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Perturbing plane curve singularities

Eduardo Casas-Alvero and Rosa Peraire

Abstract

We describe the singularity of all but finitely-many germs in a
pencil generated by two germs of plane curve sharing no tangent.

Introduction

Let ξ : f = 0, f ∈ C{x, y}, be a germ of analytic curve at the origin of C2

and assume that g ∈ C{x, y} has n = ord g ≥ ord f and the initial forms
of f and g share no factor. In this paper we describe the singularities of the
germs of curve ζλ : f + λg = 0 for all but finitely-many λ ∈ C, by giving
their infinitely near singular points and multiplicities. This in particular
determines their topological (or equisingularity) type in terms of n and the
singularity of ξ (the topological type of ξ if it is reduced). As already well
known, for ξ reduced, n big enough and no further hypothesis on g, all
germs ζλ have the topological type of ξ (see [8] and [5], where the minimal n
with this property is computed). Also a case with a non-reduced ξ and n � 0
has been treated in [6], chap. 5.

1. Free and satellite points. Clusters

In this section we briefly recall basic notions about infinitely near points.
The reader is referred to [2], [3] or [4] for more details. Also, we intro-
duce some new numerical invariants related to infinitely near points that
are needed in the sequel.

Points infinitely near to a point O on a smooth analytic surface S being
constructed by successive blowing-ups, each point p infinitely near to O lies
on the exceptional divisor Ep = π−1

p (O) of the composition πp : Sp −→ S
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of a finite sequence of blowing-ups. We write < the ordering on infinitely
near points induced by the blowing-ups, i.e. p < q means that q is infinitely
near to p. The point p is called a satellite point if it is a singular (double in
fact) point of Ep, otherwise it is called a free point . Assume that p is equal
or infinitely near to O. Points lying on the exceptional divisor of blowing
up p or on any of its successive strict transforms by further blowing-ups are
called points proximate to p. As it is easy to see, free points are proximate
to just one point, while satellite points are proximate to exactly two points.

Let p be either O or a free point infinitely near to O and let p′ be a point
infinitely near to p with no free points between p and p′. If p′ is free, then
we will say that it is a point next p. Otherwise, if p′ is satellite, it will be
called a satellite of p.

For a point p infinitely near to O, we denote ξ̃p (respectively, ξ̄p) the
germ at p of the strict transform (respectively, total transform) of the germ
of curve ξ by the composition πp of the blowing-ups giving rise to p. We

denote by ep(ξ) the multiplicity at p of ξ̃p, usually called the (effective)
multiplicity of ξ at p. The point p is said to be a non-singular point of ξ if
and only if it is simple on ξ (i.e., ep(ξ) = 1) and ξ contains no satellite point
equal or infinitely near to p. Equivalently, p is a non-singular point of ξ if
and only if ξ̃p and Ep are transverse at p.

A cluster with origin at O is a finite set K of points equal or infinitely
near to O such that for each p ∈ K it contains all points preceding p (by
the ordering of the blowing-ups). A pair K = (K, ν), where K is a cluster
and ν : K −→ Z an arbitrary map, will be called a weighted cluster . For
each p ∈ K, νp = ν(p) is called the virtual multiplicity of p in K. Consistent
clusters are the weighted clusters K = (K, ν) such that

νp −
∑

q prox. to p

νq ≥ 0, for all p ∈ K.

We will say that a germ ξ at O goes sharply through the weighted cluster
K = (K, ν) if ξ goes through K with effective multiplicities equal to the
virtual ones (i.e., for all p ∈ K, ep(ξ) = νp) and has no singular points
outside of K. The reader may notice that if ξ goes sharply through K,
then the singularity of ξ, both regarding its topological or equisingularity
type (see [10] or also [1] or [4]) and the position of singular points, is fully
determined by K.

If p is a free point on a germ of curve ξ, we will write Sp(ξ) for the set of
points consisting of p and all satellite points of p on ξ. As it is well known
Sp(ξ) is a finite set. Also if the free point p belongs to a cluster K, Sp(K)
will denote the set of p and all satellite points of p in K.
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Let K = (K, ν) be a weighted cluster and p ∈ K a free point. We
define the set of extremal satellites of p in K, Rp(K), as the set of all points
q ∈ Sp(K) such that

εq(K) = νq −
∑
p′

νp′ > 0,

summation running on the points p′ ∈ Sp(K) proximate to q. Note that p
may belong to Rp(K).

Let ξ be a germ of curve at O and p a free point on ξ. Similarly, the
set of extremal satellites of p on ξ, Rp(ξ) is defined as the set of the points
q ∈ Sp(ξ) for which

εq(ξ) = eq(ξ) −
∑
p′

ep′(ξ) > 0,

summation running on the points p′ ∈ Sp(ξ) proximate to q.

Remark 1.1 If ξ is a germ of curve going sharply through K = (K, ν), then
for any free p ∈ K, Sp(K) = Sp(ξ); for any q ∈ Sp(ξ), εq(K) = εq(ξ) and
hence Rp(K) = Rp(ξ).

Remark 1.2 Since for any branch γ of a germ of curve ξ, eq(γ) equals the
sum of the multiplicities of γ at points proximate to q (proximity equality,
cf. [2], 1.4.1), one has

εq(ξ) =
∑

γ

eq(γ) ,

where γ ranges over the set of branches of ξ with a free point in the first
neighbourhood of q. In particular, q ∈ Rp(ξ) if and only if ξ has a point
next p in the first neighbourhood of q. Clearly, Rp(ξ) is cofinal in Sp(ξ).

Remark 1.3 Let K = (K, ν) be a weighted cluster and p ∈ K a free point.
The integers εq(K), for q ∈ Sp(K), determine (and are of course determined
by) the virtual multiplicities νq. Indeed if q is maximal in Sp(K), then
εq(K) = νq after which the multiplicities νq are inductively determined by
the equalities defining the εq(K). Similarly, if p is a free point and lies on
a germ of curve ξ, the effective multiplicities of ξ at the points q ∈ Sp(ξ)
are determined by their corresponding εq(ξ). The inductive procedure that
determines the multiplicities being in both cases the same, if Sp(K) = Sp(ξ)
and εq(K) = εq(ξ) for all q ∈ Sp(K), then eq(ξ) = νq for all q ∈ Sp(K).

Let p be a free point infinitely near to O. Let q be either p or a satel-
lite of p. Write p = q1, q2, . . . , qh = q the ordered sequence of points
between p and q. One may decompose h = h1 + · · · + hr, all hi > 0
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and hr > 1, in such a way that q1, . . . , qh1+1 are proximate to the point
just preceding p, qh1+1, . . . , qh1+h2+1 are proximate to qh1 , and so on, till
qh1+···+hr−1+1, . . . , qh1+···+hr that are proximate to qh1+···+hr−1 . Then, we de-
fine the slope of the satellite point q as

s(q) =
1

h1 +
1

h2 +
1

.. . 1

hr

.

Since satellite points are quite determined by the points they are proxi-
mate to, it easily follows

Lemma 1.4 a) s(q) ≤ 1 and the equality holds if and only if q = p.

b) s(q) = s(q′) if and only if q = q′.

Let ξ be a germ of curve at O, p a free point on ξ and q ∈ Rp(ξ). Fix a
branch θq

p with origin at p, having multiplicity one at q and such that all its
points after q are non-singular and do not belong to ξ: the integer I(p, q) is
defined as

I(p, q) = [θq
p · ξ̃p] ,

where [ · ] stands for intersection multiplicity of germs at p.
The multiplicities ep′(θ

p
q), p′ < q, being all determined by the proximity

equalities from the fact that q is simple and followed by non-singular points,
it easily follows from the Noether formula ([2], 1.3.1) that I(p, q) does not
depend on θp

q , but only on ξ, p and q. Moreover, I(p, q) may be easily
computed from a weighted Enriques diagram of ξ.

2. Virtual and total transforms

For any point p equal or infinitely near to O, denote by Op its local ring on
the surface Sp it is lying as a proper point, Op � C{x, y} if x, y are local
coordinates on Sp at p. Let K = (K, ν) be a weighted cluster and η a germ
of curve, both with origin at O. Going through K (or through the points
p ∈ K with the virtual multiplicities νp) is defined using induction on #K
in the following way

a) If K = {O}, then η goes through K if and only if eO(η) ≥ νO.

In such a case, for each q in the first neighbourhood of O we define
the virtual transform η̂q of η (relative to νO) as η̃q + (eO(η) − νO)Eq,
where Eq is the germ at q of the exceptional divisor of blowing up O.
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b) If K �= {O}, let q1, . . . , qs be the points of K in the first neighbourhood
of O and denote by Ki the weighted cluster consisting of qi and the
points infinitely near to it in K, and the restriction of ν. Then, η goes
through K if and only if η goes through (O, νO) and the virtual trans-
forms η̂qi

, relative to νO, go through Ki for i = 1, . . . , s.

Assume that η goes through K and let q be a point in the first neigh-
bourhood of any p ∈ K. The virtual transform η̂q of η with origin at q and
relative to the multiplicities νp′ , p′ < q has been already defined if p = O.
Otherwise and using induction on the order of the neighbourhood, η̂q is the
virtual transform of η̂p relative to νp. If needed we will take η̂O = η.

We will make use of the following result, see [2], (2.4) or [4], chap. 4 for
its proof.

Proposition 2.1 The equations of the germs going through a weighted clus-
ter K describe the set of non-zero elements of a finite codimensional ideal HK
of OO. Furthermore, for each p ∈ K there is a morphism of OO-modules
ψp : HK −→ Op such that for any f ∈ HK, ψp(f) is an equation of the
virtual transform η̂p of η : f = 0.

Let p ∈ K. The exceptional divisor Ep decomposes into a sum of compo-
nents, Ep =

∑
q<p F q

p , each F q
p being the strict transform of the exceptional

divisor of blowing up the point q.
Let η be a germ of curve with origin at O. We will assign to each

p ∈ K integers uK
p (η), vp(η) defined using induction on the order of the

neighbourhood p is belonging to. If p = O, uK
O(η) = eO(η) − νO, vO(η) =

eO(η). Let p ∈ K be infinitely near to O. The points p is proximate to
belong to K and we may define

uK
p (η) = ep(η) − νp +

∑
p prox. to q

uK
q (η) ,

vp(η) = ep(η) +
∑

p prox. to q

vq(η) .

Remark 2.2 a) The integer uK
p (η) depends only on p and the points preced-

ing p, their virtual multiplicities and the multiplicities of η at these points.

b) The integer vp(η) depends only on p and the points preceding p and the
multiplicities of η at these points.
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Proposition 2.3 Let K = (K, ν) be a weighted cluster with origin at O and
denote by p′ any point in the first neighbourhood of some p ∈ K. Let η be a
germ of curve with origin at O.

a) η goes through K if and only if uK
p (η) ≥ 0 for all p ∈ K. In such a case

the uK
q (η), q < p′, are the multiplicities of the germs of the components

F q
p′ of the exceptional divisor in the virtual transform η̂p′.

b) The multiplicities of the germs of the components F q
p′ of the exceptional

divisor in the total transform η̄p′ are the vq(η), q < p′.

c) The difference vp(η) − uK
p (η) does not depend on η. In particular,

vp(η) − uK
p (η) = vp(ξ) for any germ ξ going through K with effective

multiplicities equal to the virtual ones.

Proof: Parts a), b) and c) follow from the definitions by an easy induction
(see [4] chap. 4 for details). �

3. Newton polygon

Let ξ be a germ of curve at O, fix a free point p on ξ (hence p �= O) and take
local coordinates x, y at p so that the y-axis is the germ of the exceptional
divisor at p and the x-axis is not tangent to ξ̃p. Next we will show how s(q),

εq(ξ) and I(p, q), for q ∈ Rp(ξ), are related to the Newton polygon of ξ̃p.

Remark 3.1 Assume that ξ̃p has equation f =
∑

ai,jx
iyj and denote

by N(f) its Newton polygon. Let Γ1, . . . ,Γk be the sides of N(f), ordered
so that, for each i, Γi has ends (αi−1, βi−1) and (αi, βi), and βi−1 > βi. For
each of these sides write

Ωi(z) =
∑

(α,β)∈Γi

aα,βzβ−βi ,

which is currently called the equation associated to Γi.
Then, as it is well known ([7], appendix B, for instance), the branches

of ξ̃p (or the branches of ξ through p) correspond to the sides of N(f) so
that the branches corresponding to the side Γi have a Puiseux series

(1) y = bxmi/ni + · · · ,

−ni/mi being the slope of Γi and b a root of Ωi. Furthermore, for any side
of N(f) and any root b of its associated equation, there is at least one such
branch. Notice that mi/ni ≤ 1, for i = 1, . . . k, as, by hypothesis, there are
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no branches of ξ̃p tangent to the x-axis. Assume that γ is a branch of ξ
whose strict transform γ̃p has the Puiseux series (1) above and let p′ be the
point on γ next p. We will take coordinates at p′ according to next lemma
(proved in [2], 10.2).

Lemma 3.2 Denote x̄, ȳ the inverse images at p′ of the local coordinates x, y
at p. There are local coordinates x̃, ỹ at p′ related to x̄, ȳ by the equalities

x̄ = x̃ni

ȳ = x̃mi(b + ỹ)

and so that x̃ is an equation of the germ of the exceptional divisor at p′.

Remark 3.3 It follows from an easy computation using the above lemma
that p′ is a non-singular point of ξ if and only if b is a simple root of Ωi. In
the sequel we will assume that gcd(ni,mi) = 1.

By the Enriques theorem (see [4], 5.5.1 or [1], III.8.4, th. 12), all irre-
ducible germs θ with origin at p and Puiseux series

y = axmi/ni + · · · ,

a �= 0, and so in particular all branches corresponding to Γi go through the
same sequence of satellite points of p, the last of them qi having s(qi) = mi/ni

(if mi/ni = 1, then i = k, the sequence is empty and we take qk = p).
Furthermore, the germ θ above shares a further point (hence a point next p)

with one of the branches of ξ̃p if and only if Ωi(a) = 0.
It follows from (1.2) that the extremal satellites of p on ξ are one for

each side of N(f), more precisely Rp(ξ) = {q1, . . . , qk}.

Lemma 3.4 For i = 1, . . . , k,

a) I(p, qi) = niαi + miβi.

b) βi−1 − βi = εqi
(ξ)ni, αi − αi−1 = εqi

(ξ)mi. In particular, εqi
(ξ) =

gcd(βi−1 − βi, αi − αi−1).

Proof: a) By (3.3), θqi
p has a Puiseux parameterization of the form

(2)
x = tni

y = atmi + · · ·

with Ωi(a) �= 0, because θqi
p goes through no point on ξ in the first neigh-

bourhood of qi. By substituting (2) in the equation of ξ̃p and computing the

initial term, one easily gets [θqi
p · ξ̃p] = niαi + miβi, as wanted.
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b) Since the side Γi has slope −ni/mi and ends (αi−1, βi−1), (αi, βi) it is
enough to check that βi−1 − βi = εqi

(ξ)ni.

Let γ
(i)
1 , . . . , γ

(i)
�i

be the branches of ξ through qi with a free point in the
first neighbourhood of qi. If gi is the product of the equations of all branches
of ξ̃p corresponding to the side Γi, then g decomposes into factors g1, . . . , gk

and the Newton polygon of gi has as single side a translated of Γi ([9]). In
particular, degygi = βi−1 − βi while

gi =

�i∏
j=1

(ydjni − ajx
djmi + . . . )

and γ
(i)
j : ydjni −ajx

djmi + · · · = 0 are the branches of ξ̃p corresponding to Γi.

Then, by the Enriques theorem, eqi
(γ

(i)
j ) = gcd(djni, djmi) = dj and so

�i∑
j=1

eqi
(γ

(i)
j ) =

�i∑
j=1

dj = degygi/ni = (βi−1 − βi)/ni .

Since, by (1.2), εqi
(ξ) =

∑�i

j=1 eqi
(γ

(i)
j ), the claim follows. �

Remark 3.5 Let p be a free point infinitely near to O and assume there is
given a set {(q1, ε1), . . . , (qk, εk)}, where each qi is either p or a satellite of p
and each εi is a strictly positive integer. We associate to them a weighted
cluster A = (A, µ) with origin at p, by taking p and all its infinitely near
points that precede or are equal to one of the qi and the virtual multiplicities
determined (cf. (1.3)) by taking εA(qi) = εi, εA(q) = 0 if q ∈ A, q �= qi,
i = 1, . . . , k.

Assume that the points qi are ordered so that s(q1) < · · · < s(qk). Clearly
there is a single Newton polygon in R

2, NA, with both ends on the axis and
sides Γ1, . . . ,Γk such that for each i, i = 1, . . . , k, Γi contains εi + 1 integral
points and its slope is −1/s(qi). If we write the ends of Γi, (αi−1, βi−1),
(αi, βi) ∈ Z2 with βi−1 > βi, then αi−1 < αi, gcd(αi − αi−1, βi−1 − βi) = εi.

Take local coordinates x, y at p so that x = 0 is the germ of the excep-
tional divisor at p.

Proposition 3.6 a) Let ξ be a germ of curve with origin at O and assume

that ξ̃p is f = 0, f ∈ C{x, y}. If N(f) = NA then, Sp(ξ) = A and eq(ξ) = µq

for all q ∈ A.

b) Let η : g = 0, g ∈ C{x, y}, be a germ of curve with origin at p. If N(g)
has no vertex below NA, then η goes through A.
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Proof: a) Since N(f) = NA, by (3.3), the extremal satellites of p on ξ
are q1, . . . , qk and therefore Sp(ξ) = A. Moreover, by (3.4), εqi

(ξ) = εi so,
by (1.3), eq(ξ) = µq for all q ∈ A, as wanted.

b) By (2.1), it is enough to prove that for any (α, β) not below NA, the
germ xαyβ = 0 goes through A.

Choose any h ∈ C{x, y} such that N(h) = NA. We claim that ζ : h = 0
goes through A. Indeed, since NA has its ends on the axis, h has no factor x,
so ζ : h = 0 does not contain the germ of the exceptional divisor and
therefore ζ = ξ̃p for some germ of curve ξ with origin at O. Thus, part a)
applies, eq(ζ) = µq for all q ∈ A and hence, ζ goes through A as claimed.

Since (α, β) does not lie below NA one may clearly choose λ ∈ C \ {0}
so that N(h + λxαyβ) = NA. Arguing as above for h = 0, also the germ
h + λxαyβ = 0 goes through A and thus, by (2.1), so does

xαyβ = (hλ − h)/λ = 0 . �

Let g =
∑
i,j≥0

ai,jx
iyj ∈ C{x, y} and (n,m) ∈ N

2. We define

deg(n,m)(g) = min{ni + mj | aij �= 0} .

Proposition 3.7 Let η : g = 0 be a germ of curve with origin at p so that
N(g) = NA. Assume that ζ : f = 0 is any germ with origin at p. Then,

a) vq�
(ζ) = deg(n�,m�)

(f).

b) uA
q�

(ζ) = deg(n�,m�)
(f) − deg(n�,m�)

(g).

Proof: Let p′ be any free point in the first neighbourhood of q�. Using at p′

the coordinates of (3.2), an equation of the total transform η̄p′ is

ḡ = x̃k�

 ∑
(i,j)∈Γ�

aij(b + ỹ)j

 +
∑

n�i+m�j>k�

aijx̃
n�i+m�j(b + ỹ)j .

Thus, ḡ = x̃k� g̃ and since aij �= 0 for some (i, j) ∈ Γ�, g̃ has no further
factor x̃. By (2.3.b), vq�

(η) = k�. Computing as above, one also gets that the
total transform of ζ : f = 0 contains exactly deg(n�,m�)

(f) times the germ

of Ep′ , that is, by (2.3.b), vp(ζ) = deg(n�,m�)
(f). So, by (2.3.c), uA

q�
(ζ) =

vq�
(ζ) − vq�

(η) = deg(n�,m�)
(g) − deg(n�,m�)

(f), as claimed. �
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4. Behaviour of ζλ

Let O be the origin of C
2 (or a point on a smooth surface, there is no

difference from the local viewpoint). Let ξ : f = 0, η : g = 0 be (non-
necessarily reduced) germs of curve at O. Assume that eO(ξ) ≤ eO(η) and
that ξ and η share no tangent.

Consider the germs of curve ζλ : f + λg = 0, λ ∈ C. For all but at most
a finite number of λ, the germs ζλ go sharply through a weighted cluster
T = (T, τ) that we will describe in terms of the infinitely near points and
multiplicities of ξ.

First we will assign to each p on ξ an integer up, defined using induction
on the order of the neighbourhood p is belonging to:

If p = O, we take uO = eO(η) − eO(ξ) and for p on ξ and infinitely near
to O,

up =
∑

p prox. to q

uq − ep(ξ) .

Remark 4.1 Let Kp = (Kp, ν) be the weighted cluster consisting of all
points q on ξ that precede or equal p with virtual multiplicities νq = eq(ξ).
Since ξ and η have no common tangent, eq(η) = 0 for all q ∈ Kp infinitely

near to O, and so up = u
Kp
p (η), as defined in §2.

The weighted cluster T = (T, τ) will be defined inductively. After taking
O ∈ T and assuming that either p = O or p is a free point already in T , we
will define

(1) The satellites of p in T , or equivalently Sp(T ).

(2) The integers εq(T ) for q ∈ Sp(T ).

(3) The points next p in T , all taken on ξ.

Once it is proved that such inductive procedure involves finitely many
points only, it clearly defines the weighted cluster T = (T, τ), the virtual
multiplicities τp being determined by the εq(T ), by (1.3).

For p = O we take

(1) SO(T ) = {O},

(2) εO(T ) = eO(ξ),

(3) either no point next O in T if eO(ξ) = eO(η), or all points in the first
neighbourhood of O on ξ if eO(ξ) < eO(η).
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Obviously, in case eO(ξ) = eO(η) the definition is complete and T =
(O, eO(ξ)). Otherwise assume that p is a free point on ξ already taken in T .
Write Rp(ξ) = {q1, . . . , qk} and

s(qi) =
mi

ni

, i = 1, . . . , k
(

gcd(mi, ni) = 1,
m1

n1

< · · · <
mk

nk

)
.

Put wp = up + ep(ξ) and

(4.2)

rp = max{{i | niwp > I(p, qi)} ∪ {0}}
αk = I(p, qk)/nk, βk = 0

α�−1 = α� − εq�
(ξ)m� � = 1, . . . , k

β�−1 = β� + εq�
(ξ)n� � = 1, . . . , k .

Then the definition of T continues as follows:

(1) The satellites of p are

(a) the points q1, . . . , qrp and all points infinitely near to p preceding
one of them, and

(b) in case rp < k and wp > 0, the satellite q̄ of p with slope s(q̄) =
(wp − αrp)/βrp and all points infinitely near to p preceding it.

(2) For q ∈ Sp(T ) \ {q1, . . . , qrp , q̄}, εq(T ) = 0, εqi
(T ) = εqi

(ξ) for i =
1, . . . , rp and, if q̄ is defined, εq̄(T ) = gcd(βrp , wp − αrp).

(3) The points next p in T are the points next p on ξ lying in the first
neighbourhood of some qi, i = 1, . . . , rp.

Remark 4.3 By (3.4), (αi, βi), i = 0, . . . , k are the vertices of the Newton

polygon of ξ̃p relative to coordinates whose first axis is not tangent to ξ̃p and
whose second axis is the exceptional divisor.

In particular, if up ≥ 0, then wp ≥ ep(ξ) = nkI(p, qk), so in this case
rp = k and therefore Sp(T ) = Sp(ξ) and τq = eq(ξ) for q ∈ Sp(T ).

Remark 4.4 It easily follows from the definition of rp, the above remark
and (3.4.a) that in case rp > 0, wp > I(p, qrp)/nrp ≥ αrp . Since α0 = 0 and
we are assuming wp > 0, in all cases wp − αrp > 0 and the definition of q̄
makes sense.

It will turn out in the proof of next theorem that wp is positive for all
free points p ∈ T and therefore the condition wp > 0 in 1.b) above is in fact
a redundant one.
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Let us prove that T is actually a finite set.

Lemma 4.5 The set T is finite.

Proof: Since satellite points on a germ of curve ξ are always finitely many
(they are among the singular points of ξred) we take j0 so that any point on ξ
from the j0-th neighbourhood onwards is free and, hence, proximate to just
the point preceding it. Clearly the function up is strictly decreasing on these
points (i.e. up < up′ if p > p′) and so p is free and up ≤ 0 for all but finitely
many points on ξ. Assume now that p ∈ T is free (hence, it lies on ξ) and has
up ≤ 0. Then, clearly Sp(ξ) = {p}, s(p) = 1, I(p, p) = ep(ξ) = εp(ξ) ≥ wp,
so rp = 0 and there are no points next p in T . Thus, T is finite as claimed.

�
Theorem 4.6 There exists a finite set M ⊂ C such that for λ ∈ C \M the
germs ζλ : f + λg = 0 go sharply through T and no two of them share any
point outside of T .

Proof: Unless otherwise stated all virtual transforms will be taken relative
to the virtual multiplicities τq and denoted by the sign .̂ If p ∈ T , we will
write Ep for the germ at p of the exceptional divisor Ep.

Let p ∈ T , either p = O or p a free point. We will use induction on the
order of the neighbourhood p is belonging to for proving the following claim:

Claim. There exists a finite subset Mp ⊂ C so that for any λ ∈ C \ Mp

a) Sp(ζ
λ) = Sp(T ) and eq(ζ

λ) = τq for all q ∈ Sp(T ).

b) Any point next p in T lies on ζλ.

c) For any point p′ next p in T , both ξ and η go through all points q

preceding p′ with the virtual multiplicities τq and ξ̂p′ = ξ̃p′ , η̂p′ = wp′Ep′

with wp′ > 0.

d) ζλ has no singular point next p outside of T and any two different
germs ζλ share no point next p outside T .

It is clear that theorem (4.6), with M =
⋃

p∈T Mp, follows from parts a)
and d) of the above claim once it has been proved for all p ∈ T .

First we deal with the point O. Obviously SO(ζλ) = SO(T ) = {O}
because O has no satellite points. Since eO(ξ) ≤ eO(η) there is at most one
λ0 ∈ C such that eO(ζλ) = eO(ξ) for λ �= λ0, as claimed in a).

If eO(ξ) = eO(η), then (T, τ) = ({O}, eO(ξ)) and so there are no points
next O in T . In this case, it is straightforward to check that for all but at
most a finite number of λ the germs ζλ have eO(ξ) different tangents at O
and no two of them have a common tangent, from which d) follows.
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Assume now that eO(ξ) < eO(η). Then, η goes through the points in the
first neighbourhood of O on ξ. On the other hand, since we are assuming
that η and ξ share no tangent, the effective multiplicity of η at the points
infinitely near to O on ξ is zero, so η̂p′ = (eO(η) − eO(ξ))Ep′ , p′ any point
in the first neighbourhood of O on ξ. From the definition of wp′ it follows
that wp′ = eO(η) − eO(ξ), which gives part c). Finally, since eO(η) > eO(ξ),
the tangent cone to the germs ζλ is the tangent cone to ξ for all λ ∈ C, so
part d) follows.

Let p ∈ T be a free point infinitely near to O and assume, by induction,
that a), b), c) and d) are satisfied for all free points in T preceding p. Next
we will prove them for p.

Take local coordinates x, y at p so that the y-axis is the germ of the
exceptional divisor at p and the x-axis is not tangent to ξ̃p.

Since ζλ : f + λg = 0, ξ : f = 0, η : g = 0, by (2.1), (̂ζλ)p : f̃ + λg̃ = 0

where f̃ is an equation of ξ̃p = ξ̂p and g̃ is an equation of η̂p. Since, by c) of
the induction hypothesis, η̂p has equation xwp = 0, we may assume without
restriction g̃ = xwp . For λ /∈

⋃
q<p Mq = M ′

p, by the induction hypothesis a),

ζλ goes through the points preceding p with effective multiplicities equal to

the virtual ones and so, (̃ζλ)p = (̂ζλ)p.

Let Rp(ξ) = {q1, . . . , qk} be the extremal satellites of p on ξ. Let
Γ1, . . . ,Γk be the sides of N(f̃) and Ω1, . . . ,Ωk their associated equations.
By (3.4), each Γi, i = 1, . . . , k, has ends (αi, βi), (αi−1, βi−1), βi−1 > βi, given
by the formulas (4.2), slope −ni/mi, with s(qi) = mi/ni (gcd(mi, ni) = 1)
and I(p, qi) = niαi + miβi.

By induction wp > 0, so in case rp < k, let q̄ be the satellite of p with
slope s(q̄) = (wp − αrp)/βrp and let ε̄ = gcd(wp − αrp , βrp). We define the
set Λ in the following way

Λ =

{
{(qi, εqi

(ξ))}i=1,...,rp ∪ {(q̄, ε̄)} if rp < k

{(qi, εqi
(ξ))}i=1,...,rp if rp = k .

We associate to Λ the consistent cluster A = (A, µ) as in (3.5). Notice that
A = Sp(T ) and since εq(A) = εq(T ) for all q ∈ A, by (1.3), τq = µq for
all q ∈ A. So, we write A = (A, τ).

The polygonal line NA has sides Γi, i = 1, . . . rp, with slope −1/s(qi),
and, in case rp < k, a further side Γ̄ with slope −βrp/(wp − αrp) and ε̄ + 1

integral points. Clearly, for all but finitely-many λ ∈ C, N(f̃ +λxwp) = NA.
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Thus, after enlarging M ′
p to a still finite set M ′′

p , for λ ∈ C\M ′′
p , (̃ζλ)p = (̂ζλ)p

and N(f̃ + λxwp) = NA. Therefore, by (3.6.a), for λ /∈ M ′′
p , Sp(T ) = Sp(ζ

λ)
and eq(ζ

λ) = τq for all q ∈ A, as claimed in a).

Now we prove part b). For λ /∈ M ′′
p , the Newton polygons N(f̃) and

N(f̃ +λxwp) have in common the sides Γ1, . . . ,Γrp with the same associated

equations so, by (3.1), the germs (̃ζλ)p : f̃ + λxwp = 0 and ξ̃p : f̃ = 0 go
through the same points next p in the first neighbourhood of q1, . . . , qrp ,
that is, the points next p in T , as wanted.

Next we will prove part c). Let p′ be a point next p in T , so p′ is in the

first neighbourhood of qi for some i = 1, . . . , rp. First we deal with ξ̃p. By

(3.6.b), ξ̃p goes through A because N(f̃) has no vertex below NA. Since,

by induction, ξ̃p = ξ̂p, then the virtual transform ξ̂p′ is the virtual transform

of ξ̃p relative to the virtual multiplicities τq, p ≤ q < p′.

On the other hand, for λ /∈ M ′′
p , N(f̃ + λxwp) = NA, so, by (3.7.b),

uA
qi
(ξ̃p) = deg(ni,mi)

(f̃)−deg(ni,mi)
(f̃ +λxwp). That is, by (2.3.a), ξ̂p′ contains

deg(ni,mi)
(f̃) − deg(ni,mi)

(f̃ + λxwp) times Ep′ . Since N(f̃ ) and N(f̃ + λxwp)

have in common the side Γi of slope −1/s(qi) = −ni/mi, then deg(ni,mi)
(f̃) =

deg(ni,mi)
(f̃ + λxwp) and therefore ξ̂p′ does not contain Ep′ . Hence, ξ̃p′ = ξ̂p′

as claimed.

Now we deal with η̂p. Since we have shown that ξ̃p′ = ξ̂p′ , by (2.3.a),
uT

qi
(ξ) = 0 and, by (2.3.c),

(3) vqi
(η) − uT

qi
(η) = vqi

(ξ) .

Let Kp′ be as in (4.1). Since ξ goes through Kp′ with effective multiplicities
equal to the virtual ones, by (2.3.c),

(4) vqi
(η) − u

Kp′
qi (η) = vqi

(ξ) .

Thus, by (3) and (4), u
Kp′
qi (η) = uT

qi
(η) and, by (4.1), u

Kp′
qi (η) = uqi

. Since,
by induction, η̂p : xwp = 0, by (3.6.b) η̂p goes through A. Thus, by definition
of going through, η goes through the points q preceding p′ with the virtual
multiplicities τq and η̂p′ is the virtual transform of η̂p = wpEp relative to the
virtual multiplicities τq, p ≤ q < p′.

Hence, by (2.3.a), uT
qi
(η) = uA

qi
(η̂p) and so, by (3.7.b),

uT
qi
(η) = deg(ni,mi)

(xwp) − deg(ni,mi)
(f̃ + λxwp) = wpni − I(p, qi).

Since, by definition, uqi
= wp′ , then wp′ = wpni − I(p, qi) and so, as i ≤ rp,

by (4.2), wp′ > 0 as claimed.
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Finally we show part d). We have just proved that for λ /∈ M ′′
p , ξ̃p and

(̃ζλ)p share the sides Γ1, . . . ,Γrp of their Newton polygons and also have the
same associated equations Ω1, . . . ,Ωrp ; therefore, for λ /∈ M ′′

p , the points
next p on ζλ and not belonging to T must be proximate to q̄, the extremal
satellite of p corresponding to the last side Γ̄ of N(f̃ + λxwp).

Since the equation associated to this side is

Ω̄ =
∑

(α,β)∈Γ̄

aαβzβ + λ,

there is a finite set Mp ⊂ C, M ′′
p ⊂ Mp, such that for all λ /∈ Mp, all roots

of Ω̄ are simple. So, by (3.3), all points on ζλ in the first neighbourhood of q̄
are non-singular. Moreover, since different values of λ give different roots of
Ω̄, no two germs ζλ share any point next p in the first neighbourhood of q̄,
as claimed. So, the claim is satisfied. �

5. An example

Under the hypothesis of 4, let ξ be irreducible with characteristic exponents
{10/6, 15/6} (see figure 1) and write eO(η) = n.

6

4

2 2
2

2

1 1 1

1

n-6

n-10

2n-18 3n-30
3n-32

3n-34

3n-35
6n-70

6n-71
6n-72

Figure 1: Enriques diagram of the points on ξ up to the 9-th neigh-
bourhood. Besides each point p there is shown its multiplicity ep(ξ) and
the corresponding value of up as a function of n.
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The singularities of ζλ may be described, according to the values of n,
as follows (cf. figure 2):

• n = 6 : ζλ has an ordinary singular point of multiplicity six.

• n = 7 : ζλ is irreducible with single characteristic exponent 7/6 and
tangent to ξ.

• n = 8 : ζλ has two branches both tangent to ξ, with characteristic expo-
nent 4/3 and sharing all their singular points.

• n = 9 : ζλ has three branches both tangent to ξ, with characteristic
exponent 3/2 and sharing all their singular points.

• n = 10 : As in case n = 8 but with characteristic exponent 5/3.

• n = 11 : ζλ is irreducible with two characteristic exponents {10/6, 13/6}.
All its singular points but the last one lie on ξ.

• n ≥ 12 : ζλ is equisingular to ξ, ζλ and ξ share all their singular points
and 6n − 70 non-singular points (C0-sufficiency degree of ξ is 12).

6
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1

1

1

1

1

6

2

2

2

6

3

3

6

4

2 2 6

4

2 2
2

1
1

n = 7

n = 8

n = 9

n = 10 n = 11

Figure 2: Enriques diagrams of the weighted clusters T for n =
7, . . . , 11. Some points on ξ not in T are represented by unlabelled points
on dotted lines in order to show relative position of infinitely near points.
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