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On global solutions to a defocusing
semi-linear wave equation

Isabelle Gallagher and Fabrice Planchon

Abstract

We prove that the 3D cubic defocusing semi-linear wave equation
is globally well-posed for data in the Sobolev space Ḣs where s > 3/4.
This result was obtained in [11] following Bourgain’s method ([3]). We
present here a different and somewhat simpler argument, inspired by
previous work on the Navier-Stokes equations ([4, 7]).

1. Introduction and main theorem

We consider the equation

(1.1)

{
∂2

t Φ − ∆Φ + Φ3 = 0 in R × R
3

(Φ, ∂tΦ)|t=0 = (Φ0, Φ1),

where Φ is real valued. This equation is sub-critical with respect to the H1

norm, and, since the nonlinearity is defocusing, local well-posedness in H1

extends to global well-posedness using the conservation of the Hamiltonian
‖∇Φ‖2

L2 + 1
2
‖Φ‖4

L4 . While this approach goes back to the 80’s (it requires
Strichartz estimates, see [8]), it is worth noting that global well-posedness
had been known since the sixties (e.g. [10]), through regularization and com-
pactness methods. The problem of local well-posedness for low regularity
data was answered later, and definitive results were obtained in [14] in a more
general framework. Equation (1.1) turns out to be locally well-posed for ini-

tial data in Ḣ
1
2 × Ḣ− 1

2 and ill-posed below s = 1
2

(which makes sense from a

scaling point of view, as both the equation and the Ḣ
1
2 norm are invariant

under the same rescaling). A natural question is then whether these local
solutions can be extended globally in time, at least for some range 1

2
≤ s < 1.

2000 Mathematics Subject Classification: 35L70, 35L05.
Keywords: Wave equation, Global solution.



162 I. Gallagher and F. Planchon

In [3] Bourgain introduced a general framework for obtaining results of this
type, and applied it to the 2D cubic Schrödinger equation. For equation
(1.1), Bourgain’s method yields global well-posedness in Ḣs for s > 3

4
, as

proved in [11]. We intend to give a different proof of this result, following
a strategy introduced in the context of the Navier-Stokes equations in [4]
(see also [7] for a more recent approach). When compared, the two methods
appear to be somewhat dual of each other.

Let us start with a simple proof which will yield global well-posedness
for s > 3

4
+ 1

12
= 5

6
· Since the equation is globally well-posed for large data in

Ḣ1 and small data in Ḣ
1
2 , one may be tempted to follow a general principle

of nonlinear interpolation and claim the equation to be globally well-posed
in between. To make sense of this heuristic, we proceed in several steps.
What follows is an informal proof. Note that from now on, we will never
mention the regularity of the time derivative of the solution at time t = 0;
it is always one derivative less regular than the solution itself.

1. We split the data Φ0 ∈ Ḣs: Φ0 = u0 + v0 where u0 ∈ Ḣ1 with a
large norm and v0 ∈ Ḣ

1
2 with a small norm. One may achieve this by

splitting in frequency at |ξ| ∼ 2J with large J .

2. We solve the equation (1.1) with small data v0, getting a global solu-

tion v in Ct(Ḣ
1
2 ) ∩ L4

t (L
4
x), and all norms of v are small and have size

less than 2‖v0‖Ḣ
1
2

which is of order 2( 1
2
−s)J . Remark that the usual

smallness assumption on the data forces 2( 1
2
−s)J � ε0. For a later step,

we remark that any additional regularity is preserved, so that in par-
ticular we have (as v0 ∈ Ḣ

1
2
+ 1

6 )

(1.2) ‖v‖
Ct(Ḣ

1
2+1

6 )∩L3
t (L6

x)
≈ 2( 1

2
+ 1

6
−s)J .

This will enables us to estimate v in L3
t (L

6
x) (note that 1

2
+ 1

6
= 2

3
is

smaller than the smoothness we ask for in the theorem, which is 3
4
,

while 2
3

is the smallest smoothness which permits an L6
x estimate

through Strichartz inequalities).

3. To recover a solution of our problem, we solve a perturbed equation,

(1.3)

{
∂2

t u − ∆u + u3 + 3u2v + 3v2u = 0
(u, ut)|t=0 = (u0, u1).

This equation turns out to be locally well-posed in Ḣ1, on a time
interval depending only on ‖u0‖Ḣ1 . This is easily seen through a con-
traction argument in Ct(Ḣ

1). It will be enough to prove the nonlinear
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terms to be L1
t (L

2
x). Using Sobolev embedding, u3 ∈ Ct(L

2
x) and hence

is locally L1
t . On the other hand, v ∈ L3

t (L
6
x) for v0 in Ḣ

1
2
+ 1

6 (recall
Step 2), which yields v2u ∈ L1

t (L
2
x) using Hölder. The remaining term

u2v is controlled by the other two, and denoting by |‖ · ‖| the norm in
the contraction space, we obtain

(1.4) |‖u‖|T � ‖u0‖Ḣ1 + ‖u1‖L2 + 22j( 1
2
+ 1

6
−s)T

1
3 |‖u‖|T + T |‖u‖|3T .

Thus, the linear term on the right can be absorbed on the left, as soon
as T � 2−6j( 1

2
+ 1

6
−s) and we obtain the desired result, with

(1.5) T � inf

(
2−6j( 1

2
+ 1

6
−s),

1

‖u0‖2
Ḣ1

)
.

4. To extend local solutions to global ones, we then need to obtain an
a priori bound on the energy of a solution u. This will be accom-
plished through the energy inequality, provided one can control the
perturbative terms by the energy of u. Indeed, we have the energy
estimate

‖u‖2
Ḣ1 + ‖∂tu‖2

L2 +
1

2
‖u‖4

L4 ≤ ‖u0‖2
Ḣ1 + ‖∂tu‖2

L2 +
1

2
‖u0‖4

L4+(1.6)

+ 6

∫ t

0

|u2v∂tu|ds + 6

∫ t

0

|v2u∂tu|ds.

Taking the supremum over t < T , with

HT
def
= sup

t<T
(‖u‖2

Ḣ1 + ‖∂tu‖2
L2 + ‖u‖4

L4)

gives

HT � H0 + HT

∫ T

0

‖v‖2
L6

x
ds + H

3
2
T

∫ T

0

‖v‖L6
x
ds,

using Hölder and Sobolev embeddings for the integrals on the left.
Recalling (1.2), we obtain

(1.7) HT � 22J(1−s) + HT T
1
3 22J( 2

3
−s) + H

3
2
T T

2
3 2J( 2

3
−s),

which gives control over HT for arbitrarily large T as long s > 5
6

by
choosing J accordingly, as one needs

(1.8) T
4
3 22J(1−s+ 2

3
−s) � 1.

Note that we have estimated ‖u0‖4
L4 by 22J(1−s): this is always possible

by a rescaling in space, as explained below in (2.1).
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This last part is really the only non trivial part of the argument, at least
if one wants the optimal result s > 3

4
: we will have to refine the estimates

on the space time integrals arising from the energy inequality, to lower the
2
3
− s factor in (1.7) to 1

2
− s. In fact, ignoring all irrelevant epsilons, (1.8)

will become

(1.9) T‖u0‖2
Ḣ1‖v0‖2

Ḣ
1
2

� 1.

To pick T as large as we want, we have to play with the respective size of
u0 and v0 and this gives immediately the s > 3

4
restriction: take ‖v0‖Ḣ1/2 ≈

M−1‖Φ‖Ḣs where M is large. Then ‖u0‖Ḣ1 ≈ M
1−θ

θ ‖Φ‖Ḣs , where s =
θ + 1

2
(1 − θ). This forces 1 − 2θ < 0. This barrier at θ = 1

2
between the

conservation law (here, Ḣ1) and the scaling (here, Ḣ
1
2 ) appears to be rooted

in both Bourgain’s method and ours. Indeed, in all the recent progress for
other (technically more complicated) equations like KdV ([6]) or NLS ([5])
the same kind of restrictions appear, through for KdV it solves completely
the well-posedness question as the equation is ill-posed below half-way to
the scaling ([12]).

Let us now state the main theorem.

Theorem 1 Let (Φ0, Φ1) ∈ (Ḣs ∩ L4, Ḣs−1) with s > 3
4
. Then there exists

a unique global in time solution to (1.1). Moreover, we have

(1.10) ‖Φ‖Ḣs(t) ≤ C(‖u0‖Ḣs∩L4)t
(1−s)(6s−3)

4s−3 .

Before proceeding with the proof, several remarks are in order. The
restriction to L4 data can be disposed of at the expense of working with
local Sobolev spaces and use of the finite speed of propagation, as already
mentioned in [11]. Alternatively, one could simply replace the homogeneous
Sobolev spaces by their inhomogeneous counterpart, as in [14]. One may
also state the theorem for other nonlinearities (or Klein-Gordon), and we
will comment on that aspect later, as well as on applying the method to
other equations like the nonlinear Schrödinger equation.

2. Proof of the theorem

We start with the definition of u0 and v0. Since we are working with L2

based spaces, one may simply cut the data Φ0 into its low frequency part
u0 and its high frequency part v0, as we did in the informal proof in the
introduction. This gives us an explicit decomposition, with a parameter 2J

which is the frequency at which we cut. We however point out that one
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needs only an abstract decomposition, as given e.g. by real interpolation.
Here we will have

‖u0‖Ḣ1 ≈ 2J(1−s)‖Φ0‖Ḣs and ‖v0‖Ḣγ ≈ 2J(γ−s)‖Φ0‖Ḣs , for all γ ≤ s.

Let us make a remark concerning the L4 norms. For any λ > 0, we have

‖Φ0(λ·)‖L4 = λ− 3
4‖Φ0‖L4 and ‖Φ0(λ·)‖Ḣs = λs− 3

2‖Φ0‖Ḣs .(2.1)

It follows that as soon as s > 3
4
, the L4 norm of Φ0 can be made arbitrar-

ily small compared to the Ḣs norm by rescaling the data. In particular
since ‖u0‖L4 � ‖Φ0‖L4 we conclude that the quantity ‖u0‖4

L4 can be con-
trolled by ‖u0‖2

Ḣ1 , and we assume this to be the case for the rest of the
proof; that will be useful to estimate the Hamiltonian of u in Section 2.3.

Finally, we recall some definitions and properties of the wave equation
which will be of use later. First we define the Littlewood–Paley operators Sj

and ∆j .

Definition 1 Let Φ ∈ S(R3) be such that Φ̂(ξ) = 1 for |ξ| ≤ 1 and Φ̂(ξ) = 0

for |ξ| > 2. Define, for j ∈ Z, the function Φj(x)
def
= 23jΦ(2jx); then the

Littlewood–Paley operators are

Sj
def
= Φj ∗ · and ∆j

def
= Sj+1 − Sj.

Then we recall the definition of Besov spaces (the Sobolev space Ḣs being
simply the space Ḃs

2,2).

Definition 2 If s < 3
p
, then f belongs to the homogeneous Besov space

Ḃs
p,q(R

3) if and only if the partial sum
∑m

−m ∆jf converges towards f as a

tempered distribution, and the sequence εj
def
= 2js‖∆jf‖Lp belongs to �q(Z).

Finally, we have the Strichartz estimates, which we only state in 3D.

Theorem 2 ([9, 14]) Let (p, q) and (p̃, q̃) be admissible pairs, i.e. such
that 1

p
+ 1

q
= 1

2
, p > 2, and similarly for (p̃, q̃). Let f(x), F (t, x) be two

functions localized at frequency |ξ| ∼ 2j, and denote ω =
√−∆. Then

(2.2) ‖e±iωtf(x)‖Lp
t (Lq

x) � 2
2
p
j‖f(x)‖L2 ,
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and, if u(x, t) = �−1F (x, t) is the solution to the inhomogeneous equation
with zero Cauchy data, then

‖u(x, t)‖L∞
t (L2

x) � 2j( 2
p̃
−1)‖F (x, t)‖

Lp̃′
t (Lq̃′

x )
(2.3)

‖u(x, t)‖Lp
t (Lq

x) � 2j( 2
p
+ 2

p̃
−1)‖F (x, t)‖

Lp̃′
t (Lq̃′

x )
(2.4)

where p′ denotes the dual exponent of p.

2.1. Global existence for the high frequency part

Let us consider the following equation:

(2.5)

{
∂2

t v − ∆v + v3 = 0 in R × R
3

(v, ∂tv)|t=0 = (v0, v1),

where (v0, v1) ∈ Ḣ
1
2 ∩ Ḣγ × Ḣ− 1

2 ∩ Ḣγ−1, with γ ≤ s to be set later. We
have the following result.

Proposition 1 Suppose the initial data satisfies (v0, v1) ∈ Ḣ
1
2 ∩ Ḣγ ×

Ḣ− 1
2 ∩ Ḣγ−1, for any 1

2
≤ γ ≤ s. There exists a constant ε0 such that if

(2.6) 2J( 1
2
−s) � ε0,

then there is a unique, global solution v to (2.5), such that

v ∈ C0(R, Ḣ
1
2 ∩ Ḣγ), ∂tv ∈ C0(R, Ḣ− 1

2 ∩ Ḣγ−1),

and if
2

p
+

2

q
= 1, with p > 2 and q < +∞, v ∈ Lp(R, Ḃ

γ− 2
p

q,2 ), with

(2.7) ‖v‖
Lp(R,Ḃ

γ− 2
p

q,2 )
� 2J(γ−s).

Proof. The proof of that result is straightforward, as using the definition
of v0 we just gave, we have ‖v0‖Ḣ

1
2
≈ 2J( 1

2
−s). The proposition then follows

by the global existence theory for small data ([14]). Note that one may
even lower assumptions on γ to γ > 0, as any positive smoothness can be
propagated (see [16], [15]).

Let us also notice that one may further refine the estimate given in the
proposition, by splitting the solution v = vL + w into the linear part vL and
the nonlinear part w. Then the nonlinear part w satisfies

(2.8) ‖w‖
Lp(R,Ḃ

γ− 2
p

q,2 )
� ‖v‖2

L4
t,x
‖v‖L4(R,Ḃγ

4,2) ≈ 2J(1−2s+γ−s),

which is an easy consequence of the fixed point procedure.
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2.2. Local existence for the low frequency part

In this part we shall study the following equation:

(2.9)

{
∂2

t u − ∆u + u3 + 3uv2 + 3u2v = 0 in R × R
3

(u, ∂tu)|t=0 = (u0, u1),

where v was constructed in the previous part, and with (u0, u1) ∈ Ḣ1 × L2.
Recall that

E
1
2 (u0, u1)

def
= ‖u0‖Ḣ1 + ‖u1‖L2 ≈ 2J(1−s).

Proposition 2 Suppose the initial data satisfies (u0, u1) ∈ Ḣ1 ∩ L4 × L2.
As long as T � 1/E(u0, u1) there is a solution u satisfying

u ∈ C0([0, T ], Ḣ1), ∂tu ∈ C0([0, T ], L2) and u ∈ Lp
(
[0, T ], Ḃ

1− 2
p

q,2

)
,

with 2
p
+ 2

q
= 1, p > 2. Moreover, the norm of u in that space, noted |‖u‖|T ,

is controlled in the following way:

|‖u‖|T � E(u0, u1).

Remark. Let us make a brief comment: since v ∈ Ḣs, one may simply
use the procedure described in the introduction. However we give a slightly

more complicated proof, which only uses v0 ∈ Ḣ
1
2

+

. This emphasizes the

fact that (2.9) is well-posed whenever the perturbation v has at least Ḣ
1
2

+

regularity.

Proof. Let ε > 0 be a given arbitrarily small real number, and define the
norm

|‖u‖|T def
= sup

t∈[0,T ]

(‖u(t)‖Ḣ1 + ‖∂tu(t)‖L2) + ‖u‖
Lp([0,T ],Ḃ

1− 2
p

q,2 )
,

with 1
p

= 1
2
− ε and q = 1

ε
.

We will proceed through the usual fixed point argument for the above
norm, using the integral formulation of the equation (all Strichartz norms

Lp̃([0, T ], Ḃ
1−2/p̃
q̃,2 ) with q̃ < q will be obtained by interpolation with the

Lp([0, T ], Ḃ
1−2/p
q,2 ) and the energy norms). To control |‖u‖|T it is enough to

control the quantities u3, uv2 and u2v in L1([0, T ], L2). Obviously the two
first control the last, so we shall concentrate on u3 and uv2. The first one is
the easiest, as

‖u3‖L1([0,T ],L2) ≤ ‖u‖3
L3([0,T ],L6)

� T‖u‖3
L∞([0,T ],Ḣ1)

.
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For the second term, remark that ‖u‖
Lp

T (L
3
ε )

≤ |‖u‖|T by Sobolev embedding,

where we have noted Lp
T (Lq)

def
= Lp([0, T ], Lq). Then notice that if 1

η
= 1

2
− ε

and 1
σ

= 1
2
− ε

3
, then

‖v2‖Lη([0,T ],Lσ) ≤ ‖v‖2
L2η([0,T ],L2σ)

� ‖v0‖2

Ḣ
1
2
+ ≈ 22J( 1

2

+−s)

by Strichartz’ estimates as recalled above. Since

‖ · ‖
L

2
1+2ε ([0,T ])

≤ T
2ε
3 ‖ · ‖

L
2

1+2ε/3 ([0,T ])
,

we get

‖uv2‖L1([0,T ],L2) � T
2ε
3 22J( 1

2

+−s)‖u‖
Lp([0,T ],Ḃ

1− 2
p

q,2 )
.

Putting those results together we have proved that

|‖u‖|T ≤ ‖u0‖Ḣ1 + ‖u1‖L2 + CT
2ε
3 22J( 1

2

+−s)|‖u|‖T + T‖|u|‖3
T .

Under the condition

(2.10) C22J( 1
2

+−s) ≤ 1

2
,

a superlinear bootstrap argument (see for instance [1], Lemma 2.2) yields
a local solution: indeed as long as T � 1/E(u0, u1), one finds a solution u
satisfying

|‖u‖|T � ‖u0‖Ḣ1 + ‖u1‖L2 .

In the next section we will push this local solution to an arbitrarily long
time by getting an a priori estimate on the energy of u.

2.3. Energy estimate for the low frequency part

In this section we shall prove an estimate for the Hamiltonian of u defined by

H(u)(t)
def
=

(
1

2
‖u(t)‖2

Ḣ1 +
1

2
‖∂tu(t)‖2

L2 +
1

4
‖u(t)‖4

L4

)
.

We shall denote in the following HT (u)
def
= supt≤T H(u)(t). Similarly we

shall call E(u)(t) the energy of u, and ET (u)
def
= supt≤T E(u)(t), with

E(u)(t)
def
=

(
1

2
‖u(t)‖2

Ḣ1 +
1

2
‖∂tu(t)‖2

L2

)
.
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Proposition 3 Suppose the initial data satisfies (u0, u1) ∈ Ḣ1 ∩ L4 × L2.
Then we have the following estimate: for any r < +∞,

ET (u) ≤ HT (u) � E(u0) + T
1
3‖v0‖2

Ḣ
1
2+1

6
ET (u) + T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
ET (u)

3
2

+ T
2
3‖v0‖Ḣ

1
2+1

6
‖v0‖2

Ḣ
1
2
ET (u)

3
2 .(2.11)

Proof. Multiplying (1.1) by ∂tu, integrating over x and t, we get

1

2

(‖u(t)‖2
Ḣ1 + ‖∂tu(t)‖2

L2

)
+

1

4
‖u(t)‖4

L4 ≤ 1

2
(‖u0‖2

Ḣ1 + ‖u1‖2
L2) +

1

4
‖u0‖4

L4

+ 3
∣∣∣∫ t

0

∫
R3 u(s, x)v2(s, x)∂su dxds

∣∣∣ + 3
∣∣∣∫ t

0

∫
R3 u2(s, x)v(s, x)∂su dxds

∣∣∣ .

As remarked at the beginning of Section 2 the quantity ‖u0‖4
L4 is negligible

compared to the energy of the initial data, so taking the supremum over
t < T we get finally

HT (u) � E(u0, u1) + 3

∫ T

0

∣∣∣∣∫
R3

u(t, x)v2(t, x)∂tu dxdt

∣∣∣∣(2.12)

+3

∣∣∣∣∫ T

0

∫
R3

u2(t, x)v(t, x)∂tu dxdt

∣∣∣∣ .

Let us call I and II the two space–time integrals appearing on the right–
hand side of the inequality, and let us start by estimating I, which is the
easiest. We have

I ≤
∫ T

0

‖v(t)‖2
L6‖u(t)‖L6‖∂tu(t)‖L2 dt

≤ ET (u)

∫ T

0

‖v(t)‖2
L6 dt,

and by Strichartz’ estimates, we can write

‖v‖2
L2

T L6 � T
1
3‖v‖2

L3
T L6

� T
1
3‖v0‖2

Ḣ
1
2+1

6
.

Finally we get

(2.13) I � T
1
3‖v0‖2

Ḣ
1
2+1

6
ET (u).

Now let us estimate the term II. As noticed in the introduction, one could
use the same type of estimate as above for the term I, but that would
require s > 3

4
+ 1

12
, which is not the index given by the theorem. To improve
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the lower bound on s, one needs to improve the estimate on II. We first
split II into two different pieces, as one may write v = vL + w where vL is
its linear part and w the nonlinear part coming from the v3. The easiest is
the second one, as

‖w‖L3
t (L6

x) � ‖v0‖Ḣ1/2+1/6‖v0‖2
Ḣ1/2

as recalled in Section 2.1 (namely (2.8)). Hence

(2.14) ‖wu2∂tu‖L1
T L1 � T 2/3‖v0‖Ḣ1/2+1/6‖v0‖2

Ḣ1/2ET (u)
3
2 .

We are left with the remaining part, IIL =
∫ T

0
vLu2∂tudt. Since one can

only say ∂tu ∈ L∞
t (L2

x), we shall prove some sharper estimates on the
term ‖vLu2‖L1

T L2
x
. The result is the following.

Lemma 1 Let vL be a solution of the free wave equation with data in Ḣ
1
2
+ 1

r

with r < ∞, and let u be such that ET (u) < ∞. Then u2vL ∈ L1
T L2

x and

(2.15) ‖u2vL‖L1
T L2

x
� T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
ET (u).

As this result is really the only non trivial part of the proof of Theorem 1,
we shall postpone its proof to the end of the article, and first explain how
the theorem follows.

2.4. Conclusion

Putting together (2.13), (2.14) and Lemma 1, we find that (2.12) becomes

ET (u) � E(u0, u1) + T
1
3‖v0‖2

Ḣ
1
2+1

6
ET (u)

+ ET (u)
3
2‖v0‖Ḣ

1
2+1

r
(T

1
2
+ 1

r + T
2
3‖v0‖2

Ḣ
1
2
).

Now replacing the Sobolev norms of v0 and the energy of the initial data in
terms of the frequency cut 2J , we get

ET (u) � 22J(1−s) + 22J( 1
2
+ 1

6
−s)T

1
3 ET (u)

+2J( 1
2
+ 1

r
−s)ET (u)

3
2

(
T

1
2
+ 1

r + T
2
3 22J( 1

2
−s)

)
.

Now the conclusion is rather straightforward: we start by noticing that
since s > 1

2
+ 1

6
, we can choose J such that, say,

(2.16) 22J( 1
2
+ 1

6
−s)T

1
3 ≤ 1

2
·
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Then similarly one can also choose J so that

(2.17) T
2
3 22J( 1

2
−s) ≤ T

1
2
+ 1

r .

So we are left with

ET (u) � 22J(1−s) + 2J( 1
2
+ 1

r
−s)ET (u)

3
2 T

1
2
+ 1

r ,

and the same superlinear bootstrap argument as that given in the introduc-
tion yields the condition:

1 − s +
1

2
+

1

r
− s < 0,

which implies the desired result: for any given T (which may be thought of
as very large), as long as s > 3

4
, one may choose J accordingly in order to

control ET and hence have a solution on the time interval [0, T ]. If one sets

T = 2K , then K = (4s − 3)J and ET ≈ 22(1−s)J ≈ T 2 1−s
4s−3 .

We are left with the Ḣs bound for Φ = u + v (uniqueness then follows
from local existence). The high frequency part v is obviously bounded in
C([0,∞), Ḣs) in terms of ‖v0‖Ḣs , since the initial data is in Ḣs. As to the
low frequency part, the linear part uL (solution of the free wave equation
with data u0) is of course uniformly bounded in C0([0,∞), Ḣs) so we are left
with its non linear part uNL. All we need to get is a bound L∞([0, T ], L2), and
the result will then follow by interpolation with C0([0, T ], Ḣ1). For any F ,
we can write∥∥ ∫ t

0

F−1

(
sin s|ξ|
|ξ| F̂ (x, s)

)
ds

∥∥
L2 �

∫ t

0

s‖F (x, s)‖L2ds,

so that means that

‖uNL‖L2(T ) �
∫ T

0

s
(‖u(·, s)3‖L2 + ‖u2v(·, s)‖L2 + ‖uv2(·, s)‖L2

)
ds.

To estimate the two last terms, we use the fact that the initial data v0 is
in Ḣ

1
2
+ 1

6 , hence as in the introduction, one has v ∈ L3([0, T ], L6). It is then
easy to see that the first term ‖u(·, s)3‖L2 is of the highest order, and we
have

‖uNL‖L2(T ) � T 2E
3
2
T ≈ T 3 1−s

4s−3
+2.

Then interpolation between L2 and Ḣ1 gives

‖uNL‖Ḣs(T ) � T (3 1−s
4s−3

+2)(1−s)T
1−s
4s−3

s ≈ T
3(1−s)(2s−1)

2(4s−3) .
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Remark 1. In light of the final part of the argument, one may think that
for the quadratic nonlinearity |Φ|Φ, the situation would be better, as the
equivalent of (2.12) would be linear w.r.t. ET (u). However, in dealing with
the space-time integral replacing I, one has to take into account the low
regularity of the high frequency part, and even using improved Strichartz
estimates, one is not able to do better than s > 1/4, which was already
obtained in [11].

Remark 2. The approach we developed above extends of course to other
equations, but it does not seem to always perform as well as Bourgain’s
method. For example, one may try the cubic 2D Schrödinger equation,
which was the equation considered by Bourgain in [3], where he obtained
global well-posedness for s > 3/5. With our method, one is led to estimating
quantities like

∫
t,x

u2∇u∇vdtdx, where u is the low frequency (H1) part, and

v the high frequency part. To go down to s > 1/2 which is halfway between
H1 and scaling, one would need to bound the integral in term of ‖v0‖L2 and
‖u‖3

L∞
t (H1), which doesn’t seem possible. In fact, one can possibly obtain

something with ‖v0‖H
1
2

using local smoothing (gaining half a derivative).

This would lead to well-posedness for s > 3/4 which is not as good as
Bourgain’s result.

3. Proof of Lemma 1

Recall that we want to prove

‖vu2(t)‖L1
T L2

x
� T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
ET (u),

where v is a solution of the free wave equation. Let us decompose vu2

according to J.-M. Bony’s paraproduct algorithm [2]. We get

vu2 =
∑
j∈Z

Sj−2v∆j(u
2)+

∑
j∈Z

∆j

(∑
k>j

∆kv∆k(u
2)

)
+

∑
j∈Z

Sj−2(u
2)∆jv(3.1)

= (1) + (2) + (3).

We have

‖(1)‖L2 ≤ sup
j∈Z

2−j/2‖Sj−2v‖L∞

∥∥∥∑
j∈Z

2
j
2 |∆j(u

2)|
∥∥∥

L2

� sup
j∈Z

2−j/2‖Sj−2v‖L∞‖u‖2
Ḣ1 ,
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as u2 ∈ Ḃ
1
2
2,1 by product rules in Besov spaces and using Minkowski (l1(L2) ⊂

L2(l1)). It follows that

(3.2) ‖(1)‖L1
T L2 � ET (u)

∫ T

0

sup
j

2−j/2+3j/r‖Sjv(t)‖Lr dt,

using Bernstein as ‖Sj−2v‖L∞ � 23j/r‖Sj−2v‖Lr for all r < +∞. But
Strichartz estimates imply that

‖∆jv‖Lp
T Lr � 22j/p‖∆jv0‖L2 , with

2

p
+

2

r
= 1.

Choosing s = 1/2+1/r and noticing that s−2/p = −1/2+3/r < 0 we may
pass from

22j(s−2/p)‖∆jv‖Lp
T Lr � 2js‖∆jv0‖L2 = ‖v0‖Ḣsµj,

with µj ∈ l2, to (summing over low frequencies)

22j(s−2/p)‖Sjv‖Lp
T Lr � ‖v0‖Ḣsµ̃j,

where µ̃j ∈ l2. We then get from (3.2)

‖(1)‖L1
T L2

x
� ET (u)T

p−1
p

(∫ T

0

sup
j

2jp(−1/2+3/r)‖Sjv(t)‖p
Lr dt

)1/p

� ET (u)T
p−1

p

(∑
j∈Z

22j(−1/2+3/r)‖Sjv‖2
Lp

T Lr

)1/2

,

since p > 2. But p−1
p

= 1
2

+ 1
r
, so it follows that

(3.3) ‖(1)‖L1
T L2

x
� ET (u)T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
.

Now let us estimate the second term of the decomposition (3.1). Let r be
fixed so that 1

r
= 1

2
+ 1

r
· Then

‖(2)‖Lr ≤
∑
k>j

‖∆kv‖Lr‖∆k(u
2)‖L2

� sup
k∈Z

2k(3/r−1/2)‖∆kv‖Lr

∑
k>j

2−k(3/r−1/2)‖∆k(u
2)‖L2

� sup
k∈Z

2k(3/r−1/2)‖∆kv‖Lr2−3j/rcj‖u‖2
Ḣ1 ,
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where (cj) ∈ L∞([0, T ], �2(Z)). It follows that

‖(2)‖
Ḃ

3/r
r,2

� sup
k∈Z

2k(3/r−1/2)‖∆kv‖Lr‖u‖2
Ḣ1 .

By Sobolev embeddings, we are reduced to estimate (3.2) (with ∆j instead
of Sj , which is even easier), and the computations following that estimate
yield in an identical way

(3.4) ‖(2)‖L1
T L2

x
� ET (u)T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
.

We are left with (3), which turns out to be the bad guy, and sharper
Strichartz estimates are needed:

Let us recall what these are (with the 3D numerology):

Theorem 3 ([13]) Let f̂ ∈ L2 be supported in a ball of size 2k, with center
at distance |ξ| ∼ 2j, and k < j. Then the solution u of the wave equation
with data f is such that

(3.5) ‖u‖Lp
t (Lq

x) � 2
k−j

p
+ 2j

p ‖f‖2.

We point out that this estimate is an improvement over what the usual
Strichartz estimate would provide, since we gain an additional small factor
through the power of k − j.

Let us proceed by duality. Let φ ∈ L2
t,x. Then we seek control of

I =

∫
(3)(u, vL)φdxdt ≈

∑
j

∫
Sj−2(u

2)∆jvL∆jφdxdt,

≈
∑

k

∫
∆k(u

2)
∑
k�j

∆jvL∆jφdxdt.

Since we know that u2 ∈ L∞
T (Ḃ

1/2
2,1 ), we can see the last sum as the duality

between L∞
T (Ḃ

1/2
2,1 ) and L1

T (Ḃ
−1/2
2,∞ ), which means we need to prove∫ T

0

sup
k

2−k/2‖∆k

∑
k�j

∆jvL∆jφ‖L2
x
dt � ‖φ‖L2

t,x
.

We will actually prove a slightly better bound: call fk = ∆k

∑
k�j ∆jvL∆jφ,

we will estimate
∑

k fk in L1
T (Ḃ

−1/2+3/r
2r

r+2
,1

) ↪→ L1
T (Ḃ

−1/2
2,∞ ). Since we are only

interested in low frequencies, one may partition the |ξ| ∼ 2j region into balls
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of size 2k. Then we only need to consider in our sum over k < j balls which
are (almost) opposite. Denoting by Q and −Q two such opposite balls, we
are left with

‖∆k

∑
k�j

∆jvL∆jφ‖
L

2r
r+2
x

�
∑
k�j

∑
Q

‖∆Q
j vL‖Lr‖∆−Q

j φ‖L2

�
∑
k�j

(∑
Q

‖∆Q
j vL‖2

Lr

)1/2

‖φ‖L2 ,

using Cauchy-Schwarz on the Q sum and L2 orthogonality with respect to
the Q. Now, at fixed k we have

‖fk‖
L1

T (L
2r

r+2
x )

�
∑
k�j

(∑
Q

‖∆Q
j vL‖2

L2
T Lr

)1/2

‖∆jφ‖L2
T L2.

One can then estimate the Q sum using the precise Strichartz estimates:
we get(∑

Q

‖∆Q
j vL‖2

L2
T Lr

)1/2

� T
1
2
− 1

p

(∑
Q

‖∆Q
j vL‖2

Lp
T Lr

)1/2

� T
1
2
− 1

p 2(k−j)( 1
2
− 1

r
)+j 2

p

(∑
Q

‖∆Q
j v0‖2

L2

)1/2

� T
1
2
− 1

p 2(k−j)( 1
2
− 1

r
)+j 2

p‖∆jv0‖L2 .

Since 2j( 1
2
+ 1

r
)‖∆jv0‖L2‖∆jφ‖L2

T L2 = µj ∈ l1, we have

‖fk‖
L1

T (L
2r

r+2
x )

� T
1
2
− 1

p

∑
k�j

2k( 1
2
− 1

r
)−j( 1

r
+ 1

r )µj

� T
1
2
− 1

p 2k( 1
2
− 3

r
)µ̃k,

which means nothing but

‖(3)(u, vL)‖L2
T L2 � T

1
r ‖u‖2

L∞
T (Ḣ1)

‖v0‖Ḣ
1
2+1

r
,

and since we were after the L1
T L2 norm, one gets an extra T 1/2 to obtain

‖(3)(u, vL)‖L1
T L2 � T

1
2
+ 1

r ‖v0‖Ḣ
1
2+1

r
ET (u).
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