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Explicit models for perverse sheaves

Félix Gudiel Rodŕıguez and Luis Narváez Macarro

Abstract
We consider categories of generalized perverse sheaves, with re-

laxed constructibility conditions, by means of the process of gluing
t-structures and we exhibit explicit abelian categories defined in terms
of standard sheaves categories which are equivalent to the former
ones. In particular, we are able to realize perverse sheaves categories
as non full abelian subcategories of the usual bounded complexes
of sheaves categories. Our methods use induction on perversities.
In this paper, we restrict ourselves to the two-strata case, but our
results extend to the general case.

Introduction

Perverse sheaves first appear in context of Complex Analytic Geometry by
the coming together of the Riemann-Hilbert correspondence of Mebkhout-
Kashiwara and the Intersection Cohomology of Goresky-MacPherson at the
beginning of the 1980s. In the work [1] the notion of t-structure over a
triangulated category was extracted and it was proved that the category
of analytic constructible perverse sheaves, that we call “classical perverse
sheaves”, can be obtained by a general process of “gluing” t-structures,
that makes sense in a much more general framework. In fact, the main
contribution of loc. cit. is the use of that process to define �-adic perverse
sheaves over algebraic varieties in positive characteristics and to prove the
theorem of purity of intersection complexes.

In this paper, we develop some ideas and complete some results in [13]
and [5] on the core of the t-structure obtained by gluing standard t-structures
shifted by “perversities” of strata, as in the classical case but without im-
posing necessarily any constructibility conditions. Objects in this core can
be thought of as “generalized perverse sheaves”.
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In the complex analytic case, and when we consider the middle perversity,
the category of classical perverse sheaves is a full abelian subcategory of that
of generalized perverse sheaves. Furthermore, a classical perverse sheaf is the
same as a generalized perverse sheaf which is complex analytic constructible.

The advantage of our point of view consists of being able to work simul-
taneously with different perversities and to establish some precise relations
between perverse sheaves with respect to different perversities, which we do
not know how to do if we are restricted to the classical case.

Our main result is theorem 3.2.2, from which we deduce (see 4.1) that
any (generalized) perverse sheaf, and then any classical perverse sheaf, has
a canonical model (16). As a consequence, the category of (generalized)
perverse sheaves is equivalent to a non full (resp. full) abelian subcategory
of the category of the usual bounded complexes (resp. up to homotopy).

The main idea consists of constructing a functor Φ relating d-perverse
and (d − 1)-perverse sheaves, and by iteration, d-perverse sheaves with
0-perverse sheaves, which are nothing but usual sheaves. In this way we
develop the idea pointed out in [13, rem. 2.3.7], where we were restricted to
the “conical” case.

Construction of functor Φ and many other results in this paper are in-
spired by the formalism of vanishing cycles [3] and the gluing of classical
perverse sheaves of Deligne-Verdier [2, 14] and MacPherson-Vilonen [9], but
our framework is more general.

In order to simplify, in this paper we restrict ourselves to the two-strata
case, but our results extend to the general case.

Let us now comment on the content of this paper.

In section 1 we recall first the gluing process of t-structures and the
notion of (generalized) perverse sheaf is introduced. Second, we recall some
elementary constructions with adjoint functors that play a fundamental role
in the proof of theorem 3.2.2 and in the manipulation of our explicit models
for perverse sheaves.

Section 2 deals with the construction of functor Φ and the “induction on
perversities” (see theorem 2.3.1).

In section 3 we show the main result in this paper, namely that the
category of (generalized) perverse sheaves Perv is equivalent to an explicit
abelian category described in terms of abelian categories of usual sheaves.

In section 4 we give some applications of theorem 3.2.2. First, we asso-
ciate to any perverse sheaf a canonical model. More precisely, we lift the
inclusion functor of Perv into the derived category to a faithful exact functor
into the category of usual bounded complexes.
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Second, we lift the inclusion functor of Perv into the derived category
to a fully faithful functor into the category of bounded complexes up to
homotopy, Kb. In particular, Perv can be realized as a full abelian subcate-
gory of Kb.

Third, we give quiver descriptions of conical perverse sheaves with respect
to a K(π, 1) basis.

Finally, we compute in terms of our listed canonical models the different
perverse direct images and the intersection complex associated to a sheaf on
the open stratum, and we announce further results.

1. Preliminaries and notations

1.1. Perverse sheaves

Let X be a topological space stratified by Σ = {C,U}, where i : C → X
is a closed immersion and j : U = X − C → X is its complementary dense
open immersion. Let OX be a sheaf of rings on X and let OU = j∗OX ,
OC = i∗OX . For ∗ = X,U,C, let us denote by B∗ the abelian category of
sheaves of O∗-modules, and let A∗ ⊂ B∗ be full abelian subcategories stable
for kernels, cokernels and extensions. Let us denote by D∗ := D+

A∗(B∗) the
full triangulated subcategory of the derived category D(B∗) whose objects
are bounded below complexes with cohomology in A∗. Let us suppose that
the usual functors i∗ = i!, i

∗, Ri!, Rj∗, j!, j
∗ = j! induce functors

DC

i∗=i!−−−→←−−−
i∗,Ri!

DX

j∗=j!−−−→←−−−
Rj∗,j!

DU

in such a way that we are in the conditions of gluing t-structures on DU and
on DC [1].

Example 1.1.1

(1) If A∗ = B∗, then D∗ = D+(B∗).

(2) Let S be a compact topological space, X the cone of S, C its vertex, OX

the constant sheaf with fiber a ring (resp. a noetherian ring) k and A∗ the
abelian categories of Σ-constructible sheaves of k-modules not necessarily
finitely generated (resp. finitely generated).

(3) The space X is a pseudomanifold stratified by Σ, OX is the constant sheaf
with a field k as fiber, and the A∗ are the abelian categories of Σ-constructible
sheaves of k-vector spaces of arbitrary (resp. of finite) rank. For instance,
X can be a complex analytic space and C ⊂ X a smooth closed analytic set
satisfying the Whitney conditions.
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Definition 1.1.2 For any integer d ≥ 0, the category of d-perverse sheaves
on X with respect to the stratification Σ, Pervd(X,Σ), is the core of the
t-structure on DX obtained by gluing the natural t-structure on DU and the
image by [−d] of the natural t-structure on DC [1]. We will say that the
perversity of the stratum C (resp. U) is d (resp. 0).

Remark 1.1.3 Observe that, if d = 0, then the category Perv0(X,Σ) coin-
cides with the category AX .

Proposition 1.1.4 (Characterization of d-perverse sheaves) An object K
of DX is a d-perverse sheaf (with respect to Σ) if and only if the following
properties hold:

(a) K is concentrated in degrees [0, d],

(b) j∗K is concentrated in degree 0,

(c) hnRi!K = 0 for n < d.

Proof. By definition of Pervd(X,Σ), an object K of DX is a d-perverse
sheaf if and only if hn(j∗K) = 0 for n �= 0, hni∗K = 0 for n > d and
hnRi!K = 0 for n < d, and it is clear that a K satisfying properties (a),
(b), (c) is d-perverse.

Let us now take a d-perverse sheaf K. Properties (b) and (c) are clear.
The long exact sequence associated with the triangle

j!j
∗K −→ K −→ i∗i∗K

+1−→
gives rise to isomorphisms hl(K) � hl(i∗i∗K) for any l ≥ 1 and then
hl(K) = 0 for any l > d.

In a similar way, the long exact sequence associated with the triangle

i∗Ri!K −→ K −→ Rj∗j∗K
+1−→

and the fact that Rj∗j∗K is concentrated in non-negative degrees gives rise
to isomorphisms hl(i∗Ri!K) � hl(K) for l < 0 and then hl(K) = 0 for
any l < 0, and K is concentrated in degrees [0, d]. �

1.2. Functors acting on morphisms of functors

Let B, C be categories, F,G : B → C functors and τ : F → G a morphism of
functors (or natural transformation) which associates to any object B in B
a morphism τB : FB −→ GB in C with the usual naturality properties.

For any functors E : A → B, H : C → D we denote by τE : FE → GE,
Hτ : HF → HG the morphisms given by

(τE)A = τEA, (Hτ)B = H(τB)

for any objects A in A and B in B.
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(1.2.1) We have the following rules:

(a) H(τE) = (Hτ)E, H1F = 1HF , 1F E = 1FE.

(b) (τ ◦ε)E = (τE)◦(εE), H(τ ◦ε) = (Hτ)◦(Hε) for any other morphism
ε : F ′ → F .

(c) (σG) ◦ (Kτ) = (Lτ) ◦ (σF ) for any other functors K,L : C → D and
any other morphism σ : K → L.

(d) (τ + τ ′)E = (τE) + (τ ′E), H(τ + τ ′) = (Hτ) + (Hτ ′) in the case of
additive functors between additive categories.

1.3. Adjoint functors

(1.3.1) In this section, we consider a couple of adjoint additive functors
G : A → A′, F : A′ → A between abelian categories with adjunction
morphisms α : IdA → FG and β : GF → IdA′ such that F is left exact, G
is exact and α is injective.

We denote F := FG and (Q, q) := cokerα. We have then a commutative
diagram with exact rows and columns:

(1)

0 0 0� � �
0 −−−→ IdA

α−−−→ F
q−−−→ Q −−−→ 0

α

� αF

� αQ

�
0 −−−→ F

Fα−−−→ FF
Fq−−−→ FQ

q

� qF

� qQ

�
0 −−−→ Q

Qα−−−→ QF
Qq−−−→ QQ� � �

0 0 0

(1.3.2) Let us call γ : Q −→ FF the unique morphism satisfying γ ◦ q =
αF − Fα. From (1) we deduce the relations

(Fq) ◦ γ = αQ, (qF) ◦ γ = −Qα.
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(1.3.3) From the adjunction properties, the exact sequence

0 −→ G
Gα−−→ GF

Gq−→ GQ −→ 0

splits, with retraction βG : GFG −→ G. Then the sequence

(2) 0 −→ F
Fα−→ FF

Fq−→ FQ −→ 0

is exact and splits, with retraction ν := FβG. Let us call µ : FQ → FF the
corresponding section, i.e.

µ ◦ (Fq) = 1F2 − (Fα) ◦ ν, (Fq) ◦ µ = 1FQ.

We have

(1.3.4) With the above notations, the relation ν ◦ (αF) = 1F holds and the
sequence

0 −→ F
αF−→ FF

qF−→ QF −→ 0

also splits with the same retraction as in (2). Let us call µ′ : QF → FF the
corresponding section, i.e.

µ′ ◦ (qF) = 1F2 − (αF) ◦ ν, (qF) ◦ µ′ = 1QF.

We have γ = µ ◦ (αQ).

Functors FQ and QF are canonically isomorphic by means of h := (qF)◦
µ : FQ → QF and its inverse h−1 = (Fq) ◦ µ′.

Lemma 1.3.5 For any objects A,B in A, the sequence

0 −→ Hom(QA, FB)
q∗A−→ Hom(FA, FB)

α∗
A−→ Hom(A, FB) −→ 0

is exact and splits.

Proof. From (1.3.4), application

f ∈ Hom(A, FB) 
→ νB ◦ (Ff) ∈ Hom(FA, FB)

is a section of the above sequence. �



Explicit models for perverse sheaves 431

2. Construction of categories and functors

2.1. The functor Ω

(2.1.1) Let A be a category. Let us denote by Arr(A) the category of arrows
of A, by s, t : Arr(A) → A the functors defined by

s(A
u−→ B) := A, t(A

u−→ B) := B

and by ζ : s → t the morphism defined by ζ
(A

u−→B)
:= u.

If A is abelian, the category Arr(A) is also abelian and functors s, t are
exact and induce exact functors s, t : C(Arr(A)) → C(A). They induce
triangulated functors K(Arr(A)) → K(A), D(Arr(A)) → D(A), also denoted
by s, t. Let us denote by ζ : s → t the morphism of functors induced by ζ.

(2.1.2) The functor N : C(Arr(A)) → Arr(C(A)) defined by N = s
ζ−→ t is

an isomorphism of abelian categories. In a similar way we define functors
N : K(Arr(A)) → Arr(K(A)), N : D(Arr(A)) → Arr(D(A)), which are no
longer equivalence of categories. Nevertheless, a morphism in K(Arr(A))
is a quasi-isomorphism if and only if its images by s and t are quasi-
isomorphisms.

For any abelian category A and any object (U
β−→ V ) ∈ C(Arr(A)) ≡

Arr(C(A)) we define

Ω(U
β−→ V ) := (V

q−→ cone(β)) ∈ C(Arr(A)),

where q is the canonical inclusion. One can easily define the action of Ω
on morphisms and we obtain an exact functor Ω : C(Arr(A)) → C(Arr(A))
which commutes (up to isomorphism) with the translation functor and sat-
isfies sΩ = t.

Proposition 2.1.3 The functor Ω above induces a triangulated functor
ΩK : K(Arr(A)) → K(Arr(A)) such that s ΩK = t.

Proof. It is an exercise we leave to the reader. �
The definition of distinguished triangles in K(A) gives rise to a morphism

ϑ : t ΩK → s[1] in such a way that the following triangle of functors

(3) s
ζ−→ t = s ΩK

ζ ΩK−−→ t ΩK
ϑ−→ s[1]

is distinguished, i.e. its evaluation on any object of K(Arr(A)) is a distin-
guished triangle of K(A).
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The following proposition is basically the same as the axiom (TR2) of
triangulated categories for K(A) ([15, chap. I, prop. 3.3.3]).

Proposition 2.1.4 Under the above hypothesis, there is an isomorphism of
functors χ : s[1]

�−→ tΩ2
K such that the following diagram is commutative:

t ΩK
ϑ−−−→ s[1]

−ζ[1]−−−→ t[1]

=

� χ

�� =

�
s Ω2

K

ζ Ω2
K−−−→ t Ω2

K

ϑΩK−−−→ s[1]ΩK.

Proposition 2.1.5 The functor ΩK : K(Arr(A)) → K(Arr(A)) transforms
quasi-isomorphisms into quasi-isomorphisms and then it induces a triangu-
lated functor ΩD : D(Arr(A)) → D(Arr(A)) such that s ΩD = t. Moreover,

there is a morphism ϑ : t ΩD → s[1] and an isomorphism χ : s[1]
�−→ tΩ2

D

such that the following triangle of functors

(4) s
ζ−→ t = s ΩD

ζΩD−−→ tΩD
ϑ−→ s[1]

is distinguished and the following diagram is commutative:

t ΩD
ϑ−−−→ s[1]

−ζ[1]−−−→ t[1]

=

� χ

�� =

�
s Ω2

D

ζ Ω2
D−−−→ t Ω2

D

ϑΩD−−−→ s[1]ΩD.

Proof. The first part follows from the relation s ΩK = t, from the fact that
a morphism ξ in K(Arr(A)) is a quasi-isomorphism if and only if s(ξ), t(ξ)
are quasi-isomorphisms and from triangle (3).

The second part is basically the axiom (TR2) for the triangulated cate-
gory D(A) and follows from triangle (3) and from proposition 2.1.4. �

Remark 2.1.6 The functor ΩA defined in [12, 13] is related to the func-
tor ΩD above by the equality ΩA = NΩD.

(2.1.7) Let us denote by Q the full subcategory of Arr(D(A)) whose objects
are the A

υ−→ B such that A is concentrated in degree 0 and B is concentrated
in degrees ≥ 0. For such objects the morphism υ (in D(A)) is determined
by its cohomology of degree 0. More precisely we have the following result:
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Proposition 2.1.8 Functor N defines an equivalence of (additive) cate-
gories between N−1Q and Q.

Proof. We sketch the definition of a quasi-inverse of N : N−1Q → Q and
leave the details to the reader.

Given an object Y = (A
υ−→ B) in Q, let U, V be the complexes defined

by U0 = h0A, Un = 0 for n �= 0 and

V = τ≥0B = · · · −→ 0 −→ coker d−1
B

d0
B−→ B1 d1

B−→ · · · ,

where coker d−1
B is placed in degree 0, and let υ̃ : U → V the morphism of

complexes determined by υ̃0 = h0υ : U0 → h0B ⊂ V 0.

Correspondence Y 
→ (U
υ̃−→ V ) extends to a functor N : Q → N−1Q. It

is easy to see that NN � IdQ.

On the other hand, for any object X = (U
β−→ V ) in N−1Q, the following

commutative diagram in C(A)

U
β−−−→ V

nat.

� �nat.

τ≥0U
τ≥0β−−−→ τ≥0V

nat.

� �=

h0U
β̃−−−→ τ≥0V

defines a natural isomorphism

(5) κ(X) : X −→ N(N(X)).

�
(2.1.9) Let us call C = (t ΩDN)[−1] : Q → D(A).

An object (U
β−→ V ) ∈ D(Arr(A)) is in P := Ω−1

D N−1Q if and only if the
complex U is concentrated in degrees ≥ 0, V is concentrated in degree 0 and
h0β is injective.

From propositions 2.1.5 and 2.1.8 we obtain an isomorphism

(6) η := (t ΩDκΩD)[−1] ◦ χ[−1] : s −→ CNΩD

between functors from P to D(A).
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(2.1.10) For any object Y = (A
υ−→ B) ∈ Q such that An = 0 for all n �= 0

and Bn = 0 for all n < 0 we can identify (by a canonical isomorphism)

(7) C(Y ) = · · · −→ 0 −→ A0 −υ0−−→ B0 −d0
B−−→ B1 −d1

B−−→ · · · ,

where A0 is placed in degree 0.

Consequently, for any object X = (U
β−→ V ) ∈ P such that U and V are

concentrated in degree 0 (h0β must be injective), we can identify

(CNΩD)(X) = · · · −→ 0 −→ h0V
−nat.−−−→ cokerh0β −→ 0 −→ · · ·

placed in degrees 0, 1 and isomorphism ηX : U → (CNΩD)(X) reduces to

(8)

h0U
−h0β−−−→ h0V

0

� �−nat.

h1U = 0
0−−−→ coker h0β,

where minus sign in −h0β comes from the definition of χ in proposition 2.1.5.

2.2. The functor Φ

In this section we come back to the situation described in section 1.1.

(2.2.1) Let us choose an additive left exact functor F = FG : A = BU →
A = BU and an injective morphism α : 1 → F as in (1.3.1), such that
F(AU) ⊂ AU , F|AU

is exact, (Rij∗)(FA) = 0 and j∗FA � R(j∗F)A, for i > 0,
A ∈ AU . The restriction to AU of the functor Q = cokerα defined in (1.3.1)
is also exact.

To simplify, let us write Ω : D(Arr(BX)) → D(Arr(BX)) instead of ΩD

in proposition 2.1.5.

(2.2.2) Let us first consider the additive left exact functor ψF : BX →
Arr(BX) defined by

(9) ψF = (Id
ρ−→ j∗Fj∗), ρ := (j∗αj∗) ◦ adj,

where adj : Id → j∗j∗ is the adjunction morphism, and second, functors

ΨF := ΩRψF : DX → D(Arr(BX)), ΦF := tΨF : DX → DX .

Once the functor F is fixed, we omit subscripts and we will write ψ,Ψ,Φ
instead of ψF,ΨF,ΦF.
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We have canonical isomorphisms

(10) sRψ � Id, sΨ � tRψ � R(j∗Fj∗) = R(j∗F)j∗

and triangle (4) gives rise to the triangle

(11) Id
ρ−→ R(j∗F)j∗ u1−→ Φ −→ Id[1].

Example 2.2.3 (1) In example 1.1.1, (1) let us take Udis as the discrete
topological space with underlying set U , ∆ : Udis → U the identity map,
OUdis = ∆∗OU , A′ the abelian category of OUdis-modules and F = ∆∗,
G = ∆∗ (see [4], chap. II, §4.3).

(2) In example 1.1.1, (2), let us suppose that S is a K(π, 1) space, p : Ũ → U
the universal covering space of U , OŨ = p∗OU , A′ the abelian category
of OŨ -modules and F = p∗, G = p∗ (see [13]). If the fundamental group
π1(U, x0) is finite and k is noetherian, then we can also consider the categories
A∗ as those of constructible sheaves of finitely generated modules.

(3) In example 1.1.1, (3), it is not possible in general to choose a functor F as
above, but we will be able to apply the methods of this paper as explained
in section 4.1.

2.3. Induction on perversities

The following theorem generalizes [13, prop. 2.3.3 and rem. 2.3.7].

Theorem 2.3.1 Let d be an integer ≥ 1 and let K be an object in DX .
Then, K ∈ Pervd(X,Σ) if and only if j∗K ∈ AU and ΦK ∈ Pervd−1(X,Σ).

Proof. Let us consider the long exact sequence of cohomology associated
with the triangle (11) evaluated on K:

(12) K
ρK−→ R(j∗F)j∗K

u1
K−→ ΦK −→ K[1].

If K is d-perverse, j∗K belongs to AU , R(j∗F)j∗K = j∗Fj∗K is concen-
trated in degree 0 and hi(ΦK) � hi+1(K) for i �= 0,−1. In particular ΦK
is concentrated in degrees [−1, d − 1].

For i = −1 we have an exact sequence

0 −→ h−1(ΦK) −→ h0K −→ R0(j∗F)j∗K = j∗Fj∗(h0K) −→ 0,

where the second arrow is nothing but ρh0K (see (9)), which is injective
because α is injective and R0ΓC(h0K) = R0ΓCK = i∗h0Ri!K = 0. Then
h−1(ΦK) = 0 and ΦK is concentrated in degrees [0, d − 1].
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By applying j∗ to (12) we obtain j∗ΦK � Qj∗K, and then j∗ΦK is
concentrated in degree 0.

On the other hand, by applying Ri! to (12) we deduce that Ri!ΦK �
(Ri!K)[1], hence hmRi!ΦK = 0 for any m < d − 1.

By proposition 1.1.4, we conclude that ΦK is (d − 1)-perverse.

Conversely, let us suppose that j∗K∈ AU and that ΦK is (d−1)-perverse.
By triangle (12) again we deduce that K is concentrated in degrees [0, d],
hmRi!K � hm−1Ri!ΦK = 0 for any m < d and then K is d-perverse. �

Remark 2.3.2 As pointed out in [13, rem. 2.3.7], theorem 2.3.1 suggests
iterating the functor Φ in order to obtain, for any d-perverse sheaf K, an
usual sheaf ΦdK. The main result of this paper (see theorem 3.2.2) tells us
how to reconstruct K from its restriction to the open set U and from ΦdK.

3. The equivalence of categories

3.1. Gluing data

We keep the notations in (1.3.1) and (2.2.1).

(3.1.1) For each integer i ≥ 0 let us write qi := qQi, αi := αQi, gi :=
(Fqi) ◦ (αFQi) = [(Fq) ◦ (αF)]Qi = [(αQ) ◦ q]Qi = αi+1 ◦ qi = g0Qi.

For d ≥ 1, we have the complex

(13) Td := F
g0−→ · · · gd−2−−→ FQd−1 qd−1−−→ Qd

placed in degrees [0, d], which is a resolution of length d of the identity
functor by means of the injection Id

α−→ F.

(3.1.2) Let hd : TdQ → QTd+1 be the morphism of complexes given by

hi
d = (−1)i+1hQi : FQi+1 → QFQi, 0 ≤ i ≤ d − 1

and hd
d = (−1)dQαQd : Qd+1 → QFQd, where h has been defined in (1.3.4).

It is a quasi-isomorphism whose composition with αQ : Q → TdQ is equal
to −Qα : Q → QTd+1.

Definition 3.1.3 For each integer d ≥ 1, let Bd
F be the additive category

whose objects are the (L,F , u, σ), where L ∈ AU ,F ∈ AX , u : j∗FQd−1L →
F and σ : QdL ∼−→ j∗F such that u ◦ j∗gd−2

L = 0 (if d ≥ 2) and σ ◦ qd−1
L =

j∗u, and whose morphisms from (L,F , u, σ) to (L′,F ′, u′, σ′) are defined as
the pairs (f, g) where f : L → L′, g : F → F ′ are morphisms such that
u′ ◦ (j∗FQd−1f) = g ◦ u.
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Observe that in the above definition, the relation (j∗g) ◦ σ = σ′ ◦ (Qdf)
holds.

For d ≥ 2, let us define the additive functor

Gd−1 := coker j∗gd−2 : AU → AX ,

which is right exact.

In the above definition, we can replace condition u◦j∗gd−2
L = 0 by taking

objects (L,F , u, σ) with u : Gd−1L → F .

The proof of the following proposition is an exercise left up to the reader.

Proposition 3.1.4 The category Bd
F is abelian.

Remark 3.1.5 By using the fact that sheaves on X are determined by
their restrictions to U and C and by the gluing morphism i∗ → i∗j∗j∗,
category Bd

F fits into the construction of abelian categories in [9, §1]. Namely,
category Bd

F is equivalent to the category C(F,G;T ) in loc. cit., where F =
i∗Gd−1, G = i∗j∗Qd : BU → BC (F is right exact and G is left exact) and
T = i∗j∗qd−1 : F → G, where j∗qd−1 : Gd−1 → j∗Qd is the morphism induced
by j∗qd−1.

As in [9], any other choice of the functor F in (2.2.1) gives rise to a
category equivalent to Bd

F.

(3.1.6) By theorem 2.3.1, functors j∗ and Φ can be considered as functors
j∗ : Pervd(X,Σ) → AU , Φ : Pervd(X,Σ) → Pervd−1(X,Σ).

From the properties of F in (2.2.1), we have

(j∗F)(AU ) ⊂
⋂
m≥0

Pervm(X,Σ).

For any K ∈ Pervd(X,Σ), we have R(j∗F)j∗K = j∗Fj∗K and the mor-
phism u1 in (11) gives rise to a morphism

u1 : j∗Fj∗ → Φ

between functors j∗Fj∗,Φ : Pervd(X,Σ) → Pervd−1(X,Σ).

As pointed out in the proof of theorem 2.3.1, by applying the functor j∗

to (11) we deduce an isomorphism

(14) ξ1 : Qj∗ ∼−→ j∗Φ such that ξ1 ◦ (qj∗) = j∗u1.
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(3.1.7) We define inductively

ui = (ui−1Φ) ◦ (j∗FQi−2ξ1) : j∗FQi−1j∗ → Φi, i ≥ 2

ξi = (ξ1Φi−1) ◦ (Qξi−1) : Qij∗ ∼−→ j∗Φi, i ≥ 1.

The relations

(15) ξi ◦ (qQi−1j∗) = j∗ui, ui ◦ (j∗gi−2j∗) = 0, (ξi−1Φ) ◦ (Qi−1ξ1) = ξi

hold for every i ≥ 2.

3.2. The theorem

With the notations introduced in (3.1.7), we do the following:

Definition 3.2.1 For each integer d ≥ 1, let us define the additive functors

Dd := (j∗,Φd, ud, ξd) : Pervd(X,Σ) → Bd
F

and Bd : Bd
F → Pervd(X,Σ) by

(16) Bd(L,F , u, σ) := j∗FL j∗g0
L−−→ j∗FQL j∗g1

L−−→ · · · j∗gd−2
L−−−−→ j∗FQd−1L u−→ F ,

where the complex is placed in degrees [0, d], the action of Bd on morphisms
being obvious.

In the above definition we can identify

(17) j∗Bd(L,F , u, σ) = TdL
by means of σ (see (13)). Furthermore, the acyclicity properties in (2.2.1)
show that j∗FQiL = Rj∗FQiL. Then Ri!Bd(L,F , u, σ) = Ri!F [−d], and we
deduce the perversity of Bd(L,F , u, σ) from proposition 1.1.4.

The main result of this paper is the following:

Theorem 3.2.2 For any integer d ≥ 1, functors Bd and Dd defined above
are the quasi-inverse of each other and they define, thus, an equivalence of
categories between Pervd(X,Σ) and Bd

F.

As suggested by [13, rem. 2.3.7] and theorem 2.3.1, the proof of theorem
3.2.2 can be approached by induction on perversity d.

Remark 3.2.3 In case d = 1 our proof of the isomorphism Id � D1B1 is
essentially the same as in [13, th. 2.3.4], but it should be noticed that in
loc. cit. there is a mistake in the proof of the faithfulness of D1. Our proof
of theorem 3.2.2 completes the one given in [5].
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3.3. The proof

First Part: We are going to construct a natural isomorphism O � DdBdO
for any O in Bd

F.

For d = 0 let us call B0
F = AX and B0 = Id : B0

F → Perv0(X,Σ).

For any d ≥ 2 we consider functors T : Bd
F → Bd−1

F whose action on
objects (resp. on morphisms) is given by T(L,F , u, σ) := (QL,F , u, σ)
(resp. T(f, g) := (Qf, g)). For d = 1, functor T : B1

F → B0
F is simply

defined by T(L,F , u, σ) = F .

For any d ≥ 1 we also consider functors s : Bd
F → AU , t : Bd

F → AX and
morphism υ : j∗FQd−1s → t defined by s(L,F , u, σ) = L, t(L,F , u, σ) = F ,
υ(L,F ,u,σ) = u. We obviously have sT = Qs and j∗t σ

= Qds.

From (17) we can identify j∗Bd = Tds for d ≥ 1, and from the acyclicity
properties of F with respect to j∗ in (2.2.1), we deduce

ΦBd = tΩRψBd = tΩψBd = cone(Bd
ρBd−−→ j∗Fj∗Bd = j∗FTds),

i.e.

(ΦBd)
−1 = 0 ⊕ (j∗Fs), (ΦBd)

d−1 = (j∗F2Qd−1s) ⊕ t,

(ΦBd)
d = (j∗FQds) ⊕ 0,

(ΦBd)
i = (j∗F2Qis) ⊕ (j∗FQi+1s), 0 ≤ i ≤ d − 2,

and

d−1
ΦBd

=

(
0 j∗αFs
0 −j∗g0s

)
, di

ΦBd
=

(
j∗Fgis j∗αFQi+1s

0 −j∗gi+1s

)
, 0 ≤ i ≤ d − 3,

dd−2
ΦBd

=

(
j∗Fgd−2s j∗αFQd−1s

0 −υ

)
, dd−1

ΦBd
=

(
j∗FqQd−1s (j∗αQds) ◦ adj

0 0

)
,

where adj : t → j∗j∗t = j∗Qds is the adjunction morphism.

By the same reason, morphism u1Bd : j∗Fj∗Bd = j∗FTds → ΦBd be-
comes the natural inclusion.

Let Qd be the complex of functors from Bd
F to AU obtained by plumb-

ing Fs in degree −1 and FTds in degrees ≥ 0 by means of Fαs. From (13)
and (2.2.1) we deduce that complexes Qd and j∗Qd are exact.
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(3.3.1) For any d ≥ 1 let us call Ld = Bd−1T, which can be considered as
a complex of functors from Bd

F to AX , and let us define the following exact
sequences:

0 −→ L−1
d = 0

λ−1
d =0−−−−→ (ΦBd)

−1
π−1

d =(0 1)−−−−−−→ j∗Q−1
d −→ 0,

0 −→ Li
d

λi
d=(−1)i+1

(
j∗µQis
−1

)
−−−−−−−−−−−−−−→ (ΦBd)

i
πi

d=(1 j∗µQis)−−−−−−−−→ j∗Qi
d −→ 0, 0 ≤ i ≤ d − 2,

0 −→Ld−1
d

λd−1
d =(−1)d

(
(j∗γQd−1s)◦(adj)

−1

)
−−−−−−−−−−−−−−−−−−→(ΦBd)

d−1
πd−1

d =(1(j∗γQd−1s)◦(adj))−−−−−−−−−−−−−−−→j∗Qd−1
d −→ 0

0 −→ Ld
d = 0

λd
d=0−−−→ (ΦBd)

d
πd

d=(1 0)−−−−−→ j∗Qd
d −→ 0,

where γ : Q → F2, µ : FQ → F2 have been defined in (1.3.2) and (1.3.3)
respectively.

From (1.3.2), (1.3.3), (3.1.1) and (1.3.4) we deduce, first:

(Fgi) ◦ (µQi) = [(FαQ) ◦ (Fq) ◦ µ]Qi = FαQi+1,

(µQi) ◦ gi = [µ ◦ (Fq) ◦ (αF)]Qi = [αF − Fα]Qi,

(j∗γQd−1s) ◦ (adj) ◦ υ = (j∗γQd−1s) ◦ (j∗qQd−1s) = [j∗(αF − Fα)Qd−1]s,

(FqQd−1s) ◦ (γQd−1s) − αQds = [(Fq) ◦ γ − αQ]Qd−1s = 0,

and second:

di
ΦBd

◦ λi
d = λi+1

d ◦ (j∗gi+1s), di
Qd

◦ πi
d = πi+1

d ◦ di+1
ΦBd

for any i.

In particular we obtain an exact sequence of complexes

0 −→ Bd−1T
λd−→ ΦBd

πd−→ j∗Qd −→ 0,

which shows that λd : Bd−1T → ΦBd is a quasi-isomorphism and then an
isomorphism between functors from Bd

F to Pervd−1(X,Σ).

(3.3.2) For any d ≥ 1 we consider the morphism of functors θd : j∗Fs →
Bd−1T given by θd = j∗g0s if d ≥ 2 and θ1 = υ : j∗Fs → t = B0T. Diagram

(18)

j∗Fs
θd−−−→ Bd−1T

j∗Fαs

� λd

�
j∗Fj∗Bd = j∗FTds

u1Bd−−−→ ΦBd

commutes in the homotopy category of complexes and then in the derived
category.
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(3.3.3) For each i ≥ 1 let us call

φi := (j∗FQi−1ξ−1Bi+1) ◦ (j∗FQi−1j∗λi+1) : j∗FQi−1j∗BiT −→ j∗FQij∗Bi+1.

From rule (1.2.1), (c), and (3.1.7) we deduce that the following diagram
of functors from Bi+1

F to Perv0(X,Σ) = AX

j∗FQi−1j∗BiT
uiBiT−−−→ ΦiBiT

φi

� Φiλi+1

�
j∗FQij∗Bi+1

ui+1Bi+1−−−−−→ Φi+1Bi+1

commutes, where the vertical arrows are isomorphisms.

(3.3.4) With identifications

j∗FQi−1j∗BiT = j∗FQi−1TisT = j∗FQi−1TiQs

and
j∗FQij∗Bi+1 = j∗FQi−1QTi+1s

one can prove that φi = j∗FQi−1his, where hi has been defined in (3.1.2),
but we will not need that result in the rest of this paper.

Summing up (3.3.2) and (3.3.3), for any d ≥ 1 we obtain a commutative
diagram of functors from Bd

F to Perv0(X,Σ) = AX

j∗FsTd−1 υTd−1−−−→ B0TTd−1 = eTd−1

j∗FαsTd−1

� �λ1Td−1

j∗Fj∗B1T
d−1 u1B1Td−1−−−−−−→ ΦB1T

d−1

φ1Td−2

� �Φλ2Td−2

...
...

φd−2T

� �Φλd−1T

j∗FQd−2j∗Bd−1T
ud−1Bd−1T−−−−−−→ Φd−1Bd−1T

φd−1

� �Φλd

j∗FQd−1j∗Bd
udBd−−−→ ΦdBd.

Compositions of vertical arrows give rise to the natural isomorphism
IdBd

F

∼−→ DdBd we wanted and the first part of the proof of theorem 3.2.2 is
finished.
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Second part:

In this part we prove that for any d-perverse sheaf K, there exists a
natural isomorphism K � BdDdK. We are using notations of (2.1.9). We
proceed by induction on d ≥ 1.

For any d-perverse sheaf we know (theorem 2.3.1) that RψK ∈ P and

NΨK = j∗Fj∗K
u1

K−→ ΦK.

Let us call

ωK : K
∼−→ C(j∗Fj∗K

u1
K−→ ΦK)

the composition of isomorphism

ηRψK : s RψK → CNΩRψK = CNΨK = C(j∗Fj∗K
u1

K−→ ΦK)

defined in (2.1.9) and isomorphism K
∼−→ s RψK of (10).

Functors ψ,Ω, N commute with j∗ and we can identify

(19) j∗C(j∗Fj∗K
u1

K−→ ΦK)
ξ1
= C(Fj∗K

qj∗K−−→ Qj∗K).

Then, by using (8) we obtain

(20) j∗ωK = −αj∗K : j∗K −→ C(Fj∗K
qj∗K−−→ Qj∗K).

For d = 1 we have B1D1K = j∗Fj∗K
u1

K−→ ΦK which is isomorphic to

C(j∗Fj∗K
u1

K−→ ΦK) = j∗Fj∗K
−u1

K−−→ ΦK

by means of (1,−1). The composition of this last isomorphism with ωK

gives rise to an isomorphism

δ1
K : K −→ B1D1K

natural with respect to K ∈ Perv1(X,Σ) such that j∗δ1
K = −αj∗K .

Now let d be an integer ≥ 2 and suppose there exists

δd−1 : IdPervd−1(X,Σ)
∼−→ Bd−1Dd−1

such that

(21) j∗δd−1 = (−1)d−1αj∗ : j∗ −→ j∗Bd−1Dd−1 = Td−1sDd−1 = Td−1j
∗.
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Isomorphism

(ξ1, 1) : TDd = (Qj∗,Φd, ud, ξd) → Dd−1Φ = (j∗Φ,Φd, ud−1Φ, ξd−1Φ)

allows us to identify both functors and, by (21) we obtain

(j∗δd−1Φ) ◦ (j∗u1) = (−1)d−1g0j∗ : Fj∗ −→ j∗Bd−1Dd−1Φ = j∗Bd−1TDd

= Td−1Qj∗.

Then (δd−1Φ) ◦ u1 = (−1)d−1j∗g0j∗ and

C(1, δd−1Φ) : C(j∗Fj∗ u1−→ Φ)
∼−→ C(j∗Fj∗

(−1)d−1j∗g0j∗−−−−−−−−→ Bd−1TDd),

but

Bd−1TDd = j∗FQj∗
j∗g0Qj∗−−−−→ · · · j∗gd−3Qj∗−−−−−−→ j∗FQd−2Q

ud−→ Φd−1Φ

and j∗gi−1Qj∗ = j∗gij∗. In particular, by using (7) we deduce an isomor-
phism

C(j∗Fj∗ u1−→ Φ) �
j∗F

(−1)dj∗g0j∗−−−−−−−→ j∗FQj∗
−j∗g1j∗−−−−→ · · · −j∗gd−2j∗−−−−−−→ j∗FQd−1 −ud−−→ Φd,(22)

and the complex (22) is isomorphic to

BdDd = j∗F
j∗g0j∗−−−→ j∗FQj∗

j∗g1j∗−−−→ · · · j∗gd−2j∗−−−−−→ j∗FQd−1 ud−→ Φd

by means of

((−1)d−1,−1, 1,−1, . . . , (−1)d−1, (−1)d).

By composing isomorphisms above with ω we obtain an isomorphism

δd : IdPervd(X,Σ)
∼−→ BdDd

such that

j∗δd = (−1)d−1(−αj∗) = (−1)dαj∗

and the proof of theorem 3.2.2 is finished.
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4. Applications

4.1. Explicit models for perverse sheaves

Theorem 3.2.2 provides explicit models (16) for d-perverse sheaves. Actually,
functor Bd factorizes through the category of bounded complexes Cb(BX)
and it defines a faithful exact functor Bd : Bd

F → Cb(BX) establishing an
equivalence of categories between Bd

F and a non full abelian subcategory
of Cb(BX), whose objects are precisely complexes of the form (16). In par-
ticular, inclusion functor Pervd(X,Σ) ⊂ DX can be lifted to an exact faithful
functor Pervd(X,Σ) → Cb(BX).

The lifting above allows us to describe in a concrete way the realization
functor (see [1, 3.1.9])

real : D(Pervd(X,Σ)) −→ DX

by taking single complexes associated with double complexes.

When no functor F is available for the given subcategories A∗ ⊂ B∗, we
can always work at the level of the full derived categories D+(B∗) by using,
for instance, Godement functor F = ∆∗∆∗, as shown in examples 1.1.1, (1)
and 2.2.3, (1). The corresponding category of perverse sheaves Pervd(X,Σ)
(without any constructibility conditions, i.e. A∗ = B∗) is, by theorem 3.2.2,
equivalent to Bd

F, whose objects are (see Definition 3.1.3) the (L,F , u, σ)
where L ∈ BU ,F ∈ BX , u : j∗FQd−1L → F and σ : QdL ∼−→ j∗F such that
u ◦ j∗gd−2

L = 0 (if d ≥ 2) and σ ◦ qd−1
L = j∗u, and whose morphisms from

(L,F , u, σ) to (L′,F ′, u′, σ′) are defined as the pairs (f, g) where f : L → L′,
g : F → F ′ are morphisms such that u′ ◦ (j∗FQd−1f) = g ◦ u.

Let us call Pervd
c(X,Σ) the category of perverse sheaves “constructible”

with respect to A∗ ⊂ B∗. It is a full (abelian) subcategory of Pervd(X,Σ)
and then it is equivalent to the full subcategory Bd

F,c of Bd
F whose objects

are the (L,F , u, σ) such that L ∈ AU and morphism u : Gd−1L → F has
kernel and cokernel in AX .

So, even when no functor F is available for the given subcategories
A∗ ⊂ B∗, explicit models and liftings as above also exist.

Example 4.1.1 (Perverse sheaves categories which split)
In example 1.1.1, (2), let d ≥ 2 be an integer and let us suppose S a

“good” compact, connected and simply connected topological space, and k
a field such that

(23) Hi(S, k) = 0 ∀i = 1, . . . , d.
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For example, S can be the (n − 1)-dimensional sphere and X the n-
dimensional disk, stratified by the origin and its complement, for n ≥ d, or
in singularity theory, (X, 0) ⊂ Cd+1 is an isolated hypersurface singularity
with complex link S a topological (exotic) sphere [11, §8].

Let us consider the category of Σ-constructible complexes of sheaves of
k-vector spaces of arbitrary1 rank on each stratum which are d-perverse
sheaves, denoted by Pervd

c(X,Σ). It is a full subcategory of the category of
d-perverse sheaves (without constructibility conditions) Pervd(X,Σ), which
is equivalent by theorem 3.2.2 to category Bd

F, with F a functor satisfying
the conditions (2.2.1) (see Example 2.2.3, (1)).

Since S is simply connected, any locally-constant sheaf L of k-vector
spaces on U is constant with fiber E = Γ(U,L) � kr and

(Rij∗L)C = lim
ε→0

Hi(]0, ε[×S,L) = Hi(S,E) = 0, 1 ≤ i ≤ d.

In particular, the sequence

0 −→ j∗L j∗αL−−−→ j∗FL j∗qL−−→ j∗QL −→ 0

is exact and Rij∗QL � Ri+1j∗L for all i ≥ 1. Reasoning inductively we
obtain that the sequences

(24) 0 −→ j∗Qi−1L j∗αi−1
L−−−−→ j∗FQi−1L j∗qi−1

L−−−→ j∗QiL −→ 0, i = 1, . . . , d

are exact.

Given a constructible d-perverse sheaf K ∈ Pervd
c(X,Σ), let us de-

note (L,F , u, σ) = DdK its corresponding object of Bd
F by means of theo-

rem 3.2.2. Now K is naturally isomorphic to

(25) j∗FL j∗g0
L−−→ j∗FQL j∗g1

L−−→ · · · j∗gd−2
L−−−−→ j∗FQd−1L u−→ F .

The exactness of (24) for i = d − 1, d implies that coker j∗gd−2
L = j∗QdL.

Let s : j∗QdL → F be the morphism induced by u, whose restriction to U
coincides with σ. Now, σ being an isomorphism, the adjunction properties
for (j∗, j∗) give us a morphism t : F → j∗QdL verifying ts = 1. Then,
complex (25) is the direct sum of j∗TdL and (ker t)[−d].

On the other hand, the exactness of (24) implies the j∗TdL is concen-
trated in degree 0, its 0-cohomology being equal to j∗L and, thus, a con-
stant sheaf.

1We may also consider only sheaves of finite rank.
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Finally, we obtain a natural isomorphism

K � (h0K) ⊕ (hdK)[−d]

expressing the category Pervd
c(X,Σ) as a direct sum of the category of con-

stant sheaves of k-vector spaces in X and the category of k-vector spaces,
considered (this last category) as the category of complexes of sheaves on X
concentrated in degree −d and supported by the vertex C.

This is a purely topological result related to a well-known result of
Kashiwara-Kawai [6] (see [9, 6.5, p. 427]). It can be also directly deduced
by using functors jp

! , j
p
∗ instead of our models. Namely2, our hypothesis

imply that jp
! j

∗K ∼−→ jp
∗j

∗K ∼−→ j∗L � h0K and then, from the canonical
morphisms

jp
! j

∗K −→ K −→ jp
∗j

∗K

we deduce that h0K is a direct factor of K.

4.2. Perverse sheaves categories as full abelian subcategories of
Kb(BX)

In this section we show that functor Bd : Bd
F → Kb

AX
(BX) is fully faithful

and then the inclusion functor Pervd(X,Σ) ⊂ DX lifts to a fully faithful
functor Pervd(X,Σ) → Kb

AX
(BX). In particular, category Pervd(X,Σ) is

realized as a full abelian subcategory of Kb
AX

(BX).

Theorem 4.2.1 Functor Bd : Bd
F → Kb

AX
(BX) is fully faithful.

Proof. Let Oi = (Li,Fi, ui, σi), i = 1, 2 be two objects in Bd
F. We have to

prove that

Bd : HomBd
F
(O1,O2) −→ HomKb(BX)(BdO1, BdO2)

is bijective.

Injectivity: Although the injectivity of Bd is a consequence of theo-
rem 3.2.2 (the morphism Bd : HomBd

F
(O1,O2) → HomDX

(Bd(O1), Bd(O2))

is bijective), we give here a direct independent proof.

Let (f, g) : O1 → O2 be a morphism such that Bd(f, g) is null-homotopic.
We obviously have f = j∗h0Bd(f, g) = 0 and Bd(0, g) is null-homotopic.

2We owe this remark to P. Deligne.
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There exist si : j∗FQiL1 → j∗FQi−1L2, i = 1, . . . , d − 1, sd : F1 →
j∗FQd−1L2 such that s1 ◦ j∗g0

L1
= 0, s2 ◦ j∗g1

L1
+ j∗g0

L2
◦ s1 = 0, . . . , sd ◦ u1 +

j∗gd−2
L2

◦ sd−1 = 0, g = u2 ◦ sd,

j∗FL1

0

��

j∗g0
L1�� j∗FQL1

s1

������������

j∗g1
L1 �� . . . j∗FQd−1L1

u1 ��

0
��

sd−1

�������������
F1

sd

�������������

g

��
j∗FL2

j∗g0
L2

�� . . . j∗FQd−2L2
j∗gd−2

L1

�� j∗FQd−1L2 u2

�� F2.

In degree 0, from 0 = j∗s1◦g0
L1

= j∗s1◦α1
L1
◦qL1 we deduce 0 = j∗s1◦α1

L1

and then, there exists t1 : Q2L1 → FL2 such that t1 ◦ q1
L1

= j∗s1. From
lemma 1.3.5, there exists τ 1 : FQ2L1 → FL2 such that τ 1 ◦ α2

L1
= t1.

In degree 1, from

0 = j∗s2 ◦ g1
L1

+ g0
L2

◦ j∗s1 = (j∗s2 + g0
L2

◦ τ 1) ◦ α2
L1

◦ q1
L1

we deduce
0 = (j∗s2 + g0

L2
◦ τ 1) ◦ α2

L1

and then, there exists t2 : Q3L1 → FQL2 such that

j∗s2 + g0
L2

◦ τ 1 = t2 ◦ q2
L1

.

From lemma 1.3.5 again, there exists τ 2 : FQ3L1 → FQL2 s.t. τ 2 ◦α3
L1

= t2.

We inductively construct

ti : Qi+1L1 → FQi−1L2, 2 ≤ i ≤ d − 1,

τ i : FQi+1L1 → FQi−1L2, 2 ≤ i ≤ d − 2

such that

gi−2
L2

◦ τ i−1 + j∗si = ti ◦ qi
L1

, 2 ≤ i ≤ d − 1,

τ i ◦ αi+1
L1

= ti, 2 ≤ i ≤ d − 2.

Let us identify j∗F1 = QdL1, j
∗u1 = qd−1

L1
by means of σ1.

In degree d − 1, from 0 = sd ◦ u1 + j∗gd−2
L2

◦ sd−1 we deduce first

0 = j∗sd◦qd−1
L1

+gd−2
L2

◦j∗sd−1 = j∗sd◦qd−1
L1

+gd−2
L2

◦(td−1◦qd−1
L1

−gd−3
L2

◦τ d−2)

= (j∗sd + gd−2
L2

◦ td−1) ◦ qd−1
L1

and second
0 = j∗sd + gd−2

L2
◦ td−1.
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But sd is determined by its restriction j∗sd

sd = −(j∗gd−2
L2

) ◦ (j∗td−1) ◦ (adj),

where adj : F1 → j∗j∗F1 = j∗QdL1 is the adjunction morphism. Then

g = u2 ◦ sd = −u2 ◦ (j∗gd−2
L2

) ◦ (j∗td−1) ◦ (adj) = 0

and injectivity is proven.

Surjectivity: We need to prove that for any morphism of complexes
F • : BdO1 → BdO2, there exists (f, g) : O1 → O2 s.t. Bd(f, g) is homotopic
to F •.

Obviously, morphism f : L1 → L2 must be equal to j∗h0F •.

Let us consider the following commutative diagram with exact arrows

0 −−−→ L1

αL1−−−→ FL1

g0
L1−−−→ FQL1

0

� j∗F 0−Ff

� j∗F 1−FQf

�
0 −−−→ L2

αL2−−−→ FL2

g0
L2−−−→ FQL2.

There exists σ1
0 : QL1 → FL2 s.t. σ1

0 ◦ qL1 = j∗F 0 − Ff . From lemma 1.3.5,
there exists σ1 : FQL1 → FL2 s.t. σ1 ◦ α1

L1
= σ1

0 , and then σ1 ◦ g0
L1

=
j∗F 0 − Ff . Writing s1 := j∗σ1, we have s1 ◦ j∗g0

L1
= F 0 − j∗Ff .

In a similar way, we inductively construct si : j∗FQiL1 → j∗FQi−1L2,
i = 2, . . . , d − 1, such that si ◦ j∗gi−1

L1
+ j∗gi−2

L2
◦ si−1 = F i−1 − j∗FQi−1f .

Let us write σi = j∗si.

In degree d − 1 we have

(j∗F d−1 − FQd−1f − gd−2
L2

◦ σd−1) ◦ αd−1
L1

◦ qd−2
L1

=

= (j∗F d−1 − FQd−1f − gd−2
L2

◦ σd−1) ◦ gd−2
L1

=

= gd−2
L2

◦ (j∗F d−2 − FQd−2f − j∗F d−2 + FQd−2f − gd−3
L2

◦ σd−2) = 0

and then

0 = (j∗F d−1 − FQd−1f − gd−2
L2

◦ σd−1) ◦ αd−1
L1

.

There exists σd
0 : QdL1 → FQd−1L2 such that

σd
0 ◦ qd−1

L1
= j∗F d−1 − FQd−1f − gd−2

L2
◦ σd−1.
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Since j∗F1 = QdL1, morphism σd
0 determines another morphism sd : F1 →

j∗FQd−1L2 such that

sd ◦ u1 + j∗gd−2
L2

◦ sd−1 = F d−1 − j∗FQd−1f.

To finish, we take
g := F d − u2 ◦ sd : F1 → F2.

An straightforward computation shows that (f, g) : O1 → O2 is a mor-
phism in Bd

F, and clearly the si, i = 1, . . . , d, give an homotopy between F •

and Bd(f, g). �

Corollary 4.2.2 The inclusion functor Pervd(X,Σ) ⊂ DX = D+
AX

(BX)

lifts to a fully faithful functor Pervd(X,Σ) → Kb
AX

(BX). In particular,

category Pervd(X,Σ) is realized as a full abelian subcategory of Kb
AX

(BX).

Proof. It is a direct consequence of theorems 3.2.2 and 4.2.1. �

4.3. Conical perverse sheaves with respect to a K(π, 1) basis

In case of examples 1.1.1, (2) and 2.2.3, (2), we suppose that S is con-
nected and its universal covering space is contractible. Let us choose a base
point x0 ∈ S and let us denote H = π1(S, x0) = π1(U, x0). Let AU be
(resp. AX) the abelian category of locally constant sheaves of k-modules
(not necessarily finitely generated) on U (resp. of Σ-constructible sheaves of
k-modules on X). We can take F = p∗p∗, where p is the universal covering
space of (U, x0).

Objects of category Pervd(X,Σ) ⊂ D+
AX

(kX) are called “conical perverse
sheaves” in [13, def. 2.1.1 and rem. 2.3.7].

(4.3.1) The standard equivalence of categories between AU and Mod(k[H])
allows us to translate the exact sequence of functors of AU

0 −→ Id
α−→ F

q−→ Q −→ 0

in the following way. For each k[H]-module E we have:

1) FE = EH = {f : H → E}, where the action of H is given by

(hf)(σ) = f(σh), f ∈ EH , h, σ ∈ H.

2) Adjunction morphism αE : E → FE is given by

(αEe)(σ) = σe, e ∈ E, σ ∈ H.
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3) QE = {ψ : H → E | ψ(1) = 0}, where the action of H is

(hψ)(σ) = ψ(σh) − σψ(h), ψ ∈ QE, σ, h ∈ H.

4) Morphism qE : FE → QE is given by

(qEf)(σ) = f(σ) − σf(1), f ∈ FE = EH , σ ∈ H.

5) The application c : e ∈ E 
→ c(e) ∈ EH , where c(e)(σ) = e for any σ ∈ H,
gives rise to a natural identification E = (FE)inv.

6) For any r ≥ 1 we have a natural identification

QrE = {ψ : Hr → E | ψ(h1, . . . , hr) = 0 if ∃j, hj = 1}

where the action of H is given by

(hr+1ψ)(h1, . . . , hr) =
r∑

i=1

(−1)r−iψ(h1, . . . , hi−1, hihi+1, hi+2, . . . , hr+1)+

+(−1)rh1ψ(h2, . . . , hr+1).

7) Morphisms qr
E : FQrE → Qr+1E, gr

E : FQrE → FQr+1E (see (3.1.1)) are
given by

(qr
Ef)(h1, . . . , hr, hr+1) = f(hr+1)(h1, . . . , hr) − [hr+1f(1)](h1, . . . , hr),

(gr
Ef)(σ) = σ(qr

Ef), f ∈ FQrE = (QrE)H , h1, . . . , hr+1, σ ∈ H.

8) By 5), morphism

�r
E := (gr

E)inv : (FQrE)inv = QrE → (FQr+1E)inv = Qr+1

is
(�r

Eψ)(h1, . . . , hr+1) = ψ(h1, . . . , hr) − (hr+1ψ)(h1, . . . , hr)

for r ≥ 1, ψ ∈ QrE, hi ∈ H. For r = 0, morphism

�0
E := (g0

E)inv : (FQ0E)inv = E → (FQ1E)inv = Qr+1

is
(�0

Ee)(h1) = e − h1e, e ∈ E, h1 ∈ H.

Remark 4.3.2 The complex (QrE, �r
E)r≥0 is the usual complex of E-valued

cochains obtained from the normalized bar resolution [7, chap. IV, §5].
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(4.3.3) Category AX is equivalent to the category

– whose objects are triplets (V,W, ς) where V is a k[H]-module (repre-
senting the restriction j∗ of a constructible sheaf), W is a k-module
(representing the fiber i∗ at F of a constructible sheaf) and ς : W →
V inv is a k-linear morphism (representing the adjunction morphism
i∗ → i∗j∗j∗).

– whose morphisms are defined in the obvious way.

By (4.3.1), (4.3.3) and the fact that sheaves on X are determined by their
restrictions j∗, i∗ and the adjunction morphism i∗ → i∗j∗j∗, we deduce that
category Bd

F is equivalent to the category Cd(k,H):

– whose objects are 4-uples (E,M, u, v) where E is a k[H]-module, M
is a k-module and u, v appear in a commutative diagram

Qd−2E
�d−2

E �� Qd−1E
�d−1

E ��

u
����

��
��

��
�

(QdE)inv

M

v

�����������

such that u ◦ �d−2
E = 0, if d ≥ 2.

– whose morphisms are defined in the obvious way.

By theorem 3.2.2 we conclude that the category of d-conical perverse
sheaves is equivalent to Cd(k,H).

In case d = 1, by defining vσ(y) = −v(y)(σ), σ ∈ H, y ∈ M , we obtain
an equivalence between C1(k,H) and the category of k-module diagrams

E
u−−−−→←−−−−−

{vσ}σ∈H

M

such that

(1) vτσ = vτ ◦ u ◦ vσ + vτ + vσ for all σ, τ ∈ H.

(2) 1E + vσ ◦ u is an automorphism of E for any σ ∈ H.

Property (1) comes from the fact that v(y) ∈ (QE)inv for every y ∈ M .
In property (2), automorphism 1E + vσ ◦ u coincides with the action of σ
on E.

In this way we find a new proof of theorem 2.3.4 in [13]. This theorem
is a natural generalization of the first known case [2] on explicit description
of perverse sheaves, namely S = S1, H = Z (see also [10], [12]).
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4.4. Explicit description of perverse direct images and intersection
complexes

In this section we give models (16) for jp
∗L, jp

! L and j!∗L, where L is an object
of AU . The computations consist of interpreting the proof of theorem 1.4.10
in [1] in terms of our (F, Q)-resolutions (13).

(4.4.1) For each L ∈ AU we have a natural isomorphism

Dd(j
p
∗L) � (L, j∗QdL, j∗qd

L, 1).

In particular the complex

j∗FL j∗g0
L−−→ j∗FQL j∗g1

L−−→ · · · j∗gd−2
L−−−−→ j∗FQd−1L j∗qd

L−−→ j∗QdL
(in degrees [0, d]) is an explicit model for jp

∗L, which coincides with τ≤dRj∗L
[1, prop. 1.4.23].

(4.4.2) For d = 1 we have a natural isomorphism

D1(j
p
! L) � (L, j∗FL/j!L, can, 1).

In particular the complex

j∗FL can−−→ j∗FL/j!L
(in degrees 0, 1) is an explicit model for jp

! L. It is quasi-isomorphic to j!L
since j!L is 1-perverse.

For d ≥ 2 we have a natural isomorphism

Dd(j
p
! L) � (L, coker j∗gd−2

L , can, 1).

In particular the complex

j∗FL j∗g0
L−−→ · · · j∗gd−2

L−−−−→ j∗FQd−1L can−−→ coker j∗gd−2
L ,

(in degrees [0, d]) is an explicit model for jp
! L, which coincides with τ≤d−2Rj∗L

[1, prop. 1.4.23].

(4.4.3) By interpreting natural morphisms jp
! L −→ jp

∗L on models above,
we have a natural isomorphism

Dd(j!∗L) � (L, Img j∗qQd−1L, j∗qQd−1L, 1).

In particular the complex

j∗FL j∗g0
L−−→ · · · j∗gd−2

L−−−−→ j∗FQd−1L j∗q
Qd−1L−−−−−→ Img j∗qQd−1L

(in degrees [0, d]) is an explicit model for the intersection complex IC(L) =
j!∗L, which coincides with τ≤d−1Rj∗L [1, prop. 1.4.23].



Explicit models for perverse sheaves 453

4.5. Further results

Following a suggestion of Deligne, explicit models of perverse sheaves can
be constructed by using other functorial resolutions instead of (13). For
instance, given F = FG : A = BU → A = BU , α : 1 → F under the
conditions of (1.3.1), with FkL j∗-acyclic for k ≥ 1 and L ∈ AU , and not
requiring F(AU) ⊂ AU , we can use the “simplicial” resolution

F
∂0−→ F2 ∂1−→ · · · ∂d−2−−−→ Fd ∂d−1−−−→ · · ·

where

∂i = αFi+1 − FαFi + · · · + (−1)i+1Fi+1α

(cf. [4, Appendice 5] and [8, VII, 6]). This is the aim of an article in prepa-
ration.
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Departamento de Álgebra
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