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On coincidence of p -module of a family
of curves and p -capacity on the

Carnot group

Irina Markina

Abstract

The notion of the extremal length and the module of families of
curves has been studied extensively and has given rise to a lot of
applications to complex analysis and the potential theory. In par-
ticular, the coincidence of the p-module and the p-capacity plays an
important role. We consider this problem on the Carnot group. The
Carnot group G is a simply connected nilpotent Lie group equipped
with an appropriate family of dilations. Let Ω be a bounded do-
main on G and K0, K1 be disjoint non-empty compact sets in the
closure of Ω. We consider two quantities, associated with this geo-
metrical structure (K0,K1; Ω). Let Mp(Γ(K0,K1; Ω)) stand for the
p-module of a family of curves which connect K0 and K1 in Ω. Denot-
ing by capp(K0,K1; Ω) the p-capacity of K0 and K1 relatively to Ω,
we show that

Mp(Γ(K0,K1; Ω)) = capp(K0,K1; Ω).

Introduction

Let D be a domain (an open, connected set) in R
n

= R
n ∪{∞}, and let K0,

K1 be disjoint non-empty compact sets in the closure of D. We denote by
Mp(Γ(K0,K1;D)) the p-module of a family of curves which connect K0 and
K1 in D. Next we use the notation capp(K0,K1;D) for the p-capacity of the
condenser (K0,K1;D) relatively to D. The question about coincidence of
the p-module of a family of curves and the p-capacity for various geometric
configuration has been studied by many authors. For example, in the case
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when K0 and K1 do not intersect the boundary of D and either K0 or K1

contains the complement to an open n-ball the problem has been solved
affirmatively by Ziemer in [23]. Hesse in [10] has generalized this result
requiring only (K0 ∪K1)∩∂D = ∅. In the series of papers [2, 3, 4] Caraman
has been studying the problem under various conditions on the tangency
geometry of the sets K0 and K1 with the boundary of D, D ∈ R

n
. In

1993 Shlyk [16] proved, that the coincidence of the p-module and p-capacity
is valid for an arbitrary condenser (K0,K1;D), K0, K1 ∈ D, D ∈ R

n
,

(K0 ∪ K1) ∩ ∂D �= ∅.
A stratified nilpotent group (of which Rn is the simplest example) is

a Lie group equipped with an appropriate family of dilations. Thus, this
group forms a natural habitat for extensions of many of the objects studied
in the Euclidean space. The fundamental role of such groups in analysis was
envisaged by Stein [17, 18]. There has been since a wide development in
the analysis of the so-called stratified nilpotent Lie groups, nowadays, also
known as Carnot groups. In the present article we are studying the prob-
lem of the coincidence between the p-module of a family of curves and the
p-capacity of an arbitrary condenser (K0,K1; Ω), Ω is a bounded domain on
the Carnot group. In [12] the identity Mp(Γ(K0,K1; Ω)) = capp(K0,K1; Ω)
was proved for the condenser (K0,K1; Ω) on the Heisenberg group, which is
a two-step Carnot group, requiring that the compacts K0 and K1 are strictly
inside the domain Ω. We would like to mention the result by Heinonen and
Koskela [8] which states that on every general metric spaces the p-capacity
coincides with the p-module but in comparison with our paper they used
different definitions. The use of this general result [8] for the Carnot groups
requires the fact that the smallest very weak upper gradient of a Lipschitz
function is given by the horizontal gradient (see for instance [9]). However
it is not clear that the result of [8] covers the case when the intersection of
the compacts Ki, i = 0, 1, with the boundary of Ω is not empty. Moreover
the case when Ω is not ϕ-convex is not obtained from [8].

The author would like to acknowledge Serguei Vodop’yanov for his help-
ful remarks and observations.

1. Notation and definitions

The Carnot group is a connected, simply connected nilpotent Lie group G,
whose Lie algebra G splits into the direct sum of vector spaces V1 ⊕ V2 ⊕
. . . ⊕ Vm which satisfy the following relations

[V1, Vk] = Vk+1, 1 ≤ k < m,

[V1, Vm] = {0}.
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We identify the Lie algebra G with the space of left-invariant vector
fields. Let X11, . . . , X1n1 be a bases of V1, n1 = dim V1, and let 〈·, ·〉 be a
left-invariant Riemannian metric on V1 such that

〈X1i, X1j〉 =

{
1 if i = j,
0 if i �= j.

Then, V1 determines a subbundle HT of the tangent bundle TG with fibers

HTx = span {X11(x), . . . , X1n1(x)}, x ∈ G.

We call HT the horizontal tangent bundle of G with HTx as the horizontal
tangent space at x ∈ G. Respectively, the vector fields X1j , j = 1, . . . , n1,
we will call the horizontal vector fields.

Next, we extend X11, . . . , X1n1 to an orthonormal basis

X11, . . . , X1n1 , X21, . . . , X2n2 , . . . , Xm1, . . . , Xmnm

of G. Here each vector field Xij, 2 ≤ i ≤ m, 1 ≤ j ≤ ni = dim Vi, is a
commutator

Xij = [. . . [[X1k1 , X1k2 ]X1k3 ] . . . X1ki
]

of length i − 1 generated by the basis vector fields of the space V1.

It was proved (see, for instance, [6]) that the exponential map exp:G→G

from the Lie algebra G into the Lie group G is a global diffeomorphism. We
can identify the points q ∈ G with the points x ∈ R

N , N =
∑m

i=1 dim Vi, by
the rule q = exp(

∑
i,j xijXij). The collection {xij} is called the coordinates

of q ∈ G. The number N =
∑m

i=1 dim Vi is the topological dimension of the
Carnot group. The biinvariant Haar measure on G is denoted by dx; this is
the push-forward of the Lebesgue measure in RN under the exponential map.
The family of dilations {δλ(x) : λ > 0} on the Carnot group is defined as

δλx = δλ(xij) = (λx1, λ
2x2, . . . , λ

mxm),

where xi = (xi1, . . . , xini
). Moreover, d(δλx) = λQdx and the quantity Q =∑m

i=1 i dim Vi is called the homogeneous dimension of G.

The Euclidean space R
n with the standard structure is an example of the

Abelian Carnot group: the exponential map is the identity and the vector
fields ∂

∂xi
, i = 1, . . . , n have only trivial commutators and form the basis of

the corresponding Lie algebra.

The simplest example of a non-abelian Carnot group is the Heisenberg
group H

n. The non-commutative multiplication is defined as

pq = (x, y, t)(x′, y′, t′) = (x + x′, y + y′, t + t′ − 2xy′ + 2yx′),
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where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, t ∈ R, and the left translation

Lp(q) = pq is defined. The left-invariant vector fields

Xi =
∂

∂xi

+ 2yi
∂

∂t
, i = 1, . . . , n,

Yi =
∂

∂yi

− 2xi
∂

∂t
, i = 1, . . . , n,

T =
∂

∂t
,

form the basis of the Lie algebra of the Heisenberg group. All non-trivial
relations are of the form [Xi, Yi] = −4T , i = 1, . . . , n, and all other commu-
tators vanish. Thus, the Heisenberg algebra has the dimension 2n + 1 and
splits into the direct sum G = V1 ⊕ V2. The vector space V1 is generated by
the vector fields Xi, Yi, i = 1, . . . , n, and the space V2 is the one-dimensional
center which is spanned by the vector field T .

We use the Carnot-Carathéodory metric based on the length of horizontal
curves. An absolutely continuous map γ : [0, b] → G is called a curve. A
curve γ : [0, b] → G is said to be horizontal if its tangent vector γ̇(s) lies in
the horizontal tangent space HTγ(t), i.e. there exist functions aj(s), s ∈ [0, b],
such that

∑n1

j=1 a2
j ≤ 1 and

γ̇(s) =

n1∑
j=1

aj(s)X1j(γ(s)).

The result of [5] implies that one can connect two arbitrary points x, y ∈ G

by a horizontal curve. We fix on HTx a quadratic form 〈·, ·〉, so that the
vector fields X11(x), . . . , X1n1(x) are orthonormal with respect to this form
at every x ∈ G. Then the length of the horizontal curve l(γ) is defined by
the formula

l(γ) =

∫ b

0

〈γ̇(s), γ̇(s)〉1/2ds =

∫ b

0

( n1∑
j=1

|aj(s)|2
)1/2

ds.

The Carnot-Carathéodory distance dc(x, y) is the infimum of the length over
all horizontal curves connecting x and y ∈ G. Since the quadratic form is
left-invariant, the Carnot-Carathéodory metric is also left-invariant. The
group G is connected, therefore, the metric dc(x, y) is finite (see [19]). A ho-
mogeneous norm on G is, by definition, a continuous non-negative function
| · | on G, such that |x| = |x−1|, |δλ(x)| = λ|x|, and |x| = 0, if and only
if x = 0. Since all homogeneous norms are equivalent, we choose one that
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satisfies the triangle inequality: |x−1 y| ≤ |x| + |y|. By B(x, r) we denote
the open ball of radius r > 0 centered at x in the metric dc. Note that
B(x, r) = {y ∈ G : |x−1y| < r} is the left translation of the ball B(0, r)
by x which is the image of the “unit ball” B(0, 1) under δr. The Hausdorff
dimension of the metric space (G, dc) coincides with its homogeneous di-
mension Q. By |E| we denote the measure of the set E. Our normalizing
condition is such that the balls of radius one have measure one:

|B(0, 1)| =

∫
B(0,1)

dx = 1.

We have that |B(0, r)| = rQ because the Jacobian of the dilation δr is rQ.

A curve γ : [0, b] → G is called rectifiable if the supremum

sup

{
p−1∑
k=1

dc

(
γ(tk), γ(tk+1)

)}
is finite where the supremum ranges over all partitions 0 = t1 ≤ t2 ≤ . . . ≤
tp = b of the segment [0, b]. We remark that the definition of a rectifiable
curve is based on the Carnot-Carathéodory metric. That is why a curve
is not rectifiable if it is not horizontal [11, 13]. Thus, from now on, we
work only with horizontal curves. A horizontal curve γ, which is rectifiable
with respect to the Carnot-Carathéodory metric, is differentiable almost
everywhere and the tangent vector γ̇ belongs to V1 (see [14]).

Let us define the p-module Mp(Γ(K0,K1; Ω)) of the family of curves
Γ(K0,K1; Ω) and the p-capacity capp(K0,K1; Ω) on the Carnot group.

Our assumption is the following. Let 〈a, b〉 be an interval of one of
the following types: [a, b], [a, b), (a, b], or (a, b). From now on, we suppose
that a curve γ : 〈a, b〉 → G is parameterized by the length element. Let
Ω be an open connected set (domain) on G, K0 and K1 be closed non-
empty disjoint sets in the closure Ω of Ω. We will call (K0,K1; Ω) the
condenser. We will use the symbol Γ(K0,K1; Ω) to denote the family of
curves γ : 〈a, b〉 → Ω ⊂ G which connect the sets K0 and K1, namely, if
γ ∈ Γ(K0,K1; Ω), then γ(〈a, b〉) ∩Ki �= ∅, i = 0, 1, and γ(t) ∈ Ω, t ∈ (a, b).

Let F(Γ(K0,K1; Ω)) denote the set of Borel functions ρ : Ω → [0;∞],
such that for every locally rectifiable γ ∈ Γ(K0,K1; Ω) we have

sup

∫
γ′

ρ ds = sup

∫ l(γ′)

0

ρ(γ′(t)) dt ≥ 1.

The supremum is taken over all arcs γ′, such that γ′ = γ|[α,β] → Ω, [α, β] ⊂
〈a, b〉 and l(γ′) is the length of γ′. The quantity F(Γ(K0,K1; Ω)) is called
the set of admissible densities for Γ(K0,K1; Ω).
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Definition 1.1 Let p ∈ (1,∞). The quantity

Mp(Γ(K0,K1; Ω)) = inf

∫
Ω

ρp dx

is called the p-module of the family of curves Γ(K0,K1; Ω). The infimum is
taken over all functions ρ ∈ F(Γ(K0,K1; Ω)).

The Vitali–Carathéodory theorem [15] about approximation of a function
from Lp implies that the set of admissible densities can be reduced to the set
of Borel lower semicontinuous functions. Hence, without loss of generality,
we can assume that ρ ∈ F(Γ(K0,K1; Ω)) is semicontinuous in G.

The properties of the module of a family of curves in the case of G = Rn

one can find, for instance, in [7].

If there exists a constant L such that |ϕ(x) − ϕ(y)| ≤ Ldc(x, y) for all
x, y ∈ D, D ⊂⊂ Ω, then the function ϕ : Ω → R is called locally Lipschitz
continuous in Ω ⊂ G. The Sobolev space L1

p(Ω) over the domain Ω is
defined as a completion of the class of locally Lipschitz continuous function
with respect to the seminorm∥∥ϕ | L1

p(Ω)
∥∥ =

(∫
Ω

‖Xϕ‖p dx
)1/p

< ∞.

Here Xϕ = (X11ϕ, . . . ,X1n1ϕ) is called the horizontal gradient of ϕ and

‖Xϕ‖ =
(∑n1

j=1 |X1jϕ|2
)1/2

. Thus, if u is a smooth function, then Xu is a

horizontal component of the usual Riemannian gradient of u.

Let A(K0,K1; Ω) denote the set of non-negative real valued, locally Lips-
chitz continuous functions ϕ ∈ L1

p(Ω)∩C(Ω), such that ϕ(x) = 0 (ϕ(x) ≥ 1)
in a neighborhood of K0 (K1).

Definition 1.2 For p ∈ (1,∞) we define the p-capacity of (K0,K1; Ω) by

capp(K0,K1; Ω) = inf

∫
Ω

‖Xϕ‖p dx,

where the infimum is taken over all ϕ ∈ A(K0,K1; Ω).

Our main result is the following theorem.

Theorem. Let Ω be a bounded domain in the Carnot group G. Suppose that
K0 and K1 are disjoint non-empty compact sets in the closure of Ω. Then

Mp(Γ(K0,K1; Ω)) = capp(K0,K1; Ω).
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2. Preliminary results

We define an absolutely continuous function on curves of the horizontal
fibration. For this we consider a family of horizontal curves Y which form
a smooth fibration of an open set D ⊂ G. Usually, a curve γ ∈ Y is an
orbit of a smooth horizontal vector field Y ∈ V1. If we denote by ϕs the flow
associated with this vector field, then the fiber is of the form γ(s) = ϕs(p).
Here the point p belongs to the surface S which is transversal to the vector
field Y . The parameter s ranges over an open interval J ∈ R. One can
assume that there is a measure dγ on the fibration Y of the set D ⊂ G. The
measure dγ satisfies the inequalities

k0|B(x,R)|Q−1
Q ≤

∫
γ∈Y, γ ∩B(x,R)�=∅

dγ ≤ k1|B(x,R)|Q−1
Q

for a sufficiently small ball B(x,R) ⊂ D with constants k0, k1 which do not
depend on the ball B(x,R) (see [12, 20, 22]).

Definition 2.1 A function u : Ω → R, Ω ⊂ G, is said to be absolutely
continuous on lines (u ∈ ACL(Ω)) if for any domain U , U ⊂ Ω and any
fibration X defined by a left-invariant vector field X1j, j = 1, . . . , n1, the
function u is absolutely continuous on γ∩U with respect to the H1-Hausdorff
measure for dγ-almost all curves γ ∈ X .

For such a function u the derivatives X1ju, j = 1, . . . , n1, exist almost
everywhere in Ω. If they belong to Lp(Ω) for all X1j ∈ V1, then u is said
to be in ACLp(Ω). If the function f belongs to L1

p(Ω), then there exists a
function u ∈ ACLp(Ω) such that f = u almost everywhere.

The following lemma and theorem are reformulations of the well known
result by Fuglede [7] (see also [21]) for the Carnot group.

Lemma 2.2 Suppose E is a Borel set on the Carnot group G and gk :E→R

is a sequence of Borel functions which converges to a Borel function g :E→R

in Lp(E). There is a subsequence {gkj
}, such that the equality

lim
j→∞

∫
γ

|gkj
− g| ds = 0

holds for all rectifiable horizontal curves γ ⊂ E except for some family whose
p-module vanishes.
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We will prove the next theorem for completeness.

Theorem 2.1 Let Ω be an open subset of G, and u : Ω → R be a function
from ACLp(Ω), p ∈ (1,∞). The function u is absolutely continuous on
rectifiable closed parts of horizontal curves, except for a family of horizontal
curves whose p-module vanishes.

Proof: Let Ul be a sequence of open sets, such that U0 ⊂· · · ⊂ U l ⊂· · · ⊂Ω,⋃∞
l=0 Ul = Ω. Denote by Γ the family of locally rectifiable horizontal curves

whose trace lies in Ω, and such that the function u is not absolutely contin-
uous on each curve of Γ. By Γl we denote the family of closed arcs of the
curves γ ∈ Γ which intersect Ul. By the property of monotonicity of the
p-module we deduce that

Mp(Γ) ≤
∞∑
l=1

Mp(Γl).

The proof will be complete if we establish that Mp(Γl) = 0 for any arbitrary
index l. For a function u satisfying the assertion of Theorem 2.1 there
exists a sequence of the C∞-functions u(i), i ∈ N, which converges to u
uniformly in U l [6]. Moreover, the sequence X1ku

(i) converges to X1ku in
Lp(Ω), k = 1, . . . , n1. By Lemma 2.2 we choose a subsequence (which we
denote by the same symbol) u(i), such that

(2.1)

∫
γ

‖X1ku
(i) − X1ku‖ ds → 0 ∀ k = 1, . . . , n1

for all rectifiable horizontal curves γ : [0, b] → Ul except for a family Γ̃

whose p-module Mp(Γ̃) vanishes. We show that Γl ⊂ Γ̃. Suppose that there

exists a rectifiable horizontal curve γ ∈ Γl \ Γ̃. It is assumed that this curve
is parameterized by its length element. Since the functions ui(γ(s)) are
absolutely continuous, the sequence of functions

u(i)(γ(s)) = u(i)(γ(0)) +

∫ s

0

( n1∑
k=1

ak(t)X1ku
(i)(γ(t))

)
dt,

is defined for any s ∈ [0, b].

The sequence u(i)(γ(s)) converges uniformly to the function u(γ(s)) as
i → ∞. Moreover, from (2.1) we deduce that

u(γ(s)) = u(γ(0)) +

∫ s

0

( n1∑
k=1

ak(t)X1ku(γ(t))

)
dt.

Hence, the function u is absolutely continuous, and we derive that u is
absolutely continuous on γ(s). This contradicts γ ∈ Γl \ Γ̃. �
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In our next step we establish an approximation property for functions
f ∈ Lp(D) defined on an open set D �= G.

Lemma 2.3 Suppose that D is a bounded domain on the Carnot group G.
Let f ∈Lp(D) and ε>0. Then there exists a continuous function f̃ such that

‖f − f̃ | Lp(D)‖ < ε.

Proof: Making use of the Whitney lemma we can find points x1, x2, . . .
in D and positive numbers r1, r2, . . ., such that

(i) B(xi, ri) ⊂ D,

(ii) D ⊂ ⋃
i

B(xi, ri),

(iii) B(xi, 2ri) ⊂ D,

(iv)
∑
i

χB(xi,2ri) ≤ M , with some number M independent of the choice of

the set D and of the point x ∈ D.

Also we can suppose, that the radii of the balls do not exceed 1/2.

Let {h1(x), h2(x), . . .} be a partition of unity on D subordinate to the
cover {B(x1, r1), B(x2, r2), . . .}: hi(x) ≥ 0, supp(hi(x)) ⊂ B(xi, ri), and∑∞

i=1 hi(x) = 1 for x ∈ D. Set fi(x) = hif(x). Then fi, i = 1, 2, . . .,
satisfy the following condition: supp fi ⊂ B(xi, ri), fi ∈ Lp(G) and f(x) =∑∞

i=1 fi(x) for x ∈ D.

We write ϕi for the continuous function supported in the ball B(xi, 2ri)
such that

∫
B(xi,2ri)

ϕi(x) dx = 1. Let us consider the convolution

f̃i(x) = fi � ϕi
t(x) =

∫
G

fi(y)ϕi
t(y

−1x) dy =

∫
G

fi(xy−1)ϕi
t(y) dy,

where ϕi
t(x) = t−Qϕi(δ1/tx). It is known [6] that in this case the inequality

‖f̃i − fi | Lp(G)‖ < 2−iε

holds as t → 0 for arbitrary ε > 0.

Let us define f̃(x) =
∞∑
i=1

f̃i(x). The continuity of f̃ and the inequality

∫
D

|f̃ − f |p dx ≤
∞∑
i=1

{∫
G

|f̃i − fi|p dx
}1/p

< ε

yield the required approximation. �
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Using similar argumentation as in [10], we prove the next lemma.

Lemma 2.4 Let B ⊂ F(Γ(K0,K1; Ω)) consist of continuous functions on
Ω \ (K0 ∪ K1). Then,

(2.2) M = inf
ρ∈B

∫
Ω

ρp(x) dx = Mp(Γ(K0,K1; Ω)).

Proof: Let {B(xi, ri)} be a cover of the domain D = Ω \ (K0 ∪K1) chosen
as in the previous lemma. We also use the notation ρ =

∑∞
i=1 ρi =

∑∞
i=1 hiρ,

where {hi} is a partition of unity subordinate to {B(xi, ri)}. Then by
Lemma 2.3 for ε > 0 and ρ ∈ F(Γ(K0,K1; Ω)) we find continuous func-
tion ρ̃, such that

(2.3)

∫
Ω\(K0∪K1)

ρ̃p(x) dx < ε + Mp(Γ(K0,K1; Ω)).

We claim that (1 + ε)ρ̃ is an admissible density for Γ(K0,K1; Ω). If γ
belongs to Γ(K0,K1; Ω), then

1 ≤
∫

γ

ρ ds =

∫
γ

∞∑
i=1

ρi ds ≤
∞∑
i=1

∫
γ∩B(xi,2ri)

ρi ds.

Making use of the construction of approximation from Lemma 2.3 with pa-
rameters ti < ε, i = 1, 2, . . ., we get∫

γ

ρ̃ ds =

∫
γ

∞∑
i=1

ρ̃i ds =

∫
γ

∞∑
i=1

∫
G

ρi(xy−1)ϕi
ti
(y) dy ds

=

∫
γ

∞∑
i=1

∫
G

ρ(x(δtiz)−1)ϕi(z) dz ds(2.4)

=

∞∑
i=1

∫
B(xi,2ri)

ϕi(z) dz

∫
γ∩B(xi,ri)

ρi(x(δtiz)−1) ds(x).

We note that
∫

B(xi,2ri)
ϕi(z) dz = 1 by definition. Let us denote by γ̃ the

image of the curve γ under the map γ → γ · (δtz)−1. We can choose a
sufficiently small ti, such that the image γ ∩ B(xi, ri) is contained in the
ball B(xi, 2ri). Moreover, | ˙̃γ| = |γ̇ · (δtiz)−1)|. Changing variables in the last
integral of (2.4), we obtain∫

γ

ρ̃ ds =

∞∑
i=1

∫
γ̃∩B(xi,2ri)

ρi(y)| ˙̃γ|−1 ds(y)

≥
∞∑
i=1

∫
γ̃∩B(xi,2ri)

ρi(y)
( |γ̇| + ti|z|

)−1
ds(y) ≥ (

1 + ε
)−1

.
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In the latter we used the inequalities

| ˙̃γ| ≤ |γ̇| + ti|z| , |γ̇| ≤ 1 , ti < ε, |z| < 2ri < 1, i = 1, 2, . . . .

Since ε and ρ ∈ Γ(K0,K1; Ω) are arbitrary, we get from (2.3) that

M = inf
ρ∈B

∫
Ω

ρp(x) dx ≤ Mp(Γ(K0,K1; Ω)).

The reverse inequality is obvious and we have (2.2) as desired. �

3. Proof of the main result

In this section we will be working under the assumption that K0 and K1 are
disjoint non-empty compacts in the closure Ω of a bounded domain Ω ⊂ G.
Moreover, let Kj

0 and Kj
1 be a sequence of closed sets, such that K0

0∩K0
1 = ∅,

Kj
0 ⊂ int Kj−1

0 , Kj
1 ⊂ int Kj−1

1 , K0 =
⋂∞

j=0 Kj
0 , and K1 =

⋂∞
j=0 Kj

1 .

The next lemma in the particular case G = Rn goes back to the work [16]
and, then is digested by Ohtsuka (see for instance [1]).

Lemma 3.1 Let ρ ∈ Lp(G) be a positive function which is continuous in
Ω \ (K0 ∪ K1). For each ε > 0 we can construct a function ρ′ on Ω, ρ′ ≥ ρ,
with the following properties:

(i)
∫

Ω
ρ′p dx ≤ ∫

Ω
ρp dx + ε.

(ii) Suppose that for each j there is γj ∈Γ(Kj
0,K

j
1 ; Ω) such that

∫
γj

ρ′ ds≤α.

Then there exists γ̃ ∈ Γ(K0,K1; Ω), such that
∫

γ̃
ρ ds ≤ α + ε.

Proof: The most difficult part of the lemma is the existence of γ̃ inside Ω.
It is rather easy to find a curve in Ω, but such a curve is not necessarily
from Γ(K0,K1; Ω).

For the beginning let us construct the function ρ′. Let Kj = Kj
0 ∪ Kj

1 ,
W j = Kj−1 \ int Kj, and dj = dist(∂Kj−1, ∂Kj) > 0. Since the function ρ
is strictly positive, we can find a sequence εj → 0, such that

∞∑
j=1

(
1 + ε−1

j

)p
εj < ε,(3.1)

(1 + ε−1
j )dj inf

x∈W j∩Ω
ρ(x) > α.(3.2)

We can find a sequence of compact subsets Ωj ⊂ Ω increasing to Ω, such that∫
Ω\Ωj

ρp dx < εj.
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Let V j = (Ω \ Ωj) ∩ W j, and set

ρ′(x) =

{
(1 + ε−1

j )ρ(x) if x ∈ V j,

ρ(x) if x ∈ Ω \ (∪V j).

Now, applying (3.1), we obtain∫
Ω

ρ′p dx =
∑

j

∫
V j

((
1 + ε−1

j

)
ρ(x)

)p

dx +

∫
Ω\(∪V j)

ρp dx

≤
∑

j

(
1 + ε−1

j

)p
∫

V j

ρp dx +

∫
Ω

ρp dx

≤
∑

j

(
1 + ε−1

j

)p
εj +

∫
Ω

ρp dx < ε +

∫
Ω

ρp dx.

We see that (i) holds. Now let us show (ii). Fix j ≥ 1. The curve γk is
from Γ(Kj

0 ,K
j
1 ; Ω) for the k ≥ j by definition. Hence, γk contains two arcs:

γ′
k such that γ′

k connects ∂Kj
0 and ∂Kj−1

0 ; and γ′′
k which connects ∂Kj

1 and
∂Kj−1

1 . Let us show that γ′
k and γ′′

k are not included in V j. On the contrary,
let us suppose that γ′

k ⊂ V j. Then, using (3.2), we deduce the inequality

α ≥
∫

γk

ρ′ ds ≥
∫

γ′
k

ρ′ ds ≥ (
1+ε−1

j

) ∫
γ′

k

ρ ds ≥ (1+ε−1
j ) inf

x∈W j∩Ω
ρ(x)

∫
γ′

k

ds > α,

which is false. In the same way γ′′
k is not included in V j , therefore,

γk

⋂(
Ωj ∩

(
Kj−1

i \ intKj
i

)) �= ∅ for i = 0, 1 and k ≥ j.

Observe that the sets Ωj ∩
(
Kj−1

i \ int Kj
i

)
, i = 0, 1, are compacts. For a

fixed j let us consider a sequence {γj
k}∞k=j . We can extract a subsequence (we

use the same notation {γj
k}k→∞) which converges to a curve γj

0, such that

γj
0

⋂(
Ωj ∩

(
Kj−1

0 \ intKj
0

)) �= ∅.

Further, we fix a point xj
0 ∈ Ωj ∩ (

Kj−1
0 \ int Kj

0

)
on it. Since ρ is

continuous at xj
0 ∈ Ωj ∩

(
Kj−1

0 \ int Kj
0

)
, we can choose a ball B

(
xj

0, r(x
j
0)

) ⊂
Ω so small that

(3.3)

∫
l

ρ ds ≤ ε/2j+3

for any shortest curve l ⊂ B
(
xj

0, r(x
j
0)

)
which connects the center xj

0 with the

boundary of B
(
xj

0, r(x
j
0)

)
. Renumbering the subsequence, we may assume

that each member of the subsequence {γj
k} intersects B

(
xj

0, r(x
j
0)

)
.
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In the same way we can find a small closed ball B
(
xj

1, r(x
j
1)

) ⊂ Ω, xj
1 ∈

Ωj ∩
(
Kj−1

1 \ int Kj
1

)
, so that {γj

k} intersects B
(
xj

1, r(x
j
1)

)
and an analogue

of (3.3) holds. We start this process from j = 1 and extract a subsequence
{γj

k} from the sequence constructed in the previous step, such that the new
subsequence {γj

k} intersects B
(
xj

0, r(x
j
0)

)
and B

(
xj

1, r(x
j
1)

)
.

Now let us consider the diagonal {γk
k}. Then {γk

k} intersects B
(
xj

0, r(x
j
0)

)
and B

(
xj

1, r(x
j
1)

)
for 1 ≤ j ≤ k. In each ball B

(
xj

i , r(x
j
i )

)
, i = 0, 1, we add

two shortest curves to {γk
k} connecting xj

i with the points of intersections
of {γk

k} with ∂B
(
xj

i , r(x
j
i )

)
, i = 0, 1, 1 ≤ j ≤ k. Thus, we have a connected

horizontal curve γ̃k ∈ Γ(Kk
0 ,Kk

1 ; Ω) passing through all pairs {xj
0, x

j
1}k

j=1.
We have by (3.3) that∫

γ̃k

ρ ds ≤
∫

γk
k

ρ ds + 2

k∑
j=1

ε

2j+3
≤ α +

ε

4
.

Let Γ0 be the union of all horizontal curves in Ω \ (K0 ∪ K1) connecting
x1

0 and x1
1. For i = 0, 1, let Γj

i be the collection of all horizontal curves in
Ω \ (K0 ∪ K1) connecting xj

i and xj+1
i . Then,

inf
γ∈Γ0

∫
γ

ρ ds +

k∑
j=1

inf
γ∈Γj

0

∫
γ

ρ ds +

k∑
j=1

inf
γ∈Γj

1

∫
γ

ρ ds ≤
∫

γ̃k

ρ ds ≤ α +
ε

4
.

Therefore, we can choose C0 ∈ Γ0 and Cj
i ∈ Γj

i , such that∫
C0

ρ ds < inf
γ∈Γ0

∫
γ

ρ ds +
ε

2
,∫

Cj
i

ρ ds < inf
γ∈Γj

i

∫
γ

ρ ds +
ε

2j+3
.

Let
γ̃ = . . . + C1

0 + C0 + C1
1 + . . . .

Then, γ̃ ∈ Γ(K0,K1; Ω) and∫
γ̃

ρ ds ≤ α +
ε

4
+

ε

2
+ 2

∞∑
j=1

ε

2j+3
= α + ε.

The lemma is proved. �
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Theorem 3.1 Let Ω be a bounded domain in the Carnot group G. Suppose
K0 and K1 to be disjoint non-empty compacts in the closure of Ω. Then,

Mp(Γ(K0,K1; Ω)) = capp(K0,K1; Ω).

Proof: Our proof falls into three steps.

Step 1. We start proving the inequality

(3.4) Mp(Γ(K0,K1; Ω)) ≤ capp(K0,K1; Ω).

Let u ∈ A(K0,K1; Ω). Let Γ0 be the locally rectifiable horizontal curves
γ ∈ Γ(K0,K1; Ω), such that u is absolutely continuous on every rectifiable
closed part of γ. Define ρ : Ω → [0,∞] by

ρ(x) =

{ ‖Xu‖ if x ∈ Ω,
0 if x �∈ Ω.

Suppose that γ∈Γ0 and γ : (a, b)→Ω is parameterized by the length element.
If a<t1 <t2 <b, then making use of the inequality |γ̇(t)| ≤ 1, we get∫

γ

ρ ds =

∫ b

a

ρ(γ(t)) dt ≥
∫ t2

t1

‖Xu(γ(t))‖ dt(3.5)

≥
∣∣∣ ∫ t2

t1

〈Xu(γ(t)) · γ̇(t)〉 dt
∣∣∣ = |u(γ(t2)) − u(γ(t1))|.

Since t1 and t2 are arbitrary, (3.5) implies the inequality
∫

γ
ρ ds ≥ 1. Hence,

ρ is admissible for the family of curves Γ(K0,K1; Ω). Therefore,

Mp(Γ0) ≤
∫

Ω

ρp(x) dx =

∫
Ω

‖Xu(x)‖p dx.

Taking infimum over all u ∈ A(K0,K1; Ω) we get Mp(Γ0) ≤ capp(K0,K1; Ω).
Theorem 2.1 implies Mp(Γ0) = Mp(Γ(K0,K1; Ω)), and (3.4) follows from
the above.

Step 2. Now we prove the reverse inequality

(3.6) Mp(Γ(K0,K1; Ω)) ≥ capp(K0,K1; Ω)

for the case (K0 ∪ K1) ∩ ∂Ω = ∅. Lemma 2.4 allows us to assume that ρ ∈
F(Γ(K0,K1; Ω)) is continuous in Ω\ (K0∪K1). Let us define u : Ω → [0,∞]
by u(x) = min(1, inf

∫
βx

ρ ds) where the infimum is taken over all locally
rectifiable horizontal curves βx ∈ Ω connecting K0 and x. We claim that
u ∈ A(K0,K1; Ω) and ‖Xu‖ ≤ ρ almost everywhere in Ω. If u ≡ 1, then
there is nothing to prove.
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Let u �≡ 1, and let αx1,x2 be a shortest curve which connect x1 and x2,
and βx1 be a rectifiable curve connecting K0 and x1. Then,

u(x2) ≤
∫

βx1

ρ ds +

∫
αx1,x2

ρ ds ≤
∫

βx1

ρ ds + max
x∈αx1,x2

ρ(x)dc(x1, x2).

Since βx1 is arbitrary, we obtain

u(x2) ≤ u(x1) + max
x∈αx1,x2

ρ(x)dc(x1, x2).

Similarly, we have

u(x1) ≤ u(x2) + max
x∈αx1,x2

ρ(x)dc(x1, x2).

These two inequalities prove that

(3.7) |u(x1) − u(x2)| ≤ max
x∈αx1,x2

ρ(x)dc(x1, x2).

If u satisfies (3.7), then u is locally Lipschitz continuous in Ω. Therefore,
u has the derivative X1ju, j = 1, . . . , n1, almost everywhere in Ω by [14].
Suppose now that x0 ∈ Ω is a point where the derivatives X1ju, j = 1, . . . , n1

exist, then we get

|u(x0h) − u(x0)| = |h|‖Xu(x0)‖ + o(|h|) ≤ max
x∈αx0,x0h

ρ(x)|h|.

Letting |h| → 0, we obtain ‖Xu(x0)‖ ≤ ρ(x0). Therefore,

capp(K0,K1; Ω) ≤
∫

Ω

‖Xu‖p dx ≤
∫

Ω

ρp dx

and (3.6) holds.

By (3.4) and (3.6) we conclude that, if (K0 ∪ K1) ∩ ∂Ω = ∅, then

(3.8) capp(K0,K1; Ω) = Mp(Γ(K0,K1; Ω)).

Step 3. Fix ε ∈ (0, 1/2) and let (K0 ∪ K1) ∩ ∂Ω �= ∅. Let ρ ∈
F(Γ(K0,K1; Ω)) be a continuous function in Ω \ (K0 ∪ K1), such that∫

Ω\(K0∪K1)

ρp dx < ε + Mp(Γ(K0,K1; Ω)).

We may assume that ρ is strictly positive on Ω \ (K0 ∪ K1). If this were
not so, we could consider the cut-of-function max(ρ, 1/m) instead of ρ and
suppose that this function satisfies the inequality∫

Ω\(K0∪K1)

(
max(ρ, 1/m)

)p
dx < ε + Mp(Γ(K0,K1; Ω))

for a sufficiently big m ∈ N.
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Let ρ′, {Kj
0}, {Kj

1}, be as in Lemma 3.1. We show that∫
γ

ρ′ ds > 1 − 2ε for all γ ∈ Γ(Kj
0 ,K

j
1 ; Ω)

for a sufficiently big j ∈ N. In fact, if we supposed the contrary, there would
be a sequence {jk} and curves γk ∈ Γ

(
Kjk

0 ,Kjk
1 ; Ω

)
, such that∫

γk

ρ′ ds ≤ 1 − 2ε.

By Lemma 3.1 we would find γ̃ ∈ Γ(K0,K1; Ω), such that∫
γ̃

ρ ds ≤ 1 − 2ε + ε = 1 − ε,

which contradicts ρ ∈ F(Γ(K0,K1; Ω)).

Next we define the function

ρ̃(x) =

{
ρ′

1−2ε
if x ∈ Ω \ (

Kj
0 ∪ Kj

1

)
,

0 if x �∈ Ω \ (
Kj

0 ∪ Kj
1

)
.

It belongs to F(
Γ(K0,K1; Ω ∪ Kj

0 ∪ Kj
1)

)
. This fact and the equality (3.8)

for (K0,K1; Ω ∪ Kj
0 ∪ Kj

1) imply

(Mp(Γ(K0,K1; Ω))+2ε)(1−2ε)1−p≥
∫

Ω

ρ̃p dx≥Mp

(
Γ(K0,K1; Ω ∪ Kj

0 ∪ Kj
1)

)
= capp

(
K0,K1; Ω ∪ Kj

0 ∪ Kj
1

) ≥ capp(K0,K1; Ω).

Hence, letting j → ∞, and then ε → 0, we obtain

MpΓ((K0,K1; Ω)) ≥ capp(K0,K1; Ω)

and the theorem is proved. �

Theorem 3.2 Let K0 and K1 be disjoint non-empty closed sets in the clo-
sure Ω of a bounded domain Ω ⊂ G. Let Kj

0 and Kj
1 be sequences of compact

sets, such that K0
0 ∩K0

1 = ∅, Kj
0 ⊂ int Kj−1

0 , Kj
1 ⊂ int Kj−1

1 , K0 =
⋂∞

j=0 Kj
0,

and K1 =
⋂∞

j=0 Kj
1. Then,

Mp(Γ(K0,K1; Ω)) = lim
j→∞

Mp

(
Γ(Kj

0 ,K
j
1 ; Ω)

)
.
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Proof: Let ρ ∈ F(Γ(K0,K1; Ω)). Lemma 2.4 allows us to assume that ρ is
continuous in Ω \ (K0 ∪ K1). We fix ε ∈ (0, 1) and choose ρ, such that∫

Ω

ρp dx ≤ Mp(Γ(K0,K1; Ω)) + ε.

For a function ρ we can construct ρ′ as in Lemma 3.1. Moreover, (1 −
2ε)−1ρ′ ∈ F(Γj(K

j
0 ,K

j
1 ; Ω)) as it was shown in the proof of the step 3 of

Theorem 3.1. From all these facts we deduce

Mp

(
Γ(Kj

0 ,K
j
1 ; Ω)

) ≤
∫

Ω

(
(1−2ε)−1ρ′

)p

dx ≤ (1−2ε)−p(Mp(Γ(K0,K1; Ω))+ε).

Hence, letting j → ∞, and then ε → 0, we obtain the desired result. �
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