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Conservation of the noetherianity by
perfect transcendental field extensions

Magdalena Fernández Lebrón and Luis Narváez Macarro

Abstract

Let k be a perfect field of characteristic p > 0, k(t)per the perfect
closure of k(t) and A a k-algebra. We characterize whether the ring

A ⊗k k(t)per =
⋃

m≥0

(A ⊗k k(t
1

pm ))

is noetherian or not. As a consequence, we prove that the ring A ⊗k

k(t)per is noetherian when A is the ring of formal power series in n
indeterminates over k.

Introduction

Motivated by the generalization of the results in [7] (for the case of a perfect
base field k of characteristic p > 0) in this paper we study the conservation
of noetherianity by the base field extension k → k(t)per, where k(t)per is the
perfect closure of k(t). Since this extension is not finitely generated, the
conservation of noetherianity is not clear a priori for k-algebras which are
not finitely generated.

Our main result states that k(t)per ⊗k A is noetherian if and only if A is
noetherian and for every prime ideal p ⊂ A the field

⋂
m≥0 Qt(A/p)pm

is alge-
braic over k (see theorem 3.6). In particular, we are able to apply this result
to the case where A is the ring of formal power series in n indeterminates
over k.

We are indebted to J. M. Giral for giving us the proof of proposition 2.5
and for other helpful comments.
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Keywords: Perfect field, power series ring, noetherian ring, perfect closure, complete
local ring.
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1. Preliminaries and notations

All rings and algebras considered in this paper are assumed to be commu-
tative with unit element. If B is a ring, we shall denote by dim(B) its Krull
dimension and by Ω(B) the set of its maximal ideals. We shall use the let-
ters K,L, k to denote fields and Fp to denote the finite field of p elements,
for p a prime number. If p ∈ Spec(B), we shall denote by ht(p) the height
of p. Remember that a ring B is said to be equicodimensional if all its max-
imal ideals have the same height. Also, B is said to be biequicodimensional
if all its saturated chains of prime ideals have the same length.

If B is an integral domain, we shall denote by Qt(B) its quotient field.

For any Fp-algebra B, we denote B� =
⋂
m≥0

Bpm

.

We shall first study the contraction-extension process for prime ideals

relative to the ring extension K[t] ⊂ K[t
1
p ], K being a field of characteris-

tic p > 0.
Let us recall the following well known result (cf. for example [4, th. 10.8]):

Proposition 1.1 Let K be a field of characteristic p > 0. Let g(X) be a
monic polynomial of K[X]. Then, the polynomial f(X) = g(Xp) is irre-
ducible in K[X] if and only if g(X) is irreducible in K[X] and not all its
coefficients are in Kp.

From the above result, we deduce the following corollary.

Corollary 1.2 Let K be a field of characteristic p > 0. Let P be a non zero

prime ideal in K[t
1
p ] and let F (t) ∈ K[t] be the monic irreducible generator

of the contraction P c = P ∩ K[t]. Then the following conditions hold:

1. If F (t) = ap
0 + ap

1t + · · · + td ∈ Kp[t], then P = (a0 + a1t
1
p + · · · + t

d
p ).

2. The equality P = P cK[t
1
p ] holds if and only if F (t) �∈ Kp[t].

Proof:

1. Consider the polynomial G(τ) = a0 + a1τ + · · · + τ d ∈ K[τ ](τ = t
1
p )

and the ring homomorphism µ : K[τ ] → K[t] defined by

µ
(∑

aiτ
i
)

=
∑

ap
i t

i.

From the identity µ(G) = F we deduce that G(τ) is irreducible. Since

G(t
1
p )p = F (t) ∈ P , we deduce that G(t

1
p ) ∈ P and then P = (G(t

1
p )).
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2. The equality P = P cK[t
1
p ] means that F (t) = F (τ p) ∈ K[τ ] generates

the ideal P , but that is equivalent to saying that F (τ p) is irreducible in K[τ ].
To conclude, we apply proposition 1.1. �

For each k-algebra A, we define A(t) := k(t) ⊗k A. We also consider the
field extension

k(∞) =
⋃
m≥1

k(t
1

pm ).

If k is perfect, k(∞) coincides with the perfect closure of k(t), k(t)per.

For the sake of brevity, we will write tm = t
1

pm . We also define

A(m) := A(tm) := A ⊗k k(tm) = A(t) ⊗k(t) k(tm), A[m] := A[tm]

and
A(∞) := A ⊗k k(∞) =

⋃
m≥0

A(m), A[∞] :=
⋃
m≥0

A[tm].

Each A(m) (resp. A[m]) is a free module over A(t) (resp. over A[t]) of rank pm

(because (tm)pm − t = 0).

For each prime ideal P of A(∞) we denote P[∞] := P ∩ A[∞], P[m] :=
P ∩ A[m] ∈ Spec(A[m]) and P(m) := P ∩ A(m) ∈ Spec(A(m)).

In a similar way, if Q is a prime ideal of A[∞] we denote Q[m] := Q∩A[m] ∈
Spec(A[m]). We have:

• P =
⋃
m≥0

P(m), P[∞] =
⋃
m≥0

P[m],
(
resp. Q =

⋃
m≥0

Q[m]

)
.

• P(n) ∩ A(m) = P(m) and P[n] ∩ A[m] = P[m] for all n ≥ m (resp. Q[n] ∩
A[m] = Q[m] for all n ≥ m).

The following properties are straightforward:

1. The k-algebras A[m] (respectively A(m)) are isomorphic to each other.

2. If Sm = k[tm] − {0}, then A(m) = S−1
m A[m].

3. Since (Sm)pm ⊂ S0 ⊂ Sm, we have A(m) = S−1
0 A[m] for m ≥ 0. Conse-

quently A(∞) = S−1
0 A[∞].

4. If A is a domain (integrally closed), then A[m] and A(m) are domains
(integrally closed) for all m ≥ 0 or m = ∞.

5. If A is a noetherian k-algebra, then A[m] and A(m) are noetherian rings,
for every m ≥ 0.
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6. If A = k[X ] = k[X1, . . . , Xn], then A[∞] is not noetherian (the ideal
generated by the tm, m ≥ 0, is not finitely generated).

7. If I ⊂ A is an ideal, then (A/I)(∞) = A(∞)/A(∞)I.

8. If T ⊂ A is a multiplicative subset, then (T−1A)(∞) = T−1A(∞).

9. If A = k[X ], then A(∞) = k(∞)[X], hence A(∞) is noetherian. More-
over, A(∞) is noetherian for every finitely generated k-algebra A.

The main goal of this paper is to characterize whether the ring A(∞) is
noetherian (see theorem 3.6 and corollary 3.8).

Proposition 1.3 With the above notations, the following properties hold:

1. The extensions A[m−1] ⊂ A[m] and A(m−1) ⊂ A(m) are finite and free,
and therefore integral and faithfully flat.

2. The corresponding extensions to their quotient fields are purely inse-
parable.

Proof: Straightforward. �

Corollary 1.4 A[∞] (resp. A(∞)) is integral and faithfully flat over each A[m]

(resp. over each A(m)).

From the properties above, we obtain the following lemmas:

Lemma 1.5 Let P ′ ⊆ P be prime ideals of A(∞) (resp. of A[∞]). The
following conditions are equivalent:

(a) P ′ � P

(b) There exists an m ≥ 0 such that P ′
(m) � P(m) (resp. P ′

[m] � P[m]).

(c) For every m ≥ 0, P ′
(m) � P(m) (resp. P ′

[m] � P[m]).

Lemma 1.6 Let P prime ideal of A(∞) (resp. of A[∞]). The following
conditions are equivalent:

(a) P is maximal.

(b) P(m) (resp. P[m]) is maximal for some m ≥ 0.

(c) P(m) (resp. P[m]) is maximal for every m ≥ 0.
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Corollary 1.7 With the notations above, for every prime ideal P of A(∞)

we have ht(P ) = ht(P(m)) = ht(P[m]) for all m ≥ 0. Moreover, dim(A(∞)) =
dim(A(m)).

Proof: Since flat ring extensions satisfy the “going down” property, corol-
lary 1.4 implies that ht(P ∩ A(m)) ≤ ht(P ). By corollary 1.4 again, A(∞) is
integral over A(m), then ht(P ) ≤ ht(P ∩ A(m)).

The equality ht(P(m)) = ht(P[m]) comes from the fact that A(m) is a
localization of A[m].

The last relation is a standard consequence of the “going up” property.

�

Remark 1.8 Corollary 1.7 remains true if we replace A(m) ⊂ A(∞) by
A[m] ⊂ A[∞].

Corollary 1.9 With the notations above, for every Q ∈ Spec(A(m)) there

is a unique Q̃ ∈ Spec(A(m+1)) such that Q̃c = Q. Moreover, the ideal Q̃ is

given by Q̃ = {y ∈ A(m+1) | yp ∈ Q}.

Proof: This is an easy consequence of the fact that (A(m+1))
p ⊂ A(m). �

Corollary 1.10 Let us assume that A is noetherian and for every maximal
ideal m of A, the residue field A/m is algebraic over k. Then for every m ≥ 0
we have:

1. dim(A[∞]) = dim(A[m]) = dim(A[t]) = n + 1.

2. dim(A(∞)) = dim(A(m)) = dim(A(t)) = n.

Proof: The first relation comes from remark 1.8 and the noetherianity
hypothesis. The second relation comes from corollary 1.7 and [7, proposi-
tion 1.4]. �

The following result is a consequence of [7, theorem 1.6], lemma 1.6 and
corollary 1.10.

Corollary 1.11 Let A be a noetherian, biequidimensional, universally ca-
tenarian k-algebra of Krull dimension n, such that for any maximal ideal m

of A, the residue field A/m is algebraic over k. Then every maximal ideal
of A(∞) has height n.
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2. The biggest perfect subfield of a formal function field

Throughout this section, k will be a perfect field of characteristic p > 0,
A = k[[X ]], p ⊂ A a prime ideal, R = A/p and K = Qt(R).

The aim of this section is to prove that the biggest perfect subfield of K,
K� =

⋂
e≥0 Kpe

, is an algebraic extension of the field of constants, k. This
result is proved in proposition 2.5 and it is one of the ingredients in the proof
of corollary 3.8.

Proposition 2.1 Under the above hypothesis, it follows that k = R�.

Proof: Let m be the maximal ideal of R. It suffices to prove that R� ⊆ k.
If f ∈ R�, then for every e > 0 there exists an fe ∈ R such that f = f pe

e .

• Suppose at first that f is not a unit, then fe is not a unit for any e > 0,
and fe ∈ m for every e > 0. Thus, f ∈ mpe

for every e > 0 and by
Krull’s intersection theorem,

f ∈
⋂
e≥0

mpe

=
⋂
r≥0

mr = (0).

• If f is unit, then f = f0 + f̃ , with f0 ∈ k ⊂ R� and f̃ ∈ R� and f0 is
unit. By the above case f̃ = 0, hence f ∈ k. �

Proposition 2.2 If p=(0), that is R=k[[X ]] and K =k((X)), then k=K�.

Proof: This is a consequence of prop. 2.1 and the fact that R is a unique
factorization domain. �

In order to treat the general case, let us look at some general lemmas.

Lemma 2.3 (cf. [3, Chap. 5, §15, ex. 8]) If L is a separable algebraic ex-
tension of a field K of characteristic p > 0, then L� is an algebraic extension
of K�.

Proof: If x ∈ L�, then x = ype

e with ye ∈ L for all e ≥ 0. Since ye is
separable over K, K(ye) = K(ype

e ) = K(x), it follows that ye = xp−e ∈ K(x)
and then x ∈ Kpe

(xpe
). Therefore

[Kpe

(x) : Kpe

] = [Kpe

(xpe

) : Kpe

] = [K(x) : K].

Thus x satisfies the same minimal polynomial over Kpe
and over K for

all e ≥ 0, and the coefficients of this minimal polynomial must be in K�.
So x is algebraic over K�. �
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Lemma 2.4 Every algebraic extension of a perfect field is perfect.

Proof: This is obvious because this is true for the finite algebraic extensions.
�

Proposition 2.5 Let k be a perfect field of characteristic p > 0, A =
k[[X ]] = k[[X1, . . . , Xn]], p ⊂ A a prime ideal, R = A/p and K = Qt(R).
Then K� is an algebraic extension of k.

Proof:1 Let r = dim(A/p) ≤ n. By the normalization lemma for power se-
ries rings (cf. [1, 24.5 and 23.7])2, there is a new system of formal coordinates
Y1, . . . , Yn of A, such that

• p ∩ k[[Y1, . . . , Yr]] = {0},

• k[[Y1, . . . , Yr]] ↪→ A

p
= R is a finite extension, and

• k((Y1, . . . , Yr)) ↪→ K is a separable finite extension.

The proposition is then a consequence of proposition 2.2 and lemma 2.3.3 �

Remark 2.6 Actually, under the hypothesis of proposition 2.5, J.M. Giral
and the authors have proved that the following stronger properties hold:

(1) If R is integrally closed in K, then K� = k.

(2) In the general case, K� is a finite extension of k.

3. Noetherianity of A ⊗k k(t)per

Throughout this section, k will be a perfect field of characteristic p > 0,
keeping the notations of section 1.

Proposition 3.1 Let K be a field extension of k and suppose that K� is
algebraic over k. For every prime ideal P ∈ Spec(K[∞]) such that P∩k[t] = 0
there exists an m0 ≥ 0 such that P[m] is the extended ideal of P[m0] for
all m ≥ m0.

1Due to J. M. Giral.
2The proof of the normalization lemma for power series rings in [1] uses generic linear

changes of coordinates and needs the field k to be infinite. This proof can be adapted for
an arbitrary perfect coefficient field (infinite or not) by using non linear changes of the
form Yi = Xi + Fi(X

p
i+1, . . . , X

p
n), where the Fi are polynomials with coefficients in Fp.

3In particular, if k is algebraically closed, we would have K� = k.
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Proof: The extension k[t] ⊂ K�[t] is integral and then P ∩ K�[t] = 0.

We can suppose P �= (0). From Remark 1.8, we have ht(P[i]) = ht(P) = 1
for every i ≥ 0. Let Fi(ti) ∈ K[ti] be the monic irreducible generator of P[i].
From Corollary 1.2, for each i ≥ 0 there are two possibilities:

(1) Fi ∈ Kp[ti], then Fi+1(ti+1) = Fi(ti)
1/p.

(2) Fi /∈ Kp[ti], then P[i+1] = (P[i])
e and Fi+1(ti+1) = Fi(ti) = Fi(t

p
i+1).

Since P ∩ K�[t] = (0),

F0(t0) /∈ (
⋂
m≥0

Kpm

)[t0] =
⋂
m≥0

Kpm

[t0]

and there exists an m0 ≥ 0 such that F0(t0) ∈ Kpm0 [t0] and F0(t0) /∈
Kpm0+1

[t0].

From (1) we have Fi(ti) = F0(t0)
1/pi ∈ Kpm0−i

[ti] for i = 0, . . . ,m0−1 and
Fm0(tm0) /∈ Kp[tm0 ]. Hence, applying (2) repeatedly we find Fj+m0(tj+m0) =

Fm0(tm0) = Fm0(t
pj

j+m0
) and P[j+m0] is the extended ideal of P[m0] for all j ≥ 1.

�

Corollary 3.2 Under the same hypothesis of proposition 3.1, P is the ex-
tended ideal of some P[m0].

Proof: This is a consequence of prop. 3.1 and the equality P =
⋃
m≥0

P[m]. �

Let B be a free algebra over a ring A and S ⊂ A a multiplicative subset.
We denote by I �→ IE, J �→ JC (resp. I �→ Ie, J �→ J c) the extension-
contraction process between the rings A or S−1A (resp. A or B) and the
rings B or S−1B (resp. S−1A or S−1B).

Proposition 3.3 With the notations above, let P1 be a prime ideal in B
such that P1 ∩ S = ∅. Let P0 = PC

1 , P1 = Pe
1 and P0 = PC

1 . If P1 = PE
0 ,

then P1 = PE
0 .

Proof: Let {ei} be a A–basis of B. Since P1 ∩ S = ∅, it is clear that
Pc

1 = P1, Pc
0 = P0 and P0 = Pe

0 . If P1 = PE
0 , we have

P1 = Pec
1 = Pc

1 = (PE
0 )c = (PeE

0 )c = (PEe
0 )c = (PE

0 )ec =
∑
s∈S

(PE
0 : s)B ⊃ PE

0 .

To prove the other inclusion, take an s ∈ S and let f =
∑

aiei be an element
of (PE

0 : s)B with ai ∈ A. Then, sf =
∑

(sai)ei ∈ PE
0 and from the equality

PE
0 = {∑ biei | bi ∈ P0} we deduce that sai ∈ P0 and ai ∈ (PE

0 : s)A = P0.
Therefore f ∈ PE

0 . �
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Proposition 3.4 Let R be an integral k-algebra, K = Qt(R), and suppose
that K� is algebraic over k. Then any prime ideal P ∈ Spec(R[∞]) with
P ∩ k[t] = 0 and P ∩ R = 0 is the extended ideal of some P[m0], m0 ≥ 0.

Proof: Let us write T = R−{0}. We have K = T−1R and K[m] = T−1R[m]

for all m ≥ 0 or m = ∞. We define P = T−1P . We easily deduce that
P[m] = T−1P[m] for all m ≥ 0.

From proposition 3.1, there exists an m0 ≥ 0 such that P[m] is the ex-
tended ideal of P[m0] for every m ≥ m0. Then, proposition 3.3 tells us
that P[m] is the extended ideal of P[m0] for every m ≥ m0, so P =

⋃P[m] is
the extended ideal of P[m0]. �

Proposition 3.5 Let K be a field extension of k and suppose that K� is not
algebraic over k. Then K(∞) is not noetherian.

Proof: Let s ∈ K� be a transcendental element over k.

For each m ≥ 0, let sm = s
1

pm ∈ K and αm = tm − sm. Let P be
the ideal in K(∞) generated by the αm,m ≥ 0. We have αm = αp

m+1 and
P(m) = K(m)αm for all m ≥ 0.

Suppose that P is finitely generated. Then, there exists an m0 ≥ 0
such that P = K(∞)αm0 . By faithful flatness, we deduce that αm0+1 ∈
K(m0+1)αm0 . Let us write τ = tm0+1, σ = sm0+1. Then, αm0+1 = τ − σ and
there exist ψ(τ) ∈ K[τ ] = K[m0+1], ϕ(τ) ∈ k[τ ] \ {0} such that

ϕ(τ)(τ − σ) = ψ(τ)(τ − σ)p.

Simplifying and making τ = σ we obtain

ϕ(σ) = ψ(σ)(σ − σ)p−1 = 0

contradicting the fact that s is transcendental over k. We conclude that P
is not finitely generated and K(∞) is not noetherian. �

Theorem 3.6 Let k be a perfect field of characteristic p > 0 and let A be a
k-algebra. The following properties are equivalent:

(a) The ring A is noetherian and for any p ∈ Spec(A), the field Qt(A/p)�

is algebraic over k.

(b) The ring A(∞) is noetherian.
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Proof: Let first prove (a) ⇒ (b). By Cohen’s theorem (cf. [6, (3.4)]), it is
enough to prove that any P ∈ Spec(A(∞)) − {(0)} is finitely generated.

From corollaries 1.7 and 1.10, we have

ht(P[m]) = ht(P(m)) = ht(P[∞]) = ht(P ) = r ≤ n.

Consider the prime ideal of A:

p := A ∩ P = A ∩ P[∞] = A ∩ P[m] = A ∩ P(m).

There are two possibilities (cf. [5, prop. 5.5.3])):

(i) ht(p) = r = ht(P[m]) and P[m] = p[tm], for every m ≥ 0.

(ii) ht(p) = r − 1 = ht(P[m]) − 1, p[tm] � P[m] and A/p � A[tm]/P[m] is
algebraic generated by tm mod P[m], for every m ≥ 0.

In case (i), P[∞] and P are the extended ideals of p and they are finitely
generated.

Suppose we are in case (ii). We denote R = A/p, K = Qt(R). Then:

R[m] = A[m]/p[tm], R[∞] = A[∞]/A[∞]p = A[∞]/
⋃
m≥0

p[tm].

Define
P := R[∞]P[∞] = P[∞]/

⋃
m≥0

p[tm] ∈ Spec(R[∞]).

We have P[m] = P ∩ R[m] = P[m]/p[tm], P ∩ R = P ∩ k[t] = 0 and

ht(P[m]) = ht
(
P[m]/p[tm]

)
= 1, ht(P) = ht

(
P[∞]/

⋃
m≥0

p[tm]

)
= 1.

We conclude by applying proposition 3.4: there exists an m0 ≥ 0 such that P
is the extended ideal of P[m0]. Then, P[∞] is the extended ideal of P[m0] and
P = A(∞)P[∞] = A(∞)P[m0] is finitely generated.

Let us prove now (b) ⇒ (a). Since A(∞) is faithfully flat over A, we
deduce that A is noetherian.

Let p ∈ Spec(A) and let R = A/p, K = Qt(R). Noetherianity of
A(∞) implies, first, noetherianity of R(∞), and second, noetherianity of K(∞).
To conclude we apply proposition 3.5. �



Conservation of the noetherianity 365

Corollary 3.7 Let k be a perfect field of characteristic p > 0 and let A be
a noetherian k-algebra. The following properties are equivalent:

(a) The ring A(∞) is noetherian.

(b) The ring (Am)(∞) is noetherian for any maximal ideal m ∈ Ω(A).

Proof: For (a) ⇒ (b) we use the fact that (Am)(∞) = Am ⊗A A(∞).
For (b) ⇒ (a), let p ⊂ A be a prime ideal and let m be a maximal

ideal containing p. From hypothesis (b), the ring (Am)(∞) is noetherian.

Then, from theorem 3.6 we deduce that the field Qt(A/p)� = Qt (Am/Amp)�

is algebraic over k. From theorem 3.6 again we obtain (a). �

Corollary 3.8 Let k be a perfect field of characteristic p > 0, k′ an algebraic
extension of k and A = k′[[X1, . . . , Xn]]. Then, the ring A(∞) = k(t)per ⊗k A
is noetherian.

Proof: It is a consequence of lemma 2.4, proposition 2.5 and theorem 3.6.
�

Corollary 3.9 Let k be a perfect field of characteristic p > 0. If (B,m) is
a local noetherian k-algebra such that B/m is algebraic over k, then B(∞) =
k(t)per ⊗k B is noetherian. In particular, the field Qt(B/p)� is algebraic
over k for every prime ideal p ⊂ B.

Proof: Let k′ = B/m. By Cohen structure theorem (cf. [5, Chap. 0,

th. 19.8.8]), the completion B̂ of B is a quotient of a power-series ring A

with coefficients in k′. Since B̂(∞) is also a quotient of A(∞), we deduce from

corollary 3.8 that B̂(∞) is noetherian. Since B̂ is faithfully flat over B, the

ring B̂(∞) is also faithfully flat over B(∞). So, B(∞) is noetherian.

The last assertion is a consequence of theorem 3.6. �

Corollary 3.10 Let k be a perfect field of characteristic p > 0. For any
noetherian k-algebra A such that the residue field A/m of every maximal
ideal m ∈ Ω(A) is algebraic over k, the ring A(∞) is noetherian. Further-
more, if A is regular and equicodimensional then A(∞) is also regular and
equicodimensional of the same dimension as A.

Proof: The first part is a consequence of corollaries 3.7 and 3.9. For the
last part, we use corollary 1.11, the fact that all A(m),m ≥ 0 are regular and
of the same (global homological = Krull) dimension ([7, th. 1.6] and [2]).

�
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References

[1] Abhyankar, S. S.: Local Analytic Geometry. Academic Press, New York-
London, 1964.
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