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Harmonic Analysis of the space BV
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Abstract
We establish new results on the space BV of functions with bound-

ed variation. While it is well known that this space admits no uncon-
ditional basis, we show that it is “almost” characterized by wavelet
expansions in the following sense: if a function f is in BV, its coef-
ficient sequence in a BV normalized wavelet basis satisfies a class of
weak-�1 type estimates. These weak estimates can be employed to
prove many interesting results. We use them to identify the interpo-
lation spaces between BV and Sobolev or Besov spaces, and to derive
new Gagliardo-Nirenberg-type inequalities.

1. Background and main results

Many classical function spaces —such as the Sobolev, Hölder or Besov
spaces— can be characterized by harmonic analysis methods through Fou-
rier or wavelet bases, frames, Littlewood-Paley decompositions, approxima-
tion by spline functions, etc. Such characterizations are classically useful in
various contexts such as operator theory or the theoretical and numerical
analysis of PDEs.

More recently, several results in data compression and statistical estima-
tion have shown that optimal algorithms for such applications can be derived
from expansions into unconditional bases for the function space that models
the object to be compressed or estimated (see [11] and [8]). By definition a
sequence (en)n≥0 in a Banach space X is an unconditional basis if and only if

(i) It is a Schauder basis, i.e., for every x ∈ X there exists a unique
sequence (xn)n≥0 such that limN→+∞ ‖x −

∑N
n=0 xnen‖X = 0.

(ii) There exists a constant C such that for all finite sequences (xn)N
n=0 and

(yn)N
n=0 such that |yn| ≤ |xn|, one has ‖

∑
n ynen‖X ≤ C‖

∑
n xnen‖X .
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In other words, the space X can be characterized by the size proper-
ties of the coefficients describing its elements in terms of the basis (en)n≥0.
This means that numerical operations, such as thresholding, attenuating, or
rounding-off the coefficients, are stable in the X norm. The early develop-
ment of wavelet bases (see [13]) is closely related to the question of existence
of an unconditional basis for the Hardy space H1. It is now well established
that wavelet bases are unconditional bases for most classical function spa-
ces that are known to possess one. On the other hand, certain spaces such
as L1, C0, W 1(L1) and BV are known to possess no unconditional basis of
any type.

The space BV, consisting of functions with bounded variation, is of par-
ticular interest for applications to data compression and statistical estima-
tion. It is often chosen as a model for piecewise smooth signals such as geo-
metric images. Recall that, if Ω is an open set of R

d, a function f ∈ L1(Ω)
has bounded variation if and only if its distributional gradient ∇f is a finite
measure, i.e., if its total variation

(1.1) |f |BV(Ω) := sup
{ ∫

Ω

f div(g) ; g ∈ C1
c (Ω, Rd), ‖g‖∞ ≤ 1

}
,

is finite. Here, for g = (g1, . . . , gd),

‖g‖∞ :=
∥∥∥
( d∑

i=1

g2
i

)1/2∥∥∥
L∞(Ω)

.

The space of such functions is denoted as BV = BV(Ω). It is a Banach
space when equipped with the norm

(1.2) ‖f‖BV(Ω) := ‖f‖L1(Ω) + |f |BV(Ω).

If a function f ∈ BV(Ω) is in the smaller Sobolev space W 1(L1(Ω)), we can
apply integration by parts in (1.1) and obtain that

(1.3) |f |BV(Ω) :=

∫
Ω

|∇f |.

It was recently shown ([4]) that, although BV does not possess an un-
conditional basis, it is “almost” characterized by wavelet decompositions in
terms of weak-type conditions imposed on wavelet coefficients. Using this
information about BV, it is possible to derive optimal compression or esti-
mation algorithms based on wavelet thresholding.

In order to describe this result, as well as the results of the present
paper, we briefly discuss wavelet bases. We shall confine our discussion
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to the d-dimensional wavelet bases that are derived from a tensor product
multiresolution analysis (see [7] or [13] for a detailed treatment) although
this is not essential.

Consider first the case of orthogonal wavelet bases. Let ψ0 = ϕ be a
univariate, compactly supported scaling function associated with the com-
pactly supported, orthogonal univariate wavelet ψ1 = ψ. Let E′ := {0, 1}d

be the vertices of the unit cube and E denote the set of nonzero vertices.
For each e ∈ E′, we define

(1.4) ψe(x) = ψe1(x1) · · ·ψed(xd).

Let D denote the set of dyadic cubes in R
d and let Dj denote those dyadic

cubes that have side length 2−j . For any dyadic cube I = 2−j(k + [0, 1]d) in
Dj, and any e ∈ E′, we define the wavelet

(1.5) ψe
I(x) := 2j(d−1)ψe(2jx − k),

which is a wavelet scaled relative to I. Note that we have normalized the
wavelets ψe

I in BV(Rd) and not, as is more customary, in L2(R
d). (For d = 2,

the two normalizations coincide.) It follows that

(1.6) C1 ≤ |ψe
I |BV ≤ C2,

where the constants C1 and C2 depend only on the BV(R) norms of the
univariate functions ϕ and ψ. Note also that we can replace the seminorm
| · |BV in (1.6) by the norm ‖ · ‖BV as long as the size of the cubes I remains
bounded. The functions

(1.7) ψe
I , I ∈ D, e ∈ E,

form a complete orthogonal system in L2(R
d).

There is a similar construction of biorthogonal wavelet bases, see e.g. [7].
We start with a pair of one-dimensional compactly supported scaling func-
tions ψ0 := ϕ and ψ̃0 = ϕ̃ which are in duality:

(1.8)

∫
R

ϕ(t)ϕ̃(t − k) dt = δ(k), k ∈ Z,

with δ the Kronecker delta, and their corresponding univariate wavelets
ψ1 := ψ and ψ̃1 := ψ̃. We define the functions ψe

I as in (1.5) and ψ̃e
I si-

milarly except that the factor 2j is used in place of 2j(d−1). The collection
of functions {ψe

I}I∈D,e∈E (when renormalized so that (1.6) holds with | · |BV

replaced by the L2 norm) forms a Riesz basis for L2(R
d) and (a correspon-

dingly renormalized version of) {ψ̃e
I}I∈D,e∈E is its dual basis. The orthogonal
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wavelet bases given above are special cases. Even in the orthogonal case we
shall keep the notation ψ̃e

I to mark the difference in normalization.

Given a tempered distribution f on R
d, we define its wavelet coeffi-

cients by

(1.9) f e
I := 〈f, ψ̃e

I〉

whenever this inner product is defined (for example, if ψ̃e
I is in Cr this

will be the case for all tempered distributions of order < r). The wavelet
decomposition of f is then formally defined as

(1.10) f =
∑
e∈E

∑
I∈D

f e
I ψe

I , .

We can simplify notation by introducing the vectors ψI = (ψe
I)e∈E and fI =

(f e
I )T

e∈E so that we have

(1.11) f =
∑
I∈D

fIψI .

We shall also consider the “non-homogeneous version” of this wavelet
basis, which is obtained by taking only the scales j ≥ 0 and by including the
index e = (0, . . . , 0) when j = 0, i.e., a coarse “layer” of scaling functions.
Denoting by D+ := ∪j≥0Dj the set of dyadic cubes with scale j ≥ 0, we
write this decomposition as

(1.12) f =
∑

I∈D+

FIΨI ,

where the FI and ΨI coincide with fI and ψI if I ∈ Dj, j > 0, while
we incorporate the index e = (0, . . . , 0) when j = 0. Regardless of which
wavelet basis we choose, the subscript I represents the spatial localization
of the wavelets ψI and ψ̃I (I is contained in their support), and its volume
|I| = 2−jd indicates their scale (the size of their support is proportional with
|I|, with a proportionality constant independent of the scale). Note that for
the Haar system, i.e., when ϕ = ϕ̃ = χ]0,1[ and ψ = ψ̃ = χ]0,1/2[ − χ]1/2,1[,

the supports of ψI and ψ̃I coincide exactly with I.

We can now formulate the following result which was first proved in the
case of the Haar system [4] and later extended to more general compactly
supported wavelets [5]. In this theorem, and later, we use | · | to denote the
Euclidean norm in R

l. A pivotal role is played by the space w�1(D) (weak
�1). It consists of those sequences (aI)I∈D for which

(1.13) ‖(aI)‖w�1 := sup
ε>0

[ε #{I ∈ D : |aI | > ε}]

is finite.
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Theorem 1.1 For all f ∈ BV(Rd), the coefficient sequence (fI)I∈D belongs
to the space w�1(D). More precisely, there exists a constant C > 0 such that
for all f ∈ BV(Rd) and ε > 0

(1.14) #{I ∈ D : |fI | > ε} ≤ C|f |BV(Rd)ε
−1.

Similarly, for the non-homogeneous basis indexed by D+, we have

(1.15) #{I ∈ D+ : |FI | > ε} ≤ C‖f‖BV(Rd)ε
−1.

On the other hand, from the BV normalization of the wavelets (see (1.6)),
we see that whenever (FI)I∈D+ ∈ �1(D+) then f :=

∑
I∈D+

FIΨI belongs
to BV and satisfies

(1.16) ‖f‖BV(Rd) ≤ C‖(FI)‖�1(D+).

Therefore, we have almost characterized BV(Rd) in the following sense. Let
bv(D+) denote the discrete space of wavelet coefficient sequences of BV
functions with

(1.17) ‖(FI)I∈D+‖bv := ‖f‖BV(Rd).

Then, we have the continuous embeddings

(1.18) �1(D+) ⊂ bv(D+) ⊂ w�1(D+).

This result is sufficient to ensure the optimality of estimation and compres-
sion algorithms in the sense of [11] (see [4]).

Theorem 1.1 also gives a direct easy access to some fine analysis results,
such as the following improved Poincaré inequality in dimension d = 2:

(1.19) ‖f‖2
L2(R2) ≤ C‖f‖B−1∞ (L∞(R2))‖f‖BV(R2),

where B−1
∞ (L∞(R2)) is the Besov space. The classical Poincaré inequality in

this case would involve the L∞ norm instead of the Besov norm on the right
side of (1.19). The importance of (1.19) is that it scales correctly for both
dilation and modulation (i.e. multiplication by a character eiω·x) whereas
the original Poincaré inequality scales correctly only for dilation. In this
sense, one could say that (1.19) is the “correct” Poincaré inequality.

With Theorem 1.1 in hand, inequality (1.19) can be derived from two
facts indicating a pattern of argument that will be encountered later again.
First one observes the inequality

(1.20) ‖(FI)‖2
�2
≤ ‖(FI)‖�∞‖(FI)‖w�1 .
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The second ingredient is that the L2 and B−1
∞ (L∞(R2)) norms of a function f

are respectively equivalent to the �2 and �∞ norm of the sequence (FI)I∈D+.
These are special cases of norm equivalences that will be described later
in more detail. The proof of (1.19) also uses that for d = 2 the BV- and
L2-normalizations of the wavelets coincide. Note that there exists no other
proof of (1.19) up to now.

The inequalities (1.19) and (1.20) can be viewed as special cases of inter-
polation using the real method of Lions-Peetre (see e.g. [1] for an introduc-
tion). Given a pair of linear spaces (X,Y ) continuously embedded in some
Hausdorff space X , the K-functional for this pair is given by

(1.21) K(f, t;X,Y ) := inf
g∈Y,f−g∈X

‖f − g‖X + t‖g‖Y , t > 0,

where ‖ · ‖X and ‖ · ‖Y are quasi-semi-norms for these spaces. For each
0 < θ < 1, 0 < q ≤ ∞, the intermediate space (X,Y )θ,q consists of all
elements of X + Y for which

(1.22) ‖f‖(X,Y )θ,q
:=

(∫ ∞

0

[t−θK(f, t)]q
dt

t

)1/q

, 0 < q < ∞,

is finite (with the usual change to a sup when q = ∞). The space (X,Y )θ,q

is called an interpolation space for this pair. It is an important question
in analysis to characterize the interpolation spaces for a given pair (X,Y ).
Such characterizations are known for many (but not all) pairs of classical
spaces.

In particular, the intermediate spaces for any pair (�p, �q) of sequence
spaces are known to be Lorentz spaces. Also, the same conclusion holds if
the spaces �p and �q are replaced by their weak counterparts. As a special
case, the “framing” of bv between �1 and w�1 gives

(1.23) �2 = (�∞, �1)1/2,2 ⊂ (�∞, bv)1/2,2 ⊂ (�∞, w�1)1/2,2 = �2.

From this and the characterization of L2 and the Besov space by wavelet
coefficients, we derive

(1.24) L2 = (B−1
∞,∞,BV)1/2,2.

This method of determining interpolation spaces for a pair of smoothness
spaces by identifying them with sequence spaces, via a boundedly invertible
linear mapping, is called the method of retracts. In the case of (1.24), this
result (given in [4]) was new.
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Given any pair (X,Y ), one always has the interpolation inequality

(1.25) ‖f ||(X,Y )θ,q
≤ ‖f‖1−θ

X ‖f‖θ
Y

(see [1], p. 49). Thus, given (1.24), (1.19) and (1.20) in turn follow from this
general principle (although (1.20) can be proved directly in a simple way
as well).

Despite the above success, Theorem 1.1 is not sufficient to answer other
fine questions in analysis. In fact, the present paper was motivated by
questions raised by Yves Meyer concerning the correct form of Gagliardo-
Nirenberg-type inequalities. Improving these inequalities in a similar way to
(1.19) is equivalent to establishing new results on interpolation between BV
and other Sobolev and Besov spaces. The difficulty in accomplishing this is
that general Sobolev and Besov spaces are described by applying weighted
�p(w) norms to wavelet coefficient sequences. The weights w take the form
|I|s where we denote as before by |I| := vol(I) the volume of I. Theorem 1.1
is no longer tailored to this context, since the interpolation spaces between
such a weighted �p space and w�1 no longer yields the desired sequence space.

Fortunately, there is a possible way around this which was first utilized
in [10]. The key is to incorporate weights both in renormalizing the coeffi-
cients and in the weak �1 space. To describe this, we introduce the following
sequence spaces.

Definition 1.2 Let γ ∈ R. For 0 < p < ∞, the space �γ
p(D) consists of

those sequences (cI)I∈D such that (|I|−γcI)I∈D ∈ �p(D, |I|γ), i.e.,

(1.26) ‖(cI)I∈D‖p
�γ
p(D)

:=
(∑

I∈D
|I|(1−p)γ|cI |p

)1/p

< ∞.

The space w�γ
p(D) consists of those sequences (cI)I∈D such that (|I|−γcI)I∈D ∈

w�p(D, |I|γ), i.e.,

(1.27) ‖(cI)‖w�γ
p(D) := sup

ε>0
εp

∑
|cI |>ε|I|γ

|I|γ < ∞.

For p = ∞, the space �γ
∞(D) consists of those sequences (cI)I∈D such that

(|I|−γcI)I∈D ∈ �∞(D), i.e. |cI | ≤ C|I|γ. The spaces �γ
p(D+) and w�γ

p(D+)
are defined analogously.

Note that when γ = 0 this corresponds to the classical �p and w�p spaces.
Note also that �γ

1 coincides with �1 for all γ, while w�γ
1 differs from w�1. In

fact there is no natural ordering of the spaces w�γ
1 as γ varies.
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Introducing the spaces w�γ
p helps us answer some questions concerning

interpolation of smoothness spaces. In the present context of BV, it is easy
to reduce the questions of Meyer to the following:

For which values of γ do we have the embedding of bv into
w�γ

1(D) or equivalently the weak-type estimate

(1.28)
∑

|fI |>ε|I|γ
|I|γ ≤ C|f |BV(Rd)ε

−1 ?

The main result of this paper is to give a precise answer to this question in
the following theorem.

Theorem 1.3 Inequality (1.28) holds if and only if γ > 1 or γ < 1 − 1/d.
The same conclusion holds if in (1.28) we replace (fI)I∈D by (FI)I∈D+ and
|f |BV(Rd) by ‖f‖BV(Rd).

Although Theorem 1.3 includes Theorem 1.1 as a particular case (γ = 0),
the spirit of our proof is quite different from [4].

The proof of Theorem 1.3 is given in the following sections. We use
the remainder of the present section to formulate and prove applications
of Theorem 1.3 to interpolation and Gagliardo-Nirenberg-type inequalities.
We first discuss interpolation between BV and the classical Besov-Sobolev
spaces.

The Besov spaces Bs
p(Lp(R

d)) are typically defined using Littlewood-
Paley decompositions or moduli of smoothness. However, they have an
equivalent formulation in terms of wavelet decompositions (see [13] or [2])
that we shall use here for their definition. Let the univariate scaling function
ϕ and its associated wavelet ψ be in Cr and similarly let ϕ̃ and ψ̃ be in
C r̃. Then, for each −r̃ < s < r, we define the Besov space Bs

p(Lp(R
d)),

1 < p ≤ ∞, as the set of all tempered distributions f such that

(1.29) ‖f‖Bs
p(Lp(Rd)) := ‖(|FI |)‖�γ

p(D+), γ := 1 + (s − 1)p∗/d

is finite, where p∗ denotes the conjugate index to p.

This definition is in agreement with the characterization of Besov spaces
by wavelet decomposition but it looks a little strange because we have used
the �γ

p norms. The usual definition uses the Lp normalized wavelets

ΨI,p = |I|1/p∗−1/d ΨI

and their corresponding coefficients FI,p. Then it takes the form

(1.30) ‖f‖Bs
p(Lp(Rd)) = ‖(|I|−s/d|FI,p|)‖�p(D+)

which is identical with (1.29) because FI,p = |I|1/d−1/p∗ FI .
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There is a similar wavelet description of the homogeneous Besov spaces
Ḃs

p(Lp(R
d)) which were originally defined using Littlewood-Paley decompo-

sitions (see [13]). One can define the space Bs
p(Lp(R

d)) as the set of all
tempered distributions f such that

(1.31) ‖f‖Ḃs
p(Lp(Rd)) := ‖(|fI |)‖�γ

p(D), γ := 1 + (s − 1)p∗/d

is finite.

We shall use the well known fact that for any γ ∈ R and 1 < p ≤ ∞, we
have (see e.g. Theorem 5.3.1, p. 113 in [1])

(1.32) �γ
q = (�γ

p , �
γ
1)θ,q = (�γ

p , w�γ
1)θ,q,

whenever 0 < θ < 1 and

(1.33)
1

q
=

1 − θ

p
+ θ.

We should note that γ is the same for all the spaces in (1.32). Since the
appropriate value of γ is fixed by the Besov space that we wish to pair with
BV, we have no flexibility in its choice and therefore cannot just simply
apply Theorem 1.1 which corresponds to γ = 0.

Clearly from (1.32) and (1.25) it follows that we

(1.34) ‖(aI)‖�γ
q
≤ C‖(aI)‖1−θ

�γ
p

‖(aI)‖θ
w�γ

1
.

Theorem 1.4 Assume that γ > 1 or γ < 1 − 1/d, and let (s, p) satisfy
(s− 1)p∗/d = γ − 1 for some 1 < p ≤ ∞. Then, for any 0 < θ < 1, we have

(1.35) (Bs
p(Lp(R

d)),BV(Rd))θ,q = Bt
q(Lq(R

d))

with equivalent norms and with

(1.36)
1

q
=

1 − θ

p
+ θ, t = (1 − θ)s + θ.

Similarly, we have

(1.37) (Ḃs
p(Lp(R

d)), ḂV(Rd))θ,q = Ḃt
q(Lq(R

d))

with the same restrictions on p, q, t. Here ḂV means that in the definition
of the K-functional (1.21) we use the seminorm | · |BV rather than ‖ · ‖BV.
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Proof. Consider the wavelet transform which linearly maps f into (FI)I∈D+.
In view of (1.29), it is an isometry between Bs

p(Lp(R
d)) and �γ

p(D+). We also
know from (1.18) that the image bv(D+) of BV(Rd) is framed by �γ

1(D+)
and w�γ

1(D+) . Hence, using (1.32), we deduce that a distribution f is in
(Bs

p(Lp(R
d)),BV(Rd))θ,q if and only if (FI)I∈D+ ∈ �γ

q (D+) with equivalent
norms.

Now observe that for q and t as in (1.36) one has (s − 1)p∗ = (t − 1)q∗.
Thus one also has γ = 1 + (t − 1)q∗/d and invoking the definition of Besov
spaces (1.29), the proof is completed. In the homogeneous case, we use the
mapping of f into (fI)I∈D to arrive at (1.37). �

Combining Theorem 1.4 with (1.25) we immediately obtain the following
Gagliardo-Nirenberg-type inequalities.

Theorem 1.5 Under the same assumptions and using the same notation
as in Theorem 1.4 we have

(1.38) ‖f‖Bt
q(Lq(Rd)) ≤ C‖f‖1−θ

Bs
p(Lp(Rd))

‖f‖θ
BV(Rd).

and

(1.39) ‖f‖Ḃt
q(Lq(Rd)) ≤ C‖f‖1−θ

Ḃs
p(Lp(Rd))

|f |θBV(Rd).

In particular, for the Sobolev space Hs(Rd) = W s(L2(R
d)), we have

(1.40) ‖f‖2
Hs(Rd) ≤ C‖f‖B2s−1∞ (L∞(Rd))‖f‖BV(Rd),

provided s < 1/2 or s > 1. For s = 0, this establishes (1.19) in any
dimension.

The remainder of this paper will be devoted to the proof of Theorem 1.3.
We begin in Section 2 by gathering some known results about functions
in BV. In Section 3, we first deal with the case γ < 0 or γ > 1. The case
0 ≤ γ < 1 − 1

d
, which is by far more difficult, is handled in Section 4. Sec-

tion 5 links this technical result with wavelet expansions and completes the
proof of Theorem 1.3. We conclude this section with indicating some im-
plications concerning restricted nonlinear approximation. Finally, Section 6
illustrates that the restriction on γ is sharp by providing counter-examples
for 1 − 1

d
≤ γ ≤ 1.

In all our arguments, and unless stated otherwise, C denotes a generic
constant, the value of which may vary even within the same proof.
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2. Some properties of BV functions

For a detailed treatment of BV functions including the proofs of the following
fundamental results, we refer the reader to [14] or [12].

Although we shall not use it in the sequel, we first recall the alternate
(and equivalent) definition of BV by finite differences: if Ω is an open set
of R

d, f ∈ L1(Ω) has bounded variation if and only if the quantity

(2.1) sup
|h|≤1

‖f − f(· + h)‖L1(Ωh)

|h| ,

is finite where Ωh := {x ∈ Ω : x + th ∈ Ω for t ∈ [0, 1]}. Moreover for a
fixed Ω, this quantity is equivalent to the total variation |f |BV(Ω). We also
recall that the space BV(Ω) is (non-compactly) embedded in Ld∗(Ω) with
d∗ = d

d−1
and that we have the embedding inequality (see [14], p. 81)

(2.2) ‖f‖Ld∗(Ω) ≤ C(Ω)‖f‖BV(Ω).

We shall use the possibility of approximating the functions of BV(Ω) by
smooth functions in the following sense (see e.g. [12], p. 172 or [14], p. 225).

Theorem 2.1 Let f ∈ BV(Ω). Then there exists a sequence {fk}k≥0 in
BV(Ω) ∩ C∞(Ω) such that

(2.3) lim
k→+∞

‖f − fk‖L1(Ω) = 0 and lim
k→+∞

|fk|BV(Ω) = |f |BV(Ω).

This result will allow us to reduce the proof of our weak-type estimates to
smooth functions for which we have |f |BV(Ω) =

∫
Ω
|∇f |.

Characteristic functions of sets are particular instances of BV functions
which will play an important role in our analysis. If E is a bounded open
set with smooth boundary, then it is easy to check from the definition that
χE ∈ BV(Ω) and that

(2.4) |χE|BV(Ω) = Hd−1(∂E ∩ Ω),

where here and later Hs denotes the s-dimensional Hausdorff measure. The
above equality is not true for more general open sets with finite perimeter
but no Lipschitz boundary (take e.g. E := {(x, y) |x| < 1, 0 < |y| < 1}), for
which we have only the inequality

(2.5) |χE|BV(Ω) ≤ Hd−1(∂E ∩ Ω).
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The importance of characteristic functions in the description of BV is
emphasized by the co-area formula which has the following classical form
for sufficiently smooth functions. If f ∈ BV(Ω) ∩ C1(Ω), then one has

(2.6)

∫
Ω

|∇f | =

∫
R

Hd−1(Ω ∩ f−1({t}))dt,

(see [12], p. 112 or [14], p. 76). To extend this relation to general BV func-
tions one introduces the level sets Et = Et(f) defined by Et = {x ∈ Ω :
f(x) ≥ t}. The above formula then takes the following form (see [12],
p. 185):

Theorem 2.2 For f ∈ BV(Ω) one has

(2.7) |f |BV(Ω) =

∫
R

|χEt |BV(Ω)dt.

Such level sets might not have a C1 boundary for almost every t and there-
fore one cannot substitute Hd−1(∂Et ∩ Ω) in place of |χEt |BV. The co-area
formula (2.7) reveals that BV admits an atomic decomposition in terms of
characteristic functions since we have

(2.8) f(x) = lim
z→−∞

z +

∫ +∞

z

χEt(x)dt.

Such a decomposition can be particularly useful when proving properties of
the type Φ(f) ≤ C|f |BV where Φ is a convex functional, since it reduces the
proof to the case where f is a single atom χE.

We shall also need a version of the isoperimetric inequality which we
prove here by applying the embedding of BV into Ld∗ to characteristic func-
tions.

Theorem 2.3 Let Q be an open cube of R
d and let E be a domain with a

smooth boundary. Define EQ := E ∩ Q and its complement ẼQ := Q \ EQ.
Then there exists a constant C independent of E and of Q such that

(2.9) min{|EQ|, |ẼQ|} ≤ C[Hd−1(∂E ∩ Q)]d
∗
.

Proof. Let E∗
Q denote the set of minimal measure among EQ and ẼQ and

define

aQ(f) := |Q|−1

∫
Q

f,

We clearly have |χE − aQ(χE)| ≥ 1/2 on E∗
Q and therefore

(2.10)

∫
Q

|χE − aQ(χE)|d∗ ≥ 2−d∗ min{|EQ|, |ẼQ|}.
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In view of the formula (2.4), (2.9) follows as soon as we can estimate the
left hand side of (2.10) by |χE|d

∗
BV(Ω). This in turn is a consequence of the

following Poincaré inequality for general BV functions

(2.11) ‖f − aQ(f)‖Ld∗ (Q) ≤ C|f |BV(Q).

This could be derived directly but we will use here an argument that will be
needed later anyway. To this end, note that

‖f − aQ(f)‖L1(Q) = |Q|−1

∫
Q

∣∣∣
∫

Q

(f(x) − f(y))dy
∣∣∣ dx

≤ |Q|−1

∫
Q×Q

|f(x) − f(y)|dxdy,(2.12)

and assume first that f ∈ W 1(L1(Ω)). For each x = (x1, . . . , xd) and y =
(y1, . . . , yd) we can define the segments

Si(x, y) := Q ∩ {(x1, . . . , xi−1, t, yi+1, . . . , yd) ; t ∈ R}, i = 1, . . . , d.

With such a definition, we can connect x and y by a path S(x, y) ⊂ ∪iSi(x, y)
so that

|f(x) − f(y)| ≤
d∑

i=1

∫
Si(x,y)

∣∣∣∣ ∂f

∂xi

∣∣∣∣ .
Integrating with respect to x and y we can estimate the right hand side of
(2.12) by

|Q|−1

d∑
i=1

∫
Q×Q

∫
Si(x,y)

∣∣∣∣ ∂f

∂xi

∣∣∣∣ dx dy ≤ |Q|1/d

d∑
i=1

∫
Q

∣∣∣∣ ∂f

∂xi

∣∣∣∣ ≤
√

d|Q|1/d

∫
I

|∇f |.

Now (1.3) and Theorem 2.1 imply that for any f ∈ BV(Q)

‖f − aQ(f)‖L1(Q) ≤ |Q|−1

∫
Q×Q

|f(x) − f(y)|dxdy(2.13)

≤
√

d |Q|1/d |f |BV(Q).

In particular, for the unit d-cube � the estimate ‖f − a�(f)‖BV(�) ≤ (1 +√
d)|f |BV(�) follows. The embedding (2.2) of BV(�) into Ld∗(�) yields

‖f − aQ(f)‖Ld∗(�) ≤ C(�)‖f − aQ(f)‖BV(�) and thus ‖f − a�(f)‖Ld∗ (�) ≤
C(�)|f |BV(�). One easily checks that this latter estimate remains invariant
under rescaling which confirms (2.11) and completes the proof. �
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In the sequel we shall assume Ω = R
d, and the space BV will always

refer to BV(Rd). Let g be a function in L∞ supported on ]0, 1[d and such
that

∫
g = 0. For I := 2−j(]0, 1[d+k) a dyadic cube in D, we define

(2.14) gI := 2jg(2j · −k).

For I ∈ D, we introduce four quantities which measure in some sense the
oscillation of a function f on I. The first one is the size of the inner product
with gI , i.e.

(2.15) cI := cI(f) := |〈f, gI〉|.

The second one is the renormalized error of approximation by constants

(2.16) rI := rI(f) := |I|−1/d‖f − aI(f)‖L1(I).

The third one is the renormalized averaged modulus of continuity

(2.17) wI := wI(f) := |I|−1−1/d

∫
I×I

|f(x) − f(y)|dx dy.

The above three quantities are well defined whenever f ∈ L1(I). When
f ∈ W 1(L1(I)), we define the fourth one as the variation of f on I

(2.18) vI := vI(f) :=

∫
I

|∇f | ;

for general BV functions, we set vI(f) := |f |BV(I).

Lemma 2.4 We have for all f ∈ L1(I)

(2.19) cI(f) ≤ ‖g‖L∞(Rd)rI(f),

and

(2.20) rI(f) ≤ wI(f).

For all f ∈ BV(I) we have

(2.21) wI(f) ≤
√

dvI(f).

Proof. Observing that gI is orthogonal to constants, we obtain

cI(f) = |〈f, gI〉| = |〈f − aI(f), gI〉|

≤ ‖f − aI(f)‖L1(I)‖gI‖L∞ = ‖g‖L∞|I|−1/d‖f − aI(f)‖L1(I),

which is (2.19). The second inequality (2.20) follows from (2.12). Finally
(2.21) immediately follows from (2.13). �
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This list of inequalities will be used to prove the following result.

Theorem 2.5 Let f ∈ BV(Rd). Then (cI(f))I∈D ∈ w�γ
1(D) for all γ <

1 − 1/d or γ > 1. More precisely, there exists a constant C depending only
on γ such that for all f ∈ BV (Rd) and ε > 0 we have

(2.22)
∑

I∈D; cI(f)>ε|I|γ
|I|γ ≤ C|f |BV(Rd)ε

−1.

The proof of this result is the object of the next two sections. This
theorem will then be used in §5 to prove Theorem 1.3. For the proof of
Theorem 2.5, we shall restrict ourselves to f ∈ BV(Rd) ∩ C∞(Rd). The
result for a general f ∈ BV(Rd) is then proved by using the approximation
sequence (fk)k≥0 of Theorem 2.1 and noting that 〈fk, gI〉 tends to 〈f, gI〉 for
all I. If follows that if (2.22) holds for all the fk, then for each finite subset

(2.23) Λ∗
ε ⊂ Λε := {I ∈ D : |〈f, gI〉| > ε|I|γ},

we have the property

(2.24)
∑
I∈Λ∗

ε

|I|γ ≤ C|fk|BV(Rd)ε
−1,

provided k is sufficiently large. Letting k go to infinity, we conclude that
(2.22) also holds for f .

3. The case γ < 0 or γ > 1

We begin with the cases γ < 0 or γ > 1 which have simple proofs. In these
cases, it is sufficient to use the estimate cI(f) ≤ CvI(f) of Lemma 2.4 with
C =

√
d‖g‖L∞.

Theorem 3.1 Assume that γ > 1 or γ < 0. Then f ∈ BV(Rd) ∩ C∞(Rd)
implies that (vI(f)) ∈ w�γ

1(D). More precisely, there exists C = C(γ) such
that for all such f and each ε > 0,

(3.1)
∑

vI(f)>ε|I|γ
|I|γ ≤ Cε−1

∫
Rd

|∇f |.

Proof. For f ∈ BV(Rd)∩C∞(Rd) and ε > 0, we want to estimate
∑

I∈Λε
|I|γ

where

(3.2) Λε := Λε(f) := {I ∈ D : vI(f) > ε|I|γ}.

We first treat the case γ > 1. We define Λmax
ε as the subset of maximal cubes

of Λε, i.e. those I ∈ Λε such that for all J ∈ Λε, I ⊆ J implies I = J .
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Since vI(f) ≤ |f |BV and since γ > 0, there exists a constant A > 0
depending of f and ε such that for |I| ≥ A, we always have vI(f) ≤ ε|I|γ,
i.e. I /∈ Λε. It follows that any cube J ∈ Λε is always contained in some
maximal cube I ∈ Λmax

ε . Consequently, we have the estimate
∑
I∈Λε

|I|γ ≤
∑

I∈Λmax
ε

∑
J⊆I

|J |γ =
∑

I∈Λmax
ε

∑
j≥0

∑
J⊆I,|J |=2−jd|I|

|J |γ

=
∑

I∈Λmax
ε

|I|γ
∑
j≥0

2(1−γ)dj ≤ C
∑

I∈Λmax
ε

|I|γ ≤ Cε−1
∑

I∈Λmax
ε

vI(f).

Since the maximal cubes of Λmax
ε are necessarily pairwise disjoint we conclude

that
∑

I∈Λmax
ε

vI(f) ≤
∫

Rd |∇f | which proves (3.1).

In the case γ < 0, we define Λmin
ε as the subset of minimal cubes of Λε,

i.e., those I ∈ Λε such that for all J ∈ Λε, J ⊆ I implies I = J . Since
vI(f) =

∫
I
|∇f | ≤ ‖∇f‖L∞(J)|I| for all I ⊆ J , and since γ < 0, for any

fixed dyadic cube J there exists a > 0 depending of f and ε such that if
I ⊂ J and |I| ≤ a, we have vI(f) ≤ ε|I|γ, i.e., I /∈ Λε. It follows that any
J ∈ Λε contains only a finite number of I ∈ Λε, and in turn always contains
a minimal cube I ∈ Λmin

ε . Using also the fact that each I ∈ Λmin
ε is contained

in at most one dyadic cube J ∈ Dj for any j, we have the estimate
∑
I∈Λε

|I|γ ≤
∑

I∈Λmin
ε

∑
J⊇I

|J |γ =
∑

I∈Λmin
ε

|I|γ
∑
j≥0

2γdj

≤ C
∑

I∈Λmin
ε

|I|γ ≤ Cε−1
∑

I∈Λmin
ε

vI(f).

We conclude the proof in a similar manner as above, noting that the minimal
cubes of Λmin

ε are necessarily pairwise disjoint. �
In view of the remarks at the end of §2, Theorem 3.1 implies Theorem

2.5 in the cases γ < 0 or γ > 1.

4. The case 0 ≤ γ < 1 − 1/d

In this case, the estimate cI(f) ≤ CvI(f) is not sufficient to prove Theorem
2.5 because the sequence (vI(f)) does not satisfy the weak-type estimate
(3.1) when 0 ≤ γ ≤ 1. For instance, take γ = 0 and consider a non trivial
smooth function f with compact support in ]0, 1[d; observe that there exists
an infinite number of dyadic cubes I containing ]0, 1[d for which we have
vI(f) = C > 0.

Instead we shall use the finer estimate cI(f) ≤ CwI(f), with C = ‖g‖L∞,
combined with the following result.
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Theorem 4.1 Let γ < 1 − 1/d. Then f ∈ BV(Rd) ∩ C∞(Rd) implies that
(wI(f))I∈D ∈ w�γ

1. More precisely, there exists a constant C = C(γ) such
that for all such f and each ε > 0,

(4.1)
∑

wI(f)>ε|I|γ
|I|γ ≤ Cε−1

∫
Rd

|∇f |.

The proof of this result will involve some intermediate lemmas. Define
the set

(4.2) Λε := Λε(f) := {I ∈ D : wI(f) > ε|I|γ}.

Our goal is to show that

(4.3) ε
∑
I∈Λε

|I|γ ≤ C|f |BV(Rd).

We first fix some α such that γ < α < 1 − 1/d and establish a distinction
between two types of cubes in Λε.

Definition 4.2 We say a cube I ∈ Λε is good if for each collection P ⊂ Λε

of pairwise disjoint cubes strictly contained in I, we have

∑
J∈P

|J |α ≤ |I|α,

or if I is minimal in Λε, i.e., there is no J ∈ Λε strictly contained in I. If
I ∈ Λε is not good we say it is bad. We denote the set of good cubes in Λε

by G and the set of bad cubes by B.

Clearly G and B depend on f , ε, γ and α. Our next lemma shows that it is
sufficient to prove (4.3) with G in place of Λε.

Lemma 4.3 We have

(4.4)
∑
I∈B

|I|γ ≤ C
∑
I∈G

|I|γ,

where the constant C > 0 depends only on α and γ.

Proof. Since wJ(f) ≤ C‖∇f‖L∞(I)|J | for all J ⊆ I and since γ < 1, there
exists a constant a > 0 such that if J ⊂ I and |J | ≤ a, we always have
wJ(f) ≤ ε|J |γ, i.e., J /∈ Λε. It follows that any I ∈ Λε contains only a finite
number of J ∈ Λε.
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For I ∈ B, we denote by G(I) the set of all cubes J ⊂ I such that J ∈ G.
Clearly this set is also finite. We shall first prove that

(4.5) |I|α ≤
∑

J∈G(I)

|J |α.

From the definition of bad cubes, there is a set P(I) ⊂ Λε of disjoint cubes
contained in I such that

|I|α ≤
∑

J∈P(I)

|J |α ≤
∑

J∈P(I)∩G
|J |α +

∑
J∈P(I)∩B

|J |α = Σ1 + Σ2.

The terms in Σ1 are not processed further and become part of the right
side of (4.5). The terms in Σ2 are processed further. Namely, for each J
appearing in

∑
2 there is a set P(J) ⊂ Λε such that

|J |α ≤
∑

K∈P(J)

|K|α ≤
∑

K∈P(J)∩G
|K|α +

∑
K∈P(J)∩B

|K|α.

Again, the terms in the first sum are not processed further and become part
of the right side of (4.5), remarking that P(J)∩G is necessarily disjoint from
P(I) ∩ G. The terms in the second sum are processed further. Continuing
in this way, we arrive at (4.5) in a finite number of steps since G(I) is finite,
and since the minimal cubes of Λε are by definition contained in G.

It follows from (4.5) that if I ∈ B, then

|I|γ ≤ |I|γ−α
∑

J∈G(I)

|J |α =
∑

J∈G(I)

|J |γ2−δd(I,J),

where δ := (α − γ)d > 0 and d(I, J) is the number of levels between J and
I, i.e.

(4.6) d(I, J) :=
| log(|I|/|J |)|

d log 2
.

Therefore, the left side of (4.4) does not exceed
∑
I∈B

∑
J∈G(I)

|J |γ2−δd(I,J) ≤
∑
J∈G

|J |γ
∑

I∈B,I⊃J

2−δd(I,J).

For J ∈ G and k > 0, there is at most one I ⊃ J with d(I, J) = k, and
therefore ∑

I∈B,I⊃J

2−δd(I,J) ≤
∞∑

k=1

2−kδ = C.

This proves the lemma. �
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It follows from Lemma 4.3 that we need to estimate only
∑

I∈G |I|γ in
order to prove Theorem 4.1. We shall actually prove that the subsequence
(wI(f))I∈G satisfies a strong �1 property. For this purpose, we introduce the
following definition.

Definition 4.4 A subset R ⊂ D is called α-sparse if and only if for all
I ∈ R and any set P ⊂ R of disjoint dyadic cubes contained in I, we have

(4.7)
∑
J∈P

|J |α ≤ |I|α.

Clearly G is an example of an α-sparse set.

With this definition we have the following theorem.

Theorem 4.5 There exists a constant C such that for any α-sparse set R,
we have

(4.8)
∑
I∈R

wI(f) ≤ C|f |BV(Rd).

Proof. Since we want to prove a strong �1 estimate, we can use the co-area
formula to reduce the proof to the case where f is of the type

(4.9) f = χE,

where E is a set with smooth boundary of finite d− 1-dimensional measure
Hd−1(∂E). Indeed, assume for a moment that (4.8) holds for such charac-
teristic functions. If f ∈ BV(Rd) ∩ C∞(Rd), then, for almost every t ∈ R,
the level sets Et = {x ∈ Ω : f(x) ≥ t} have a smooth boundary and thus
satisfy

(4.10)
∑
I∈R

wI(χEt) ≤ C|χEt |BV(Rd).

For all I, (2.8) yields

(4.11) wI(f) ≤
∫ +∞

−∞
wI(χEt)dt.

Combining these inequalities with (2.7), we conclude that for all finite sub-
sets Λ ⊂ R we have

(4.12)
∑
I∈Λ

wI(f) ≤ C|f |BV(Rd),

and therefore (4.8) also holds for f .
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Also note that |Et| < ∞ if t > 0 and |Rd \ Et| < ∞ if t < 0 (since
f ∈ L1). Thus, it suffices to establish (4.8) for f = χE , where E is a set
such that either |E| < ∞ or |Rd \ E| < ∞, which we will assume for the
rest of the proof. For I ∈ R, we define by EI := I ∩ E and its complement
ẼI = I \ EI . From its definition, we see that wI satisfies the estimate

(4.13) wI(f) ≤ |I|−1−1/d|I|min{|EI |, |ẼI |} = |I|1−1/d min{|EI |, |ẼI |}/|I|.

Clearly,

(4.14)
∑
I∈R

wI(f) =
∑
I∈R∗

wI(f),

where R∗ := {I ∈ R : min{|EI |, |ẼI |} > 0} is the set of cubes whose
interior intersects the boundary ∂E. For each k > 0, denote by Rk the set
of cubes in R∗ such that

(4.15) 2−k−1 < min{|EI |, |ẼI |}/|I| ≤ 2−k.

The sets Rk are pairwise disjoint and R∗ = ∪k>0Rk. We thus have

(4.16)
∑
I∈R

wI(f) =
∑
k>0

∑
I∈Rk

wI(f).

We denote by Rk,0 the maximal cubes of Rk, i.e., the set of those I ∈ Rk

such that there exists no J ∈ Rk strictly containing I. Note that since
|E| < ∞ or |Rd \ E| < ∞, there exists A > 0 such that |I| ≥ A implies

min{|EI |, |ẼI |}/|I| ≤ min{|E|, |Rd \ E|}/|I| ≤ 2−k−1,

i.e. I /∈ Rk. Therefore, any in Rk is contained in some maximal cube of
Rk,0. If I is in Rk,0 and J ∈ Rk is contained in I, we define the generation
of J as the number of different cubes K �= I in Rk such that J ⊆ K ⊂ I.
In particular, all cubes in Rk,0 have generation 0. We denote by Rk,j the
collection of cubes in Rk of generation j. Note that the cubes in Rk,j are
pairwise disjoint, and that Rk = ∪j≥0Rk,j, so that we have

(4.17)
∑
I∈R

wI(f) =
∑
k>0

∑
j≥0

∑
I∈Rk,j

wI(f).

For a fixed k > 0, we can write in view of (4.15) and (4.13)

(4.18)
∑
j≥0

∑
I∈Rk,j

wI(f) ≤ 2−k
∑
j≥0

∑
I∈Rk,j

|I|1−1/d.
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We next define η = 1 − 1/d − α > 0 and remark that for j ≥ 0 each
J ∈ Rk,j+1 must have a parent in Rk,j. From the definition of α-sparse sets
and the fact that the Rk,j, j ≥ 0, are sets of disjoint cubes, we infer that

∑
I∈Rk,j−1

|I|1−1/d =
∑

I∈Rk,j−1

|I|η|I|α ≥
∑

I∈Rk,j−1

|I|η
∑

J∈Rk,j ,J⊂I

|J |α

=
∑

I∈Rk,j−1

∑
J∈Rk,j ,J⊂I

(|I|/|J |)η|J |1−1/d ≥ 2dη
∑

J∈Rk,j

|J |1−1/d,

where the first inequality used the definition (4.7) of α-sparse. Therefore,
we obtain by induction that

(4.19)
∑

I∈Rk,j

|I|1−1/d ≤ 2−dηj
∑

I∈Rk,0

|I|1−1/d,

so that the summation over j, for fixed k, can be bounded by

(4.20)
∑
j≥0

∑
I∈Rk,j

wI(f) ≤ C2−k
∑

I∈Rk,0

|I|1−1/d.

Now if I ∈ Rk,0, we see from (4.15) that |I| ≤ 2k+1 min{|EI |, |ẼI |} and
therefore

(4.21)
∑

I∈Rk,0

|I|1−1/d ≤ 2(k+1)(1−1/d)
∑

I∈Rk,0

(
min{|EI |, |ẼI |}

)1−1/d

.

From the isoperimetric inequality of Theorem 2.3 we obtain

(4.22)
(
min{|EI |, |ẼI |}

)1−1/d

≤ CHd−1(∂E ∩ I).

Since the maximal cubes of Rk,0 are pairwise disjoint, it follows from (4.21)
and (4.22) that

(4.23)
∑

I∈Rk,0

|I|1−1/d ≤ C2k(1−1/d)Hd−1(∂E).

Combining this estimate with (4.20) and (4.18), we obtain∑
j≥0

∑
I∈Rk,j

wI(f) ≤ C2−k/dHd−1(∂E).

Summing over k > 0 according to (4.17), we finally arrive at the estimate

(4.24)
∑
I∈R

wI(f) ≤ CHd−1(∂E) = C|χE|BV(Rd),

where the last equality is (2.4). This concludes the proof of the theorem. �
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We now apply Theorem 4.5 to R = G. Since �1 = �γ
1 ⊂ w�γ

1 , the theorem
implies the weak estimate

∑
I∈G |I|γ ≤ C|f |BV(Rd)ε

−1. From Lemma 4.3 we
see that the proof of Theorem 4.1 is now complete. Combined with the
results of §3, this also completes the proof of Theorem 2.5.

5. Application to wavelet decompositions

The results of the two previous sections prove Theorem 2.5. We cannot
simply replace the coefficients cI(f) by the wavelet coefficients fI in this
theorem, because, in contrast to the functions gI , the compactly supported
dual wavelets ψ̃I generally have a support strictly larger than I, so that
|fI | ≤ CwI(f) need not be true. In order to circumvent this problem we use
a technique proposed by Meyer, already applied in [5].

Theorem 5.1 Let f ∈ BV(Rd). Then (fI)I∈D ∈ w�γ
1(D) for all γ < 1−1/d

or γ > 1. More precisely, there exists a constant C only depending on γ
such that for all f ∈ BV(Rd) and ε > 0 we have

(5.1)
∑

|fI |>ε|I|γ
≤ C|f |BV(Rd)ε

−1.

Proof. We first remark that up to a shift of spatial indices, we can always
assume that the generators ψ̃e of the dual wavelets are supported in ]0, p[d

where p is a sufficiently large prime integer. We fix any e ∈ E and define
g := ψ̃e(p·), which is now supported in ]0, 1[d. For an arbitrary but fixed
r ∈ P := {0, 1, . . . , p − 1}d, we define f̃r(x) := pd−1f(px + r). Theorem 2.5
implies that for γ < 1 − 1/d or γ > 1, we have the weak-type estimate

(5.2)
∑

cr
I(f)>ε|I|γ

|I|γ ≤ C|f̃r|BV(Rd)ε
−1 = C|f |BV(Rd)ε

−1,

with cr
I(f) := |〈f̃r, gI〉|. Now for I := 2−j(]0, 1[d+k), we have

〈f̃r, gI〉 = 2j

∫
Rd

f̃r(x)g(2jx − k)dx = 2j

∫
Rd

pd−1f(px + r)g(2jx − k)dx

= p−12j

∫
Rd

f(x)ψ̃e(2jx − l)dx = p−1f e
J ,

where l := 2jr + pk and J = 2−j(]0, 1[d+l).

We next observe that for j ∈ N, the mapping

(5.3) (k, r) �→ 2jr + pk
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is a bijection from Z
d×P onto Z

d, due to the fact that x �→ 2jx is a bijection
from (Z/pZ)d onto itself. In other words, each coefficient f e

I appears as one
of the cr

I(f), r ∈ P . Since the sets P and E are finite, it follows from these
observations that

(5.4)
∑

|fI |>ε|I|γ ,I∈D+

|I|γ ≤ C|f |BV(Rd)ε
−1.

We can remove the restriction that I ∈ D+ in (5.4) as follows. We apply
this estimate to fq := 2q(1−1/d)f(2q·), q ∈ N, and observe that, by a change
of variable, ∑

|(fq)Ĩ |>ε̃|Ĩ|γ ,Ĩ∈D+

|Ĩ|γ ≤ C|fq|BV(Rd)ε̃
−1,

becomes ∑
|fI |>ε|I|γ ,|I|≤2dq

|I|γ ≤ C|f |BV(Rd)ε
−1,

where |I| = 2qd|Ĩ| and ε̃ = ε2q(1−d)(1−1/d); C is still the same constant,
independent of q and ε. By letting q go to +∞, we arrive at (5.1). �

A similar result can be derived for the non-homogeneous basis associated
with the decomposition (1.12).

Theorem 5.2 Let f ∈ BV(Rd). Then (FI)I∈D+ ∈ w�γ
1(D+) for all γ <

1 − 1/d or γ > 1. More precisely, there exists a constant C depending only
on γ such that for all f ∈ BV(Rd) and ε > 0 we have

(5.5)
∑

|FI |>ε|I|γ
|I|γ ≤ C‖f‖BV(Rd)ε

−1.

Proof. By Theorem 5.1, we already have the weak type estimate

(5.6)
∑

|FI |>ε|I|γ ,|I|<1

|I|γ ≤ C‖f‖BV ε−1,

since FI = fI if |I| < 1. For |I| = 1, we have a strong estimate

(5.7)
∑
I∈D0

|FI | ≤ C
∑
I∈D0

∫
supp(ψ̃I)

|f | ≤ CAd‖f‖L1(Rd),

where A is such that supp(ψ̃e) ⊂ [0, A]d for all e ∈ E′. Combining these
estimates, we obtain (5.5). �

The above results can easily be adapted to most constructions of wavelets
defined on simple bounded domains such as a cube (see e.g. [2] or [6] for
examples of such constructions).
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Let us finally mention that the weak type estimates of Theorem 5.1 and
Theorem 5.2 have equivalent formulations in terms of the approximation
performance of thresholding procedures studied in [3]. For 0 < r ≤ ∞,
consider the Lr-thresholding operator T r

ε defined by

(5.8) T r
ε f :=

∑
‖fIψI‖Lr >ε

fIψI

The results of [3] show that for 0 < p < ∞, the rate of decay of ‖f−T r
ε f‖Hp ,

as ε goes to zero, is determined by weighted weak-type estimates on the
renormalized coefficient sequence (‖fIψI‖Lr)I∈D. Here Hp denotes the Hardy
space which coincides with Lp when p > 1. More precisely, we have by
Theorem 7.1 of [3] that for µ < p,

(5.9) ‖f − T r
ε f‖Hp < Cµ/pε1−µ/p,

if and only if the sequence (‖fIψI‖Lr)I∈D belongs to the space w�µ(D, |I|γ)
with γ := 1 − p/r; the smallest C satisfying (5.9) is then equivalent to
‖(‖fIψI‖Lr)I∈D‖w�µ(D,|I|γ). Note that when p = r, i.e. when we use the same
metric for thresholding as for measuring the approximation error, we find
the standard w�µ spaces. However, there are situations in which one prefers
to use different metrics for thresholding and measuring the approximation
error, such as in statistical estimation, where one may be interested in esti-
mating a noisy function in some arbitrary Lp norm, but where the structure
of the white noise imposes the L2 metric for thresholding. For this particular
situation, the case γ < 1− 1/d in Theorem 5.1, combined with (5.9) implies
the following result:

Theorem 5.3 Let f ∈ BV(Rd). Then for 0 < r < ∞ and p = 1 + r/d, we
have the thresholding estimate

(5.10) ‖f − T r
ε f‖Lp ≤ C|f |BV (Rd)ε

1−1/p.

6. Counter-examples

The purpose of this last section is to prove that Theorem 5.1 and Theorem
5.2 are no longer true for the range 1−1/d ≤ γ ≤ 1. We shall exhibit counter-
examples in the case where the wavelets are given by the Haar system, i.e.
ϕ = ϕ̃ := χ]0,1[ and ψ = ψ̃ := χ]0,1/2[ − χ]1/2,1[. We first consider the one-
dimensional setting, corresponding to the range 0 ≤ γ ≤ 1. If I is a dyadic
interval, then the BV-normalized wavelet coefficient fI of a function f is
given by

(6.1) fI = 〈f, ψ̃I〉 =
1

2
(aIl

(f) − aIr(f)),
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where aIl
(f) and aIr(f) are respectively the averages of f on Il and Ir,

the left and right half-intervals of I. The counter examples that we shall
build are functions supported on ]0, 1[ and we shall consider their wavelet
coefficients only for |I| ≤ 1. We shall treat separately the cases γ = 0, γ = 1
and 0 < γ < 1.

In the case γ = 1, we consider the function

f(x) = xχ]0,1[(x),

which is clearly in BV(R). If I ⊂]0, 1[, a straightforward computation shows
that

fI = −|I|/4.
Therefore, taking ε = 1/5, we obtain that

∑
|fI |>ε|I|

|I| ≥
∑

I⊂]0,1[

|I| = +∞,

which shows that the weak estimate does not hold when γ = 1.

In the case γ = 0 we consider the function

f = χ[0,1/3],

which is clearly in BV(R). For each j ≥ 0, there exist one dyadic interval Ij

containing the jump point 1/3 and such that |Ij| = 2−j . This jump point is
always located at either the 1/3 or 2/3 position of Ij, since 1/3 =

∑∞
j=1 2−2j.

It follows that
fIj

= 1/3,

for all j ≥ 0. Therefore taking ε = 1/4, we obtain that

#{I : |fI | > ε} = ∞,

which shows that the weak estimate does not hold when γ = 0.

We now consider the case 0 < γ < 1. Here, we set α := 1/γ > 1 and we
define the sequence (jk)k≥0 of integers by

(6.2) 2−jk−1 < 2−αk ≤ 2−jk .

Note that j0 = 0 and that the sequence jk is strictly increasing because
α > 1. More precisely, we can write

jk+1 = jk + mk,

with mk > 0 for all k and mk > 1 for infinitely many k.
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We now construct a family of piecewise constant functions (fn)n>0 as
follows. For each n > 0, the distributional derivative of fn is a sum of Dirac
masses:

f ′
n = 2−n

[ 2n−1∑
m=0

δxn
m

]
− δ1,

where the 2n jump points xn
m ∈]0, 1[ will be specified in a moment. Since

we subtract δ1, these functions are supported on [0, 1]. Clearly |fn|BV(R) = 2
and ‖fn‖BV(R) ≤ 3, independently of n.

If I is a dyadic interval, the wavelet coefficient cI of fn is given by

(6.3) cI := 〈f ′
n, hI〉 = 2−n

∑
m s.t. xn

m∈I

hI(x
n
m),

where hI is the primitive function of ψ̃I , i.e., the hat function h(x) = (1 −
|x|)+ rescaled to I.

We have not yet specified where to position the points xn
m in ]0, 1[. We

wish to place them so that the right sum in (6.3) is large for many choices of
I. For each k = 0, . . . , n, we shall inductively construct 2k pairwise disjoint
dyadic intervals Ik,l, l = 0, . . . , 2k − 1 of size |Ik,l| = 2−jk , and position the
points xn

m so that

(6.4) Sk,l := {xn
m}

2n−k(l+1)−1

m=2n−kl
⊂ Ik,l.

We start the construction with I0,0 =]0, 1[, and for k = 1, . . . , n − 1
the construction is continued using the following iteration: for a given Ik,l,
we define Ik+1,2l and Ik+1,2l+1 as the two adjacent dyadic intervals of size
2−jk+1 which respectively admit the center of Ik,l as their right and left
endpoints. Iterating this construction, it suffices to choose each point xn

m in
the corresponding interval In,m. In the case where mk > 1, we thus notice
that all the points in Sk,l are concentrated in a central region of Ik,l on which
hIk,l

(x) ≥ 1/2, so that according to (6.3) and (6.2) we then have

cIk,l
≥ 2−n−1#(Sk,l) = 2−k−1 ≥ 2−1−γ|Ik,l|γ.

Therefore, if we fix ε = 1/4 < 2−1−γ, we see that for k < n such that mk > 1,
we have ∑

cI≥ε|I|γ ,|I|=2−jk

|I|γ = 2k2−γjk ≥ 1,

and thus ∑
cI≥ε|I|γ

|I|γ ≥ #{k s.t. k < n and mk > 1} = K(n).
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Since limn→+∞ K(n) = +∞, this shows that the weak estimate does not
hold for 0 < γ < 1.

We shall now generalize the above counterexamples to the multidimen-
sional case for 1 − 1/d ≤ γ ≤ 1 by using the following observations. If f is
a one-dimensional BV(R) function supported in [0, 1], then the multidimen-
sional function

F (x1, . . . , xd) := f(x1)χ[0,1]d(x1, . . . , xd)

is in BV (Rd) with ‖F‖BV(Rd) ≤ C(d)‖f‖BV(R). Moreover if

I = I1 × · · · × Id

is a dyadic cube contained in ]0, 1[d, and if e = (1, 0, · · · , 0), we have

ψ̃e
I(x1, . . . , xd) = ψ̃I1(x1)χI2×···×Id

(x2, . . . , xd).

and therefore the wavelet coefficients ce
I(F ) of F satisfy

ce
I(F ) = 〈F, ψ̃e

I〉 = |I|1−1/d〈f, ψ̃I1〉 = |I|1−1/dcI1(f).

It follows that

∑
|ce

I(F )|≥ε|I|γ
|I|γ =

∑
I1 such that

|cI1 (f)| ≥ ε|I|γ+1/d−1

∑
(I2, . . . , Id) such that

I = I1 × · · · × Id

|I|γ

=
∑

I1 s. t. |cI1
(f)|≥ε|I1|γ̃

|I1|γ̃,

with γ = 1 − 1/d + γ̃/d. Applying these observations to the above one-
dimensional counter-examples for 0 ≤ γ̃ ≤ 1, we thus obtain our multidi-
mensional counter-examples for 1 − 1/d ≤ γ ≤ 1.
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Numérique at the Université Pierre et Marie Curie and to the Industrial
Mathematics Institute at the University of South Carolina. We are grateful
to these institutions for their hospitality and support. In addition, I.D.
would also like to thank the Institute for Advanced Study in Princeton,
where she spent a sabbatical semester while working on this project.



262 A. Cohen, W. Dahmen, I. Daubechies and R. DeVore

References
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