whose p-module vanishes.

Proof: Let U_l be a sequence of open sets, such that $\overline{U}_0 \subset \cdots \subset \overline{U}_l \subset \cdots \subset \Omega$, $\bigcup_{l=0}^{\infty} U_l = \Omega$. Denote by Γ the family of locally rectifiable horizontal curves whose trace lies in Ω , and such that the function u is not absolutely continuous on each curve of Γ . By Γ_l we denote the family of closed arcs of the curves $\gamma \in \Gamma$ which intersect U_l . By the property of monotonicity of the p-module we deduce that

$$M_p(\Gamma) \le \sum_{l=1}^{\infty} M_p(\Gamma_l).$$

The proof will be complete if we establish that $M_p(\Gamma_l) = 0$ for any arbitrary index l. For a function u satisfying the assertion of Theorem 2.1 there exists a sequence of the C^{∞} -functions $u^{(i)}$, $i \in \mathbb{N}$, which converges to u uniformly in \overline{U}_l [6]. Moreover, the sequence $X_{1k}u^{(i)}$ converges to $X_{1k}u$ in $L_p(\Omega)$, $k = 1, \ldots, n_1$. By Lemma 2.2 we choose a subsequence (which we denote by the same symbol) $u^{(i)}$, such that

(2.1)
$$\int_{\gamma} \|X_{1k}u^{(i)} - X_{1k}u\| ds \to 0 \quad \forall \quad k = 1, \dots, n_1$$

for all rectifiable horizontal curves $\gamma:[0,b]\to U_l$ except for a family $\widetilde{\Gamma}$ whose p-module $M_p(\widetilde{\Gamma})$ vanishes. We show that $\Gamma_l\subset\widetilde{\Gamma}$. Suppose that there exists a rectifiable horizontal curve $\gamma\in\Gamma_l\setminus\widetilde{\Gamma}$. It is assumed that this curve is parameterized by its length element. Since the functions $u^i(\gamma(s))$ are absolutely continuous, the sequence of functions

$$u^{(i)}(\gamma(s)) = u^{(i)}(\gamma(0)) + \int_0^s \left(\sum_{k=1}^{n_1} a_k(t) X_{1k} u^{(i)}(\gamma(t))\right) dt,$$

is defined for any $s \in [0, b]$.

The sequence $u^{(i)}(\gamma(s))$ converges uniformly to the function $u(\gamma(s))$ as $i \to \infty$. Moreover, from (2.1) we deduce that

$$u(\gamma(s)) = u(\gamma(0)) + \int_0^s \left(\sum_{k=1}^{n_1} a_k(t) X_{1k} u(\gamma(t))\right) dt.$$

Hence, the function u is absolutely continuous, and we derive that u is absolutely continuous on $\gamma(s)$. This contradicts $\gamma \in \Gamma_l \setminus \widetilde{\Gamma}$.

In our next step we establish an approximation property for functions $f \in L_p(D)$ defined on an open set $D \neq \mathbb{G}$.

Lemma 2.3 Suppose that D is a bounded domain on the Carnot group \mathbb{G} . Let $f \in L_p(D)$ and $\varepsilon > 0$. Then there exists a continuous function \tilde{f} such that

$$||f - \tilde{f}|| L_p(D)|| < \varepsilon.$$

Proof: Making use of the Whitney lemma we can find points $x_1, x_2, ...$ in D and positive numbers $r_1, r_2, ...$, such that

- (i) $B(x_i, r_i) \subset D$,
- (ii) $D \subset \bigcup_i B(x_i, r_i)$,
- (iii) $B(x_i, 2r_i) \subset D$,
- (iv) $\sum_{i} \chi_{B(x_i,2r_i)} \leq M$, with some number M independent of the choice of the set D and of the point $x \in D$.

Also we can suppose, that the radii of the balls do not exceed 1/2.

Let $\{h_1(x), h_2(x), \ldots\}$ be a partition of unity on D subordinate to the cover $\{B(x_1, r_1), B(x_2, r_2), \ldots\}$: $h_i(x) \geq 0$, $\operatorname{supp}(h_i(x)) \subset B(x_i, r_i)$, and $\sum_{i=1}^{\infty} h_i(x) = 1$ for $x \in D$. Set $f_i(x) = h_i f(x)$. Then $f_i, i = 1, 2, \ldots$, satisfy the following condition: $\operatorname{supp} f_i \subset B(x_i, r_i)$, $f_i \in L_p(\mathbb{G})$ and $f(x) = \sum_{i=1}^{\infty} f_i(x)$ for $x \in D$.

We write φ^i for the continuous function supported in the ball $B(x_i, 2r_i)$ such that $\int_{B(x_i, 2r_i)} \varphi^i(x) dx = 1$. Let us consider the convolution

$$\tilde{f}_i(x) = f_i \star \varphi_t^i(x) = \int_{\mathbb{G}} f_i(y) \varphi_t^i(y^{-1}x) \, dy = \int_{\mathbb{G}} f_i(xy^{-1}) \varphi_t^i(y) \, dy,$$

where $\varphi_t^i(x) = t^{-Q} \varphi^i(\delta_{1/t}x)$. It is known [6] that in this case the inequality

$$\|\tilde{f}_i - f_i \mid L_p(\mathbb{G})\| < 2^{-i}\varepsilon$$

holds as $t \to 0$ for arbitrary $\varepsilon > 0$.

Let us define $\tilde{f}(x) = \sum_{i=1}^{\infty} \tilde{f}_i(x)$. The continuity of \tilde{f} and the inequality

$$\int_{D} |\tilde{f} - f|^p dx \le \sum_{i=1}^{\infty} \left\{ \int_{\mathbb{G}} |\tilde{f}_i - f_i|^p dx \right\}^{1/p} < \varepsilon$$

yield the required approximation.

Using similar argumentation as in [10], we prove the next lemma.

Lemma 2.4 Let $\mathcal{B} \subset \mathcal{F}(\Gamma(K_0, K_1; \Omega))$ consist of continuous functions on $\Omega \setminus (K_0 \cup K_1)$. Then,

(2.2)
$$M = \inf_{\rho \in \mathcal{B}} \int_{\Omega} \rho^{p}(x) dx = M_{p}(\Gamma(K_{0}, K_{1}; \Omega)).$$

Proof: Let $\{B(x_i, r_i)\}$ be a cover of the domain $D = \Omega \setminus (K_0 \cup K_1)$ chosen as in the previous lemma. We also use the notation $\rho = \sum_{i=1}^{\infty} \rho_i = \sum_{i=1}^{\infty} h_i \rho$, where $\{h_i\}$ is a partition of unity subordinate to $\{B(x_i, r_i)\}$. Then by Lemma 2.3 for $\varepsilon > 0$ and $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$ we find continuous function $\tilde{\rho}$, such that

(2.3)
$$\int_{\Omega\setminus (K_0\cup K_1)} \tilde{\rho}^p(x) \, dx < \varepsilon + M_p(\Gamma(K_0, K_1; \Omega)).$$

We claim that $(1 + \varepsilon)\tilde{\rho}$ is an admissible density for $\Gamma(K_0, K_1; \Omega)$. If γ belongs to $\Gamma(K_0, K_1; \Omega)$, then

$$1 \le \int_{\gamma} \rho \, ds = \int_{\gamma} \sum_{i=1}^{\infty} \rho_i \, ds \le \sum_{i=1}^{\infty} \int_{\gamma \cap B(x_i, 2r_i)} \rho_i \, ds.$$

Making use of the construction of approximation from Lemma 2.3 with parameters $t_i < \varepsilon$, i = 1, 2, ..., we get

$$\int_{\gamma} \tilde{\rho} \, ds = \int_{\gamma} \sum_{i=1}^{\infty} \tilde{\rho}_{i} \, ds = \int_{\gamma} \sum_{i=1}^{\infty} \int_{\mathbb{G}} \rho_{i}(xy^{-1}) \varphi_{t_{i}}^{i}(y) \, dy \, ds$$

$$= \int_{\gamma} \sum_{i=1}^{\infty} \int_{\mathbb{G}} \rho(x(\delta_{t_{i}}z)^{-1}) \varphi^{i}(z) \, dz \, ds$$

$$= \sum_{i=1}^{\infty} \int_{B(x_{i},2r_{i})} \varphi^{i}(z) \, dz \int_{\gamma \cap B(x_{i},r_{i})} \rho_{i}(x(\delta_{t_{i}}z)^{-1}) \, ds(x).$$

We note that $\int_{B(x_i,2r_i)} \varphi^i(z) dz = 1$ by definition. Let us denote by $\tilde{\gamma}$ the image of the curve γ under the map $\gamma \to \gamma \cdot (\delta_t z)^{-1}$. We can choose a sufficiently small t_i , such that the image $\gamma \cap B(x_i,r_i)$ is contained in the ball $B(x_i,2r_i)$. Moreover, $|\dot{\tilde{\gamma}}| = |\dot{\gamma} \cdot (\delta_{t_i}z)^{-1}|$. Changing variables in the last integral of (2.4), we obtain

$$\int_{\gamma} \tilde{\rho} \, ds = \sum_{i=1}^{\infty} \int_{\tilde{\gamma} \cap B(x_{i}, 2r_{i})} \rho_{i}(y) |\dot{\tilde{\gamma}}|^{-1} \, ds(y)$$

$$\geq \sum_{i=1}^{\infty} \int_{\tilde{\gamma} \cap B(x_{i}, 2r_{i})} \rho_{i}(y) (|\dot{\gamma}| + t_{i}|z|)^{-1} \, ds(y) \geq (1 + \varepsilon)^{-1}.$$

In the latter we used the inequalities

$$|\dot{\tilde{\gamma}}| \le |\dot{\gamma}| + t_i |z|, \qquad |\dot{\gamma}| \le 1, \qquad t_i < \varepsilon, \qquad |z| < 2r_i < 1, \quad i = 1, 2, \dots$$

Since ε and $\rho \in \Gamma(K_0, K_1; \Omega)$ are arbitrary, we get from (2.3) that

$$M = \inf_{\rho \in \mathcal{B}} \int_{\Omega} \rho^{p}(x) dx \le M_{p}(\Gamma(K_{0}, K_{1}; \Omega)).$$

The reverse inequality is obvious and we have (2.2) as desired.

3. Proof of the main result

In this section we will be working under the assumption that K_0 and K_1 are disjoint non-empty compacts in the closure $\overline{\Omega}$ of a bounded domain $\Omega \subset \mathbb{G}$. Moreover, let K_0^j and K_1^j be a sequence of closed sets, such that $K_0^0 \cap K_1^0 = \emptyset$, $K_0^j \subset \operatorname{int} K_0^{j-1}$, $K_1^j \subset \operatorname{int} K_1^{j-1}$, $K_0 = \bigcap_{j=0}^{\infty} K_0^j$, and $K_1 = \bigcap_{j=0}^{\infty} K_1^j$.

The next lemma in the particular case $\mathbb{G} = \mathbb{R}^n$ goes back to the work [16] and, then is digested by Ohtsuka (see for instance [1]).

Lemma 3.1 Let $\rho \in L_p(\mathbb{G})$ be a positive function which is continuous in $\Omega \setminus (K_0 \cup K_1)$. For each $\varepsilon > 0$ we can construct a function ρ' on Ω , $\rho' \geq \rho$, with the following properties:

- (i) $\int_{\Omega} \rho'^p dx \le \int_{\Omega} \rho^p dx + \varepsilon$.
- (ii) Suppose that for each j there is $\gamma_j \in \Gamma(K_0^j, K_1^j; \Omega)$ such that $\int_{\gamma_j} \rho' ds \leq \alpha$. Then there exists $\tilde{\gamma} \in \Gamma(K_0, K_1; \Omega)$, such that $\int_{\tilde{\gamma}} \rho ds \leq \alpha + \varepsilon$.

Proof: The most difficult part of the lemma is the existence of $\tilde{\gamma}$ inside Ω . It is rather easy to find a curve in $\overline{\Omega}$, but such a curve is not necessarily from $\Gamma(K_0, K_1; \Omega)$.

For the beginning let us construct the function ρ' . Let $K^j = K_0^j \cup K_1^j$, $W^j = K^{j-1} \setminus \text{int } K^j$, and $d_j = \text{dist}(\partial K^{j-1}, \partial K^j) > 0$. Since the function ρ is strictly positive, we can find a sequence $\varepsilon_j \to 0$, such that

(3.1)
$$\sum_{j=1}^{\infty} \left(1 + \varepsilon_j^{-1}\right)^p \varepsilon_j < \varepsilon,$$

$$(3.2) (1 + \varepsilon_j^{-1}) d_j \inf_{x \in W_j \cap \Omega} \rho(x) > \alpha.$$

We can find a sequence of compact subsets $\Omega_j \subset \Omega$ increasing to Ω , such that

$$\int_{\Omega \setminus \Omega_j} \rho^p \, dx < \varepsilon_j.$$

Let $V^j = (\Omega \setminus \Omega_i) \cap W^j$, and set

$$\rho'(x) = \begin{cases} (1 + \varepsilon_j^{-1})\rho(x) & \text{if } x \in V^j, \\ \rho(x) & \text{if } x \in \Omega \setminus (\cup V^j). \end{cases}$$

Now, applying (3.1), we obtain

$$\int_{\Omega} \rho'^{p} dx = \sum_{j} \int_{V^{j}} \left(\left(1 + \varepsilon_{j}^{-1} \right) \rho(x) \right)^{p} dx + \int_{\Omega \setminus (\cup V^{j})} \rho^{p} dx$$

$$\leq \sum_{j} \left(1 + \varepsilon_{j}^{-1} \right)^{p} \int_{V^{j}} \rho^{p} dx + \int_{\Omega} \rho^{p} dx$$

$$\leq \sum_{j} \left(1 + \varepsilon_{j}^{-1} \right)^{p} \varepsilon_{j} + \int_{\Omega} \rho^{p} dx < \varepsilon + \int_{\Omega} \rho^{p} dx.$$

We see that (i) holds. Now let us show (ii). Fix $j \geq 1$. The curve γ_k is from $\Gamma(K_0^j, K_1^j; \Omega)$ for the $k \geq j$ by definition. Hence, γ_k contains two arcs: γ_k' such that γ_k' connects ∂K_0^j and ∂K_0^{j-1} ; and γ_k'' which connects ∂K_1^j and ∂K_1^{j-1} . Let us show that γ_k' and γ_k'' are not included in V^j . On the contrary, let us suppose that $\gamma_k' \subset V^j$. Then, using (3.2), we deduce the inequality

$$\alpha \geq \int_{\gamma_k} \rho' \, ds \geq \int_{\gamma_k'} \rho' \, ds \geq \left(1 + \varepsilon_j^{-1}\right) \int_{\gamma_k'} \rho \, ds \geq \left(1 + \varepsilon_j^{-1}\right) \inf_{x \in W^j \cap \Omega} \rho(x) \int_{\gamma_k'} ds > \alpha,$$

which is false. In the same way γ_k'' is not included in V^j , therefore,

$$\gamma_k \bigcap \left(\Omega_j \cap \left(K_i^{j-1} \setminus \operatorname{int} K_i^j\right)\right) \neq \emptyset \quad \text{for} \quad i = 0, 1 \quad \text{and} \quad k \geq j.$$

Observe that the sets $\Omega_j \cap (K_i^{j-1} \setminus \text{int } K_i^j)$, i = 0, 1, are compacts. For a fixed j let us consider a sequence $\{\gamma_k^j\}_{k=j}^{\infty}$. We can extract a subsequence (we use the same notation $\{\gamma_k^j\}_{k\to\infty}$) which converges to a curve γ_0^j , such that

$$\gamma_0^j \bigcap \left(\Omega_j \cap \left(K_0^{j-1} \setminus \operatorname{int} K_0^j\right)\right) \neq \emptyset.$$

Further, we fix a point $x_0^j \in \Omega_j \cap (K_0^{j-1} \setminus \operatorname{int} K_0^j)$ on it. Since ρ is continuous at $x_0^j \in \Omega_j \cap (K_0^{j-1} \setminus \operatorname{int} K_0^j)$, we can choose a ball $B(x_0^j, r(x_0^j)) \subset \Omega$ so small that

$$(3.3) \qquad \int_{I} \rho \, ds \le \varepsilon / 2^{j+3}$$

for any shortest curve $l \subset B(x_0^j, r(x_0^j))$ which connects the center x_0^j with the boundary of $B(x_0^j, r(x_0^j))$. Renumbering the subsequence, we may assume that each member of the subsequence $\{\gamma_k^j\}$ intersects $B(x_0^j, r(x_0^j))$.

In the same way we can find a small closed ball $B(x_1^j, r(x_1^j)) \subset \Omega$, $x_1^j \in \Omega_j \cap (K_1^{j-1} \setminus \text{int } K_1^j)$, so that $\{\gamma_k^j\}$ intersects $B(x_1^j, r(x_1^j))$ and an analogue of (3.3) holds. We start this process from j=1 and extract a subsequence $\{\gamma_k^j\}$ from the sequence constructed in the previous step, such that the new subsequence $\{\gamma_k^j\}$ intersects $B(x_0^j, r(x_0^j))$ and $B(x_1^j, r(x_1^j))$.

Now let us consider the diagonal $\{\gamma_k^k\}$. Then $\{\gamma_k^k\}$ intersects $B(x_0^j, r(x_0^j))$ and $B(x_1^j, r(x_1^j))$ for $1 \leq j \leq k$. In each ball $B(x_i^j, r(x_i^j))$, i = 0, 1, we add two shortest curves to $\{\gamma_k^k\}$ connecting x_i^j with the points of intersections of $\{\gamma_k^k\}$ with $\partial B(x_i^j, r(x_i^j))$, $i = 0, 1, 1 \leq j \leq k$. Thus, we have a connected horizontal curve $\tilde{\gamma}_k \in \Gamma(K_0^k, K_1^k; \Omega)$ passing through all pairs $\{x_0^j, x_1^j\}_{j=1}^k$. We have by (3.3) that

$$\int_{\tilde{\gamma}_k} \rho \, ds \le \int_{\gamma_k^k} \rho \, ds + 2 \sum_{j=1}^k \frac{\varepsilon}{2^{j+3}} \le \alpha + \frac{\varepsilon}{4}.$$

Let Γ_0 be the union of all horizontal curves in $\Omega \setminus (K_0 \cup K_1)$ connecting x_0^1 and x_1^1 . For i = 0, 1, let Γ_i^j be the collection of all horizontal curves in $\Omega \setminus (K_0 \cup K_1)$ connecting x_i^j and x_i^{j+1} . Then,

$$\inf_{\gamma \in \Gamma_0} \int_{\gamma} \rho \, ds + \sum_{j=1}^k \inf_{\gamma \in \Gamma_0^j} \int_{\gamma} \rho \, ds + \sum_{j=1}^k \inf_{\gamma \in \Gamma_1^j} \int_{\gamma} \rho \, ds \le \int_{\tilde{\gamma}_k} \rho \, ds \le \alpha + \frac{\varepsilon}{4}.$$

Therefore, we can choose $C_0 \in \Gamma_0$ and $C_i^j \in \Gamma_i^j$, such that

$$\begin{split} &\int_{C_0} \rho \, ds < \inf_{\gamma \in \Gamma_0} \int_{\gamma} \rho \, ds + \frac{\varepsilon}{2}, \\ &\int_{C_i^j} \rho \, ds < \inf_{\gamma \in \Gamma_i^j} \int_{\gamma} \rho \, ds + \frac{\varepsilon}{2^{j+3}}. \end{split}$$

Let

$$\tilde{\gamma} = \ldots + C_0^1 + C_0 + C_1^1 + \ldots$$

Then, $\tilde{\gamma} \in \Gamma(K_0, K_1; \Omega)$ and

$$\int_{\tilde{\gamma}} \rho \, ds \le \alpha + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + 2 \sum_{j=1}^{\infty} \frac{\varepsilon}{2^{j+3}} = \alpha + \varepsilon.$$

The lemma is proved.

Theorem 3.1 Let Ω be a bounded domain in the Carnot group \mathbb{G} . Suppose K_0 and K_1 to be disjoint non-empty compacts in the closure of Ω . Then,

$$M_p(\Gamma(K_0, K_1; \Omega)) = \operatorname{cap}_p(K_0, K_1; \Omega).$$

Proof: Our proof falls into three steps.

Step 1. We start proving the inequality

$$(3.4) M_p(\Gamma(K_0, K_1; \Omega)) \le \operatorname{cap}_p(K_0, K_1; \Omega).$$

Let $u \in \mathcal{A}(K_0, K_1; \Omega)$. Let Γ_0 be the locally rectifiable horizontal curves $\gamma \in \Gamma(K_0, K_1; \Omega)$, such that u is absolutely continuous on every rectifiable closed part of γ . Define $\rho : \Omega \to [0, \infty]$ by

$$\rho(x) = \begin{cases} ||Xu|| & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

Suppose that $\gamma \in \Gamma_0$ and $\gamma: (a, b) \to \Omega$ is parameterized by the length element. If $a < t_1 < t_2 < b$, then making use of the inequality $|\dot{\gamma}(t)| \le 1$, we get

(3.5)
$$\int_{\gamma} \rho \, ds = \int_{a}^{b} \rho(\gamma(t)) \, dt \ge \int_{t_{1}}^{t_{2}} \|Xu(\gamma(t))\| \, dt$$
$$\ge \left| \int_{t_{1}}^{t_{2}} \langle Xu(\gamma(t)) \cdot \dot{\gamma}(t) \rangle \, dt \right| = |u(\gamma(t_{2})) - u(\gamma(t_{1}))|.$$

Since t_1 and t_2 are arbitrary, (3.5) implies the inequality $\int_{\gamma} \rho \, ds \geq 1$. Hence, ρ is admissible for the family of curves $\Gamma(K_0, K_1; \Omega)$. Therefore,

$$M_p(\Gamma_0) \le \int_{\Omega} \rho^p(x) dx = \int_{\Omega} ||Xu(x)||^p dx.$$

Taking infimum over all $u \in \mathcal{A}(K_0, K_1; \Omega)$ we get $M_p(\Gamma_0) \leq \operatorname{cap}_p(K_0, K_1; \Omega)$. Theorem 2.1 implies $M_p(\Gamma_0) = M_p(\Gamma(K_0, K_1; \Omega))$, and (3.4) follows from the above.

Step 2. Now we prove the reverse inequality

$$(3.6) M_p(\Gamma(K_0, K_1; \Omega)) \ge \operatorname{cap}_p(K_0, K_1; \Omega)$$

for the case $(K_0 \cup K_1) \cap \partial\Omega = \emptyset$. Lemma 2.4 allows us to assume that $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$ is continuous in $\Omega \setminus (K_0 \cup K_1)$. Let us define $u : \Omega \to [0, \infty]$ by $u(x) = \min(1, \inf \int_{\beta_x} \rho \, ds)$ where the infimum is taken over all locally rectifiable horizontal curves $\beta_x \in \Omega$ connecting K_0 and x. We claim that $u \in \mathcal{A}(K_0, K_1; \Omega)$ and $||Xu|| \leq \rho$ almost everywhere in Ω . If $u \equiv 1$, then there is nothing to prove.

Let $u \not\equiv 1$, and let α_{x_1,x_2} be a shortest curve which connect x_1 and x_2 , and β_{x_1} be a rectifiable curve connecting K_0 and x_1 . Then,

$$u(x_2) \le \int_{\beta_{x_1}} \rho \, ds + \int_{\alpha_{x_1, x_2}} \rho \, ds \le \int_{\beta_{x_1}} \rho \, ds + \max_{x \in \alpha_{x_1, x_2}} \rho(x) d_c(x_1, x_2).$$

Since β_{x_1} is arbitrary, we obtain

$$u(x_2) \le u(x_1) + \max_{x \in \alpha_{x_1, x_2}} \rho(x) d_c(x_1, x_2).$$

Similarly, we have

$$u(x_1) \le u(x_2) + \max_{x \in \alpha_{x_1, x_2}} \rho(x) d_c(x_1, x_2).$$

These two inequalities prove that

$$|u(x_1) - u(x_2)| \le \max_{x \in \alpha_{x_1, x_2}} \rho(x) d_c(x_1, x_2).$$

If u satisfies (3.7), then u is locally Lipschitz continuous in Ω . Therefore, u has the derivative $X_{1j}u$, $j=1,\ldots,n_1$, almost everywhere in Ω by [14]. Suppose now that $x_0 \in \Omega$ is a point where the derivatives $X_{1j}u$, $j=1,\ldots,n_1$ exist, then we get

$$|u(x_0h) - u(x_0)| = |h| ||Xu(x_0)|| + o(|h|) \le \max_{x \in \alpha_{x_0, x_0h}} \rho(x) |h|.$$

Letting $|h| \to 0$, we obtain $||Xu(x_0)|| \le \rho(x_0)$. Therefore,

$$cap_p(K_0, K_1; \Omega) \le \int_{\Omega} ||Xu||^p dx \le \int_{\Omega} \rho^p dx$$

and (3.6) holds.

By (3.4) and (3.6) we conclude that, if $(K_0 \cup K_1) \cap \partial \Omega = \emptyset$, then

(3.8)
$$\operatorname{cap}_{p}(K_{0}, K_{1}; \Omega) = M_{p}(\Gamma(K_{0}, K_{1}; \Omega)).$$

Step 3. Fix $\varepsilon \in (0, 1/2)$ and let $(K_0 \cup K_1) \cap \partial\Omega \neq \emptyset$. Let $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$ be a continuous function in $\Omega \setminus (K_0 \cup K_1)$, such that

$$\int_{\Omega\setminus (K_0\cup K_1)} \rho^p \, dx < \varepsilon + M_p(\Gamma(K_0, K_1; \Omega)).$$

We may assume that ρ is strictly positive on $\Omega \setminus (K_0 \cup K_1)$. If this were not so, we could consider the cut-of-function $\max(\rho, 1/m)$ instead of ρ and suppose that this function satisfies the inequality

$$\int_{\Omega\setminus (K_0\cup K_1)} \left(\max(\rho, 1/m)\right)^p dx < \varepsilon + M_p(\Gamma(K_0, K_1; \Omega))$$

for a sufficiently big $m \in \mathbb{N}$.

Let ρ' , $\{K_0^j\}$, $\{K_1^j\}$, be as in Lemma 3.1. We show that

$$\int_{\gamma} \rho' \, ds > 1 - 2\varepsilon \quad \text{for all} \quad \gamma \in \Gamma(K_0^j, K_1^j; \Omega)$$

for a sufficiently big $j \in \mathbb{N}$. In fact, if we supposed the contrary, there would be a sequence $\{j_k\}$ and curves $\gamma_k \in \Gamma(K_0^{j_k}, K_1^{j_k}; \Omega)$, such that

$$\int_{\gamma_k} \rho' \, ds \le 1 - 2\varepsilon.$$

By Lemma 3.1 we would find $\tilde{\gamma} \in \Gamma(K_0, K_1; \Omega)$, such that

$$\int_{\tilde{\gamma}} \rho \, ds \le 1 - 2\varepsilon + \varepsilon = 1 - \varepsilon,$$

which contradicts $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$.

Next we define the function

$$\tilde{\rho}(x) = \begin{cases} \frac{\rho'}{1 - 2\varepsilon} & \text{if } x \in \Omega \setminus \left(K_0^j \cup K_1^j\right), \\ 0 & \text{if } x \notin \Omega \setminus \left(K_0^j \cup K_1^j\right). \end{cases}$$

It belongs to $\mathcal{F}(\Gamma(K_0, K_1; \Omega \cup K_0^j \cup K_1^j))$. This fact and the equality (3.8) for $(K_0, K_1; \Omega \cup K_0^j \cup K_1^j)$ imply

$$(M_p(\Gamma(K_0, K_1; \Omega)) + 2\varepsilon)(1 - 2\varepsilon)^{1-p} \ge \int_{\Omega} \tilde{\rho}^p dx \ge M_p(\Gamma(K_0, K_1; \Omega \cup K_0^j \cup K_1^j))$$

= $\operatorname{cap}_p(K_0, K_1; \Omega \cup K_0^j \cup K_1^j) \ge \operatorname{cap}_p(K_0, K_1; \Omega).$

Hence, letting $j \to \infty$, and then $\varepsilon \to 0$, we obtain

$$M_p\Gamma((K_0, K_1; \Omega)) \ge \operatorname{cap}_p(K_0, K_1; \Omega)$$

and the theorem is proved.

Theorem 3.2 Let K_0 and K_1 be disjoint non-empty closed sets in the closure $\overline{\Omega}$ of a bounded domain $\Omega \subset \mathbb{G}$. Let K_0^j and K_1^j be sequences of compact sets, such that $K_0^0 \cap K_1^0 = \emptyset$, $K_0^j \subset \operatorname{int} K_0^{j-1}$, $K_1^j \subset \operatorname{int} K_1^{j-1}$, $K_0 = \bigcap_{j=0}^{\infty} K_0^j$, and $K_1 = \bigcap_{j=0}^{\infty} K_1^j$. Then,

$$M_p(\Gamma(K_0, K_1; \Omega)) = \lim_{j \to \infty} M_p(\Gamma(K_0^j, K_1^j; \Omega)).$$

Proof: Let $\rho \in \mathcal{F}(\Gamma(K_0, K_1; \Omega))$. Lemma 2.4 allows us to assume that ρ is continuous in $\Omega \setminus (K_0 \cup K_1)$. We fix $\varepsilon \in (0, 1)$ and choose ρ , such that

$$\int_{\Omega} \rho^p dx \le M_p(\Gamma(K_0, K_1; \Omega)) + \varepsilon.$$

For a function ρ we can construct ρ' as in Lemma 3.1. Moreover, $(1 - 2\varepsilon)^{-1}\rho' \in \mathcal{F}(\Gamma_j(K_0^j, K_1^j; \Omega))$ as it was shown in the proof of the step 3 of Theorem 3.1. From all these facts we deduce

$$M_p(\Gamma(K_0^j, K_1^j; \Omega)) \le \int_{\Omega} ((1 - 2\varepsilon)^{-1} \rho')^p dx \le (1 - 2\varepsilon)^{-p} (M_p(\Gamma(K_0, K_1; \Omega)) + \varepsilon).$$

Hence, letting $j \to \infty$, and then $\varepsilon \to 0$, we obtain the desired result.

References

- [1] AIKAWA, H. AND OHTSUKA, M.: Extremal length of vector measures. *Ann. Acad. Scien. Fennicæ* **24** (1999), 61–88.
- [2] CARAMAN, P.: New cases of equality between p-module and p-capacity. Proceedings of the Tenth Conf. on analytic function, Szczyrk, 1990. Ann. Polon. Math. 55 (1991), 37–56.
- [3] CARAMAN, P.: Relations between p-capacity and p-module. I. II. Rev. Roumaine Math. Pures Appl. 39 (1994), no. 6, 509–553, 555–577.
- [4] CARAMAN, P.: The problem of equality between the p-capacity and p-module. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. **20** (1995), 79–89.
- [5] Chow, W. L.: Systeme von linearen partiellen differential gleichungen erster ordnug. *Math. Ann.* **117** (1939), 98–105.
- [6] FOLAND, G. B. AND STEIN, E. M.: Hardy spaces on homogeneous groups. *Math. Notes* **28** (1982), Princeton University Press, Princeton, New Jersey.
- [7] Fuglede, B.: Extremal length and functional completion. *Acta Math.* **98** (1957), 171–219.
- [8] Heinonen, J. and Koskela, P.: Quasikonformal maps in metric spaces with controlled geometry. *Acta Math.* **181** (1998), 1–61.
- [9] HAJLASZ, P. AND KOSKELA, P.: Sobolev met Poincarè. *Mem. Amer. Math. Soc.* **145** (2000), no. 688, 101 pp.
- [10] HESSE, J.: A p-extremal length and p-capacity equality. Ark. Mat. 13 (1975), no. 1, 131–144.
- [11] KORÁNYI, A.: Geometric aspects of analysis on the Heisenberg group. Topic in Modern Harmonic Analysis. Instituto nazionale di Alta matematica, Roma, 1983.
- [12] KORÁNYI, A. AND REIMANN, H. M.: Foundation for the theory of quasiconformal mapping on the Heisenberg group. Adv. Math. 111 (1995), 1–87.

- [13] MITCHELL, J.: On Carnot-Carathéodory metrics. J. Diff. Geom. 21 (1985), 35–45.
- [14] Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espacies symétriques de rang un. Ann. of Math. 129 (1989), 1–60.
- [15] Rudin, W.: Real and complex analysis. McGraw-Hill Book Company, New York, 1966.
- [16] Shlyk, V. A.: On the equality between p-capacity and p-modulus. Siberian Math. J. 34 (1993), no. 6, 1196–1200.
- [17] STEIN, E. M.: Some problems in harmonic analysis suggested by symmetric spaces and semisimple groups. *Proc. Int. Congr. Math.*, *Nice I*, (1970), Gauthier–Villars, Paris, 1971, 173–179.
- [18] Stein, E. M.: Harmonic analysis: real variable, methods, orthogonality and oscillatory integrals. Princeton Univ. Press, 1993.
- [19] STRICHARTS, R. S.: Sub-Riemannian Geometry. J. Diff. Geom. 24 (1986), 221–263.
- [20] UKHLOV, A. D. AND VODOP'YANOV, S. K.: Sobolev spaces and *P, Q*-quasiconformal mappings of the Carnot groups. *Siberian Math. J.* **39** (1998), no. 4, 665–682.
- [21] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mapping. Lecture Notes in Math. **229**. Springer-Verlag, Berlin, 1971.
- [22] Vodop'yanov, S. K.: *P*-Differentiability on Carnot groups in different topologies and related topics. *Proc. on Anal. and Geom. Novosibirsk: Sobolev Institute Press* (2000), 603–670.
- [23] ZIEMER, W. P.: Extremal length and p-capacity. Michigan Math. J. 16 (1963), 43–51.

Recibido: 30 de julio de 2001 Revisado: 5 de diciembre de 2001

Irina Markina
Departamento de Matemática
Universidad Técnica Federico Santa María
Valparaíso, Chile
irina.markina@mat.utfsm.cl

This work was supported by Project Fondecyt (Chile) # 1020067.