
Rev. Mat. Iberoamericana 19 (2003), 367–384

Computation of Centralizers in Braid
groups and Garside groups

Nuno Franco and Juan González-Meneses

Abstract

We give a new method to compute the centralizer of an element
in Artin braid groups and, more generally, in Garside groups. This
method, together with the solution of the conjugacy problem given
by the authors in [9], are two main steps for solving conjugacy sys-
tems, thus breaking recently discovered cryptosystems based in braid
groups [2]. We also present the result of our computations, where we
notice that our algorithm yields surprisingly small generating sets for
the centralizers.

Introduction

Given a group G, the centralizer of an element a ∈ G, denoted Z(a), is the
subgroup of G consisting of all elements which commute with a. Our goal
in this paper is to give a good algorithm to compute a generating set for the
centralizer of an element in a Garside group.

Garside groups were introduced by Dehornoy and Paris [7] (their original
name was small Gaussian groups, but there has been a convention to call
them Garside groups). We will consider Artin braid groups [1] as the main
examples of Garside groups.

Given an integer n ≥ 2, the braid group on n strands, Bn, is defined by
the following presentation:

(1) Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣∣ σiσj = σjσi (|i − j| ≥ 2)

σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n − 2)

〉
.

2000 Mathematics Subject Classification: Primary 20F36; Secondary 20F10, 94A60.
Keywords: Braid group, Garside group, centralizer, cryptography.

368 N. Franco and J. González-Meneses

Braid groups are of interest not only in Combinatorial Group Theory, but
also in Low Dimensional Topology and, more recently, in Cryptography.
Other examples of Garside groups are spherical (finite type) Artin groups [5]
and torus knot groups, among others.

Computing centralizers in a Garside group is of interest in itself, but can
also be applied to solve other questions. For instance, consider two elements
a, b in a Garside group G. Suppose that we know an element c ∈ G that
conjugates a to b, that is, c−1ac= b. Consider then the set Za,b = c Z(b) =
{cα : α ∈ Z(b)} ⊂ G. Then Za,b is the set of all elements in G that conjugate
a to b: Indeed, an element d ∈ G conjugates a to b if and only if d−1ad = b,
then b = d−1(cc−1)a(cc−1)d = (d−1c)b(c−1d), so c−1d ∈ Z(b); hence d ∈ Za,b.

This property may be used for solving conjugacy systems in Garside
groups: Given a1, a2, . . . , ak, b1, b2, . . . , bk ∈ G, find an element c ∈ G such
that c−1aic = bi, for i = 1, . . . , k. The solutions of such a system are the
elements in Za1,b1 ∩· · ·∩Zak,bk

. These kind of problems play a central role in
some new public-key cryptosystems (see [2] and [12]), based on braid groups.
To break such cryptosystems, one must solve a conjugacy system such as
the previous one.

The conjugacy problem in braid groups has been solved by Garside [10],
and his algorithm has been improved in [8] and generalized to all Garside
groups in [16]. In [9], the authors gave a more efficient algorithm than all
the above, to solve the conjugacy problem in all Garside groups. So, given
two conjugated elements a, b ∈ Bn, we know how to find an element c ∈ G
such that c−1ac = b. Using the algorithm that we shall explain in this
paper, we can compute a generating set for Z(b), hence we know how to
generate elements in Za,b. We still do not know how to compute an element
in Za1,b1 ∩· · ·∩Zak,bk

even if we know how to generate elements in each Zai,bi
.

We believe that a deeper study of the structure of centralizers in Garside
groups will provide a solution to this problem. Anyway, we think that the
algorithm we give to compute centralizers in Garside groups is a good step
towards the solution of these systems.

There exists another algorithm to compute the centralizer of an element
in braid groups, which was given by Makanin [14]. It can be easily gener-
alized to all Garside groups, but it is a fairly theoretical algorithm, which
has a huge complexity and gives a large amount of redundant generators.
One could also make use of the bi-automatic structure of Garside groups [6]
to find the centralizer of an element. But this also seems quite inefficient.
The new method that we introduce is quite simple and surprisingly efficient.
Actually, the generating sets obtained in our computations with braid groups
are so small, that they led us to conjecture that the centralizer of any braid
in Bn can be generated by no more than n − 1 elements.

Computation of Centralizers in Braid groups and Garside groups 369

After writing an early version of this paper, we were told by M. Korkmaz
of a family of counterexamples to this conjecture, due to N. V. Ivanov (the
smallest counterexample belongs to B9, while our computations were up
to B8). Nevertheless, it has been recently proven by the second author and

Bert Wiest [11] that, for a ∈ Bn, Z(a) can be generated by less than k(k+1)
2

elements if n = 2k and k(k+3)
2

elements if n = 2k + 1.

The algorithm in this paper works as follows: given an element a in a
Garside group G, it constructs a graph Γ associated to a, such that the
fundamental group of Γ maps onto Z(a). Then it computes a generating set
for the fundamental group of Γ, which maps to a generating set for Z(a).

This paper is structured in the following way: In Section 1 we give the
basic definitions and results concerning Garside groups. In Section 2, we
introduce a special kind of elements, the minimal simple elements, which
are used to construct the graph Γ. This graph is studied in Section 3. We
explain our algorithm in detail in Section 4, then we study its complexity
in Section 5 and, finally, in Section 6 we present the results obtained by
implementing the algorithm.

1. Garside groups and simple elements

In this section we will give the definitions of Garside monoids and groups, and
the basic results which we shall need to present our algorithm. To find the
proofs of the results, and more details, see [10], [8], [17], [3], [7], [6] and [15].

Consider a cancellative monoid M , with no invertible elements. We can
define a partial order on its elements, called the prefix order, as follows: For
a, b ∈ M , we say that a ≺ b if b can be written in such a way that a is a
prefix of b, that is, if there exists c ∈ M such that ac = b. In this case, we
say that a is a left divisor of b. There also exists the suffix order, but we
will not use it in this paper, so in the above situation we will just say that
a divides b, or that b is a multiple of a.

Given a, b ∈ M , we can naturally define their (left) least common multi-
ple, a∨ b, and their (left) greatest common divisor, a∧ b, if they exist. That
is, a∨ b is the minimal element (with respect to ≺) such that a ≺ a∨ b and
b ≺ a∨ b. In the same way, a∧ b is the maximal element (with respect to ≺)
such that a ∧ b ≺ a and a ∧ b ≺ b.

Definition 1 Let M be a monoid. We say that x ∈ M is an atom if
x �= 1 and if x = yz implies y = 1 or z = 1. M is said to be an atomic
monoid if it is generated by its atoms and, moreover, for every a ∈ M , there
exists an integer Na > 0 such that a cannot be written as a product of more
than Na atoms.

370 N. Franco and J. González-Meneses

Definition 2 We say that a monoid M is a Gaussian monoid if it is atomic,
(left and right) cancellative, and if every pair of elements in M admits a (left
and right) l.c.m. and a (left and right) g.c.d.

Definition 3 A Garside monoid is a Gaussian monoid which has a Garside
element. A Garside element is an element ∆ ∈ M whose left divisors coin-
cide with their right divisors, they form a finite set, and they generate M .

Definition 4 The left (and right) divisors of ∆ in a Garside monoid M are
called simple elements. We denote by S the (finite) set of simple elements.

It is known that every Garside monoid admits a group of fractions, and
we have:

Definition 5 A group G is called a Garside group if it is the group of
fractions of a Garside monoid.

The main example of a Garside monoid, as with groups, is the Artin braid
monoid on n strands, B+

n . It is defined by Presentation (1), considered as a
presentation for a monoid. Its group of fractions is the braid group Bn, and
Garside [10] showed that B+

n ⊂ Bn. Actually, every Garside monoid embeds
into its corresponding Garside group [7].

Braids in Bn are usually represented as n disjoint strands in R
3, whose

endpoints are fixed, where every horizontal plane between the top and the
bottom level intersects each strand in exactly one point, as in Figure 1.
Simple elements in B+

n are easy to recognize: they are those braids in
which any two strands cross at most once. The Garside element of B+

n

is ∆ = (σ1σ2 · · ·σn−1) (σ1σ2 · · ·σn−2) · · · (σ1σ2)σ1, and is represented in Fig-
ure 1 for n = 4 (where, as usual, σi represents a crossing of the strands in
positions i and i + 1).

1 2 3 4

Figure 1: The Garside element ∆ ∈ B+
4 .

Computation of Centralizers in Braid groups and Garside groups 371

There is another important example of Garside monoid, the Birman-Ko-
Lee monoid [3], which has the following presentation:

BKL+
n =

〈
ats (n ≥ t > s ≥ 1)

∣∣∣∣∣ atsarq = arqats if (t − r)(t − q)(s − r)(s − q) > 0

atsasr = atrats = asratr, where n ≥ t > s > r ≥ 1

〉

Its group of fractions is again the braid group Bn. The Garside ele-
ment in BKL+

n is δ = an,n−1an−1,n−2 · · · a2,1. In this monoid we can perform
some computations concerning braid groups faster than using Artin monoids.
Anyway, using the algorithm in [9], the conjugacy problem has virtually the
same complexity in both monoids.

From now on, M will denote a Garside monoid, G its group of fractions
and ∆ the corresponding Garside element. Since M ⊂ G, we will refer to
the elements in M as the positive elements of G.

From the existence of l.c.m.’s and g.c.d.’s, it follows that (M,≺) has a
lattice structure, and S becomes a finite sublattice with minimum 1 and
maximum ∆. In Figure 2 we can see the Hasse diagram of the lattice of sim-
ple elements in B+

4 , where the lines represent left divisibility (from bottom
to top).

σ2σ3σ2σ1σ2σ1σ3σ2σ1σ3σ2σ1σ1σ2σ3σ2σ1σ2σ1σ3

σ1σ2σ3σ2σ1 σ2σ1σ3σ2σ1

σ3σ2σ1

∆

σ2σ3σ2σ2σ1σ3σ1σ3σ2σ1σ2σ3σ1σ2σ1

σ3σ2σ2σ3σ2σ1σ1σ3σ1σ2

σ3σ2σ1

1

σ1σ2σ1σ3σ2

Figure 2: The lattice of simple elements in B+
4 .

We end this section with an important result concerning Garside groups.

Theorem 6 [7] For every element a in a Garside group G, there exists a
unique word in the atoms of G (and their inverses) representing a, called
the normal form of a, and there exists an algorithm that, given a word w
in the atoms and their inverses, computes the normal form of the element
represented by w.

372 N. Franco and J. González-Meneses

2. Minimal simple elements

Simple elements represent a key concept in almost every algorithm con-
cerning Garside groups (or braid groups): they have been used to compute
bi-automatic normal forms in [17] and [6], to solve the conjugacy problem
in [16], [8] and [3], and to compute centralizers in [14]. In some cases, the
complexity of these algorithms is too big due to the size of the set S. For
instance, in B+

n , the cardinal of S is n!, and this makes the algorithm in [8]
work too slowly. This problem was avoided in [9], by considering minimal
simple elements. We will also use minimal simple elements in this paper, so
this section is devoted to them.

Given an element a in a Garside group G, there exists a subset Csum(a) of
the conjugacy class of a, called Summit Class of a, satisfying some suitable
properties. In [8], when talking about braids, this subset is called Super
Summit Set, but when we talk about Garside groups we prefer to use the
terminology in [16]. Roughly speaking, Csum(a) is the set of conjugates of a
having the ‘simplest’ normal form, in a certain sense. Hence, Csum(a) is an
invariant of the conjugacy class of a (it does not depend on a, but on its
conjugacy class).

There exists a procedure, called ‘cycling and decycling’, to obtain an
element a′ ∈ Csum(a) and an element x such that x−1ax = a′ (see [8]). The
centralizers of a and a′ are then related as follows: Z(a) = xZ(a′)x−1. Hence,
if we know a generating set for Z(a′), we obtain immediately a generating set
for Z(a), with the same number of elements: it suffices to conjugate every
generator by x. Therefore, we will just study the elements in the Summit
Class of a.

Consider an element v ∈ Csum(a). If we conjugate v by a nontriv-
ial simple element, we obtain an element in G, that may or may not be
in Csum(a). We will consider just the elements in S\{1} that conjugate v
to an element in Csum(a). Among these simple elements, we take those
which are minimal with respect to ≺, and we call this set Ssum

v . In other
words, we define Ssum

v as the set of minimal elements (with respect to ≺)
in {s ∈ S\{1} : s−1vs ∈ Csum(a)}.

There are two important results concerning these minimal simple ele-
ments:

Proposition 7 [9] Let M be a Garside monoid with t atoms, G its corre-
sponding Garside group, and a ∈ G. For every v ∈ Csum(a), the cardinal
of Ssum

v is no bigger than t.

Proposition 8 [9] Let u, v be two conjugate elements in Csum(a). Then
there exists a sequence u = u1, u2, . . . , uk = v of elements in Csum(a) such
that, for i = 1, . . . , k − 1, there exists si ∈ Ssum

ui
verifying uisi = siui+1.

Computation of Centralizers in Braid groups and Garside groups 373

We will represent the above property as follows:

u = u1
s1−→ u2

s2−→ u3 → · · · → uk−1
sk−1−→ uk = v,

where si ∈ Ssum
ui

for every i, and the arrow means conjugation by the corre-
sponding si. We call such a sequence a minimal chain from u to v.

Example 1 Consider the braid monoid B+
4 . As we saw in the previous

section, the set of simple elements in B+
4 has 24 elements (see Figure 2).

Consider σ1 ∈ Csum(σ1) ⊂ B4. Then Ssum
σ1

= {σ1, σ2σ1, σ3}. The con-
jugates of σ1 by these three elements are, respectively, σ1, σ2 and σ1. All
of them lie in Csum(σ1). The conjugating elements are clearly minimal:
σ1 and σ3 do not have nontrivial divisors, and the only nontrivial divisor
of σ2σ1 is σ2, which does not conjugate σ1 to a positive element (hence to
an element in Csum(σ1)).

Remark 1 It is shown in [9] that for every v ∈ Csum(a) and every atom x,
there exists at most one element s ∈ Ssum

v which is a multiple of x. This
is why the cardinal of Ssum

v is bounded by the number of atoms. In B+
n , the

atoms are σ1, . . . , σn−1, and in the above example we can clearly see which
element in Ssum

σ1
corresponds to each atom.

In general, for a given v ∈ Csum(a), there are strictly fewer minimal
simple elements than atoms, as we can see in the following example:

Example 2 Let v = σ1σ2 ∈ Csum(σ1σ2) ⊂ B+
4 . Then Ssum

v = {σ1, σ3σ2σ1}.
Indeed, conjugating we obtain σ−1

1 (σ1σ2)σ1 = σ2σ1, and

(σ3σ2σ1)
−1σ1σ2(σ3σ2σ1) = σ2σ3.

But the minimal multiple of σ2 which conjugates v to a positive element
is σ2σ1σ2, which is also a multiple of σ1, so it is not in Ssum

v (since it is not
minimal).

In [9] the authors give an algorithm to compute Ssum
v , given v ∈ Csum(a),

and use it to compute the whole Summit Class of any element. Sometimes,
a problem can be solved using either simple elements, or minimal simple
elements. The latter possibility is usually much faster. For instance, in the
braid monoid B+

n , computing the set Ssum
v takes time O(l2n4), where l is the

word-length of v. After performing this fast computation, we can work with
a set of less than n−1 elements (Ssum

v), instead of a set with n! elements (S).
In order to compute centralizers in Garside groups, Makanin [14] used

simple elements, but we are going to see in the next section how the use of
minimal simple elements, and a new approach to the problem, can make the
computations much faster.

374 N. Franco and J. González-Meneses

3. Minimal summit graph

We shall explain in this section a new approach to our problem, which
involves the fundamental group of a certain graph. Consider an element a
in a Garside group G. We want to find a generating set for the centralizer
of a. As we said in Section 1, we will study the elements in its Summit
Class Csum(a).

Let us construct a directed graph Γ, that we call minimal summit graph
of a. The vertices of Γ are the elements in Csum(a). The arrows of Γ are
labelled by simple elements, in the following way: For every two vertices v
and w, an arrow labelled by s goes from v to w if and only if s ∈ Ssum

v and
s−1vs = w. In other words, s is a minimal simple element that conjugates v
to an element in Csum(a), and w is the result of that conjugation. Therefore,
every path in Γ going from a vertex u to another vertex v, and moving always
in the sense of the arrows, is a minimal chain from u to v (see Proposition 8).

The minimal summit graph of σ1 ∈ B+
4 is represented in Figure 3, and

that of σ1σ2 in Figure 4.

σ2σ1

σ1σ2

σ3σ2

σ2σ3

σ1 σ2 σ3

σ1

σ3

σ1

σ3

σ2

Figure 3: Minimal summit graph of σ1 ∈ B+
4 .

σ3

σ1σ2σ3 σ1σ2σ3

σ2σ3

σ1σ2 σ2σ1

σ3σ2

σ1

σ2

σ2

σ3σ2σ1σ3σ2σ1

Figure 4: Minimal summit graph of σ1σ2 ∈ B+
4 .

The main idea in our algorithm is the following: Given a′ ∈ Csum(a),
every element in Z(a′) can be seen as a loop in Γ, based at a′. So every
generating set for the fundamental group of Γ corresponds to a generating
set for Z(a′) (recall that if we know a generating set for Z(a′), we also know
a generating set for Z(a)).

Computation of Centralizers in Braid groups and Garside groups 375

We devote the rest of this section to proving this. We shall need the
following results:

Lemma 9 For every a ∈ G, the centralizer of a can be generated by elements
in M .

Proof. Let c ∈ Z(a). We will try to write c as a product of positive elements
in Z(a) (and their inverses). We know by [7] that there is an integer k such
that ∆k is in the center of G (thus in Z(a)), and another integer r, big
enough, such that ∆krc ∈ M . Hence, c = (∆kr)−1(∆krc), where ∆kr and
∆krc belong to M ∩ Z(a). This implies the result. �

Theorem 10 [16] Let u, v ∈ Csum(a) and x ∈ M such that x−1ux = v. Let
s ∈ S be the maximal simple prefix of x, that is, s is maximal (with respect
to ≺) among the simple elements dividing x. Then s−1us ∈ Csum(a).

Corollary 11 Let u, v ∈ Csum(a), and x ∈ M as above. Then there exists
a decomposition x = s1s2 · · · sk−1, and k elements u = u1, u2, . . . , uk = v ∈
Csum(a), such that

u = u1
s1−→ u2

s2−→ u3 → · · · → uk−1
sk−1−→ uk = v,

is a minimal chain from u to v.

Proof. First, let us decompose x = t1t2 · · · tp−1, where for every i, ti is the
maximal simple prefix of titi+1 · · · tp−1 (this is the left greedy normal form
of x, in the sense of [17]). By Theorem 10, we obtain a chain

u = w1
t1−→ w2

t2−→ w3 → · · · → wp−1
tp−1−→ wp = v,

where wi ∈ Csum(a) for i = 1, . . . , p. But this chain is not necessarily
minimal. Now, for every ti, we proceed as follows: if it is minimal (among
the simple elements that conjugate wi to an element in Csum(a)), we do not
touch it. Otherwise, there exists an element r ∈ Ssum

wi
dividing ti. So we can

decompose the arrow wi
ti−→ wi+1 as wi

r−→ w′ r′−→ wi+1, where ti = r r′

and w′ ∈ Csum(a). If r′ is not minimal, we decompose it in the same
way. If we continue this process we obtain, at each step, a decomposition
ti = r1 · · · rm, where every rj is a simple element. Hence we have a chain
r1 ≺ r1r2 ≺ r1r2r3 ≺ · · · ≺ (r1 · · · rm) of simple elements. But the length
of such a chain is bounded above, since there is a finite number of simple
elements. Therefore, we cannot decompose ti indefinitely, and this process
must stop.

At the end, we will have decomposed every ti as a product of minimal
simple elements, so the result follows. �

376 N. Franco and J. González-Meneses

We can finally prove the main result of this section. Consider the natural
group homomorphism p : π1(Γ, a′) −→ G, which sends every loop in Γ based
at a′ to the element in G obtained by reading the labels in the path, with
the corresponding signs. One has the following:

Theorem 12 The homomorphism p maps π1(Γ, a′) onto Z(a′).

Proof. Since every loop γ ∈ πi(Γ, a′) starts and ends at a′, then p(γ)
conjugates a′ to itself, so p(γ) ∈ Z(a′). Hence, we get p : π1(Γ, a′) −→ Z(a′).

By Lemma 9, we know that Z(a′) is generated by positive elements.
Every positive element y ∈ Z(a′) verifies y−1a′y = a′, so by Corollary 11, y
can be decomposed into minimal simple elements, yielding a minimal chain
from a′ to itself. This minimal chain is actually an element in p−1(y). Hence,
there exist preimages by p for all positive elements in Z(a′). Since the
positive elements generate Z(a′), we get that p is a surjection, and we are
done. �

By the above result, in order to compute a generating set for Z(a′) we
just need to compute a generating set for π1(Γ, a′). It is well known how to
do this (see, for instance, [13]): Choose a maximal tree T in Γ. For every
vertex v in Γ, call γv the only simple path in T going from a′ to v. Let A
be the set of arrows in Γ\T and, for every α ∈ A, denote s(α) and t(α) the
starting vertex and the target of α, respectively. Then there is a generating
set F for π1(Γ, a′), which is in one-to-one correspondance with A. It is the
following: F = {γs(α) αγ−1

t(α); α ∈ A}. So p(F) is the generating set for Z(a′)
that our algorithm will compute.

Remark 2 In a previous version of this paper, we considered the whole
conjugacy class of a (in M) instead of its Summit Class, hence we computed
the minimal conjugacy graph instead of the minimal summit graph. Although
there are no known bounds for the sizes of these sets, the Summit Class is in
general much smaller than the whole conjugacy class, so this new approach
is more efficient. We thank A. Kalka for his observation on this matter.

4. The algorithm

We shall now explain our algorithm in detail. Let a be an element of a
Garside group G, and let a′ ∈ Csum(a). Let Γ be the minimal summit graph
of a′. We will start by computing Γ and, for every vertex v ∈ Γ, a path γv

going from a′ to v in a maximal tree T in Γ.
In the following routine, v denotes the current vertex of Γ under study,

U is the set of known vertices of Γ (i.e. the known elements in Csum(a)),
and V is the set of vertices which have already been studied by the routine.

Computation of Centralizers in Braid groups and Garside groups 377

Routine 1: Computation of Γ and T.

Input: a′ ∈ Csum(a).

1. Set v = a′, U = {a′}, V = φ, Γ = φ, T = φ and γ′
a = 1.

2. Compute Ssum
v .

3. For every s ∈ Ssum
v do the following:

(a) Set w = s−1vs ∈ Csum(a), written in normal form. Set

Γ = Γ ∪ {(v, s, w)}.
(b) If w /∈ U , set U = U ∪ {w}, T = T ∪ {(v, s, w)} and γw = γvs.

4. Set V = V ∪ {v}. If U �= V , take an element x ∈ U\V . Set v = x and
go to Step 2.

5. Stop.

From the results in the previous sections we can see that, at the end of this
routine, we will obtain the following data:

• A set U = V = Csum(a), which is the set of vertices of Γ.

• A set Γ which corresponds to the graph Γ: it contains an element
(v, s, w) for every arrow of the graph Γ labelled by s, and going from
v to w.

• A set T which corresponds to a subgraph of Γ.

• For every v ∈ V , a path γv in the subgraph T , going from a′ to v.

Proposition 13 T is a maximal tree in Γ.

Proof. The graph T is computed by Routine 1 as follows: Let s be an arrow
such that t(s) = w �= a′. Then s is added to T (in Step 3(b)) if and only if
it is the first arrow considered by Routine 1 whose target is w. Hence, for
every w ∈ V , w �= a′, there is exactly one arrow in T ending at w. And
there is no arrow in T ending at a′.

Therefore, if we start at a vertex v, and we try to construct a path in T ,
as long as possible, moving always in the sense opposite to the arrows, we
have a unique choice. This path would always end at a′, and it is actually
the inverse of the path γv computed by Routine 1: Just notice that the
path γv goes from a′ to v always in the sense of the arrows.

Let us then show that T is a tree. Suppose that there exists a nontrivial
simple loop α in T . Since there is no pair of arrows of T with the same target,
we can assume that α moves always in the sense of the arrows. Since a′ is not

378 N. Franco and J. González-Meneses

the target of any arrow in T , then a′ does not belong to the set of vertices
in α. But, if we start at a vertex v in α, and we try to follow γ−1

v as above,
we would go along α−1 an infinite number of times, never reaching a′. This
contradiction shows that there are no loops in T , so it is a tree.

Finally, T is maximal since it is connected (every vertex is connected
to a′), and it contains all the vertices in Γ. �

Therefore, we can use the data given by Routine 1 to compute a gener-
ating system for Z(a), by the procedure explained in the previous section:

Routine 2: Computation of a generating set for Z(a).

Input: a ∈ G.

1. Using ‘cyclings and decyclings’, compute a′ ∈ Csum(a), and x ∈ G
such that x−1ax = a′.

2. Apply Routine 1 to a′, obtaining Γ, T and the paths γv.

3. Set N = φ.

4. For every (v, s, w) ∈ Γ\T do the following:

(a) Compute the normal form α of x(γvsγ
−1
w)x−1 (given as an element

of G).

(b) If α /∈ N , set N = N ∪ {α}.

5. Return N . Stop.

5. Complexity

In order to study the complexity of our algorithm, we should know some data
concerning the Garside monoid M , and the element a ∈ G under study:

t: The number of atoms in M .

m: The maximal length of a simple element in M .

k: The number of elements in Csum(a) (i.e. the number of vertices in Γ).

l: The maximal word length of an element in Csum(a).

D: The complexity of computing a′ ∈ Csum(a) and x, as in Routine 2.

C: The complexity of an algorithm to compute Ssum
v for an element v of

word length l.

Ni: The complexity of computing the normal form of a word of length i.

Computation of Centralizers in Braid groups and Garside groups 379

If we know all the previous data, we can compute the complexity of our
algorithm by the following result:

Proposition 14 Given an element a in a Garside group G, we can compute
a generating set for Z(a) in time O(D + kC + ktN2km).

Proof. We start by computing a′ and x, taking time O(D). Then we
run Routine 1, which does the following: For every vertex v in T , it com-
putes Ssum

v and then, for every s ∈ Ssum
v , it computes the normal form of

s−1vs. The other steps in Routine 1 are negligible. Moreover, the algo-
rithm used in [9] to compute Ssum

v also gives the normal forms of s−1vs, for
s ∈ Ssum

v . Hence, Routine 1 has complexity O(kC).
Routine 2 continues by computing the normal form of x(γvsγ

−1
w)x−1, for

every arrow (v, s, w) in Γ\T . We know that the number of arrows in Γ is
bounded by kt, since there are at most t arrows for each vertex, and there
are k vertices. On the other hand, there is exactly one arrow in T whose
target is v, for every vertex in Γ different from a′. Hence, T has k−1 arrows,
so Γ\T has at most kt− k − 1 arrows. Now x(γvsγ

−1
w)x−1 is a product of at

most 2(k + |x|)− 1 simple elements. Hence, written as a word in the atoms
and their inverses, its length is bounded by 2(k + |x|)m. Since the length
of x is negligible compared to k, N2(k+|x|)m is equivalent to N2km. Therefore,
the complexity of this loop is O(ktN2km), and the result follows. �

For some particular Garside monoids and groups, one would like to know
the complexity in more detail, just depending on the word length of a, and
on some integer related to the monoid. This can be done more easily for
Garside monoids in which every relation is homogeneous, for in this case, all
the elements in the conjugacy class of a have the same word length. This
is the case for B+

n , BKL+
n and Artin monoids. The authors have studied

in [9] the complexity C of computing Ssum
v for a braid v of length l (either

in B+
n or in BKL+

n). In [17] and in [3] we can find the complexity Ni, for
elements in B+

n and in BKL+
n respectively, and in [4] the complexity D is

given. Hence, we obtain the following results:

Corollary 15 Given a ∈ Bn of word length l in the Artin generators, the
complexity of computing Z(a) (using the Garside structure given by B+

n) is
O(k3l2n6 log n).

Proof. In B+
n , one has t = n − 1, m = n(n−1)

2
, C = O(l2n4) (see [9]), Ni =

O(i2n log n) (see [17]) and D = O(l2n3) (see [4]). Hence, the complexity of
our algorithm to compute Z(a) becomes

O
(
l2n3 + kl2n4 + k(n − 1)(kn(n − 1))2n log n

)
= O(kl2n4 + k3n6 log n)

= O(k3l2n6 log n),

so the result is true. �

380 N. Franco and J. González-Meneses

Corollary 16 Given a ∈ Bn of word length l in the Birman-Ko-Lee gener-
ators, the complexity of computing Z(a) (using the Garside structure given
by BKL+

n) is O(k3l2n5).

Proof. This time, in BKL+
n , one has t = n(n−1)/2, m = n−1, C = O(l2n5)

(see [9]), Ni = O(i2n) (see [3]) and D = O(l2n2) (see [4]). Therefore, our
algorithm for computing Z(a) has complexity

O

(
l2n2 + kl2n5 + k

n(n − 1)

2
(2k(n − 1))2n

)
= O(kl2n5+k3n5) = O(k3l2n5).

�
It would remain to know, in both cases, a bound for k in terms of l and n.

This is still not known, but Thurston, in [17], conjectures that k is bounded
by a polynomial in l (although it seems to be exponential in n).

6. Effective computations

In this section we show the results we have obtained by implementing our
algorithm. We have computed generating sets for the centralizers of many
positive elements in the braid monoids B+

n , for n = 3, . . . , 8. We have been
exhaustive, computing centralizers of all braids of a given length, in order
to conjecture an upper bound for the number of generators.

We proceeded as follows: first, by using the algorithm in [9], we computed
the conjugacy classes in B+

n of all braids of the considered length. Notice that
two elements in the same conjugacy class have conjugated centralizers: if
c−1ac = b and x ∈ Z(a), then c−1xc ∈ Z(b); hence, the number of generators
in the centralizer of a and b are the same. Therefore, we just had to compute
the centralizer of one representative for each conjugacy class in B+

n .

The results of these computations were surprising, since the number of
generators were quite small. In the following table we can see the braids
that we tested, and the maximal size of a generating set for the centralizer,
in each case:

n Length of braids Number of Conj. Classes Max. number of generators

3 4 ≤ l ≤ 20 1634 4
4 4 ≤ l ≤ 15 4225 16
5 4 ≤ l ≤ 12 2314 17
6 4 ≤ l ≤ 10 1152 12
7 4 ≤ l ≤ 10 1753 17
8 4 ≤ l ≤ 8 521 22

Computation of Centralizers in Braid groups and Garside groups 381

Actually, we found out that the generators obtained by the algorithm were
not always independent, so we were able to eliminate some of them. For
instance, if we compute Z(a) for a = σ1 ∈ B4, the algorithm will give the
following generating set:

{σ1, σ2σ1σ1σ2, σ3, σ2σ1(σ3σ2σ2σ3)σ
−1
1 σ−1

2 }.

But the fourth element can also be written as (σ3)
−1(σ2σ1σ1σ2)(σ3), so it

can be eliminated from the generating set, yielding:

Z(σ1) = 〈σ1, σ2σ1σ1σ2, σ3〉 ⊂ B4.

In the case of B3, we were able to obtain the following: for every positive
braid a ∈ B+

3 of length l ≤ 20, there is a generating set for Z(a) with at
most two elements.

We cannot show here all the results but we can see, as an example,
the following table: it contains a representative for each conjugacy class of
elements in B+

3 of length 11, and a generating set for their centralizers.

Centralizers of braids in B+
3 of length 11

a Generators for Z(a)

σ11
1 σ1 σ2σ

2
1σ2

σ10
1 σ2 σ1σ2σ

2
1σ2σ1 σ2

1σ
2
2σ

2
1σ2σ

−6
1

σ9
1σ

2
2 σ1σ2σ

2
1σ2σ1 σ6

1σ
−1
2 σ−2

1 σ−3
2 σ−1

1

σ8
1σ

3
2 σ1σ2σ

2
1σ2σ1 σ6

1σ
−1
2 σ−3

1 σ−2
2 σ−1

1

σ2
1σ

6
2σ

2
1σ2 σ2

1σ2σ
−2
1 σ3

1σ
2
2σ

−1
1

σ7
1σ

4
2 σ1σ2σ

2
1σ2σ1 σ6

1σ
−2
2 σ−2

1 σ−2
2 σ−1

1

σ6
1σ

2
2σ

2
1σ2 σ4

1σ2σ
−4
1 σ1σ2σ

2
1σ2σ1

σ6
1σ

5
2 σ1σ2σ

2
1σ2σ1 σ6

1σ2σ
−1
1 σ−2

2 σ−2
1 σ−2

2 σ−1
1

σ5
1σ

3
2σ

2
1σ2 σ3

1σ
2
2σ

−4
1 σ1σ2σ

2
1σ2σ1

σ5
1σ

2
2σ

3
1σ2 σ2

1σ
3
2σ

−4
1 σ1σ2σ

2
1σ2σ1

σ5
1σ

2
2σ

2
1σ

2
2 σ1σ2σ

2
1σ2σ1 σ1σ

4
2σ

−4
1

σ4
1σ

2
2σ

4
1σ2 σ1σ2σ

2
1σ2σ1 σ2

1σ
2
2σ

2
1σ

−1
2 σ−4

1

σ4
1σ

2
2σ

3
1σ

2
2 σ1σ2σ

2
1σ2σ1 σ1σ

3
2σ

2
1σ

−1
2 σ−4

1

σ4
1σ

2
2σ

2
1σ

3
2 σ1σ2σ

2
1σ2σ1 σ1σ

2
2σ

3
1σ

−1
2 σ−4

1

σ4
1σ

3
2σ

2
1σ

2
2 σ1σ2σ

2
1σ2σ1 σ1σ

4
2σ1σ

−1
2 σ−4

1

σ3
1σ

2
2σ

3
1σ

3
2 σ1σ2σ

2
1σ2σ1 σ3

1σ
2
2σ1σ

−1
2 σ−3

1 σ−2
2 σ−1

1

382 N. Franco and J. González-Meneses

When n becomes bigger, it is more difficult to eliminate generators by hand.
Nevertheless, we can show as an example the following table, where we can
see a representative for every conjugacy class of elements of length 6 in B+

4 .
We were able to reduce the number of generators to be less than or equal
to 3 in every case:

Centralizers of braids in B+
4 of length 6

a Generators for Z(a)

σ6
1 σ1 σ3 σ2σ

2
1σ2

σ5
1σ2 σ3σ2σ

2
1σ2σ3 σ2

1σ2σ
−3
1 σ5

1σ2

σ5
1σ3 σ1 σ3 σ2σ1σ3σ

2
2σ1σ3σ2

σ4
1σ2

2 σ3σ2σ
2
1σ2σ3 σ1σ2σ

2
1σ2σ1 σ4

1σ2
2

σ4
1σ2σ3 σ2

1σ2σ1σ3σ
−2
2 σ−3

1 σ4
1σ2σ3 σ1σ2σ

2
1σ2σ1σ3σ2σ

−2
1

σ3
1σ3σ1σ3 σ1 σ3 σ2σ1σ3σ

2
2σ1σ3σ2

σ3
1σ3

2 σ1σ2σ
−2
1 σ3σ2σ

2
1σ2σ3 σ1σ2σ

2
1σ2σ1

σ3
1σ2

2σ3 σ1σ2σ1σ3σ1σ2σ3σ2σ
−2
1 σ3

1σ2
2σ3

σ3
1σ2σ3σ2 σ2

1σ3σ2σ
−1
3 σ−2

2 σ−1
1 σ1σ2σ1σ2σ1σ3σ2σ

−1
1 σ3

1σ2σ3σ2

σ1σ3σ1σ3σ1σ3 σ1 σ2σ1σ3σ2 σ3

σ1σ2σ
2
1σ2σ1 σ1 σ2 σ3σ2σ

2
1σ2σ3

σ2
1σ2σ1σ3σ2 σ1σ2σ

−1
1 σ1σ3 σ2σ3σ

−1
2

σ2
1σ3

2σ3 σ1σ2σ1σ3σ1σ2σ3σ2σ1σ
−1
2 σ−2

1 σ2
1σ3

2σ3

σ2
1σ2

2σ2
3 σ1σ2σ1σ3σ

2
2σ3σ2σ1σ

−1
2 σ−2

1 σ3
1σ2σ1σ3σ2σ

−1
1 σ2

1σ2
2σ2

3

σ2
1σ2σ

2
3σ2 σ3 σ1σ2σ

−1
1 σ2

1σ2σ
2
3σ2

σ1σ
4
2σ3 σ1σ

3
2σ−1

3 σ−1
1 σ−1

2 σ−1
1 σ2

1σ2σ1σ3σ2

Actually, every time that we tried to reduce the number of generators as-
sociated to a conjugacy class, we were able to keep just n − 1. Remark
also that there are 1634 different conjugacy classes of elements of length l
(4 ≤ l ≤ 20) in B+

3 , all of them with no more than two generators. So
all these evidences led us to think that the centralizer of every braid in Bn

could be generated by at most n − 1 elements.
As we said, this conjecture turned out to be false, since a family of

counterexamples due to N. V. Ivanov gives a lower bound for the number
of generators which is a quadratic in n. Precisely, there has been recently
shown [11] that the centralizer of every element in Bn can be generated

by less than k(k+1)
2

elements if n = 2k and k(k+3)
2

if n = 2k + 1.

In any case, the above results are valid just for braids, so we still would
like to have an upper bound for the minimal number of generators of Z(a),
in the general case of Garside groups.

Computation of Centralizers in Braid groups and Garside groups 383

Acknowledgements: The authors want to thank the Laboratorie de Topo-
logie de l’Université de Bourgogne, where we started to work in this subject,
and to Luis Paris, Alain Jacquemard, José Maŕıa Tornero, Carmen León,
Mustafa Korkmaz, Arkadius Kalka and Bert Wiest for their valuable help.

References

[1] Artin, E.: Theory of braids. Annals of Math. 48 (1946), 101–126.

[2] Anshel, I., Anshel, M. and Goldfeld, D.: An algebraic method for
public-key cryptography. Math. Res. Lett. 6 (1999), no. 3-4, 287–291.

[3] Birman, J., Ko, K.H. and Lee, S. J.: A new approach to the word and
conjugacy problems in the braid groups. Adv. Math. 139 (1998), no. 2,
322–353.

[4] Birman, J., Ko, K.H. and Lee, S. J.: The infimum, supremum
and geodesic length of a braid conjugacy class. Adv. Math. 164 (2001),
41–56.

[5] Brieskorn, E. and Saito, K.: Artin-Gruppen und Coxeter-Gruppen.
Invent. Math. 17 (1972), 245–271.

[6] Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. (4) 35
(2002), 267–306.

[7] Dehornoy, P. and Paris, L.: Gaussian groups and Garside groups, two
generalizations of Artin groups. Proc. London Math. Soc. 79 (1999), no. 3,
569–604.

[8] Elrifai, E.A. and Morton, H.R.: Algorithms for positive braids.
Quart. J. Math. Oxford 45 (1994), 479–497.

[9] Franco, N. and González-Meneses, J.: Conjugacy problem for braid
groups and Garside groups, to appear in Journal of Algebra. Available at
http://arxiv.org/math.GT/0112310

[10] Garside, F.A.: The braid group and other groups. Quart. J. Math. Ox-
ford 20 (1969), 235–154.

[11] González-Meneses, J. and Wiest, B.: On the structure of the central-
izer of a braid. In preparation.

[12] Ko, K.H., Lee, S. J., Cheon, J. H., Han, J.W., Kang, J. and

Park, C.: New public-key cryptosystem using braid groups. In Advances
in cryptology–CRYPTO 2000 (Santa Barbara, CA), 166–183. Lecture Notes
in Comput. Sci. 1880, Springer, Berlin, 2000.

[13] Lyndon, R.C. and Schupp, P. E.: Combinatorial group theory. Reprint
of the 1977 edition. Classics in Mathematics, Springer-Verlag, Berlin, 2001.

384 N. Franco and J. González-Meneses

[14] Makanin, G. S.: The normalizers in the braid group. Mat. Sb. (N. S.) 86
(128) (1971), 171–179.

[15] Picantin, M.: Petits groupes gaussiens. Ph. D. Thesis, Université de
Caen, 2000.

[16] Picantin, M.: The conjugacy problem in small Gaussian groups. Comm.
Algebra 29 (2001), no. 3, 1021–1039.

[17] Thurston, W.P.: Braid Groups, Chapter 9 of Word processing in groups,
D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson
and W. P. Thurston. Jones and Bartlett Publishers, Boston, MA, 1992.

Recibido: 8 de abril de 2002
Revisado: 10 de diciembre de 2002

Nuno Franco
Departamento de Matemática

CIMA-UE, Universidade de Évora
7000-Évora, Portugal

nmf@uevora.pt

Juan González-Meneses
Departamento de Matemática Aplicada I
ETS Arquitectura, Universidad de Sevilla

Avda. Reina Mercedes 2, 41012-Sevilla, Spain
meneses@us.es

This paper is dedicated to José Luis Vicente Córdoba, on his 60th birthday. Both authors
partially supported by the European Network TMR Sing. Eq. Diff. et Feuill. N. Franco
partially supported by SFRH/BD/2852/2000. J. González-Meneses partially supported
by MCYT, BFM2001-3207 and FEDER.

