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Abstract

A combinatorial description of the minimal free resolution of a
lattice ideal allows us to the connection of Integer Linear Program-
ming and Algebra. The non null reduced homology spaces of some
simplicial complexes are the key. The extremal rays of the associated
cone reduce the number of variables.

Introduction

The objective of this paper is to describe how Integer Linear Programming
allows us to obtain the minimal free resolution of a lattice ideal, I, from the
generators of the semigroup, S, which parametrizes the associated algebraic
variety.

Concretely, Hilbert bases of some diophantine systems are employed.
These bases are the solution of the typical Integer Linear Programming
Problem, but the minimality with respect to a cost map is not imposed.
Recall that this typical problem is:

min{c · x | Ax = b, x ∈ Nn},

where A is an integer matrix, b an integer vector and c a real vector (c · x is
the cost map).

2000 Mathematics Subject Classification: Primary 13D02, 14M25; Secondary 13P10,
68W30, 90C27.
Keywords: Resolutions, simplicial complex, syzygy, lattice ideal, regularity, Integer Linear
Programming, Hilbert bases, Gröbner bases.
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Anybody who has solved linear diophantine equations in non negative in-
tegers, even with the more recent methods (see [18], [20], [23], [44] and [46]),
knows that only in the case of a few variables the problem is tractable. It is
well-known that this problem is NP-complete (see for example [37]). There-
fore, from the computational viewpoint, our description is not practical in
order to obtain the minimal free resolution. However, the method can be
used to the contrary. Our description allows the understanding of the rela-
tion between the syzygies of the ideal and Integer Linear Programming. One
can compute with Gröbner bases using for example the Schreyer Theorem
and its improvements (see [33]), and look for applications to Integer Pro-
gramming. This philosophy comes from [19] and [46], and provides a lot of
applications in [50]. For example, the typical Integer Linear Programming
Problem can be solved computing the reduced Gröbner basis of an associ-
ated lattice ideal. Or for instance, the Graver basis ([28]) of an ideal can be
obtained from a reduced Gröbner basis of its Lawrence lifting, which is its
unique minimal generating set. Nevertheless, at the moment this philosophy
has only been employed in the case of the ideal I, but not the syzygies of
the higher order (the ideal can be considered as the syzygies of order zero).
Our description yields the generalization.

As in [30] and [48], the combinatorial objects we use are simplicial com-
plexes. Concretely, for any element of the semigroup S, we associate two
simplicial complexes. The elements in the semigroup represent the degrees
of the syzygies, in fact, the minimal free resolution is S-graded. The study
of the non null reduced homology spaces of the simplicial complexes pro-
vides the concept of i-triangulation. This concept is the key in order to
understand the relation between Integer Linear Programming and Algebra,
concretely, between Hilbert bases and ith syzygies.

By means of a partition of the generating set of S, the number of vari-
ables is reduced to the number of extremal rays of the associated cone. This
is another possible point to continue researching. A generator over each ex-
tremal ray is chosen. Fixing the attention on this subset of generators, a new
resolution is considered, the minimal free resolution of I over a polynomial
ring with only the variables corresponding to these generators.

We begin in section 1 with the definition of the algebraic objects we
employ. In section 2 we give the combinatorial description of the two minimal
free resolutions. Section 3 is dedicated to the i-triangulations in a simplicial
complex and some applications. The exposition of how to compute both
resolutions with Gröbner bases is in section 4. All these sections include the
results we have already obtained using the techniques this paper describes.
For details the reader may also want to consult the reference joined to the
concrete result.
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Another possible application of our description is in Toric Geometry.
Normal toric varieties [26], and more generally, non-normal toric varieties [27]
and [50], appear as algebraic varieties whose ideals are lattice ones. Among
our results can be found descriptions of the regularity of these ideals as well
as upper bounds for the degree of their generators. It is expected that there
is some relation between these results and the conjetures of [24] and [50] (see
also [49] and [39]). For a survey of the modern developments in the theory
of toric varieties see [21]. Some applications of this theory to the Arithmetic
and Integer Programming can be found in [17].

The hull resolution is another free resolution of a lattice ideal. This reso-
lution is a generalization of the results for generic lattice ideals in [2] and [38].
It was introduced in [5] using Integer Programming. The study of the min-
imality of this resolution is a current research objective (see [3] where the
case of unimodular lattice ideals is considered, and [36] for the monomial
curves in the affine space of low dimension).

On the other hand, it is known that any binomial ideal is an intersection
of cellular ideals [25]. The cellular ideals are closely related to the lattice
ideals. Using cellular decomposition of a binomial ideal, it is possible to
obtain information about the binomial ideal from the properties of the lattice
ideals (for example, primary decomposition or nilpotence index, see [34]
and [35]).

1. The two minimal free resolutions associated with a
lattice ideal

Let k be a commutative field and k[X] = k[X1, . . . , Xn] the polynomial ring
in n indeterminates, and the ideal m = (X1, . . . , Xn).

Let L ⊂ Zn be a lattice. The ideal of the lattice L is

IL = 〈Xu+ − Xu− | u ∈ L〉,
where u = u+ − u−, u+, u− ∈ Nn, have disjoint support.

Let S be a cancellative commutative semigroup, with zero element and
generated by n elements Λ = {m1, . . . ,mn}. Thus, S is a subsemigroup of a
finitely generated abelian group. Denote G(S) the smallest group contain-
ing S. The semigroup k-algebra is k[S] =

⊕
m∈S kχm, (χm · χm′

= χm+m′
).

The ideal of S relative to Λ is ker(ϕ0), where ϕ0 is the k-algebra morphism

ϕ0 : k[X] −→ k[S]

defined by ϕ0(Xi) = χmi . Notice that ϕ0 is surjective, and hence k[S] �
k[X]/ ker(ϕ0).



290 E. Briales, A. Campillo, P. Pisón and A. Vigneron

If IL is the ideal of the lattice L ⊂ Zn, then IL is the ideal of the
subsemigroup of Zn/L generated by {e1 +L, . . . , en +L}, where the ei’s are
the unit vectors.

On the other hand, the ideal of any semigroup S relative to a generating
set Λ is the ideal of the lattice {u = (u1, . . . , un) ∈ Zn|∑ uimi = 0} (see [52]
for details).

From now on, we fix a lattice L or equivalently a semigroup S. Assume
that L∩Nn =(0), or equivalently S∩(−S)=(0). Let I be the ideal relative to
the generating set Λ={m1, . . . ,mn} of S. Notice that I is S-graded because
ϕ0 is an S-graded morphism of degree zero, considering k[S] with the natural
S-grading and k[X] as an S-graded ring, assigning the degree mi to Xi. The
condition S ∩ (−S) = (0) says that k[X]m, the homogeneous elements of
degree m∈S in k[X], is a k-vector space of finite dimension (see [8]).

Another application of the condition S ∩ (−S) = (0), is Nakayama’s
lemma for S-graded k[X]-modules (see [8]). Thus, there exists an S-graded
minimal free resolution of k[S], which is unique up to isomorphism. We
denote such a resolution by

0 → k[X]bp
ϕp−→ · · · → k[X]b2

ϕ2−→ k[X]b1
ϕ1−→ k[X]

ϕ0−→ k[S] → 0,

and let Ni = ker(ϕi) be the ith module of syzygies 0 ≤ i ≤ p (N0 = I).
Notice that

bi+1 = dim(Ni/mNi),

where Ni/mNi is considered as a k-vector space. Moreover, since this space
is S-graded, if Vi(m) := (Ni/mNi)m, where m ∈ S, then

bi+1 =
∑
m∈S

dim Vi(m).

The Auslander-Buchbaum theorem guarantees that

p = n − depthk[X]k[S],

where depthk[X]k[S] is the depth of k[S] as k[X]-module. It is known that
depthk[X]k[S] is bounded by dim k[S], which is the rank of the abelian
group G(S). In the case the bound is reached, k[S] is a Cohen-Macaulay
ring. Thus, this case will be called Cohen-Macaulay case. On the other
hand, if S 	= {0}, it is satisfied that depthk[X]k[S] ≥ 1.

Assume that rank(G(S)) = d, let V = G(S)
⊗

Z
Q, and let C(S) be the

cone generated by the image S̄, of S in V . The cone C(S) is strongly convex
because S ∩ (−S) = (0). Thus, if f is the number of extremal rays of C(S),
then f ≥ d. This implies that there exists a set E ⊂ Λ with �E = f, such
that C(E) = C(S), where C(E) is the cone in V generated by E. Fix such
a set E.
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The Apery set Q of S relative to E is defined as

Q = {q ∈ S | q − e 	∈ S, ∀e ∈ E}.
Denote k[E] the subalgebra of k[S],

k[E] =
⊕

m∈SE

kχm,

where SE is the subsemigroup of S generated by E. Let k[XE ] be the
polynomial ring in the f indeterminates associated with E. k[XE ] can be
projected over k[E], it is enough to associate to the indeterminate Xi the
symbol χmi , for any mi ∈ E. k[S] is a k[E]-module, and therefore also a
k[XE ]-module. The set

{χq | q ∈ Q},
is a minimal system of generators of k[S] as k[E]-module, and therefore,
also as k[XE ]-module. Since k[E] ⊂ k[S] is an integral extension and k[S]
is finitely generated as a k[E]-algebra, k[S] is finitely generated as a k[E]-
module. So k[S] is a finitely generated k[E]-module, and Q is a finite set.
Suppose that β0 = �Q, Q = {q1, . . . , qβ0}, and consider

Φ0 : k[XE ]β0 −→ k[S]

defined by Φ0(ei) = χqi , 1 ≤ i ≤ β0. We can consider the S-graded minimal
resolution of k[S] as k[XE ]-module

0 → k[XE ]βq
Φq−→ · · · → k[XE ]β2

Φ2−→ k[XE ]β1
Φ1−→ k[XE ]β0

Φ0−→ k[S] → 0,

which is unique except isomorphisms. Let Mi = ker(Φi) be the ith module
of syzygies of k[S] as k[XE ]-module, 0 ≤ i ≤ q. As before, by S-graded
Nakayama’s lemma, we obtain

βi+1 =
∑
m∈S

dim Wi(m),

where Wi(m) := (Mi/mEMi)m is considered as a k-vector space, and mE

is the ideal of k[XE ] generated by the indeterminates of XE (Xi such that
mi ∈ E).
The Auslander-Buchbaum theorem guarantees that q = f − depthk[XE ]k[S],
where depthk[XE ]k[S] is the depth of k[S] as k[XE ]-module. Using the com-
binatorial descriptions of the above two resolutions in the following section,
and the theorem 4.1 in [13], one gets that

depthk[X]k[S] = depthk[XE ]k[S].

Therefore, p ≥ q.
Now, we will call the S-graded minimal free resolution of k[S] as k[X]-

module the long resolution, and the short resolution the S-graded minimal
free resolution of k[S] as k[XE ]-module.
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2. Combinatorial description of the resolutions

Assume that S 	= (0), and consider the S-graded minimal free resolution,

0 → k[X]bp
ϕp−→ · · · → k[X]b2

ϕ2−→ k[X]b1
ϕ1−→ k[X]

ϕ0−→ k[S] → 0.

For any m ∈ S (or even m ∈ G(S)) we define (inspired in some graphs
of [47]) the simplicial complex :

∆m = {F ⊂ Λ | m − nF ∈ S},

where nF =
∑

m′∈F m′. Let H̃i(∆m) be the k-vector space of the ith reduced

homology of ∆m, and h̃i(∆m) = dim(H̃i(∆m)).
There exists an effective isomorphism

(∗) H̃i(∆m) � Vi(m),

for any m ∈ S and for any i, 1 ≤ i ≤ n− 2, (for details see [14],[16] and [7],
or also [1]). These isomorphisms are a bridge between Combinatorics and
Algebra. For example, notice that the numbers bi in the long resolution can
be described by the following formula

bi+1 =
∑
m∈S

h̃i(∆m).

Another example, k[S] is Cohen Macaulay if and only if one has H̃n−d(∆m)=0
for every m ∈ S, where d = rank G(S). If k[S] is Cohen Macaulay then the
Cohen Macaulay type τk[X] of k[S] is given by

τk[X] =
∑
m∈S

h̃n−d−1(∆m).

Thus, in particular, k[S] is Gorenstein if and only if k[S] is Cohen Macaulay

and if H̃n−d−1(∆m) 	= 0 exactly for one m for which, moreover, one has

h̃n−d−1(∆m) = 1. The formula for τk[X] follows from the fact that τk[X] = bn−d

in the Cohen Macaulay case. Moreover, it is possible to generalize the well
known characterization of Gorensteiness for numerical semigroups due to
Kunz [32]. To state the result, notice that for m ∈ G(S) − S, ∆m is the

empty simplicial complex and therefore one has H̃i(∆m) = 0 for such an m
and i ≥ −1. Also notice that ∆0 is the only complex among the ∆m’s with
the property H̃−1(∆m) 	= 0 (in fact it is a one dimensional space). Finally

set H̃i(∆m) = 0 for i ∈ Z, i < −1, and m ∈ G(S). From the symmetry
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of the graded resolution in the Gorenstein case, if R is Gorenstein and let
m ∈ S be the element such that H̃n−d−1(∆m) 	= 0, then for any couple of
elements m1,m2 ∈ G(S) with m1 + m2 = m and i ∈ Z one has

H̃i(∆m1) � H̃n−d−i−2(∆m2)

(see [7] for details).
In the case of a numerical semigroup, let c be the least element, such

that m ∈ S for any m ≥ c. H̃i(∆m) = 0 for any m ≥ c + nΛ − 1 and any i,
because ∆m is the full simplex. Therefore, if S is symmetric, the above iso-
morphism provides a symmetric property on the matrix {h̃i(∆m)}i,m. (This
particular case was proved in [14].)

Another important application of these isomorphisms is the construction
of minimal generating sets of syzygies. Notice that

S(i) := {m ∈ S | H̃i(∆m) 	= 0}, n − 2 ≥ i ≥ 0,

is the set of S-degrees for the minimal i-syzygies. The notherian property
guarantees that S(i) is a finite set, therefore the following construction pro-
vides a method for computing a minimal generating set of Ni.

Construction:

Step 1: Compute S(i).

Step 2: For any m ∈ S(i), take the images of the elements in a basis

for the ith reduced homology space H̃i(∆m) by the isomorphism.

Step 1 is completely solved in [12], but the partial solution for i = 0
appears in [8], and for i = 1 in [43]. Step 2 is solved with an algorithmic
method in [7, Remark 3.6].

The case i = 0 corresponds to the ideal I = N0. In this case, step 1 is
equivalent to determine the element m ∈ S such that ∆m is non-connected.
These elements are characterized by the concept of to be m-isolated ([16])
given by three arithmetical conditions. Concretely:

Let m ∈ S, and let B = {i1, ..., ip} ⊂ C ⊂ Λ, C 	= Λ. We shall say B is
m-isolated from Λ − C if:

1. It is possible to write

m =

p∑
j=1

γijnij =
∑
t �∈C

ρtnt,

where γij , ρt ∈ N, and 0 < γij for any j, 1 ≤ j ≤ p.
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2. If there exists m′ ∈ S such that it is possible to write

m′ =

p∑
j=1

γ′
ij
nij =

∑
t �∈B

ρtnt,

with γ′
ij
, ρt ∈ N, γ′

ij
	= 0, and there exists t 	∈ C such that ρt 	= 0, then

(γ′
i1
, ..., γ′

ip) 	< (γi1 , ..., γip).

3. If B′ = {l1, ..., ls} ⊂ B and there exists m′ ∈ S such that it is possible
to write

m′ =

s∑
j=1

γ′
lj
nlj =

∑
t �∈B′

ρtnt,

with γ′
lj
, ρt ∈ N, and there exists t 	∈ C such that ρt 	= 0, then

(γ′
l1
, ..., γ′

ls
) 	≤ (γl1 , ..., γls).

We obtain the following result:

Theorem 1 ([16]) Let m ∈ S, the following conditions are equivalents:

1: ∆m is non-connected (H̃0(∆m) 	= 0).

2: There exists C ⊂ Λ, such that:

– C = ∪g
j=1Tj.

– Tj is m-isolated from Λ − C, for any j.

– Tj ∩ Tj+1 	= ∅, for any j, 1 ≤ j ≤ g − 1.

This characterization allows us to find the particular solutions given for
few generators in the numerical case in [29] (n = 3), [6] and [40] (n = 4),
and [15] (n = 5). Moreover, by means of new combinatorial elements, the
theorem yields an algorithm. Concretely, the vertices of some ladders, or
equivalently, the Hilbert bases of some diophantine systems are used. (See [8]
for details).

The case i=1 is solved in [43] by construction of a finite set containing

S(1). This set is obtained after studying the non-null spaces H̃1(∆m) 	= (0).
The concept of F -cavity in ∆m allows us to associate with S some diophan-
tine systems. The Hilbert bases of these systems provide a check finite set.
This technique is generalized in [12] for i ≥ 2 . A new concept is necessary,
the i-triangulation in ∆m.

Now, consider the S-graded minimal free resolution of k[S] as k[XE ]-
module

0 → k[XE ]βf−1
Φf−1−→ · · · → k[XE ]β2

Φ2−→ k[XE ]β1
Φ1−→ k[XE ]β0

Φ0−→ k[S] → 0.
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This resolution can be described by means of other simplicial complexes ([13]).
Concretely, if m ∈ S, let Tm be the simplicial complex

Tm = {F ⊂ E | m − nF ∈ S}.
Denote H̃i(Tm) the ith reduced homology space of the simplicial complex

Tm, and let h̃i(Tm) = dim(H̃i(Tm)). There exists an isomorphism

(∗∗) H̃i(Tm) � Wi(m),

for any m ∈ S and for any i, 1 ≤ i ≤ f − 2 (see [41]). As an application of
these isomorphisms, if denote

D(i) := {m ∈ S | H̃i(Tm) 	= 0},
we obtain that

βi+1 =
∑

m∈D(i)

h̃i(Tm), 0 ≤ i ≤ f − 2.

Notice that, by the noetherian property, D(i) is finite.
In [10] is shown how the sets D(i) can be obtained generalizing the

techniques used for computing S(i) in [12]. This process will be recalled in
the following section.

Let A = Λ \E, �A = n− f = r. A first application of the above formula
is that S(i) ⊂ Ci, where

Ci = {m ∈ S | m = m + nF , with m ∈ D(t) and F ⊂ A, �F = i − t,

for some t ≥ −1}
(see [13]). Therefore, in order to determine the set S(i) it is enough to
compute D(t) for any t, −1 ≤ t ≤ min(i, f − 2). Notice that this result
allows us to construct the long resolution from the short one.

3. i-Triangulations

The objective of this section is to describe how the sets S(i), 0 ≤ i ≤ n− 2,
and D(i), −1 ≤ i ≤ f − 2, can be obtained solving diophantine systems in
non negative integers.

Notice that D(−1) = Q, and since C(E) = C(S) for any element a ∈ A
there exists qa ∈ N such that qa · a =

∑
e∈E λe · e with λe ∈ N.

Remark 1 Therefore, in order to obtain the set Q, one can do:

1. Compute the bounds qa, a ∈ A.

2. Determine the elements m =
∑

a∈A λa · a, with λa ∈ N and λa < qa.

3. Check whether the elements m are in Q using Integer Linear Program-
ming.
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Notice that one can compute the set Q solving some diophantine equa-
tions in non negative integers, although this way is not practical.

For solving the other cases, we need the concept of i-triangulation in a
simplicial complex. Let ∆ be an abstract simplicial complex with vertices
over a finite set V.

The reduced i-homology of the simplicial complex ∆ is the k-vector space

H̃i(∆) = Z̃i(∆)/B̃i(∆),

where Z̃i(∆) and B̃i(∆) are the spaces of cycles and boundaries respectively.

Let i ≥ 0 and F ⊂ V. We will say that τ = {F1, . . . , Ft} is an
i-triangulation of F if the following properties are satisfied:

1. �Fj = i + 1, ∀j = 1, . . . , t.

2. F =
⋃t

j=1 Fj.

We will say that τ is an i-triangulation of F in ∆, if Fj ∈ ∆, ∀j = 1, . . . , t,
and F /∈ ∆.

If H̃i(∆) 	= 0, then there is c ∈ Z̃i(∆)− B̃i(∆), c =
∑t

j=1 λjFj, such that

τ = {F1, . . . , Ft} is an i-triangulation of F in ∆, for F =
⋃t

j=1 Fj.

In the cases ∆ = ∆m or Tm, V = Λ or E respectively, if F ⊂ V, and
τ = {F1, . . . , Ft} is an i-triangulation of F, in ∆m or respectively in Tm, we
can associate with τ a diophantine system solution. Concretely, let G be the
matrix whose columns are the chosen generators of S, G := (m1| . . . |mn) ∈
M(d+s)×n(Z), considering the mi as elements in Zd+s, and let

G(t) :=


G −G 0 0 0 0 0
0 G −G 0 0 · · · 0 0
0 0 G −G 0 0 0

. . . . . . . . .

0 0 0 0 0 G −G

 ∈ M(d+s)(t−1)×nt(Z).

Let eFl
∈ Nn be the vector with all its coordinates zero except those

indicated in the set Fl. Let eτ := (eF1 , . . . , eFt) ∈ Nnt and let

Rτ := {α = (α(1), . . . , α(t)) ∈ Nnt | G(t)α = 0 , α � eτ},
where � is the natural partial order in Nnt. Since τ is a i-triangulation of
F in ∆m (respectively Tm), there is α ∈ Rτ such that Gα(1) = · · ·=Gα(t) =
m∈S.

Notice that Rτ doesn’t depend on m. Therefore, given F ⊂ V, and
τ ={F1, . . . , Ft} a i-triangulation of F, we can consider the set Rτ and the set

ΣRτ := {m ∈ S | m = Gα(1), for some α = (α(1), α(2), . . . , α(t)) ∈ Rτ}.
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The elements m ∈ S such that τ is i-triangulation of F in ∆m or respec-
tively in Tm are in ΣRτ . We need to be more precise and to give a finite
subset of ΣRτ with the same property. For this, we consider

HRτ := {α ∈ Rτ |α is minimal for �},
which is finite, and

ΣHRτ := {m ∈ S | m = Gα(1), for any α = (α(1), α(2), . . . , α(t)) ∈ HRτ}.
In the case of the complexes ∆m, one has that ([42])

S(i) ⊂
⋃

F⊂Λ, �F≥ i+2

⋃
τ

ΣHRτ .

In the case of the complexes Tm, we also need to consider the set Q.
In both cases, there is a partial order which refines the final result. The
order is different in each case. Concretely:

• m >S m′ if m − m′ ∈ S.

• m >Q m′ if m − m′ ∈ S \ Q.

Moreover, if H ⊂ S, we will say that m ∈ H is S-minimal (resp.
Q-minimal) in H if m ≥S m′ (resp. m ≥Q m′), with m′ ∈ H, implies
that m = m′.

Let
Cτ := {m ∈ ΣRτ | m is S-minimal in ΣRτ},

and Mτ := {m ∈ ΣRτ | m is Q-minimal in ΣRτ}.
Cτ is finite because Cτ ⊂ ΣHRτ (see [12] for details). Mτ is finite because

Mτ ⊂ ΣHRτ + Q (see [10] for details).
The relation of the elements in S(i) (resp. D(i)) and Cτ (resp. Mτ ) is the

following: If m ∈ S(i) (resp. m ∈ D(i)), then there exists τ = {F1, . . . , Ft},
i-triangulation of F = ∪j=1,...,tFj, such that m ∈ Cτ (resp. m ∈ Mτ ).
(See [12] and resp. [10] for details.)

Thus, if

C ′
τ := {m ∈ Cτ |F /∈ ∆m}, and Ci(F ) :=

⋃
τ

C ′
τ ,

and if
M ′

τ := {m ∈ Mτ |F /∈ Tm}, and Mi(F ) :=
⋃
τ

M ′
τ ,

we obtain the following theorem which provides an algorithm to compute
the sets S(i) and D(i) (see [12] and [10] for details).
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Theorem 2 The elements m ∈ S such that the simplicial complex ∆m,
respectively Tm, has ith reduced homology non null can be determined using
Integer Linear Programming. Concretely,

• S(i) ⊂ ⋃
F⊂Λ, �F≥i+2 Ci(F ), 0 ≤ i ≤ n − 2.

• D(i) ⊂ ⋃
F⊂E, �F≥i+2 Mi(F ), 0 ≤ i ≤ f − 2.

Notice that the integer programming problem for computing the sets S(i)
and D(i) can be solved determining the Hilbert bases of some diophantine
systems. It is clear that this is not a practical method. Nevertheless, since
any element in the Hilbert basis can be bounded in function of the associ-
ated matrix, we obtain an explicit bound for the degree of the ith minimal
syzygies.

Proposition 3 ([11]) Let m ∈ S be the degree of a ith minimal syzygy,
0 ≤ i ≤ n − 2. There is x such that m = Gx with

‖x‖1 ≤ r (1 + 2 max |aj| + ‖G‖)(d+s)

+ (1 + 2 max |aj| + 4‖G‖)(d+s)(c−1) + (i + 1)(c + 1) − 1,

where c =
( f
�f/2�

)
, and ‖G‖ := supl

∑
j |glj|.

Other applications are obtained in the case of the ideal I is homogeneous
for the natural grading. This case is called projective case, because the
ideal I defines a toric projective variety (see for example [50]).

A characterization of when the ideal I is homogeneous is the following:

Proposition 4 ([10]) I is homogeneous for the natural grading if and only
if there exists w ∈ Qd such that w · π(mi) = 1, for any i = 1, . . . , n.

Here we are supposing that

G(S) = Zd ⊕ Z/a1Z ⊕ · · · ⊕ Z/asZ,

with ai ∈ Z non null, 1 ≤ i ≤ s, n = d + s, and that π is the projection over
the first coordinates

π : Zd+s −→ Zd.

Assume that I is a homogeneous ideal. In this case, it is well defined
‖m‖ = ‖α‖1, where m =

∑n
i=1 αimi and ‖α‖1 =

∑n
i=1 αi.
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It is well-known (see, for example, [4]) that the regularity of I is

reg(I) = max
0≤i≤n−2

{ti − i},
where ti is the maximum degree of the minimal i-syzygies of I, i.e.

ti = max{‖m‖ | m ∈ S(i)} .

Moreover, the following formula is obtained.

Theorem 5 ([10])

reg(I) = max
−1≤i≤f−2

{ui − i}, where ui = max{‖m‖ |m ∈ D(i)}.
Therefore, one can read the regularity in the short resolution, it is not nec-
essary to use the large one. We obtain an explicit bound for the regularity.

Theorem 6 ([11])

reg(I) ≤ r (1 + 2 max |aj| + ‖G‖)(d+s)

+ (1 + 2 max |aj| + 4||G‖)(d+s)(c−1) + (f − 1)(c − 1).

Notice that this bound is singly-exponential in the number of extremal rays.
Therefore, they are an improvement of the well-known singly-exponential in
the number of generators given in [51].

Using again combinatorial techniques, in [45] a new method for comput-
ing the minimal generating set of a Lawrence ideal is given. Therefore, a new
method for computing Graver bases is obtained. Moreover, a combinatorial
characterization of the minimal degrees of a Lawrence ideal is given as well
as a degree bound for its minimal first syzygies.

Another result obtained using these techniques is an effective upper
bound for the degrees of the equations defining toric projective varieties.
Concretely, let L : S → N be the map defined by L(m) = ‖m‖. For
any t ≥ 0, let Ht := {m ∈ S | L(m) = t}, and denote

Qt := Q ∩ Ht, and t0 := min{t | Qt = ∅}.
On the other hand, from the above sequences, making substitutions of the
formulas of homology, the following map is obtained⊕

a∈A

H̃0(Tm−a)
ϕm−→ H̃0(Tm).

Let t1 := min{t | coker(ϕm) = 0 ∀m ∈ Ht}, i.e. the minimum t ∈ N such
that ϕm is surjective for every m ∈ Ht.

Theorem 7 ([9]) An effective upper bound for the degrees of the polynomials
in a minimal generating set of the equations of a toric projective variety
is max(t0, t1).
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4. Computing with Gröbner Bases

As was explained in section 2, the method proposed in section 3 for com-
puting the sets S(i), allows us to obtain the minimal free resolution of k[S]
as k[X]-module, which we have called the long resolution. In [53] are some
explicit examples.

Using the sets Ci defined in section 2, it is possible to change slightly
the method of the computation of the sets S(i) from the sets D(t) with
−1 ≤ t ≤ i (see [10] for details). The advantage of this change appears
when the cardinality of E is strictly less than the cardinality of Λ. In this
case, the number of diophantine systems which one must solve decreases.
However, even with this improvement, the obtained method is not faster
than the method which employs Gröbner bases.

To compute the long resolution of k[S] using Gröbner bases, one must
begin computing the ideal I. There exist several methods to do this. Two of
them, [22] and [31], are an improvement on the usual method using Elimina-
tion Theory (see [50]). These papers consider only the torsion free case. The
generalization to non trivial torsion appears in [52]. The advantage of these
methods is that they do not need to add new variables like the Elimination
theory requires for this concrete problem. An application of these methods
is the computation of Hilbert bases of diophantine equations (see [44]), even
in the case of equations with congruences (see [43]).

Once a generating set {f1, . . . , fr} of I is obtained, , we can consider the
morphism of free k[X]-modules

ϕ : k[X]r −→ k[X],

defined by ϕ(ei) = fi. It is enough to use the Schreyer Theorem to obtain the
whole resolution. In fact, some Formal Calculus Systems, as Macaulay2

or Singular, have installed this algorithm, even with some improvements
(see [33]). From the long resolution one can read the sets S(i).

In order to compute the S-graded minimal free resolution of k[S] as
k[XE ]-module with Gröbner bases, we must begin by computing the Apery
set, Q. For details see [41].

Assume, for the sake of simplicity,

E = {m1, . . . ,mf} and A = {mf+1, . . . ,mn}.

Fix a total order on the monomials of k[X] = k[XE ,XA], X1 <X2 < · · ·<Xn,
such that:

1. Xα < Xβ, implies Xα+γ < Xβ+γ , for any α, β and γ;
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2. If f =
∑

aαX
α ∈ k[X] has the leading monomial Xβ 	∈ k[XA], then

Xα 	∈ k[XA], for any α with aα 	= 0.

For example, we can consider the lex − inf order, which is defined

α >lex−inf β ⇐⇒ α <lex β,

where lex order is the lexicografic order for X1 > · · · > Xn.

Every order with these properties is not a well-ordering. However, since
there exists only a finite number of monomials of S-degree m ∈ S, a Gröbner
basis of I can be computed from any S-graded generating set of I.

Assume that Γ is the reduced Gröbner basis of I for such an order. Let B
be the set of monomials Xα

A which are not divisible by any leading monomial
of Γ.

Lemma 8 ([41])

Q =
{

m ∈ S | m =

n∑
i=f+1

αimi, where Xα
A ∈ B

}
,

and in particular, the set B is finite.

Notice that the integer linear problem of computing Q given in Remark 1
is now solved by means of the reduced Gröbner basis of I.

Let l0 be the cardinality of B = {Xα1
A , . . . ,X

αl0
A }. Any element in Γ whose

leading monomial Xv
EXu

A has variables in {Xi | 1 ≤ i ≤ f} (i.e. v 	= 0), is ,
except sign ±,

Xv
EXu

A − Xv′
EXu′

A .

Property 2 of the order says that v′ 	= 0, and therefore, since Γ is a reduced
Gröbner basis, Xu

A and Xu′
A ∈ B.

Moreover, u 	= u′ because otherwise, since I is a saturated ideal, Xv
E −

Xv′
E ∈ I, which is a contradiction with Γ is a Gröbner basis.

Suppose that Xu
A = Xαi

A , and Xu′
A = X

αj

A . For any γ ∈ Nr such that

Xγ+αi

A ∈ B and X
γ+αj

A ∈ B,

if αi′ = γ + αi and αj′ = γ + αj , we associate with the chosen element in Γ,
the element in k[XE ]l0 with all the coordinates equal to zero, except the i′th
and j′th ones, which are Xv

E , and −Xv′
E , respectively. Notice that there is

at least an element associated, the one corresponding to γ = 0.
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For any γ ∈ Nr such that

Xγ+αi

A ∈ B and X
γ+αj

A /∈ B,

if αi′ = γ + αi and Xw
EX

αj′
A is the division remainder of X

γ+αj

A by Γ, we
associate with the chosen element in Γ, the element in k[XE ]l0 with all the
coordinates equal to zero, except the i′th and j′th ones, which are Xv

E,
and −Xv′+w

E , respectively.

In this way, taking all the elements in Γ of the above form, we obtain
Gi ∈ k[XE ]l0 , 1 ≤ i ≤ l1.

Notice that β0 ≤ l0. In the case β0 < l0, if β0 + 1 ≤ i ≤ l0, qi = qj for a
unique j, 1 ≤ j ≤ β0. Denote j = j(i). We consider

π : k[XE ]l0 → k[XE ]β0 ,

the k[XE ]-module morphism defined by

π(ei) =

{
ei if 1 ≤ i ≤ β0 ,

ej(i) if β0 + 1 ≤ i ≤ l0 .

We consider the matrix

M := (π(G1)| · · · |π(Gl1)).

M defines a morphism of free k[XE ]-modules

Ψ1 : k[XE ]l1 −→ k[XE ]β0 .

Proposition 9 ([41])

coker(M) �k[XE ] k[S].

Therefore, we obtain the first step of a free resolution of k[S] as k[XE ]-
module that is S-graded.

k[XE ]l1
Ψ1−→ k[XE ]β0

Φ0−→ k[S] → 0.

Now, in order to obtain the short resolution, it is enough to apply the
Schreyer Theorem. The sets D(i) can be read from the short resolution.

We conclude that the integer programming problem for computing S(i)
and D(i) given in Theorem 2 can be solved by means of Schreyer Theorem,
therefore using Gröbner bases.
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[13] Campillo, A. and Giménez, P.: Syzygies of affine toric varieties. J. Al-
gebra 225 (2000), no. 1, 142–161.

[14] Campillo, A. and Marijuán, C.: Higher order relations for a numerical
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Associatives-Commutatives. Thése de doctorat d’Université, Université de
Nancy I, 1991.

[24] Eisenbud, D. and Goto, S.: Linear free resolutions and minimal multi-
plicity. J. Algebra 88 (1984), no. 1, 89–133.

[25] Eisenbud, D. and Sturmfels, B.: Binomial ideals. Duke Math. J. 84
(1996), no. 1, 1–45.

[26] Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Stud-
ies 131. Princeton University Press, Princeton, 1993.

[27] Gelfand, I. Kapranov, M. and Zelevinsky, A.: Discriminants, resul-
tants, and multidimensional determinants. Mathematics: Theory & Appli-
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[53] Vigneron-Tenorio, A.: Álgebras de Semigrupos y Aplicaciones. Doc-
toral thesis, Universidad de Sevilla, 2000.

Recibido: 8 de abril de 2002
Revisado: 20 de enero de 2003

Emilio Briales-Morales
Departamento de Álgebra
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