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A Partial regularity result for a class of
Stationary Yang-Mills Fields in

high dimension

Yves Meyer and Tristan Rivière

Abstract
We prove, for arbitrary dimension of the base n ≥ 4, that statio-

nary Yang-Mills Fields satisfying some approximability property are
regular apart from a closed subset of the base having zero (n−4)-
Hausdorff measure.

1. Introduction

Let (M, g) be a n-dimensional Riemanian Manifold and E a k-real vector
bundle over M modeled on a principal bundle Q whose structure group
G ⊂ SO(k). Denote < , > the scalar product on q-forms into the adjoint
bundle adE which is compatible with the usual metric on SO(k) (the ad-
joint bundle adE is issued from Q and the adjoint action of G on its Lie
algebra G). Following [14] we denote

Up
k =

{
D = D0 + A where A ∈ Ω1(adE) := Γ(M ;∧1M ⊗ adE)

s. t. ‖A‖W k,p(M,ad E) < +∞}
,

where W k,p is the usual Sobolev spaces of maps having l−th derivatives in
Lp for l ≤ k and D0 is a smooth connection of E (Up

k is independent of the
choice of D0).

On U2
1 ∩ U4

0 we may consider the Yang-Mills Functional

YM(D) =

∫
M

< FD, FD > dvolM ,

where FD is the curvature of D, belonging to Ω2(adE) := Γ(M ;∧2M⊗ adE)
verifying FD = FD0 + D0A + [A,A] where FD0 is the curvature of D0.
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We also denote by D0 the induced connection modeled on D0 and acting
from Ωq(adE) into Ωq+1(adE). Finaly [ , ] is the bracket on Ωq(adE) ⊗
Ωr(adE) (for complete definitions see for instance [4]). From the formula
above one easily verify that YM is well defined on U2

1 ∩ U4
0.

Definition 1.1 A weak Yang-Mills Field is a critical point D in U2
1 ∩U4

0 of
the Yang-Mills Functional YM for perturbations of the form D + ta for any
a ∈ W 1,2(M ; adE) ∩ L4(M ; adE). Such a connection is a weak solution of
the Yang-Mills equation

(1.1) D ∗ FD = D0(∗FD) + [A, ∗FD] = 0 in D′(M)

where ∗ is the Hodge operator on forms deduced from the metric g on M .

Observe that standard computations can be extended to this weak setting
and that any connection D in U2

1 ∩ U4
0 solves the Bianchi identity

(1.2) D FD = D0(FD) + [A,FD] = 0 in D′(M)

It is proved in [14] that in dimension less or equal to 4 any weak Yang-Mills
Field is analytic an therefore solves Yang-Mills Equation (1.1) in a strong
sense. This result is not true in higher dimension and one may expect weak
Yang-Mills Fields to be singular somewhere (see examples in [13]). It is not
excluded that like for harmonic maps they can have large singular set.

Similarly to harmonic maps again and following suggestions in [13] we
may consider a subclass among weak Yang-Mills Fields which is made of
so called Stationary Yang-Mills Fields which are weak Yang-Mills Fields
which are also critical points of YM for perturbations on M . Precisely one
introduces the following definition.

Definition 1.2 A connection D in U2
1∩U4

0 is a stationary Yang-Mills Fields
if it is weak Yang-Mills and if it is also a critical point of YM for the follo-
wing perturbations

for all X ∈ Γ(TM)
d

dt

∫
M

< ψ∗
t FD, ψ∗

t FD > |t=0 = 0

where ψt = expx(tX). Such a Field is a solution of the stationary Yang-Mills
Equation (see [11] and [13])
(1.3)

∀X ∈ γ(TM)

∫
M

< FD, FD > div X−4 < FD(∇X, ·), FD > dvolM = 0

where, using an orthonormal basis (ei)i=1,...,n of TxM , < FD(∇X, ·), FD >:=∑n
i,j=1 < FD(∇ei

X, ej), FD(ei, ej) > and ∇ denotes the Levi-Civita connec-
tion on (M, g).
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As a consequence of the Stationary Yang-Mills Equation (1.3) one obtains
the monotonicity formula (see [11] and Theorem 2.1.2 of [13]) that, in the
particular case where g is flat : (M, g) = Rn, reads ∀x ∈ R and ∀r > 0

(1.4)

∀x ∈ R and ∀r > 0
d

dr

[
1

rn−4

∫
Br(x)

< FD, FD > dx

]

=
4

rn−4

∫
∂Br(x)

< ι ∂
∂r

FD, ι ∂
∂r

FD > dvol∂Br(x) ≥ 0

where ι ∂
∂r

FD denotes the element of Ω1(adE) obtained by contracting the 2-

form FD and the vector ∂
∂r

. Then, if D is a Stationary Yang-Mills Fields and
(M, g) has bounded geometry, one gets the following control of the conformal
invariant YM -energy density

(1.5) sup
x∈M, r>0

1

rn−4

∫
Br(x)

< FD, FD > dvolM ≤ C

∫
M

< FD, FD > dvolM .

Therefore it is natural to introduce the space of connections D ∈ U2
1 ∩ U4

0

D = D0 + A such that

(1.6) sup
x∈M, r>0

1

rn−4

∫
Br(x)

|∇A|2 + |A|4 dvolM < +∞ .

We will adopt the following notation :

Ml,p
k =

{
D = D0 + A where A ∈ Ω1(adE) := Γ(M ;∧1M ⊗ adE)

s. t. ‖A‖M l,p
k (M,ad E) < +∞}

where M l,p
k denotes the following Morrey space

‖u‖M l,p
k (B1,V ) = sup

x∈B1,r>0

(
1

rn−pk

∫
B1∩Br(x)

|∇lu|p dx

)1/p

and where ∇A is the following section in Γ(M,TM ⊗ ∧1M ⊗ adE) ∇A =∑n
k=1 ek ⊗ (D0)ek

A and ek is an orthonormal basis of TxM so that |∇A|2 =∑n
k=1 |(D0)ek

A|2. (We also adopt the notation |B|2 :=< B,B >).

One of the difficulty of working with the above Morrey spaces, although
they seem quite relevant to stationary Yang-Mills in high dimension, is the
lack of density of connections as long as n > pk. This lack of density is
the natural counterpart of the possibility (and there are examples) for our
stationary Yang-Mills configurations to be singular somewhere. In order to
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compensate this lack of density we will assume the following approximability
property for D in M1,2

2 ∩ M0,4
1 :

(1.7)

∀ε > 0 ∃α > 0 s.t. ∀x0 ∈ M and ∀ 1 > r0 > 0

if sup
x∈Br0(x0), r0>r>0

1

rn−4

∫
Br(x)

< FD, FD > dvolM ≤ α

then there exists a smooth Di s.t. Di → D in U2
1 ∩ U4

0(B1)

such that sup
x∈Br0/2(x0),

r0
2

>r>0

1

rn−4

∫
Br(x)

< FDi
, FDi

> dvolM ≤ ε

Any connection D in M1,2
2 ∩ M0,4

1 satisfying (1.7) is called “approximable”.

Our main result is the following.

Theorem 1.1 Let D be an approximable stationary Yang-Mills connection
in M1,2

2 ∩M0,4
1 , then there exists a closed subset Σ of M such that Hn−4(Σ) =

0 and for any x ∈ M \Σ there exists an open neighborhood U of x in M \Σ
and a trivialization of Q over U , s in W 1,4(U,Q)∩W 2,2(U,Q) such that FD

expressed in this trivialization is smooth.

The approximability assumption should hold for any stationary Yang-Mills
in M1,2

2 ∩ M0,4
1 and should be removed from the hypothesis of our theorem.

At this stage of the understanding of weak connections, the need of the
approximability assumption can be illustrated as follows : Assume a 1-form
A in M1,2

2 (Bn
1 ) ∩ M0,4

1 (Bn
1 ) has zero curvature dA + [A,A] = 0 , it is not

known, without the approximability assumption, for n > 4, whether A is
gauge equivalent to the trivial connection or not.

Our partial regularity result has to be compared with the coresponding
partial regularity result for harmonic maps into symmetric spaces established
by L.C. Evans in [5] (see also Hélein’s book [8]). It is a consequence of the
following epsilon regularity theorem :

Theorem 1.2 Let D be an approximable Stationary Yang-Mills connection
in M1,2

2 ∩ M0,4
1 , let K be a compact subset of M , then there exist positive

constants ε and C such that for any ρ < 1 and any x ∈ K,

if ρ4−n

∫
Bρ(x)

|FD|2 ≤ ε , then |FD|(x) ≤ C

ρ2

(
ρ4−n

∫
Bρ(x)

|FD|2
)1/2

.

This epsilon regularity theorem is a well known fact established in [10]
and [13] as long as D is assumed to be a smooth Yang-Mills connection.
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In that case the proof is based on the use of the Weitzenböck-Bochner
Formula for smooth Yang-Mills Fields (see [2] for Weitzenböck-Bochner
Formula in this context). The difficulty in the present paper was to ex-
tend the epsilon regularity to a-priori non smooth Yang-Mills connections
for which such a formula does not a-priori hold.

The gain of regularity will be obtained by writing the equations in a spe-
cific gauge. Like for the conformal dimension it happens that the gauges in
which we will get optimal regularity for the Stationary Yang-Mills Fields are
Coulomb gauges (in such a gauge the equation (1.1) in A becomes elliptic).
In [14] a Coulomb gauge extraction theorem is given for curvatures in Ln/2

and D in U
n/2
1 . This assumption is stronger compare to the assumption on

the connection of being stationary Yang-Mills in M1,2
2 ∩ M0,4

1 satisfying the
approximability property (1.7). We have here the following result.

Theorem 1.3 Let M = Bn, G ⊂ SO(l) and n ≥ 4. There exists κ(n)>0,
such that, for any 1-form Ã in M1,2

2 (B1,G) ∩ M0,4
1 (B1,G), that can be ap-

proximated in W 1,2 ∩ L4 by a sequence of smooth forms Ãi verifying

‖FÃi
‖2

M0,2
2 (B1,G)

= sup
x∈B1,r>0

1

rn−4

∫
B1∩Br(x)

|FÃi
|2 ≤ κ(n)

there exists a change of gauge s ∈ M2,2
2 (B1, G) ∩ M1,4

1 (B1, G) such that
A = s−1ds + s−1Ãs verifies

d∗A = 0 in B1 ,(1.8) 〈
A;

∂

∂r

〉
= 0 on ∂B1 ,(1.9)

‖A‖M1,2
2 (B1,G) + ‖A‖M0,4

1 (B1,G) ≤ C(n)‖FA‖M0,2
2 (B1,G) .(1.10)

The above result generalises the classic Uhlenbeck Coulomb Gauge extrac-
tion result in the following sense : Observe that for any A ∈ W 1, n

2 one has

‖A‖M1,2
2

+ ‖A‖M0,4
1

≤ C‖A‖
W 1, n

2

and that

sup
x∈B1,r>0

1

rn−4

∫
B1∩Br(x)

|FA|2 ≤ C

[
sup

x∈B1,r>0

∫
B1∩Br(x)

|FA| n/2

]4/n

.

The structure of the proof of Theorem 1.3 follows Uhlenbeck approach in [14]
but it requires the introduction of a new ingredient that can be sketched this
way : the control of the supremum among the Yang-Mills energy density

1/rn−4

∫
Br

|Fd+A|2
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is converted into a control of the BMO norm of a closed 2-form ξ such that
d∗ξ gives the Coulomb Gauge A = d∗ξ and the L4-norm control of A is
obtained through the following interpolation inequality. Let Ω be a regular
bounded domain of R

n we denote by W 2,2(Ω) the space of maps in L2(Ω)
whose first and second derivatives are also in L2(Ω) and BMO(Ω) denotes
the space of maps on Ω admitting an extension ũ on the whole R

n such that

sup
x∈Rn,r>0

1

|Bn
r |

∫
Bn

r (x)

∣∣∣∣ ũ − 1

|Bn
r |

∫
Bn

r (x)

ũ

∣∣∣∣ = ‖ũ‖BMO(Rn) < +∞

in that case we denote ‖u‖BMO(Ω) the infimum of ‖ũ‖BMO(Rn) among all
possible extensions of u to the whole R

n. Under the previous notations we
have for any dimension n ≥ 1 :

Theorem 1.4 Let Ω be a regular bounded domain of Rn, there exists a
constant C(Ω), such that, for any u in BMO∩W 2,2(Ω) we have

(1.11) ‖∇u‖2
L4(Ω) ≤ C(Ω)‖u‖BMO(Ω) ‖u‖W 2,2(Ω)

In the case where the BMO norm of u is replaced by it’s L∞ norm, this
interpolation inequality is a standard Gagliardo-Nirenberg type inequality
for Sobolev norms (see [3] for instance). It happens that the inequality above
can even be improved by replacing in (1.11) the BMO norm of u by the
norm of ∇u in the Besov maximal Space B−1,∞

∞ that contains derivatives of
BMO function and inequality (1.11) enters in the family of improved Sobolev
inequalities introduced in [6] (see section 2 below).

2. Proof of Theorem 1.4

We first recall the definition of the “maximal space” the homogeneous Besov
space Ḃ−1,∞

∞ which is made of tempered distributions f in S ′(Rn) verifying

sup
{a>0 ; b∈Rn}

a |〈f, ga,b〉| ≤ C < +∞

where g is any given function in S normalized such that
∫

Rn g = 1 (take

for instance g(x) = (2π)−n/2 exp(−|x|2/2)) and g(a,b)(x) = 1
an g(x−b

a
). It is

a maximal space among the functional spaces whose norms are invariant
under translation verifying also ‖f(λx)‖ = λ−1‖f‖. For instance, for n ≥ 2,
f(x) = |x|−1 ∈ Ḃ−1,∞

∞ , or if f(x) = ∂1b1(x)+ · · ·+∂nbn(x) where b1, . . . , bn ∈
BMO(Rn) then f ∈ Ḃ−1,∞

∞ .
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Definition 2.3 Let Ω be an arbitrary open subset of R
n, then C−1(Ω) is the

space of restrictions to Ω of functions f in Ḃ−1,∞
∞ . The norm of f ∈ C−1(Ω)

is the infimum among the norm in Ḃ−1,∞
∞ (Rn) of extensions f̃ of f to the

whole of R
n into a function of Ḃ−1,∞

∞ (Rn).

This part is devoted to the proof of the following result

Theorem 2.5 Let Ω ⊂ R
n be a connex bounded open and regular subset

of R
n. There exists a constant C(Ω) such that, for any function f belonging

to both H1(Ω) and C−1(Ω), we have

(2.12) ‖f − mΩf‖2
L4(Ω) ≤ C(Ω)‖∇f‖L2(Ω) ‖f‖C−1(Ω)

where

mΩf =
1

|Ω|
∫

Ω

f(x) dx

is the average of f on Ω.

H1(Ω) denotes here the Sobolev space of functions f in L2(Ω) such that
∇f ∈ L2(Ω).

Remark 2.1 One verifies easily the the constant C(Ω) above is invariant
under translations and dilations.

Before proving Theorem 2.5 on arbitrary domain Ω we give the proof of the
corresponding identity on the whole Rn.

Precisely we prove

Theorem 2.6 Let f be in H1(Rn) ∩ Ḃ−1,∞
∞ (Rn), then f is in L4(Rn) and

we have

(2.13) ‖f‖2
L4(Rn) ≤ C‖f‖H1(Rn) ‖f‖Ḃ−1,∞∞ (Rn) .

Proof (of Theorem 2.6). We use the Littlewood-Paley decomposition
of f and write f =

∑+∞
−∞ ∆j(f). We have (Littlewood-Paley)

(2.14)

‖f‖4 �
∥∥∥∥(∑ |∆j(f)|2

) 1
2

∥∥∥∥
4

=

(∫
Rn

(∑
|∆j(f)|2

)2

dx

)1/4

≤
(∑

j

∑
j′≥j

∫
Rn

|∆j(f)|2 |∆j′(f)|2 dx

)1/4

Using the fact that f ∈ Ḃ−1,∞
∞ (Rn), we have that

sup
j

2−j‖∆j(f)‖∞ = ‖f‖Ḃ−1,∞∞ (Rn) < +∞ .
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From (2.14) we then deduce

‖f‖4 ≤ C
∥∥f

∥∥1/2

Ḃ−1,∞∞

(∑
j

∑
j′≥j

∫
Rn

4j|∆j′(f)|2
)1/4

≤ C
∥∥f

∥∥1/2

Ḃ−1,∞∞

(∑
j′

4j′‖∆j′(f)‖2
2

)1/4

≤ C
∥∥f

∥∥1/2

Ḃ−1,∞∞

∥∥f
∥∥1/2

H1(Rn)
(2.15)

This ends the proof of Theorem 2.6. �

Proof (of Theorem 2.5). We first handle the case of the half plane R
n
+ =

{(x1, . . . , xn) s. t. xn ≥ 0}. We first pave the half space by Whitney cubes

n−1∏
j=1

[pj2
−i, (pj + 1)2−i] × [2−j , 2−j+1] .

Call Q these cubes, xQ their center and dQ = 2−i their size. We have
1 =

∑
Q φQ on Rn

+ where

φQ(x) = φ
(x − xQ

dQ

)
and φ is a compactly supported function in the unit reference cube Q̃0 =
[−2, 2]n equal to one on the cube of half size 1

2
Q̃0 = [−1, 1]n. Consider also

θQ = d−n
Q θ

(x − xQ

dQ

)
for a given function θ ∈ C∞

0 (1
2
Q̃0) verifying

∫
θ = 1.

The proof of the theorem rely on several lemmas. First of all we have
the following elementary lemma.

Lemma 2.1 The Banach space Ḃ−1,∞
∞ (Rn) is a module over the Schwartz

space S(Rn) for n ≥ 1. More precisely if we denote ‖ · ‖∗ the norm on
Ḃ−1,∞

∞ (Rn), for any g in S(Rn) there exists Cg such that for any R > 0 the
following holds

(2.16)
∥∥∥g

( x

R

)
f(x)

∥∥∥
∗
≤ C‖f‖∗ .

Consider now a function f ∈ Ḣ1(Rn
+). Write f = u + v where

(2.17)




u =
∑

Q

γQ φQ where γQ =

∫
fθQdx

v =
∑

Q

(f − γQ)φQ
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We will handle u and v independently. First of all we have :

Proposition 2.1 Under the notations above we have

(2.18) ‖u‖Ḣ1 ≤ C‖f‖Ḣ1

and

(2.19)
∑

Q

∫
Q

|f − γQ|2 |∇φQ|2 dx ≤ C‖∇f‖2
2

Proof (of Proposition 2.1). Poincaré inequality for f reads

(2.20)

(∫
Q

|f − γQ|pdx

)1/p

≤ C

(∫
Q

|∇f |2 dx

)1/2

where 1/2 − 1/p = 1/n and γQ =
∫

fθQ dx. In fact the usual Poincaré
inequality involves the standard average mQ of f on Q, but observe that

(∫
Q

|γQ − mQ|p dx

)1/p

= |γQ − mQ| |Q|1/p

and

|γQ − mQ| ≤ 1

|Q|
∫

Q

|f(x) − mQ| dx ≤
(

1

|Q|
∫

Q

|f − mQ|p dx

)1/p

.

From Poincaré (2.20) we deduce

(2.21)

∫
Q

|f − γQ|2 dx ≤ Cd2
Q

∫
Q

|∇f |2 dx

and the proposition follows. �
As a result of proposition 2.1 we have that v ∈ H1(Rn

+) and it follows
that u ∈ H1(Rn

+) also.

Apply now Theorem 2.6 to (f − γQ)φQ = FQ. We have

(2.22) ‖FQ‖4
4 ≤ C‖∇FQ‖2

2 ‖FQ‖2
∗

In one hand we have, using proposition 2.1,
∑

Q ‖∇FQ‖2
2 ≤ C‖∇f‖2

2. In the
other hand we write

‖FQ‖∗ ≤ ‖fφQ‖∗ + |γQ| ‖φQ‖∗
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and from the definition of γQ =
∫

f θQ dx we have |γQ| ≤ ‖f‖∗d−1
Q . ‖fφQ‖∗

is estimated using Lemma 2.1 and we finally obtain

(2.23) ‖v‖4
4 ≤ C‖∇f‖2

2 ‖f‖2
∗

Let now establish the same identity but for u. We first observe that

(2.24) |u(x)| ≤
∑
Q

‖f‖∗
dQ

|φQ(x)| ≤ C
‖f‖∗
xn

Estimate (2.23) for u will then follow from the following lemma and Theo-
rem 2.5 will be proved in the case of the half space.

Lemma 2.2 Let f be a function from Rn
+ into C verifying

(2.25) |f(x)| ≤ m

xn

and

(2.26)
(∫

R
n
+

|∇f |2
)1/2

≤ M

then we have

(2.27) ‖f‖L4 ≤
√

m M

Proof (of Lemma 2.2). Let first study the one dimensionnal case and
write t = xn. We have

(2.28)

∫ ∞

0

|f |4 dt ≤
∫ ( m

M
)2/3

0

|f |4 dt +

∫ ∞

( m
M

)2/3

|f |4 dt

≤
( m

M

)2/3

sup
[0,( m

M
)2/3]

|f |4 + m4
( m

M

)−2

From hypothesis (2.25) we have |f(( m
M

)2/3)| ≤ M2/3 m1/3 and

|f(t) − f(t′)| ≤ M
√

t′ − t ≤
( m

M

)1/3

M = m1/3 M2/3 .

Therefore ‖f‖∞ ≤ 2M2/3 m1/3 and inserting this estimate in (2.28) we
get the result for n = 1. In arbitrary dimension we simply integrate in
x′ = (x1, . . . , xn−1) the inequality established in 1 dimension and Lemma 2.2
is proved. �
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Combining (2.24) and the lemma above we have established that

(2.29) ‖u‖4
4 ≤ C‖∇f‖2

2 ‖f‖2
∗

Combining now (2.23) and (2.29), Theorem 2.5 is now established on the
half space.

Consider now a regular bounded domain of R
n and take f ∈ H1(Ω) ∩

Ḃ−1,∞
∞ (Ω). We use an appropriate partition of unity of Ω and diffeomorp-

hisms to reduce the problem to the case of the whole Rn or Rn
+ and Theo-

rem 2.5 is proved. �

3. Proof of Theorem 1.3

We first prove Theorem 1.3 where the norms M 1,2
2 and M0,4

1 are replaced by
the norms M1,2

2−α and M0,4
1−α for some α > 0. Precisely we have

Theorem 3.7 Let M = Bn, G ⊂ SO(l), n ≥ 4 and α > 0. There exist
κ(n) > 0 and C(n), independent on α, such that, for any 1-form Ã in
M1,2

2−α(B1,G) ∩ M0,4
1−α(B1,G), if we denote FÃ = dÃ + [Ã, Ã],

sup
x∈B1,r>0

1

rn−4

∫
B1∩Br(x)

|FÃ|2 ≤ κ(n)

then there exists a change of gauge s ∈ M2,2
2−α(B1, G) ∩ M1,4

1−α(B1, G) such

that A = s−1ds + s−1Ãs verifies

d∗A = 0 in B1(3.30) 〈
A;

∂

∂r

〉
= 0 on ∂B1(3.31)

‖A‖M1,2
2 (B1,G) + ‖A‖2

M0,4
1 (B1,G)

≤ C(n)‖FA‖M0,2
2 (B1,G)(3.32)

and

(3.33) ‖A‖M1,2
2−α(B1,G) + ‖A‖2

M0,4
1−α(B1,G)

≤ C(n)‖FA‖M0,2
2−α(B1,G)

Proof (of Theorem 3.7). We follow the strategy adopted in [14] for
proving Theorem 2.1. Consider

Sα
κ =

{
Ã ∈ M1,2

2−α(B1) ∩ M0,4
1−α(B1) s. t. sup

x∈B1,r>0

1

rn−4

∫
B1∩Br(x)

|FÃ|2 ≤ κ

}

The goal is to prove that for κ small enough, independent on α, the set of
Ã in Sα

κ gauge equivalent to some A verifying (3.30),. . . ,(3.33) is both open
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and closed for some C(n). Once this will be established it remains to prove
that smooth connections in Sα

κ are in the connected component of any flat
connection in Sα

κ to get the desired result. We start with the connectivity
property.

Lemma 3.3 Sα
κ is path connected for the M1,2

2−β ∩ M0,4
1−β topology for any

0 < β < α.

Proof (of Lemma 3.3). As in Lemma 2.3 of [14] we use the following
path t → D = D0 + tA(tx) for t ∈ [0, 1] and D0 a flat reference connection.
Clearly we have for any x0 ∈ B1 and any r > 0

1

rn−4

∫
Br(x0)∩B1

|FDt|2 =
1

(tr)n−4

∫
Btr(tx0)∩Bt(0)

|FD|2 ≤ κ

Let t0 ∈ [0, 1), ε > 0 and rε > 0 such that rα−β
ε = ε and let Aδ be a smooth

approximation of A that converges to A in L4∩W 1,2(B1). We choose δ small
enough so that

(3.34)

∫
B1

|Aδ(x) − A(x)|4 + |∇(Aδ(x) − A(x))|2 ≤ rn−4+β
ε

and once δ is fixed we choose |t − t0| small enough so that ‖Aδ(tx) −
Aδ(t0x)‖∞ + ‖∇(Aδ(x) − A(x))‖δ ≤ ε.

For r > rε we have

1

rn−4+β

∫
Br(x0)∩B1

|tA(tx) − t0A(t0x)|4 ≤ 1

rn−4+β

∫
Br(x0)∩B1

|tA(tx) − tAδ(tx)|4

+
1

rn−4+β

∫
Br(x0)∩B1

|tAδ(tx) − t0Aδ(t0x)|4 + |t0Aδ(t0x) − t0A(t0x)|4

≤ Cε

and for r < rε we have

1

rn−4+β

∫
Br(x0)∩B1

|tA(tx) − t0A(t0x)|4 ≤ rα−β‖A‖M0,4
1−α

≤ Cε .

This proves that the path t → Dt connect continuously in M0,4
1−β ∩ M1,2

2−β

D ∈ M0,4
1−α ∩ M1,2

2−α and D0 and Lemma 3.3 is proved. �
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3.1. The closedness property

This subsection is devoted to the proof of the following result :

Lemma 3.4 For α ≥ 0, the set of Ã in Sα
κ, gauge equivalent to some A

satisfying (3.30), . . . , (3.33), is closed for κ(n) small enough and C(n) large
enough.

As in the proof of Lemma 2.4 of [14] it is quite straightforward to prove that
for Ã, to be gauge equivalent to some A satisfying (3.30) and (3.31), passes
to the limit under strong convergence in M1,2

2−α ∩M0,4
1−α for α ≥ 0. So we just

need to prove the following

Lemma 3.5 There exist k(n) > 0 and C(n) > 0 such that if A satisfies
d∗A = 0 on B1, ι∗∂B1

∗ A = 0 ( ι∂B1 is the embedding of ∂B1 in Rn) and

sup
x∈B1,r>0

1

rn−4

∫
Br(x)∩B1

|A|4 ≤ k(n)

then for any α ≥ 0 we have

(3.35) ‖A‖M1,2
2−α(B1,G) + ‖A‖M0,4

1−α(B1,G) ≤ C(n)‖FA‖M0,2
2−α(B1,G)

Proof (of Lemma 3.5). There exists a unique ξ solving

(3.36)




A = d∗ξ in B1

dξ = 0 in B1

ι∗∂B1
∗ ξ = 0

(ξ minimizes
∫

B1
|A − d∗ξ|2 among the ξ solving dξ = 0 and ι∗∂B1

∗ ξ = 0).
ξ solves in particular

(3.37) ∆ξ + [d∗ξ, d∗ξ] = FA

Let φ(x) = x/|x|2 from B1\B1/2 into B2\B1. Denote by g the metric, pulled

back by φ−1 of the standard metric g0 = δi,jdxi⊗dxj in B1\B1/2 ( gi,j =
δi,j

|x|4 )
so that φ becomes a negative isometry from B1 \ B1/2 into B2 \ B1. Denote

also by ĝ the metric equal to g0 on B1 and g in B2 \ B1. Let ξ̂ defined by{
ξ̂ = ξ in B1 ,

ξ̂ = φ∗ξ in B1 .

Since ι∗∂B1
∗ ξ = 0 on ∂B1 we have < ξ; ∂

∂r
>= 0 on ∂B1, thus ξ̂ = φ∗ξ = ξ

on ∂B1. Therefore it is easy to deduce that

(3.38) dξ̂ = 0 in B2 .
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Since φ realizes an isometry we have φ∗d∗g0ξ = d∗g ξ̂ on B2 \ B1. Moreover,
since ι∗∂B1

∗ ξ = 0, ι∗∂B1
∗ d∗ξ = ι∗∂B1

d ∗ ξ = 0 where ∗ means ∗g0 . Therefore
d∗ξ on ∂B1 has no component along dr and this implies that φ∗d∗ξ = d∗ξ
on ∂B1. So we deduce that for any ψ ∈ C∞

0 (∧n−2B2) we have

(3.39)

∫
B2

d∗g ξ̂ ∧ dψ =

∫
B2\B1

dφ∗d∗g0ξ ∧ ψ +

∫
B1

dd∗g0ξ ∧ ψ

Combining (3.38) and (3.39) we get

(3.40) ∆ĝ ξ̂ + [d∗ĝ ξ̂, d∗ĝ ξ̂] = F̂A

where F̂A = FA in B1 and F̂A = φ∗FA in B2 \B1. We will denote also Â = A
in B1 and Â = φ∗A in B2 \ B1 so Â = d∗ĝ ξ̂. Clearly

(3.41) ‖F̂A‖M0,2
2−α(B2)

≤ C‖FA‖M0,2
2−α(B1)

and ‖Â‖M0,4
1−α(B2)

≤ C‖A‖M0,4
1−α(B1)

.

Therefore, combining (3.40) and (3.41), we have

(3.42)

‖∆ĝ ξ̂‖M0,2
2−α(B2)

≤ C‖FA‖M0,2
2−α(B1)

+ C‖A‖M0,4
1 (B1)

‖d∗ξ‖M0,4
1−α(B1)

≤ C‖FA‖M0,2
2−α(B1)

+ C k(n)‖d∗ξ‖M0,4
1−α(B1)

We shall use the following lemma.

Lemma 3.6 Let β ∈ [0, 1), let g be an arbitrary smooth metric on B2 and
u a map on B2, there exists Cg > 0, independent on u, such that

sup
Br(x)⊂B1

1

rn−2+β

∫
Br(x)

|∇u|2g dvolg ≤

≤ Cg sup
Br(x)⊂B2

1

rn−4+β

∫
Br(x)

|∆gu|2 dvolg +Cg

∫
B2

|∇u|2g dvolg(3.43)

Proof (of Lemma 3.6). Let Br(x) ⊂ B2 and ρ ≤ r. We consider v the
solution of 


∆gv = 0 in Br(x)

v = u on ∂Br(x)

Standard elliptic estimates on harmonic functions imply

(3.44) ∀ρ ≤ r

∫
Bρ(x)

|∇v|2 ≤ C
(ρ

r

)n
∫

Br(x)

|∇v|2
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Let w = u − v. w solves

(3.45)

{
∆gw = ∆gu in Br(x)

w = 0 on ∂Br(x)

Multiplying (3.45) by w and integrating by parts over Br(x) gives

(3.46)

∫
Br(x)

|∇w|2 ≤ C

(∫
Br(x)

|w|2
)1/2 (∫

Br(x)

|∆gw|2
)1/2

≤ Cr2

∫
Br(x)

|∆gw|2

(3.44), (3.45) and (3.46) imply

(3.47)

∫
Bρ(x)

|∇u|2 ≤ C
(ρ

r

)n
∫

Br(x)

|∇u|2 + Cr2

∫
Br(x)

|∆gu|2

Let T (ρ) = 1
ρn−2+α

∫
Bρ(x)

|∇u|2. (3.47) becomes

T (ρ) ≤ C
(ρ

r

)2−α

T (r) + C

(
r

ρ

)n−2+α

‖∆gu‖2
M0,2

2−α(B1)

Let λ be a number between 0 and 1 depending only on α such that Cλ2−α ≤ 1
2
,

we have then for any Br(x) ⊂ B2

T (λr) ≤ 1

2
T (r) + C‖∆gu‖2

M0,2
2−α(B1)

Let i = [ log r
log λ

], the result is obtained by iterating the above identity between

r = 1 and r = λi. �

End of the proof of Lemma 3.5 :

From Lemma 3.6 and (3.42) we deduce that

sup
Br(x)⊂B3/2

1

rn−2+α

∫
Br(x)

|∇ξ̂|2 ≤

≤ C‖FA‖2
M0,2

2−α(B1)
+ Ck(n)‖d∗ξ‖2

M0,4
1−α(B1)

+

∫
B1

|∇ξ|2(3.48)

From (3.36), by the mean of standard elliptic estimates we have

(3.49)

∫
B1

|ξ|2 +

∫
B1

|∇ξ|2 ≤ C‖FA‖2
L2(B1)

+ Ck(n)‖∇ξ‖2
L4(B1)
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We handle now the case α > 0. From Theorem 1.2, Chapter III of [7], we
have for any ball Br(y) ⊂ B5/4

(3.50)

‖ξ̂ − ξ̂(y)‖2
L∞(Br(y)) ≤ Cr2α sup

Br(x)⊂B 3
2

1

rn−2+2α

∫
Br(x)

|∇ξ̂|2

≤ Cr2α
[
‖FA‖2

M0,2
2−α(B1)

+ k(n) ‖∇ξ‖2
M0,4

1−α(B1)

]
Using now a Gagliardo-Nirenberg interpolation inequality we get for any
Br(y) ⊂ B5/4

(3.51)

∫
Br(y)

|∇ξ̂|4 ≤ C‖ξ̂ − ξ̂(y)‖2
L∞(Br(y))

∫
Br(y)

|∆ξ̂|2

+ C rn−4‖ξ̂ − ξ̂(y)‖4
L∞(Br(y))

From this identity, (3.42), (3.50) and k(n) small enough we obtain

(3.52) ‖∇ξ‖4
M0,4

1−α(B1)
≤ C‖FA‖4

M1,2
2−α(B1)

and we deduce (3.35) for α > 0.

The case α = 0. This is the sharp case where we make use of the interpo-

lation inequality (1.11). Let ∆ĝ ξ̂ be the function equal to ∆ĝ ξ̂ on B3/2 and

equal to zero elsewhere. denote ξ = ∆−1
ĝ (∆ĝ ξ̂) where ĝ is extended out of

B2 by interpolating 1
|x|4 δi,j and δi,j between B2 and B4, moreover ∆−1

ĝ is the
convolution with the Green Kernel of ∆ĝ on R

n. It is clear that we have for
instance

(3.53)

∫
B4

|ξ|2 ≤ C

∫
B 3

2

|∆ĝ ξ̂|2

Finally we denote ξ̃ = ψξ where ψ is a smooth function equal to 1 in B2 and
equal to 0 in R

n \B3. For instance we have the fact that the support of ∇φ
is contained in B3 \B2 where ξ is harmonic (for ĝ). Therefore, using (3.53),
it is not difficult to check that

(3.54) sup
Br(x)⊂Rn

1

rn−4

∫
Br(x)

|∆ĝ ξ̃|2 ≤ C sup
Br(x)⊂B2

1

rn−4

∫
Br(x)

|∆ĝξ̂|2

Using now Lemma 3.6 we get that

(3.55) sup
Br(x)⊂Rn

1

rn−2

∫
Br(x)

|∇ξ̃|2 ≤ C sup
Br(x)⊂B2

1

rn−4

∫
Br(x)

|∆ĝ ξ̂|2
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Using Poincaré inequality we obtain from (3.55) and (3.40) that

(3.56)
‖ξ̃‖2

BMO(Rn) ≤ C sup
Br(x)⊂B2

1

rn−4

∫
Br(x)

|∆ĝ ξ̂|2

≤ C‖FA‖2
M0,2

2 (B1)
+ C k(n)‖d∗ξ‖2

M0,4
1 (B1)

Using now inequality (1.11) on a ball Br(x) in Rn we have

(3.57)

∫
Br(x)

|∇ξ̃|4 ≤ C‖ξ̃‖2
BMO(Rn)

∫
Br(x)

|∆g ξ̃|2 + C rn−4‖ξ̃‖4
BMO(Rn)

Combining (3.56) and (3.57) we obtain

(3.58) sup
Br(x)⊂Rn

1

rn−4

∫
Br(x)

|∇ξ̃|4 ≤ C‖FA‖4
M0,2

2 (B1)
+ C k(n)‖d∗ξ‖4

M0,4
1 (B1)

Using (3.49) and (3.58) we have∫
B 3

2

|∇(ξ̃ − ξ̂)|2 ≤ C‖FA‖2
M0,2

2−α(B1)
+ C k(n)‖d∗ξ‖2

M0,4
1−α(B1)

and since ξ̃ − ξ̂ is harmonic on B 3
2
, we obtain that

(3.59)

sup
Br(x)⊂B 5

4

1

rn−4

∫
Br(x)

|∇(ξ̃ − ξ̂)|4 ≤ C‖FA‖4
M0,2

2 (B1)
+ C k(n)‖d∗ξ‖4

M0,4
1 (B1)

Combining now (3.58) and (3.59) we obtain that

‖∇ξ‖4
M0,4

1 (B1)
≤ C‖FA‖4

M0,2
2 (B1)

and Lemma 3.5 is proved. �

Remark 3.2 Observe that one could have use a slightly different strategy
and developp a version of proposition 3.1 of [1] on a bounded domain as a
substitute of the inequality (1.11).

3.2. The openess property.

This subsection is devoted to the proof of the following result

Lemma 3.7 For α > 0, the set of Ã in Sα
κ, gauge equivalent to some A

satisfying (3.30), . . . ,(3.33), is open for κ(n) small enough and C(n) large
enough.
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First of all we will need the following lemma.

Lemma 3.8 There exists k(n) > 0 such that for any A ∈ S0
k(n) verifying

d∗A = 0 and ι∗∂B1
A = 0 and any α > 0, there exists ε > 0 such that for any

one-form λ ∈ Sα verifying

‖λ‖Sα ≤ ε and ι∗∂B1
λ = 0

then there exists a unique s from B1 into G such that

(3.60)

d∗ (s−1ds + s−1(A + λ)s
)

= 0

ι∗∂B1
ds = 0

‖s−1ds‖Sα ≤ C‖λ‖Sα

Proof (of Lemma 3.8). The proof is identical to the proof of Lemma 2.7
of [14] replacing the W 2,p norm for s (p > n/2) by the norm Sα for s−1ds.
The main ingredient to transpose Uhlenbeck’s proof to the present situation
is to observe that, having derivatives in Sα, implies that one is C0 (for
α > 0) (see [7]) and in particular this implies that the operator s → s−1 is
smooth in this space. Therefore

(U, λ) −→ d∗(s−1ds + s−1(A + λ)s)

is smooth from the space of s having derivatives in Sα into M0,2
2−α(B1) and

the Linearization argument of [14] Lemma 2.7 may be applied. �
Finally in order to deduce Lemma 3.7 from Lemma 3.8 we need the

equivalent lemma to Lemma 2.6 in [14] in order to ensure the boundary
condition. It is not difficult to see that this Lemma 2.6 extends naturally to
the present setting where Sobolev spaces are replaced by Morrey spaces.

3.3. Theorem 3.7 implies Theorem 1.3

We will need the following consequence of Theorem 1.3 :

Lemma 3.9 Let κ(n) given by Theorem 3.7 and let Ã be a smooth 1-form
solving

sup
x∈B1,r>0

1

rn−4

∫
B1∩Br(x)

|FÃ|2 ≤ κ(n)

Consider the Coulomb gauge A given by Theorem 3.7 for some α > 0, it
then solves, for any ρ > 0,

(3.61) sup
x∈B1,r>ρ

1

rn−4

∫
Br(x)∩B1

|A|4 ≤ C(n) sup
x∈B1,r>ρ

1

rn−4

∫
Br(x)∩B1

|FA|2
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Let ξ solving (3.36). Like in the proof of Lemma 3.5 we extend ξ by x̂i, that
we keep denoting ξ, this permits to forget the boundary of B1. Let x0 ∈ B1

and ρ > 0. For any r > ρ we consider v and w solving ξ = v + w and

(3.62)

{
∆v = 0 in Br(x0)

v = ξ on ∂Br(x0)

Since v is harmonic it solves

(3.63)

∫
Bρ

|∇v|4 ≤ C
(ρ

r

)n
∫

Br

|∇v|4

and ‖v‖BMO(Br(x0)) ≤ C‖ξ‖BMO(B1) ≤ Ck(n). Moreover since w solves{
∆w = ∆ξ in Br(x0)

w = 0 on ∂Br(x0)

we have, by the mean of Lemma 3.6,

(3.64) ‖w‖2
BMO(Br(x0)) ≤ C sup

x∈Br(x0),s<2r

1

sn−4

∫
Bs(x)

|∆ξ|2 ≤ Ck(n)

and using the inequality (1.11) we have

(3.65)

∫
Br

|∇w|4 ≤ C‖w‖2
BMO(Br(x0))

∫
Br

|∆ξ|2

we then obtain

(3.66)
1

ρn−4

∫
Bρ

|∇ξ|4 ≤ C
(ρ

r

)4 1

rn−4

∫
Br

|∇ξ|4 + Ck(n)
1

rn−4

∫
Br

|∆ξ|2

Denote T (r) = 1
rn−4

∫
Br

|∇ξ|4, we have found 0 < λ < 1 such that

T (λr) ≤ 1

2
T (r) + Ck(n)

1

rn−4

∫
Br

|∆ξ|2

Iterating this identity we get that

sup
x∈B1,ρ<r<λ

1

rn−4

∫
Br

|∇ξ|4 ≤

≤ 2logλ ρ

∫
B1

|∇ξ|4 + Ck(n) sup
x∈B1,ρ<r<1

1

rn−4

∫
Br

|∆ξ|2(3.67)
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From (3.36) standard elliptic estimates imply∫
B1

|∇2ξ|2 ≤ C

∫
B1

|∆ξ|2

and using (1.11) on B1 we get

(3.68)

∫
B1

|∇ξ|4 ≤ k(n)

∫
B1

|FA|2 + |∇ξ|4

Combining (3.67) and (3.68) we obtain the desired result and Lemma 3.9 is
proved. �

Proof (of Theorem 1.3). Let Ã and Ãi that approximates Ã. We apply
Theorem 3.7 to Ãi and we get a Coulomb gauge Ai on B1 to which we apply
the Lemma 3.9 above. Modulo extraction of a subsequence Ai converges to
some limiting A which is in M1,2

2 (B1)∩M0,4
1 (B1). A solves of course d∗A = 0

and ι ∂
∂r

A = 0 on ∂B1. Denote by σi the change of gauge between Ãi and Ai.

We have
σiAi = Ãiσi + dσi

From the convergences of Ãi and Ai we deduce that dσi is bounded in
L4(B1) ∩ W 1,2(B1). We may extract a subsequence such that σi converges
weakly in these spaces, which implies that it converges strongly in L2(B1)
and since both Ãi and Ai converge strongly in L2, the gauge equivalence
equation passes to the limit and we get that A and Ã are gauge equivalent
and Theorem 1.3 is proved. �

4. Proof of Theorem 1.1

Theorem 1.1 will be a standard consequence of the epsilon regularity (see
the covering arguments in [8]) Theorem 1.2. Moreover Theorem 1.2 is a
consequence of the epsilon regularity for smooth Yang-Mills Fields establis-
hed in [10] and [13] once we are able to prove that under the smallness
assumption of the curvature density, gauge invariant quantities are smooth.
Therefore Theorem 1.1 will be established once the following lemma will be
proved.

Lemma 4.10 Let D be a stationary Yang-Mills connection in M1,2
2 (B1) ∩

M0,4
1 (B1) . There exists κ(n) independent on D = d+Ã such that, assuming

there exists a sequence of smooth Ãi converging strongly to Ã in L4 ∩ W 1,2

and such that
∫

B1
|FÃi

|2 ≤ κ(n) then, if A is the Coulomb gauge of D = d+Ã
given by Theorem 1.3 over B 1

2
, A is smooth on B 1

2
.



Stationary Yang-Mills Fields in high dimension 215

Proof (of Lemma 4.10). We will need the following lemma

Lemma 4.11 Let f in M
0,4/3
3 (B1) and u solving

{
∆u = f in B1

u = 0 on ∂B1

we have

(4.69) ‖u‖L4(B1) ≤ C‖f‖1/3

L
4
3 (B1)

‖f‖2/3

M
0,4/3
3 (B1)

Recall that

‖f‖4/3

M
0,4/3
3 (B1)

= sup
r>0,x∈B1

1

rn−4

∫
Br(x)∩B1

f
4
3

Remark 4.3 The above lemma should certainly be well known from specia-
lists but we prove it here for the convenience of the readers.

Proof (of Lemma 4.11). We adopt the notations of the proof of Lemma 3.5:
φ(x) = x/|x|2, ĝij = δij in B1 and ĝij = δij/|x|4 in B2 \ B1. Denote also

û = u in B1 and û = −u ◦ φ in B2 \ B1 finally f̂ = f in B1 and f̂ = −f ◦ φ
in B2 \ B1. Clearly û solves ∆ĝû = f̂ in B2. Moreover it is not difficult to
check that there exists a constant C, independent on f , such that

(4.70) sup
x∈B2, r>0

1

rn−4

∫
Br(x)∩B2

|f̂ | 43 ≤ C sup
x∈B1, r>0

1

rn−4

∫
Br(x)∩B1

|f | 43

Denote f̃ the function equal to f̂ in B2 and equal to 0 in R
n \ B2. One

interpolate smoothly ĝ and δij between B2 and B4 and keep denoting ĝ
the resulting metric on R

n. Let v = ∆−1f on R
n, where ∆−1 denotes the

convolution with the Green Kernel of ∆ĝ. From proposition 3.1 of [1] we
deduce

(4.71) ‖v‖L4(Rn) ≤ C‖f‖
2
3

M
0,4/3
3 (Rn)

‖f‖
1
3

L
4
3 (Rn)

The harmonicity of û − v on B2 implies

(4.72)
‖û − v‖L4(B1) ≤ C‖û − v‖L4/3(B2)

≤ C‖f‖L4/3(B1) + C‖v‖L4(Rn)

Combining (4.71) and (4.72) one gets Lemma 4.11. �
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Proof (of Lemma 4.10). The assumption
∫

B1
|FD|2 ≤ κ(n) combined with

the monotonicity formula implies

sup
r<1/4 x∈B 1

2

1

rn−4

∫
Br(x)

|FD|2 ≤ κ(n)

therefore we can apply Theorem 1.3 and we get the Coulomb gauge A for D
that solves

(4.73)




∆A = −d∗[A,A] − ∗[A, ∗FA] in B1/2

‖A‖2
M0,4

1 (B1/2)
+ ‖∇A‖2

M0,2
2 (B1/2)

≤ Cκ(n)

This yields in particular

(4.74) |∆| ≤ C
[|∇A| + |A|2] |A| in B1/2

Let Br(x) ⊂ B1/2 and B solving

(4.75)




∆B = −d∗[A,A] − ∗[A, ∗FA] in Br

B = 0 on ∂Br

In one hand, applying Lemma 4.11 and (4.74), we have

[ 1

rn

∫
Br(x)

|B|4
]1/4

(4.76)

≤ C

[
sup

y∈Br(x), r>0

1

ρn−4

∫
Bρ(y)∩Br(x)

|∆B| 43
]1/2 [

1

rn

∫
Br

|∆B| 43
]1/4

≤ C
[
‖A‖2

M0,4
1 (B1/2)

+ ‖∇A‖M0,2
2 (B1/2)

] [
1

rn

∫
Br(x)

|A|4 +
1

rn

∫
Br(x)

|∇A|2
]1/4

In the other hand, using the fact that A−B is harmonic on Br(x), we have
for any ρ < r

(4.77)

∫
Bρ

|A − B|4 ≤ C
(ρ

r

)n
∫

Br

|A − B|4
∫

Bρ

|∇(A − B)|2 ≤ C
(ρ

r

)n
∫

Br

|∇(A − B)|2
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A standard interpolation estimate applied to B on Br(x) gives

(4.78)
1

rn−2

∫
Br

|∇B|2 ≤ C

(
1

rn

∫
Br

|B|4
)1/4 (

1

rn−8/3

∫
Br

|∆B| 43
)3/4

Therefore

(4.79)
1

rn−4

∫
Br

|∇B|2 ≤ C

(
1

rn−4

∫
Br

|B|4
)1/4 (

1

rn−4

∫
Br

|A|4 + |∇A|2
)3/4

Combining (4.76), (4.77), (4.78) and (4.79) one gets

(4.80)
1

ρn−4

∫
Bρ

|A|4 + |∇A|2 ≤ C
(ρ

r

)4 1

rn−4

∫
Br

|A|4 + |∇A|2

+Cρ/r

[
‖A‖8

M0,4
1 (B1/2)

+ ‖∇A‖4
M0,2

2 (B1/2)

] [
1

rn−4

∫
Br(x)

|A|4 +
1

rn−4

∫
Br(x)

|∇A|2
]

There exists 0 < λ < 1 independent on r such that Cλ4 < 1/4, assume now

Cλ

[
‖A‖8

M0,4
1 (B1/2)

+ ‖∇A‖4
M0,2

2 (B1/2)

]
< 1/4

and denote T (r) = 1
rn−4

∫
Br(x)

|A|4 + 1
rn−4

∫
Br(x)

|∇A|2, then (4.80) becomes

T (λr) ≤ 1

2
T (r)

and we deduce the existence of 0 < α (α = [ log(1/2)
log λ

]) such that

(4.81) sup
Br(x)⊂B1/3

1

rn−4+α

∫
Br(x)

|A|4 +
1

rn−4+α

∫
Br(x)

|∇A|2 < +∞

This gain of regularity bootstraps as follows :

(4.81) implies the existence of 1 > δ > 0 such that (adopting notations
of [1])

(4.82) ‖M3−δ∆A‖L∞(B1/3) := sup
Br(x)⊂B1/3

1

rn−3+δ

∫
Br(x)

|∆A| < +∞

Therefore, for any p > 1, we have from [1] proposition 3.1

(4.83) ‖A‖Lq(B1/4) ≤ C
∥∥M3−δ∆A

∥∥2p/λ

L∞(B1/3)

∥∥∆A
∥∥1−2p/λ

Lp(B1/3)
+ ‖A‖L4(B1/3)
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where λ = p(3 − δ) and q = p(3−δ
1−δ

). We also have

(4.84) ‖∇A‖Lr(B1/4) ≤ C
∥∥M3−δ ∆A

∥∥p/λ

L∞(B1/3)

∥∥∆A
∥∥1−p/λ

Lp(B1/3)
+ ‖A‖L4(B1/3)

where r = p(3−δ
2−δ

). Observe that |∆A| ≤ C|A|3 + |∇A|3/2, thus we have

‖∆A‖Lp ≤ C
∥∥A

∥∥3

L3p +
∥∥∇A

∥∥3/2

L3p/2 .

Using the fact that 3−δ
1−δ

> 3 and 3−δ
2−δ

> 3
2

(since δ > 0), we have that q − 3p
admits a fixed positive lower bound for p ≥ 4/3, so as r−3p/2. Thus, modulo
an eventual reduction of the size of the ball, one bootstraps Lp estimates for
A and ∇A until reaching for instance that ∆A ∈ Lq for q > n which implies
that FA ∈ L∞ and standard Sobolev Bootstraping in equation (4.73) tells
us that A is analytic in a ball of fixed radius (that could be B1/2 modulo a
reduction of κ(n)).

Once this work was completed we learned that independently Terence Tao
and Gang Tian established the existence of Coulomb Gauges in Morrey Spa-
ces and proved a similar regularity result for stationary Yang-Mills called
“admissible” by the authors (i.e. stationary Yang-Mills Fields which are
weakly approximable by smooth Yang-Mills Fields) —see [12].
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