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On coincidence of p-module of a family
of curves and p-capacity on the

Carnot group

Irina Markina

Abstract

The notion of the extremal length and the module of families of
curves has been studied extensively and has given rise to a lot of
applications to complex analysis and the potential theory. In par-
ticular, the coincidence of the p-module and the p-capacity plays an
important role. We consider this problem on the Carnot group. The
Carnot group G is a simply connected nilpotent Lie group equipped
with an appropriate family of dilations. Let  be a bounded do-
main on G and Ky, K; be disjoint non-empty compact sets in the
closure of 2. We consider two quantities, associated with this geo-
metrical structure (Ko, K71;Q). Let My,(I'(Ko, K1;)) stand for the
p-module of a family of curves which connect Ky and K7 in 2. Denot-
ing by cap, (Ko, K1;2) the p-capacity of Ko and K relatively to €,
we show that

Mp(F(KQ, Kl; Q)) = Capp(Ko, Kl; Q)

Introduction

Let D be a domain (an open, connected set) in R" = R™ U {oo}, and let K,
K be disjoint non-empty compact sets in the closure of D. We denote by
M, (I'(Ky, K1; D)) the p-module of a family of curves which connect K, and
Ky in D. Next we use the notation cap, (Ko, K1; D) for the p-capacity of the
condenser (K, K1; D) relatively to D. The question about coincidence of
the p-module of a family of curves and the p-capacity for various geometric
configuration has been studied by many authors. For example, in the case
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when Ky and K; do not intersect the boundary of D and either K, or K;
contains the complement to an open n-ball the problem has been solved
affirmatively by Ziemer in [23]. Hesse in [10] has generalized this result
requiring only (KoU K7)NOD = (). In the series of papers [2, 3, 4] Caraman
has been studying the problem under various conditions on the tangency
geometry of the sets K, and K; with the boundary of D, D € R". In
1993 Shlyk [16] proved, that the coincidence of the p-module and p-capacity
is valid for an arbitrary condenser (Ky, Ki;D), Ko, K; € D, D € R",
(KoU K,)NOD # 0.

A stratified nilpotent group (of which R™ is the simplest example) is
a Lie group equipped with an appropriate family of dilations. Thus, this
group forms a natural habitat for extensions of many of the objects studied
in the Euclidean space. The fundamental role of such groups in analysis was
envisaged by Stein [17, 18]. There has been since a wide development in
the analysis of the so-called stratified nilpotent Lie groups, nowadays, also
known as Carnot groups. In the present article we are studying the prob-
lem of the coincidence between the p-module of a family of curves and the
p-capacity of an arbitrary condenser (K, K71;£2), Q is a bounded domain on
the Carnot group. In [12] the identity M,(I'(Ko, K1;2)) = cap, (Ko, K1;)
was proved for the condenser (Ky, Ki;2) on the Heisenberg group, which is
a two-step Carnot group, requiring that the compacts Ky and K are strictly
inside the domain 2. We would like to mention the result by Heinonen and
Koskela [8] which states that on every general metric spaces the p-capacity
coincides with the p-module but in comparison with our paper they used
different definitions. The use of this general result [8] for the Carnot groups
requires the fact that the smallest very weak upper gradient of a Lipschitz
function is given by the horizontal gradient (see for instance [9]). However
it is not clear that the result of [8] covers the case when the intersection of
the compacts K;, ¢ = 0,1, with the boundary of €2 is not empty. Moreover
the case when (2 is not yp-convex is not obtained from [§].

The author would like to acknowledge Serguei Vodop’yanov for his help-
ful remarks and observations.

1. Notation and definitions

The Carnot group is a connected, simply connected nilpotent Lie group G,
whose Lie algebra G splits into the direct sum of vector spaces Vi & Vo @
... @V, which satisfy the following relations

[‘/i?Vk] :Vk+1a 1§k<m7

V1, V] = {0}
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We identify the Lie algebra G with the space of left-invariant vector
fields. Let Xiq,...,X1,, be a bases of Vj, ny = dimVj, and let (-,-) be a
left-invariant Riemannian metric on V] such that

1 ifi=,
<X“’X1j>_{ 0 if i j.

Then, V; determines a subbundle HT' of the tangent bundle TG with fibers
HT, = span{Xi1(x),..., X1, (2)}, x€G.

We call HT the horizontal tangent bundle of G with HT, as the horizontal
tangent space at x € G. Respectively, the vector fields Xy;, j = 1,...,n4,
we will call the horizontal vector fields.

Next, we extend X1, ..., X1,, to an orthonormal basis
X117‘"7X1n17X217"'7X2n27"'aXm1)"°7anm

of G. Here each vector field X;;, 2 < i <m,1 <7 <n;, =dimV, is a
commutator
Xi‘ - [ .. HXlk‘17X1k!2]X1k‘3] P Xlkz]

of length 7 — 1 generated by the basis vector fields of the space V;.

It was proved (see, for instance, [6]) that the exponential map exp:G —G
from the Lie algebra G into the Lie group G is a global diffeomorphism. We
can identify the points ¢ € G with the points z € RY, N = > dim V;, by
the rule ¢ = exp(}_, ; 7;;Xi;). The collection {z;;} is called the coordinates
of ¢ € G. The number N = > dimV; is the topological dimension of the
Carnot group. The biinvariant Haar measure on G is denoted by dz; this is
the push-forward of the Lebesgue measure in RY under the exponential map.
The family of dilations {dx(x) : A > 0} on the Carnot group is defined as

(5)\[E = (5)\(I'U) = (A$17 A2x27 BRI )\mxm)7

where z; = (2;1,. .., %in,). Moreover, d(dyz) = A9dx and the quantity Q =
Yo idimV; is called the homogeneous dimension of G.

The Euclidean space R™ with the standard structure is an example of the
Abelian Carnot group: the exponential map is the identity and the vector
fields %, ¢t = 1,...,n have only trivial commutators and form the basis of
the corresponding Lie algebra.

The simplest example of a non-abelian Carnot group is the Heisenberg
group H". The non-commutative multiplication is defined as

pq = (z,y,0) (2", ¢, t") = (z+ 2",y +y t +1 —2zy + 2ya’),
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where z = (z1,...,2,), ¥y = (y1,-..,yn) € R", ¢t € R, and the left translation
L,(q) = pq is defined. The left-invariant vector fields

0 0
X, = =1,...
(3 axz + yl at ? Y 7n7
Y, = 0 —Qxl-g, 1=1,...,n,
0
T = —
ot’
form the basis of the Lie algebra of the Heisenberg group. All non-trivial
relations are of the form [X;,Y;] = —4T, i =1,...,n, and all other commu-

tators vanish. Thus, the Heisenberg algebra has the dimension 2n + 1 and
splits into the direct sum G = V; & V5. The vector space V) is generated by
the vector fields X;, Y;, i = 1,...,n, and the space V5 is the one-dimensional
center which is spanned by the vector field T

We use the Carnot-Carathéodory metric based on the length of horizontal
curves. An absolutely continuous map v : [0,b] — G is called a curve. A
curve 7 : [0,b] — G is said to be horizontal if its tangent vector (s) lies in
the horizontal tangent space HT ), i.e. there exist functions a;(s), s € [0, b],

such that Z " ? <1 and

ni

Y(s) = a;(s)X1;(7(s))-

J=1

The result of [5] implies that one can connect two arbitrary points z, y € G
by a horizontal curve. We fix on HT, a quadratic form (-,-), so that the
vector fields X1 (z), ..., Xi,, () are orthonormal with respect to this form
at every © € G. Then the length of the horizontal curve [(7y) is defined by
the formula

0= [ e eas= [ (Zm ) s

The Carnot-Carathéodory distance d.(z,y) is the infimum of the length over
all horizontal curves connecting z and y € G. Since the quadratic form is
left-invariant, the Carnot-Carathéodory metric is also left-invariant. The
group G is connected, therefore, the metric d.(z,y) is finite (see [19]). A ho-
mogeneous norm on G is, by definition, a continuous non-negative function
| -] on G, such that |z| = |z7!|, |6x(z)| = Mz|, and |z| = 0, if and only
if x = 0. Since all homogeneous norms are equivalent, we choose one that
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satisfies the triangle inequality: |z7'y| < |z| + |y|. By B(z,r) we denote
the open ball of radius » > 0 centered at z in the metric d.. Note that
B(x,r) = {y € G : |[x7'y| < r} is the left translation of the ball B(0,r)
by x which is the image of the “unit ball” B(0,1) under §,. The Hausdorff
dimension of the metric space (G,d.) coincides with its homogeneous di-
mension Q). By |E| we denote the measure of the set £. Our normalizing
condition is such that the balls of radius one have measure one:

1B(0,1)] :/ dr = 1.
B(0,1)

We have that |B(0,7)| = 7% because the Jacobian of the dilation 4, is 9.
A curve v : [0,0] — G is called rectifiable if the supremum

sup{zd w)}

is finite where the supremum ranges over all partitions 0 =t <t, < ... <
t, = b of the segment [0,b]. We remark that the definition of a rectifiable
curve is based on the Carnot-Carathéodory metric. That is why a curve
is not rectifiable if it is not horizontal [11, 13]. Thus, from now on, we
work only with horizontal curves. A horizontal curve v, which is rectifiable
with respect to the Carnot-Carathéodory metric, is differentiable almost
everywhere and the tangent vector 4 belongs to Vi (see [14]).

Let us define the p-module M,(I'(Ky, K;;€2)) of the family of curves
['(Ko, K1;$2) and the p-capacity cap,(Ko, K1;€) on the Carnot group.

Our assumption is the following. Let (a,b) be an interval of one of
the following types: [a,b], [a,b), (a,b], or (a,b). From now on, we suppose
that a curve 7 : (a,b) — G is parameterized by the length element. Let
) be an open connected set (domain) on G, K, and K; be closed non-
empty disjoint sets in the closure Q of Q. We will call (Ky, K1;Q) the
condenser. We will use the symbol I'(Ky, K1;2) to denote the family of
curves v : (a,b) — Q C G which connect the sets Ky and K7, namely, if
v € I'(Ko, K1;9), then v({a,b)) N K; #0,i=0,1, and ~(t) € Q, t € (a,b).

Let F(T'(Ko, K1;)) denote the set of Borel functions p : Q — [0; 00],
such that for every locally rectifiable v € T'(Ky, K7;2) we have

=)
sup/ pds = Sup/ p(7/(t))dt > 1.
v 0

The supremum is taken over all arcs 4/, such that 7' = v|a5 — @, [, 5] C
(a,b) and I(7') is the length of 4/. The quantity F(I'(Ko, K1;€)) is called
the set of admissible densities for I'( Ky, K1; ).
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Definition 1.1 Let p € (1,00). The quantity
Mp(F(Ko,KhQ)) = mf/ ppdl'
Q

is called the p-module of the family of curves I'( Ky, K1;). The infimum is
taken over all functions p € F(I'(Ky, K1;Q2)).

The Vitali-Carathéodory theorem [15] about approximation of a function
from L, implies that the set of admissible densities can be reduced to the set
of Borel lower semicontinuous functions. Hence, without loss of generality,
we can assume that p € F(I'(Ky, K1;Q)) is semicontinuous in G.

The properties of the module of a family of curves in the case of G = R"
one can find, for instance, in [7].

If there exists a constant L such that |p(z) — ¢(y)| < Ld.(z,y) for all
x,y € D, D CC (), then the function ¢ : 2 — R is called locally Lipschitz
continuous in © C G. The Sobolev space L(Q) over the domain Q is
defined as a completion of the class of locally Lipschitz continuous function
with respect to the seminorm

1/
le | (@) = (/Qlleode:c) " < oo

Here X = (X119, ..., X1, ) is called the horizontal gradient of ¢ and
1/2

| X ol = (Z?;l |X1j<p|2> . Thus, if u is a smooth function, then Xu is a

horizontal component of the usual Riemannian gradient of u.

Let A(Ko, K1; ) denote the set of non-negative real valued, locally Lips-
chitz continuous functions ¢ € L;(©2)NC(€2), such that ¢(z) =0 (¢(x) > 1)
in a neighborhood of K, (K).

Definition 1.2 For p € (1,00) we define the p-capacity of (Ky, K1;€2) by
cap, (Ko, K13 Q) = inf/ IX el de.
Q
where the infimum is taken over all ¢ € A(Ky, K1; Q).

Our main result is the following theorem.

Theorem. Let ) be a bounded domain in the Carnot group G. Suppose that
Ky and K are disjoint non-empty compact sets in the closure of 2. Then

Mp(F(Ko, Kl; Q)) = Capp(Ko, Kl; Q)
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2. Preliminary results

We define an absolutely continuous function on curves of the horizontal
fibration. For this we consider a family of horizontal curves ) which form
a smooth fibration of an open set D C G. Usually, a curve v € ) is an
orbit of a smooth horizontal vector field Y € V;. If we denote by ¢, the flow
associated with this vector field, then the fiber is of the form ~(s) = ¢4(p).
Here the point p belongs to the surface S which is transversal to the vector
field Y. The parameter s ranges over an open interval J € R. One can
assume that there is a measure dvy on the fibration ) of the set D C G. The
measure dy satisfies the inequalities

kol B, B)| %" < / dy < kn|B(z, R)]*T"
~eY, v NB(z,R)#0

for a sufficiently small ball B(x, R) C D with constants ko, k; which do not
depend on the ball B(z, R) (see [12, 20, 22]).

Definition 2.1 A function v : Q@ — R, Q C G, is said to be absolutely
continuous on lines (u € ACL(Q)) if for any domain U, U C € and any
fibration & defined by a left-invariant vector field X,;, 7 = 1,...,n, the
function u is absolutely continuous on yNU with respect to the H'-Hausdorff
measure for dy-almost all curves v € X.

For such a function u the derivatives Xi;u, j = 1,...,ny, exist almost
everywhere in Q. If they belong to L,(2) for all X;; € Vj, then u is said
to be in ACLP(Q). If the function f belongs to L)(€2), then there exists a
function u € ACLP(Q2) such that f = u almost everywhere.

The following lemma and theorem are reformulations of the well known
result by Fuglede [7] (see also [21]) for the Carnot group.

Lemma 2.2 Suppose E is a Borel set on the Carnot group G and g.: E—R
1s a sequence of Borel functions which converges to a Borel function g: E—R
in L,(E). There is a subsequence {gx,}, such that the equality

hm/!gkj—g]d:s:()
j—oo J,

holds for all rectifiable horizontal curves v C E except for some family whose
p-module vanishes.
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We will prove the next theorem for completeness.

Theorem 2.1 Let Q) be an open subset of G, and u : 2 — R be a function
from ACLP(Q), p € (1,00). The function u is absolutely continuous on
rectifiable closed parts of horizontal curves, except for a family of horizontal
curves whose p-module vanishes.

Proof: Let U, be a sequence of open sets, such that Uy C--- C U; C--- CS,
U2 Ui = Q. Denote by I' the family of locally rectifiable horizontal curves
whose trace lies in €2, and such that the function u is not absolutely contin-
uous on each curve of I'. By I'; we denote the family of closed arcs of the
curves v € I' which intersect U;. By the property of monotonicity of the
p-module we deduce that

M) < 3 My,

The proof will be complete if we establish that M, (I';) = 0 for any arbitrary
index [. For a function w satisfying the assertion of Theorem 2.1 there
exists a sequence of the C™-functions u¥, i € N, which converges to u
uniformly in U; [6]. Moreover, the sequence X;,u® converges to Xi,u in
L,(Q), k=1,...,n1. By Lemma 2.2 we choose a subsequence (which we
denote by the same symbol) u, such that

(2.1) /||X1ku<i> — Xyullds — 0 Y k=1,....m

v
for all rectifiable horizontal curves v : [0,b] — U; except for a family T
whose p-module Mp(f) vanishes. We show that T}, C T. Suppose that there
exists a rectifiable horizontal curve v € T';'\ T. It is assumed that this curve
is parameterized by its length element. Since the functions u’(y(s)) are
absolutely continuous, the sequence of functions

W) =100+ [ (L a0 o
is defined for any s € [0, b].

The sequence u(v(s)) converges uniformly to the function u(v(s)) as
i — 00. Moreover, from (2.1) we deduce that

s n1
) = utr0) + [ S Xuwutr (1) )t
0 N gp=1
Hence, the function w is absolutely continuous, and we derive that w is
absolutely continuous on ~(s). This contradicts v € T'; \ I |
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In our next step we establish an approximation property for functions
f € L,(D) defined on an open set D # G.

Lemma 2.3 Suppose that D s a bounded domain on the Carnot group G.
Let fe L,(D) and €>0. Then there exists a continuous function f such that

If = F I Ly(D)I| < e.

Proof: Making use of the Whitney lemma we can find points xq, o, ...
in D and positive numbers rq, s, ..., such that

(i) B(x;,r;) C D,
(ii) D C LiJB(fEiaTi)y

(iv) > XB(as2r,) < M, with some number M independent of the choice of
the set D and of the point z € D.

Also we can suppose, that the radii of the balls do not exceed 1/2.

Let {hyi(z), ho(z),...} be a partition of unity on D subordinate to the
cover {B(xy,71), B(x2,732),...}: hi(z) > 0, supp(hi(z)) C B(x;,r;), and
Yoy hi(z) = 1for x € D. Set fi(x) = hif(xz). Then f;, i = 1,2,...,
satisfy the following condition: supp f; C B(z;,13), fi € L,(G) and f(z) =
oo, filx) for x € D.

We write ¢ for the continuous function supported in the ball B(x;, 2r;)
such that || Blws.2r) ¢'(z) dx = 1. Let us consider the convolution

Fa) = xile) = [ Bt o dy= [ By e
where ¢i(z) = 79" (81 42). It is known [6] that in this case the inequality
1fi = fi | Lp(G)|| <27

holds as t — 0 for arbitrary € > 0.

Let us define f(z) = 3 f;(x). The continuity of f and the inequality
i=1

J 17— srae < S{ 17 gpas” <

yield the required approximation. [
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Using similar argumentation as in [10], we prove the next lemma.

Lemma 2.4 Let B C F(I'(Ky, K1;9)) consist of continuous functions on
Q \ (KO U K1> Then,

(2.2) M= inf/ﬂpp(x) dz = M,(T(Ko, K1: Q).

pEB

Proof: Let {B(z;,7;)} be a cover of the domain D = Q\ (K, U K;) chosen
as in the previous lemma. We also use the notation p = > "2 p; = > 2, hip,
where {h;} is a partition of unity subordinate to {B(x;,7r;)}. Then by
Lemma 2.3 for ¢ > 0 and p € F(I'(Ky, K1;2)) we find continuous func-
tion p, such that

O\ (KoUK1)

We claim that (1 + €)p is an admissible density for I'(Ky, K1;8). If v
belongs to I'( Ky, K1; ), then

1</pds—/2pzds<2/ p;ds.
gl gl

NB(x;,27;)

Making use of the construction of approximation from Lemma 2.3 with pa-
rameters t; <e,1=1,2,..., we get

/pds- sz ds—/ /m(wy”)%(y) dy ds
7 =1

7@1

(2.4) A > / p(2(62) ") (2) dz ds

_ Z / Si(2) dz / pi((6,2) V) ds(x).
. B(Jﬁi,Q’l‘i) YNB(x4,7;)

=1
We note that fB(mi’%) ©'(2)dz = 1 by definition. Let us denote by 7 the
image of the curve v under the map v — ~ - (6;2)"t. We can choose a
sufficiently small ¢;, such that the image v N B(x;, ;) is contained in the
ball B(x;,2r;). Moreover, |7 = |- (d;,2)")|. Changing variables in the last
integral of (2.4), we obtain

/M%Qi/ ) A1 ds(y)
~ - ANB(z;,27;)

=1
oS

>3 [ a (Bl s = (142)
1 JANB(z4,2r;)

=
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In the latter we used the inequalities
A< Wl +tlzl, A<, ti<e, <2<l i=12,....

Since € and p € I'(Ky, K1; () are arbitrary, we get from (2.3) that

pEB

M = inf/pp(a:) dr < M,(T'(Ko, K1;Q)).

The reverse inequality is obvious and we have (2.2) as desired. |

3. Proof of the main result

In this section we will be working under the assumption that Ky and K, are
disjoint non-empty compacts in the closure Q of a bounded domain 2 C G.
Moreover, let Kg and K { be a sequence of closed sets, such that K{NK?Y = (),
K} cint K§~', K{ cint K{™', Ko =22 K7, and Ky = (72, Ki.

The next lemma in the particular case G = R™ goes back to the work [16]
and, then is digested by Ohtsuka (see for instance [1]).

Lemma 3.1 Let p € L,(G) be a positive function which is continuous in
Q\ (Ko UK)). For each € > 0 we can construct a function p' on Q, p' > p,
with the following properties:

(i) [op?de < [, pPde+e.

(i1) Suppose that for each j there is ; EF(K(%,K{; Q) such that f%_ plds<a.
Then there ezists 7 € T'(Ky, K1;€2), such that f&pds <a+e.

Proof: The most difficult part of the lemma is the existence of 7 inside €.
It is rather easy to find a curve in €, but such a curve is not necessarily
from I'(Ky, K1; Q).

For the beginning let us construct the function p’. Let K/ = Kg U K{ ,
W7 = K771\ int K7, and d; = dist(OK7~*,0K7) > 0. Since the function p
is strictly positive, we can find a sequence €; — 0, such that

(3.1) Y (14ehe <,
j=1

3.2 1+¢e;")d; inf > .
32 (1+55)d;_inf plz) >«
We can find a sequence of compact subsets {2; C 2 increasing to €2, such that

ppdl’ < €;.
0\Q;
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Let VI = (Q\ Q;) N W, and set

(o) = (1+ep(x) if ze Vi,
PR p(x) if z € Q\ (UVY).

Now, applying (3.1), we obtain

/ ’Pdm—Z/ ( (1+¢) p(:v))pda:—i—/ﬂ\(uvj)ppdx
gZ(1+e;1)”/Vijdx+/Qdex
§Z(l—l—ejl)pej—i—/ﬂppd:[<€+/9ppdx.

We see that (i) holds. Now let us show (ii). Fix j > 1. The curve 74 is
from F(Kg, K7;Q) for the k > j by definition. Hence, 7, contains two arcs:
v, such that 4} connects K} and K} ~"; and 4/ which connects K7 and
oK { ~!. Let us show that 7}, and v} are not included in V7. On the contrary,
let us suppose that +j C V7. Then, using (3.2), we deduce the inequality

> | ods > 'ds > (14¢71 > (14e7 f
&_Lpds_//pds_(+€] )/,pds_(jtej )weg}mﬂp( )//ds>04,
k ’Yk 7k ’Yk

which is false. In the same way ~} is not included in V7 | therefore,
() (Qjm (K{*l\intf(g')) £0 for i=0,1 and k>

Observe that the sets €2; N (Kijfl \ int KZ), 1 =0, 1, are compacts. For a
fixed j let us consider a sequence {77}32;. We can extract a subsequence (we
use the same notation {77 }x—.) which converges to a curve 7f, such that

) (0 (K Vine i3) ) #0

Further, we fix a point @) € Q; N (K3~'\ int KJ) on it. Since p is
continuous at z, € ;N (K3~ " \int K7), we can choose a ball B (), (x})) C
2 so small that

(3.3) /pds <g /3
!

for any shortest curve | C B (a:{), r(xé)) which connects the center z) with the
boundary of B(cc%, r(x{))) Renumbering the subsequence, we may assume
that each member of the subsequence {77} intersects B(xz)), r(z})).
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In the same way we can find a small closed ball B(z],r(«])) C ©, 2] €
;N (K{_l \ int KJ) so that {7/} intersects B(ml, r(x{)) and an analogue
of (3.3) holds. We start this process from j = 1 and extract a subsequence
{%} from the sequence constructed in the previous step, such that the new
subsequence {7]} intersects B(z},r(x})) and B(xl, (x])).

Now let us consider the diagonal {y¥}. Then {’y,’j } intersects B (a:‘é, r(z}))
and B(:cl, (x )) for 1 <j < k. In each ball B(z!,r(z )) i=0,1, we add

two shortest curves to {7} connecting 7 with the points of intersections
of {7F} with 0B (z!,7(x])), i =0,1, 1 < j < k. Thus, we have a connected

horizontal curve 7, € T'(K§, K¥;Q) passing through all pairs {2, 27}5_ )
We have by (3.3) that

Akpdsg/ pds+222j+3 <

Let 'y be the union of all horizontal curves in © \ (K¢ U K;) connecting

z) and z}. For i = 0,1, let T be the collection of all horizontal curves in

Q\ (Ko U K;) connecting 27 and 27", Then,

k
£
inf /pds—l— inf /pds+ inf /pdsg/ pds < a+ —.
7€l Jy ;Veré E;WGF v Ak 4
Therefore, we can choose Cy € I'y and €7 € T, such that
£
/ pds < inf /pds+—,
Co ~v€lo 2

ds < inf [ pd
o<t f oo g

= Oy Gyt CL
Then7 :)/ € F(KOaKlv )

Let

/pds<oz+4+ +2 Z2J+3_Oé+€.

The lemma is proved. [
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Theorem 3.1 Let ) be a bounded domain in the Carnot group G. Suppose
Ky and K, to be disjoint non-empty compacts in the closure of ). Then,

MP(F(K(), Kl, Q)) = Capp(K(), Kl, Q)

Proof: Our proof falls into three steps.
Step 1. We start proving the inequality

(3.4) M,(T'(Ko, K1;Q)) < cap,(Ko, K1;9).

Let u € A(Ky, K1;2). Let Iy be the locally rectifiable horizontal curves
v € T'(Ko, K1;), such that u is absolutely continuous on every rectifiable
closed part of . Define p : Q@ — [0, 00| by

(@) = | Xu|| if e
PET=0 0 ifzgQ.

Suppose that y€T'g and 7: (a, b) —Q is parameterized by the length element.
If a<t; <ty <b, then making use of the inequality |¥(t)| < 1, we get

85 [pas= [z [ Ixuoa

> | [ Gutre) - 40) | = lurt2) = utr(e).

Since t; and t, are arbitrary, (3.5) implies the inequality fw pds > 1. Hence,
p is admissible for the family of curves I'( Ky, K1;€2). Therefore,

MyTo) < [ P@yde = [ IXu(@)do

Taking infimum over all u € A(Kj, K1; Q) we get M,,(T'g) < cap, (Ko, K1;).
Theorem 2.1 implies M,(T'y) = M,(I'(Ky, K1;€)), and (3.4) follows from
the above.

Step 2. Now we prove the reverse inequality

(3.6) M,(T'(Ko, K1;82)) > cap, (Ko, K1;9)

for the case (Ko U K1) N9 = (). Lemma 2.4 allows us to assume that p €
F(T'(Ky, K1;9)) is continuous in Q\ (KoUK7). Let us define u : Q — [0, o0
by u(z) = min(1,inf [ 5, Pds) where the infimum is taken over all locally
rectifiable horizontal curves 3, € () connecting Ky and . We claim that
u € A(Ky, K1;9Q) and || Xul| < p almost everywhere in Q. If u = 1, then
there is nothing to prove.
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Let v # 1, and let ay, 5, be a shortest curve which connect x; and x5,
and 3., be a rectifiable curve connecting Ky and z;. Then,

u(xg)g/ pds—l—/ pdsg/ pds+ max p(x)d.(x1,22).
le Oz ,zo B

- TEQ ,xq
Since f3,, is arbitrary, we obtain

w(ze) < ulx) + _Inax p(z)d.(x1, x9).

xT1,TQ

Similarly, we have

u(z1) < u(zz) + max p(z)de(z1,2).

ZEGazl,zZ
These two inequalities prove that

(3.7) lu(zy) — u(za)| < _Inax p(x)d.(z1, x2).

Az ,x9

If u satisfies (3.7), then w is locally Lipschitz continuous in §2. Therefore,
u has the derivative Xy;u, j = 1,...,n;, almost everywhere in Q by [14].
Suppose now that x, € {2 is a point where the derivatives Xy,u, j =1,...,m
exist, then we get

[u(zoh) = u(zo)| = [Al[[ Xu(zo)[| +o(|h]) < max p(z)[h].

zg,x0h

Letting |h| — 0, we obtain || Xu(x)|| < p(x). Therefore,

cap, (Ko, K1; Xu|lPdx < dx
pp ) )

and (3.6) holds.
By (3.4) and (3.6) we conclude that, if (Ko U K1) N9Q = (), then
(38) Capp(Ko,Kl;Q) = Mp<F(K0,K1,Q))
Step 3. Fix ¢ € (0,1/2) and let (Ko U K;) N9Q # 0. Let p €
F(I'(Ko, K1;)) be a continuous function in Q \ (Ko U K), such that
/ ppdl' <€+MP(F(K0,K1,Q))
Q\(KoUK71)

We may assume that p is strictly positive on Q \ (Ko U K7). If this were
not so, we could consider the cut-of-function max(p, 1/m) instead of p and
suppose that this function satisfies the inequality

/ (max(p,l/m))pdx <e+ M,(T'(Ky, K1;Q))
Q\(K()UKl)

for a sufficiently big m € N.
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Let o/, {K]}, {KJ}, be as in Lemma 3.1. We show that

/p'ds>1—25 for all ~ € (K], Ki:Q)

~

for a sufficiently big 7 € N. In fact, if we supposed the contrary, there would
be a sequence {ji} and curves v, € T'(Kj*, K{*;Q), such that

/p’ds§1—25.
Tk

By Lemma 3.1 we would find 4 € I'( Ky, K1;£2), such that
/pdsﬁ 1—2e+e=1-—c¢,
v

which contradicts p € F(I'(Ky, K;;)).

Next we define the function

@) L ifr e Q\ (KJUKY),
xr) = . .
0 ifzgQ\ (KjUKY).

It belongs to f(F(KO, Kyi; QU KU K{)) This fact and the equality (3.8)
for (Ko, K1;Q U K U K]) imply
(M, (T (K, K1;Q))+2¢)(1—2¢) P > /ﬁp dz> M, (I'(Ko, K1; QU KU K{))
= cap, (Ko, K1; QU Kj UKY{) > Cpr(KO, K;Q).
Hence, letting 7 — oo, and then € — 0, we obtain
M,pI'((Ko, K1;2)) > cap, (Ko, K1; Q)

and the theorem is proved. [ |

Theorem 3.2 Let Ky and K, be disjoint non-empty closed sets in the clo-
sure Q of a bounded domain Q C G. Let K and K7 be sequences of compact
sets, such that KgﬁK? =0, K cint K", K cint Ki™", Ky = M=o K3,
and K, = (2, K{. Then,

M,(T(Ko, K1;Q)) = lim M, (T(K3, K{;Q)).

J—00
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Proof: Let p € F(I'(Ky, K1;Q)). Lemma 2.4 allows us to assume that p is
continuous in 2\ (Ko U K7). We fix € € (0,1) and choose p, such that

/ppdl’ < MP<F(K0,K1,Q)) + €.
Q

For a function p we can construct p’ as in Lemma 3.1. Moreover, (1 —
2e)7 1y € F(T;(K}, K{;Q)) as it was shown in the proof of the step 3 of
Theorem 3.1. From all these facts we deduce

Mp(r<Kga Kf? Q)) S/

Q((I—ZE)_lp’>pdx < (1-2¢) (M, (D(Ko, K13 Q))+e).

Hence, letting 7 — 0o, and then € — 0, we obtain the desired result. [ |
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