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Nonassociative Algebras:
Some Applications

Santos González and Consuelo Mart́ınez

Abstract
Nonassociative algebras can be applied, either directly or using

their particular methods, to many other branches of Mathematics
and other Sciences. Here emphasis will be given to two concrete ap-
plications of nonassociative algebras. In the first one, an application
to group theory in the line of the Restricted Burnside Problem will
be considered. The second one opens a door to some applications of
non-associative algebras to Error correcting Codes and Cryptography.

1. Introduction

It has been known, long ago, that some non-associative algebras, for in-
stance Lie algebras, have important applications in Physics. In fact, many
important classes of non-associative algebras, as Jordan algebras, have been
originated in a Physics frame or have had a big development due to their
applications in Physics. This is the case of Kac-Moody algebras (mainly
affine algebras), vertex algebras or mutation algebras.

Some other non-associative algebras have been considered in relation to
Differential Geometry (see [3]) or differential equations. For instance Lotka-
Volterra algebras are associated to quadratic differential equations systems
that appear in gas cinetic or populations dynamic (see [6] or [10]).

Genetic algebras appear in a Biological context, when one tries to for-
mulate in an algebraic way the transmision of some characters in a random
mate of populations (see [15]).

One of the most spectacular applications has been achieved with the use
of non-associative algebras technics to solve problems in Group theory. The
most significant example is the solution to the Restricted Burnside problem
using ideas and results of Lie and Jordan algebras.
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Let us remember that if F is a ground field of characteristic �= 2, then a
(linear) Jordan algebra is a vector space J with a binary bilinear operation
(x, y) → xy satisfying the following identities:

(J1) xy = yx

(J2) (x2y)x = x2(yx).

Relations between groups and non-associative algebras were already known
and, indeed, as a consequence of a result by Jacobson relating groups and
algebras, the construction made by Golod and Shafarevich in order to an-
swer (in a negative way) to the ordinary Kurosh problem (a finitely gen-
erated nil ring is not necessarily nilpotent) gave also a counterexample to
the ordinary Burnside problem (a finitely generated periodic group is not
necessarily finite).

In this paper we want to explain two concrete applications of the non-
associative algebras theory. The first one lies in the line of the restricted Burn-
side problem. So a group problem is translated into non-associative algebras
terms, solved in this context and then translated back into group terms.

The second one is, by now, an attempt of application of non-associative al-
gebras to Coding theory and Cryptography. The existence of a big number of
“nonassociative examples” opens the door to the construction of new er-
ror correcting codes with “good properties” by using non-associative alge-
bras instead of classical finite fields or to the generation of linear recur-
sive sequences.

2. Grigorchuck groups in zero characteristic

As we have already mentioned, the example given by Golod and Shafarevich
of a finitely generated nil ring in characteristic p (for any prime p) that is
not nilpotent (counterexample to the Kurosh problem) allowed, thanks to
the mentioned “bridge result” by Jacobson, the obtention of an example of
a finitely generated group that is periodic (that is, all elements have finite
order), but is not finite. In this way, the first counterexample to the Burnside
problem was exhibited. Later Grigorchuck and Gupta and Sidki found new
counterexamples. In both cases the corresponding groups are obtained as
automorphisms groups acting on trees.

Grigorchuck groups have many interesting properties. They are infinite,
finitely generated p-groups (all elements have order a power of p) for an
arbitrary prime number p. They have intermediate growth, that is, striclty
bigger than polynomial growth and strictly smaller than exponential one. So
they give a negative answer to a conjecture by Milnor about the nonexistence
of such groups.
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Rozhkov and Bartholdi-Grigorchuck proved that all factors in the lower
central series have order p or p2. So these groups have finite width. What
do we understand by finite width?

Definition 1 Given a group G and its lower central series

G = G1 ≥ G2 ≥ G3 ≥ · · · , Gi = (G,Gi−1), i ≥ 2

where the bracket is used to denote the commutator, then

(a) A residually p-group G is called of finite width if all factors Gi/Gi+1

are finite groups and the orders |Gi/Gi+1| are uniformly bounded from
above.

(b) If G is a residually-(nilpotent torsion free) group, G has finite width if
the numbers bi = dimQ(Gi/Gi+1 ⊗Z Q) are uniformly bounded.

Let’s consider the associated graded Lie algebra: L = ⊕i≥1Li, with Li =
Gi/Gi+1 ⊗Z K and bracket [aiGi+1, bjGj+1] = (ai, bj)Gi+j+1, where K de-
notes Z/pZ in case (a) and Q in case (b) and (ai, bj) = a−1

i b−1
j aibj is the

commutator of the elements ai, bj .

If G has finite width, the dimensions of the homogeneous components Li

are uniformly bounded. In particular, GK − dim(L) ≤ 1.

The structure of finitely generated associative or Jordan algebras of
Gelfand-Kirillov dimension one is known. The situation for Lie algebras
is not the same. Not only the structure of such algebras is not known,
but there are no hopes of getting similar results to those proved in the as-
sociative and Jordan cases. Indeed, if L is the Lie algebra associated to
a Grigorchuck group, according to the previous process, then L is finitely
generated, every element a of L is ad-nilpotent, that is, the adjoint opera-
tor ad(a) : L → L, x → [x, a], is nilpotent, but L is not nilpotent. This
situation, as we have said, can not appear in the associative and Jordan
cases. It can be proved that it is also impossible in Lie algebras of zero
characteristic.

Theorem 2 ([12]) If L = ⊕α∈ΓLα is a Lie algebra over a field K, chK = 0,
Γ-graded, where Γ is an abelian group and satisfying:

i) There is d > 0 such that dimK Lα ≤ d for every α ∈ Γ,

ii) Every homogenous element a ∈ Lα is ad-nilpotent.

Then the Lie algebra L is locally nilpotent.

Let’s consider V a K-vector space that is a G-module. We say that the
action of G is unipotent if for any g ∈ G there is a natural number n = n(g)
such that V (1 − g)n = (0).
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A G–module V is called residually finite if there is a family of G–
submodules P such that every V ′ ∈ P has finite codimension in V and
∩V ′∈PV ′ = (0).

Theorem 3 ([12]) Let G be a group and let’s assume that all numbers
dimQ(Gi/Gi+1 ⊗Z Q), i ≥ 1 are uniformly bounded. Then every finitely
generated, residually finite and unipotent G-module is finite dimensional.

The proof of Theorem 2 involves Jordan-algebras and non-associative alge-
bras technics. Here we will just indicate the general lines of the proof of
Theorem 3 and the way in which Theorem 2 is used.

Firstly the filtration given by the lower central series is substituted by a
new filtration of the group

G = G′
1 ≥ G′

2 ≥ G′
3 ≥ · · ·

with (G′
i, G

′
j) ⊆ G′

i+j and all factors G′
i/G

′
i+1 being torsion free. Using this

filtration, we can construct the graded Lie ring L = ⊕i≥1G
′
i/G

′
i+1 that has

no additive torsion.

If g ∈ G′
i − G′

i+1 satisfies V (1 − g)m = (0), then it is proved that
Lad(gG′

i+1)
2m−1 = (0).

It is also proved that dimQ(Gi/Gi+1 ⊗Z Q) ≤ d for every i. If ρ : G →
GL(V ) denotes the representation of G as automorphism group of V , then
ρ(G) is nilpotent. This is the point in which Theorem 2 is used. Indeed, the
nilpotency of G follows from the nilpotency of the associated Lie algebra,
what was proved in Theorem 2.

Now the finite dimension of V easily follows from the nilpotency of ρ(G).

We can say, in a casual way, that there are no Grigorchuck groups in zero
characteristic, understanding this according to the previous explanations.

3. Non-associative Galois rings

Associative Galois rings theory starts in a paper by Krull ([8]), being later
developed by Janush [7] and Raghavendran [14]. Recently, Kuzmin and
Nechaev have studied applications of these rings to Error correcting Codes
(via the representation of non-linear codes over finite fields as linear codes
over Galois rings [13]) and to Cryptography (via the generation of pseudo-
random sequences based on linear recursive sequences over Galois rings [9]).

Hopefully, the development of a theory of non-associative Galois rings
will open new applications in the mentioned areas. Let’s remember that a
finite associative ring S with unit element e is called Galois ring (GR) if the
set ∆(S) of its one-side zero divisors (including the zero element) is equal
to pS for some natural number p.
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It can be proved that S is commutative, p is prime and ch S = pn for
some n. Furthermore, pS is the nilradical of S and S̄ = S/pS is a finite field
(S̄ = GF (q) with q = pr). Hence |S| = pnr.

The theory of Galois rings reproduces, to a certain extent, the theory
of finite fields. So, for every prime p and natural numbers n, r there is a
unique, up to isomorphism) Galois ring S with |S| = (pr)n and ch S = pn.
Such ring is denoted GR(qn, pn), where q = pr.

Finite fields and integer residual rings are the first examples of Galois
rings: GF (q) = GR(q1, p1), Zpn = GR(pn, pn) (q = p).

Continuing with the similarities between finite fields and Galois rings, it
is known that the automorphism group of the Galois ring GR(qn, pn) = S
is a cyclic group of order r (q = pr) and for every t divisor of r there is a
unique subring R of S with R 
 GR((pt)n, pn). Similarly, for every d there
is an extension T of S with T 
 GR((qd)n, pn).

We will define a generalized Galois ring (GGR) just by dropping the
assumption of associativity. Now S/∆(S) will be a semifield instead of
a field.

Definition 4 A ring D is a semifield if D − {0} is closed with respect to
the multiplication, there is a unit element e (xe = ex = x ∀x ∈ D) and
for every pair of elements a, b ∈ D, a �= 0, there is a unique solution to the
equations ax = b and xa = b.

If D is a finite semifield, then its characteristic is a prime number p and its
associative center Z(D) is a finite field (GF (pc) for some c). Furthermore,
if D is not associative (that is, D is not a field) then |D| = pcd, with d ≥ 3.

So there are no proper semifields (i.e. not fields) of order p2.

Constructions of semifields from finite fields were made by Dickson and
Albert. A classification of finite semifields is not known. To illustrate dif-
ficulties, we want just mention that GF (8) is the only semifield of order 8,
the number of semifields of order 16 (up to isomorphism) is 24, while there
are 2502 non-isomorphic semifields of order 32.

Definition 5 A finite ring S with identity element e is called “generalized
Galois ring” (GGR) if ∆(S) = λS for some natural number λ.

Remember that ∆(S) consists of zero and all one side zero divisors.

So, every finite semifield D is a GGR. If ch D = p, then ∆(D)= pD = (0).
The fact that ∆(S) is a two-side ideal implies that all nonzero elements
in ∆(S) are two-side zero divisors and S/∆(S) is a semifield.

It can also be proved that λ = p is a prime, ch (S/pS) = p and chS = pn

for some n.
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The following useful characterization of GGR can be given:

Theorem 6 A finite ring S with identity element e is a GGR if and only
if there is a prime p and a natural number n such that ch S = pn and S/pS
is a semifield.

Some properties of GR related to the ideal structure can be recovered. In
fact we have the following

Theorem 7 Let (S,+, �) be a GGR with identity e, characteristic pn and
let S/pS be a finite semifield with q = pr elements. Then

1. S − pS is �-closed,

2. The ideal lattice of S is given by the chain

S = ∆0 ≥ ∆1 ≥ ∆2 ≥ · · · ≥ ∆n−1 ≥ ∆n = 0

where ∆t denotes the additive subgroup of (S,+) generated by all pow-
ers of s ≥ t elements of ∆(S).

3. |S| = qn and |∆t| = qn−t. Furthermore |S − pS| = qn − qn−1.

If S is a GGR and Z(S/∆(S)) = GF (pc) and d = dimZ(S/∆) S/∆, then
|S| = qn with q = pr and r = cd.

So we can associate to every GGR four parameters (p, c, d, n). Let’s
notice that S is a semifield if n = 1 and the generalized Galois ring is indeed
a Galois ring if r ≤ 2.

It seems natural to pose the following two questions:

1. Given a semifield D in characteristic p and a natural number n, is
there a GGR S with ch S = pn and S/pS 
 D?

2. If S and S′ are GGR with the same characteristic pn and S/pS 

S′/pS′, does it follow that S 
 S′?

In order to answer these questions we will consider a construction of gener-
alized Galois rings with some “extra properties”.

Let’s notice that if S is a GGR and R is a subring of S, then R is not
necessarily a GGR. If we consider the particular case in which S/pS is a
field, then a subring R of S is a GGR if and only if R ∩ pS = pR.

Definition 8 Let S be a GGR with ch S = pn and D = S/pS the semifield.
Then S is said to be a lifting of the semifield D by the Galois ring Z if
Z = Z(S) and Z(D) 
 Z/pZ.

Notice that a GGR S is a lifting of the semifield D = S/pS if and only if the
associative center of S, Z, is a GR and the associated field Z/pZ coincides
with the center of the semifield D.
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It can be proved that we can always construct a lifting of an arbitrary
semifield D by and arbitrary Galois ring Z.

Theorem 9 For every semifield D of characteristic p and for every natural
number n, there is a lifting S of the semifield D by a GR of characteristic pn.

So the answer to the first question is affirmative, however the second one is
given a negative answer. Indeed, there are examples of two non-isomorphic
liftings of the same Dickson semifield with a fixed characteristic.

Remark. We will call “top-associative” to those generalized Galois rings
in which S/pS is a field (not just a semifield). We can study if this class
of GGR is interesting and has better properties that the general case. It
has been proved that such rings become associative (that is, Galois rings)
as soon as power-associativity is imposed on them. In a concret way, we
have proved that if S is a power-associative GGR that is top-associative”,
ch S = pn, p �= 2 and Z(S/pS) has at least 6 elements, then S is a GR.

So it seems that, in order to get really new rings, the case in which the
semifield S/pS is not a field is the one to be considered.

There are still many open problems in this area. The uniqueness of a
GR with fixed parameters is not any longer true for GGR. But probably this
is an advantage for applications, since we have a wide range of examples of
GGR, even with the same set of parameters. But from a purely algebraic
point of view, it seems natural to think of some additional assumptions so
that a uniqueness result can be recovered. Now the question is: Which are
the natural additional assumptions?

The exploration of the way in which non-associative rings can be applied
to codes is an open and appealing challenge.
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