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Explicit models for perverse sheaves

Félix Gudiel Rodriguez and Luis Narvaez Macarro

Abstract

We consider categories of generalized perverse sheaves, with re-
laxed constructibility conditions, by means of the process of gluing
t-structures and we exhibit explicit abelian categories defined in terms
of standard sheaves categories which are equivalent to the former
ones. In particular, we are able to realize perverse sheaves categories
as non full abelian subcategories of the usual bounded complexes
of sheaves categories. Our methods use induction on perversities.
In this paper, we restrict ourselves to the two-strata case, but our
results extend to the general case.

Introduction

Perverse sheaves first appear in context of Complex Analytic Geometry by
the coming together of the Riemann-Hilbert correspondence of Mebkhout-
Kashiwara and the Intersection Cohomology of Goresky-MacPherson at the
beginning of the 1980s. In the work [1] the notion of t-structure over a
triangulated category was extracted and it was proved that the category
of analytic constructible perverse sheaves, that we call “classical perverse
sheaves”, can be obtained by a general process of “gluing” t-structures,
that makes sense in a much more general framework. In fact, the main
contribution of loc. cit. is the use of that process to define f-adic perverse
sheaves over algebraic varieties in positive characteristics and to prove the
theorem of purity of intersection complexes.

In this paper, we develop some ideas and complete some results in [13]
and [5] on the core of the t-structure obtained by gluing standard ¢-structures
shifted by “perversities” of strata, as in the classical case but without im-
posing necessarily any constructibility conditions. Objects in this core can
be thought of as “generalized perverse sheaves”.
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In the complex analytic case, and when we consider the middle perversity,
the category of classical perverse sheaves is a full abelian subcategory of that
of generalized perverse sheaves. Furthermore, a classical perverse sheaf is the
same as a generalized perverse sheaf which is complex analytic constructible.

The advantage of our point of view consists of being able to work simul-
taneously with different perversities and to establish some precise relations
between perverse sheaves with respect to different perversities, which we do
not know how to do if we are restricted to the classical case.

Our main result is theorem 3.2.2, from which we deduce (see 4.1) that
any (generalized) perverse sheaf, and then any classical perverse sheaf, has
a canonical model (16). As a consequence, the category of (generalized)
perverse sheaves is equivalent to a non full (resp. full) abelian subcategory
of the category of the usual bounded complexes (resp. up to homotopy).

The main idea consists of constructing a functor ® relating d-perverse
and (d — 1)-perverse sheaves, and by iteration, d-perverse sheaves with
O-perverse sheaves, which are nothing but usual sheaves. In this way we
develop the idea pointed out in [13, rem. 2.3.7], where we were restricted to
the “conical” case.

Construction of functor ® and many other results in this paper are in-
spired by the formalism of vanishing cycles [3] and the gluing of classical
perverse sheaves of Deligne-Verdier [2, 14] and MacPherson-Vilonen [9], but
our framework is more general.

In order to simplify, in this paper we restrict ourselves to the two-strata
case, but our results extend to the general case.

Let us now comment on the content of this paper.

In section 1 we recall first the gluing process of t-structures and the
notion of (generalized) perverse sheaf is introduced. Second, we recall some
elementary constructions with adjoint functors that play a fundamental role
in the proof of theorem 3.2.2 and in the manipulation of our explicit models
for perverse sheaves.

Section 2 deals with the construction of functor ® and the “induction on
perversities” (see theorem 2.3.1).

In section 3 we show the main result in this paper, namely that the
category of (generalized) perverse sheaves Perv is equivalent to an explicit
abelian category described in terms of abelian categories of usual sheaves.

In section 4 we give some applications of theorem 3.2.2. First, we asso-
ciate to any perverse sheaf a canonical model. More precisely, we lift the
inclusion functor of Perv into the derived category to a faithful exact functor
into the category of usual bounded complexes.
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Second, we lift the inclusion functor of Perv into the derived category
to a fully faithful functor into the category of bounded complexes up to
homotopy, K. In particular, Perv can be realized as a full abelian subcate-
gory of K°.

Third, we give quiver descriptions of conical perverse sheaves with respect
to a K (m, 1) basis.

Finally, we compute in terms of our listed canonical models the different
perverse direct images and the intersection complex associated to a sheaf on
the open stratum, and we announce further results.

1. Preliminaries and notations

1.1. Perverse sheaves

Let X be a topological space stratified by ¥ = {C,U}, where i : C' — X
is a closed immersion and j : U = X — C — X is its complementary dense
open immersion. Let Ox be a sheaf of rings on X and let Oy = 70y,
Oc = 1"0x. For x = X, U, C, let us denote by B, the abelian category of
sheaves of O,-modules, and let 2, C B, be full abelian subcategories stable
for kernels, cokernels and extensions. Let us denote by D, := Dg_(B.) the
full triangulated subcategory of the derived category D(B,) whose objects
are bounded below complexes with cohomology in 2,. Let us suppose that
the usual functors i, = iy, 7%, Ri*, Rj,, 51, 7* = j' induce functors

ix =iy 3 =4"
D¢ Dx Dy

i* Ri! Rjx,J1

in such a way that we are in the conditions of gluing ¢-structures on Dy and
on D¢ [1].

Example 1.1.1

(1) If 2, = B,, then D, = DT (B,.).

(2) Let S be a compact topological space, X the cone of S, C'its vertex, Ox
the constant sheaf with fiber a ring (resp. a noetherian ring) k and 2(, the

abelian categories of Y-constructible sheaves of k-modules not necessarily
finitely generated (resp. finitely generated).

(3) The space X is a pseudomanifold stratified by 3, Oy is the constant sheaf
with a field k as fiber, and the A, are the abelian categories of ¥-constructible
sheaves of k-vector spaces of arbitrary (resp. of finite) rank. For instance,
X can be a complex analytic space and C' C X a smooth closed analytic set
satisfying the Whitney conditions.
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Definition 1.1.2 For any integer d > 0, the category of d-perverse sheaves
on X with respect to the stratification X, Pervd(X,Z), 1s the core of the
t-structure on Dx obtained by gluing the natural t-structure on Dy and the
image by [—d] of the natural t-structure on Do [1]. We will say that the
perversity of the stratum C (resp. U) is d (resp. 0).

Remark 1.1.3 Observe that, if d = 0, then the category Perv’(X, ) coin-
cides with the category Ax.

Proposition 1.1.4 (Characterization of d-perverse sheaves) An object K
of Dx is a d-perverse sheaf (with respect to X2) if and only if the following
properties hold:

(a) K is concentrated in degrees [0, d],

(b) j*K is concentrated in degree 0,

(¢c) "Ri'K =0 for n < d.
Proof. By definition of Perv?(X,¥), an object K of Dy is a d-perverse
sheaf if and only if A"(j*K) = 0 for n # 0, h"*K = 0 for n > d and
h"Ri'K = 0 for n < d, and it is clear that a K satisfying properties (a),
(b), (c) is d-perverse.

Let us now take a d-perverse sheaf K. Properties (b) and (c) are clear.
The long exact sequence associated with the triangle
K — K — it K T

gives rise to isomorphisms h'(K) ~ h'(i,i*K) for any [ > 1 and then
hI(K) = 0 for any [ > d.
In a similar way, the long exact sequence associated with the triangle
iWRiI'K — K — Rj,j* K 25

and the fact that Rj,j*K is concentrated in non-negative degrees gives rise
to isomorphisms h!(i,Ri'K) ~ h!(K) for [ < 0 and then A'(K) = 0 for
any [ < 0, and K is concentrated in degrees [0, d]. |

1.2. Functors acting on morphisms of functors

Let B, C be categories, F,G : B — C functors and 7 : ' — G a morphism of
functors (or natural transformation) which associates to any object B in B
a morphism 75 : FFB — G B in C with the usual naturality properties.

For any functors £ : A — B, H : C — D we denote by 7FE : FE — GE,
H7r: HF — HG the morphisms given by

(TEYA =Tga, (HT)p= H(7p)
for any objects A in A and B in B.
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(1.2.1) We have the following rules:

(b) (toe)E = (TE)o(ekE), H(toe) = (HT)o(He) for any other morphism
e F' = F.

(¢) (6G)o (K7) = (L7)o (¢F) for any other functors K, L : C — D and
any other morphism o : K — L.

(d) (r+7)E=(tE)+ (7'E), H(r+7')=(HT)+ (H7') in the case of
additive functors between additive categories.

1.3. Adjoint functors

(1.3.1) In this section, we consider a couple of adjoint additive functors
G: A— A, F: A — A between abelian categories with adjunction
morphisms « : Id4 — FG and 3 : GF — Id 4 such that F is left exact, G
is exact and « is injective.

We denote F := FG and (Q, ¢) := coker . We have then a commutative
diagram with exact rows and columns:

0 0 0
0 dy =2 F 25 Q —> 0
Ie% olF aQ
(1) 0 F -, pr 2, FQ
q qF qQ
0 Q ., QF %5 QQ
0 0 0

(1.3.2) Let us call v : @Q — FF the unique morphism satisfying v o ¢ =
aF — Fa. From (1) we deduce the relations

(Fg) oy =0aQ, (¢F)o~y=—Qa.
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(1.3.3) From the adjunction properties, the exact sequence
0— G GF %% G -0

splits, with retraction G : GFG — (. Then the sequence

(2) 0—F ™ FF 2% FQ — 0

is exact and splits, with retraction v := F(G. Let us call p: FQ — FF the
corresponding section, i.e.

po (Fg) =1p — (Fa)ov, (Fq)op= lpg.

We have

(1.3.4) With the above notations, the relation v o (alf) = 1 holds and the
sequence

0—TF L Fr L QF — 0

also splits with the same retraction as in (2). Let us call i/ : QF — FF the
corresponding section, i.e.

o (qF) =1p — (aF)ov, (¢F)ou = lgp.
We have v = p o (aQ).

Functors FQ and QF are canonically isomorphic by means of h := (¢FF) o
p: FQ — QF and its inverse h™' = (Fq) o /.

Lemma 1.3.5 For any objects A, B in A, the sequence
0 — Hom(QA,FB) % Hom(FA,FB) % Hom(A,FB) — 0
18 exact and splits.

Proof. From (1.3.4), application
f € Hom(A,FB) — vgo (Ff) € Hom(FA,FB)

is a section of the above sequence. [
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2. Construction of categories and functors

2.1. The functor

(2.1.1) Let 2 be a category. Let us denote by Arr(21) the category of arrows
of A, by s,t: Arr(A) — A the functors defined by

s(AL B):=A, t(A%B):=B
and by ( : s — t the morphism defined by ( (4t = U

If 2 is abelian, the category Arr(2() is also abelian and functors s, ¢ are
exact and induce exact functors 35,7 : C(Arr(A)) — C(2A). They induce

triangulated functors K(Arr(4)) — K(21), D(Arr(2l)) — D(21), also denoted
by 5,t. Let us denote by ¢ : 5 — ¢ the morphism of functors induced by (.

(2.1.2) The functor N : C(Arr(A)) — Arr(C(2()) defined by N =3 S 7is
an isomorphism of abelian categories. In a similar way we define functors
N : K(Arr(2)) — Arr(K(2()), N : D(Arr(2A)) — Arr(D(2)), which are no
longer equivalence of categories. Nevertheless, a morphism in K(Arr(2))
is a quasi-isomorphism if and only if its images by 5 and ¢ are quasi-
isomorphisms.

For any abelian category 2l and any object (U LA V) e C(Arr()) =
Arr(C(2()) we define

QU 2 V)= (VL cone(3)) € C(Arr(21)),

where ¢ is the canonical inclusion. One can easily define the action of 2
on morphisms and we obtain an exact functor Q : C(Arr(2()) — C(Arr(2A))
which commutes (up to isomorphism) with the translation functor and sat-
isfies 5Q = ¢.

Proposition 2.1.3 The functor Q above induces a triangulated functor
Qk : K(Arr(2A)) — K(Arr(2A)) such that sQx =t.

Proof. It is an exercise we leave to the reader. [ |

The definition of distinguished triangles in K(2() gives rise to a morphism
¥ : tQx — 3[1] in such a way that the following triangle of functors

(3) 557 =50Kk 22 70, 231

is distinguished, i.e. its evaluation on any object of K(Arr(2l)) is a distin-
guished triangle of K(2).
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The following proposition is basically the same as the axiom (TR2) of
triangulated categories for K(2) ([15, chap. I, prop. 3.3.3]).

Proposition 2.1.4 Under the above hypothesis, there is an isomorphism of
functors x : 5[1] — t Q% such that the following diagram is commutative:

- 9 _ —¢[1]
]

—  {[1]

Proposition 2.1.5 The functor Qx : K(Arr(2A)) — K(Arr()) transforms
quasi-isomorphisms into quasi-isomorphisms and then it induces a triangu-
lated functor Qp : D(Arr(2A)) — D(Arr(21)) such that sQp = t. Moreover,
there is a morphism ¥ : TQp — 3[1] and an isomorphism x : 3[1] = TQ}
such that the following triangle of functors

(4) 55 1=50p 22 70, L oE]

1s distinguished and the following diagram is commutative:

—¢[1] n
e

Proof. The first part follows from the relation 5Qk = ¢, from the fact that
a morphism ¢ in K(Arr(21)) is a quasi-isomorphism if and only if 5(¢), (€)
are quasi-isomorphisms and from triangle (3).

The second part is basically the axiom (TR2) for the triangulated cate-
gory D(2) and follows from triangle (3) and from proposition 2.1.4. |

Remark 2.1.6 The functor Qg defined in [12, 13] is related to the func-
tor Q0p above by the equality Qg = NQp.

(2.1.7) Let us denote by Q the full subcategory of Arr(D(2()) whose objects
are the A = B such that A is concentrated in degree 0 and B is concentrated
in degrees > 0. For such objects the morphism v (in D(2)) is determined
by its cohomology of degree 0. More precisely we have the following result:
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Proposition 2.1.8 Functor N defines an equivalence of (additive) cate-
gories between N71Q and Q.

Proof. We sketch the definition of a quasi-inverse of N : N71Q — Q and
leave the details to the reader.

Given an object Y = (A % B) in 9, let U,V be the complexes defined
by U° = h%A, U™ = 0 for n # 0 and

L dY dl
V=1B=--—0— cokerdg' = B' 5% ...

)

where coker dj;' is placed in degree 0, and let ¥ : U — V the morphism of
complexes determined by ©° = h% : U° — B c V°.

Correspondence Y — (U KA V) extends to a functor N : Q — N7'Q. It
is easy to see that NN ~ Idgq.

On the other hand, for any object X = (U LN V) in N1, the following
commutative diagram in C(2l)

v L. v

nat.l lnat.

T>08
TZOU _— TZ()V

natw T:
h°U _s, T>oV
defines a natural isomorphism
(5) K(X): X — N(N(X)).

|
(2.1.9) Let us call C = (tQpN)[—1] : Q — D(A).

An object (U LR V) € D(Arr(20)) is in P := Q' N1 if and only if the
complex U is concentrated in degrees > 0, V' is concentrated in degree 0 and
h°3 is injective.

From propositions 2.1.5 and 2.1.8 we obtain an isomorphism

(6) n = (tQprQp)[—1] o x[-1] : 5 — CNQp

between functors from B to D(A).
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(2.1.10) For any object Y = (A = B) € Q such that A" = 0 for all n # 0
and B™ =0 for all n < 0 we can identify (by a canonical isomorphism)

0
—dp —dg

(7) OY) = —0—s A0 =, g0 ~%, gt ~%,

where A° is placed in degree 0.

Consequently, for any object X = (U LN V) € B such that U and V' are
concentrated in degree 0 (h°3 must be injective), we can identify

(CNQp)(X) =+ — 0 — BV % coker h%8 — 0 — - --

placed in degrees 0,1 and isomorphism 7y : U — (CNQp)(X) reduces to

Ry 8 oy

(8) ol lfnat.

U =0 —>— coker hos,

where minus sign in —h°3 comes from the definition of y in proposition 2.1.5.

2.2. The functor ®

In this section we come back to the situation described in section 1.1.

(2.2.1) Let us choose an additive left exact functor F = FG : A = By —
A = By and an injective morphism « : 1 — F as in (1.3.1), such that
F(2y) C Ay, Flg, is exact, (R%j,)(FA) = 0 and j,FA ~ R(j,F)A, for i > 0,
A € y. The restriction to Ay of the functor Q = coker a defined in (1.3.1)
is also exact.

To simplify, let us write 2 : D(Arr(By)) — D(Arr(Bx)) instead of Qp
in proposition 2.1.5.

(2.2.2) Let us first consider the additive left exact functor ¢y : Bx —
Arr(Bx) defined by

(9) vp = (Id 5 4.F5%),  p:= (j.aj*) o adj,
where adj : Id — j,5* is the adjunction morphism, and second, functors
\I]]F = QR@UF : DX - D(Arr(%x)), CI)]F = f\PF : DX — Dx.

Once the functor F is fixed, we omit subscripts and we will write ¢, ¥, ®
instead of Yy, Vg, Pp.
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We have canonical isomorphisms
(10) SRy ~1d, 3V ~ Ry ~ R(},Fj*) = R(j.F)j*

and triangle (4) gives rise to the triangle
(11) Id 2 R(LF)j* “ @ — Id[1].

Example 2.2.3 (1) In example 1.1.1, (1) let us take U%* as the discrete
topological space with underlying set U, A : U% — U the identity map,
Opas = A*OQpy, A’ the abelian category of Opais-modules and F = A,,
G = A* (see [4], chap. II, §4.3).

(2) In example 1.1.1, (2), let us suppose that S is a K (r, 1) space, p : U — U
the universal covering space of U, Oy = p*Opy, A’ the abelian category
of Og-modules and F' = p,,G = p* (see [13]). If the fundamental group
m1(U, xp) is finite and k is noetherian, then we can also consider the categories
2, as those of constructible sheaves of finitely generated modules.

(3) In example 1.1.1, (3), it is not possible in general to choose a functor F as
above, but we will be able to apply the methods of this paper as explained
in section 4.1.

2.3. Induction on perversities

The following theorem generalizes [13, prop. 2.3.3 and rem. 2.3.7].

Theorem 2.3.1 Let d be an integer > 1 and let K be an object in Dx.
Then, K € Perv'(X, %) if and only if *K € Ay and PK € Perv?'™ (X, %).

Proof. Let us consider the long exact sequence of cohomology associated
with the triangle (11) evaluated on K:

ul
(12) K2 R(LF) K -5 0K — K[1].

If K is d-perverse, j*K belongs to 2y, R(j.F)j*K = j.Fj*K is concen-
trated in degree 0 and h'(®PK) ~ h'"'(K) for i # 0,—1. In particular ®K
is concentrated in degrees [—1,d — 1].

For i = —1 we have an exact sequence

0— h (®K) — h°K — R°(j,F)j*K = 7.Fj*(h°K) — 0,

where the second arrow is nothing but ppox (see (9)), which is injective
because « is injective and RT¢(h°K) = RT¢K = i,h’Ri'K = 0. Then
h~'(®K) =0 and ®K is concentrated in degrees [0,d — 1].
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By applying j* to (12) we obtain j*®K ~ Qj*K, and then j*®K is
concentrated in degree 0.

On the other hand, by applying Ri' to (12) we deduce that Ri'®K ~
(Ri'K)[1], hence h™Ri'®K = 0 for any m < d — 1.

By proposition 1.1.4, we conclude that ®K is (d — 1)-perverse.

Conversely, let us suppose that j*K € 20 and that ® K is (d—1)-perverse.
By triangle (12) again we deduce that K is concentrated in degrees [0, d],
h"Ri'K ~ h™ Ri'®K = 0 for any m < d and then K is d-perverse. [ |

Remark 2.3.2 As pointed out in [13, rem. 2.3.7], theorem 2.3.1 suggests
iterating the functor ® in order to obtain, for any d-perverse sheaf K, an
usual sheaf ®?K. The main result of this paper (see theorem 3.2.2) tells us
how to reconstruct K from its restriction to the open set U and from ®?K.

3. The equivalence of categories

3.1. Gluing data

We keep the notations in (1.3.1) and (2.2.1).

(3.1.1) For each integer i > 0 let us write ¢* := ¢Q', o' = aQ', ¢' =
(Fg') o (aFQ’) = [(Fq) o (aF)]Q" = [(aQ) 0 ¢|Q" = a'*' 0 ¢’ = ¢°Q".

For d > 1, we have the complex

d—2

(13) T,=F L .. L5 ot £

placed in degrees [0,d], which is a resolution of length d of the identity
functor by means of the injection Id % T,

(3.1.2) Let hy : TyQ — QT441 be the morphism of complexes given by
Ry = (—-1)"'hQ" : FQ™ — QFQ', 0<i<d-—1

and hd = (—1)/QaQ? : Q! — QFQ?, where h has been defined in (1.3.4).
It is a quasi-isomorphism whose composition with aQ : Q — T;Q is equal

to —Qa : Q — QT4 1.

Definition 3.1.3 For each integer d > 1, let BL be the additive category
whose objects are the (L, F,u,0), where L € Ay, F € Ux, u : j,FQ 1L —
F and o : Q1L 5 j*F such that uo j.g2 2 =0 (ifd >2) and 00 ¢+ ' =
J*u, and whose morphisms from (L, F,u,o) to (L', F',u',0") are defined as
the pairs (f,g) where f : L — L' g : F — F' are morphisms such that
W' o (jFQI1f) = gou.
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Observe that in the above definition, the relation (j*¢) o o = o’ o (Q%f)
holds.

For d > 2, let us define the additive functor
Gy_1 := cokerj*gd_2 Ay — Ay,

which is right exact.

In the above definition, we can replace condition u o j, gZ’Q = 0 by taking
objects (L, F,u,0) withu : Gg_1£ — F.

The proof of the following proposition is an exercise left up to the reader.
Proposition 3.1.4 The category BL is abelian.

Remark 3.1.5 By using the fact that sheaves on X are determined by
their restrictions to U and C and by the gluing morphism i* — i*j,5%,
category B¢ fits into the construction of abelian categories in [9, §1]. Namely,
category B¢ is equivalent to the category C(F,G;T) in loc. cit., where F =
i*Gg_1,G = i*5,Q% : By — B (F is right exact and G is left exact) and
T =i*j,q¢* 1 : F — G, where j,q? 1 : Gg_1 — j.Q%is the morphism induced
by j.q* .

As in [9], any other choice of the functor F in (2.2.1) gives rise to a
category equivalent to B¢,

(3.1.6) By theorem 2.3.1, functors j* and ® can be considered as functors
§* : Pervi(X, %) — Ay, @ : Perv'(X, %) — Perv?’ (X, %).
From the properties of F in (2.2.1), we have

(j.F)(2Ay) € (] Perv™(X, %),

m>0

For any K € Perv?(X, %), we have R(j,F);j*K = j.Fj*K and the mor-
phism u! in (11) gives rise to a morphism

u': Fj* — @
between functors j,Fj*, ® : Perv!(X, %) — Perv? (X, %).

As pointed out in the proof of theorem 2.3.1, by applying the functor j*
to (11) we deduce an isomorphism

(14) ¢ Q5 = 5@ such that &' o (gj*) = 5 u'.
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(3.1.7) We define inductively
uo= (uTI®)o (.FQTIE)  LFQTI - @ i > 2
gi — (51(1)i71> o (Qéﬂfl) . sz* ; ]*(I)Z, i Z 1.
The relations
(15) €0 (qQ'j*) =j*u', u'o(fug2") =0, (£71®)o(Q7I¢)=¢

hold for every ¢ > 2.

3.2. The theorem

With the notations introduced in (3.1.7), we do the following:

Definition 3.2.1 For each integer d > 1, let us define the additive functors
Dy := (5%, 0% u® €%) : Perv(X, %) — BY
and By : BE — Perv? (X, %) by

. . . d—2
g2 Jxgk Jxgz

(16) By(L,F,u,0):=j.FL —= j,FQL

7 FQTIL = F,

where the complex is placed in degrees [0,d], the action of By on morphisms
being obvious.

In the above definition we can identify
(17) j*Bd<£7JT7ua0-) = Tdﬁ
by means of o (see (13)). Furthermore, the acyclicity properties in (2.2.1)

show that j,FQ'L = Rj,FQ'L. Then Ri'By(L, F,u,0) = Ri' F[—d], and we
deduce the perversity of By(L,F,u,o) from proposition 1.1.4.

The main result of this paper is the following:

Theorem 3.2.2 For any integer d > 1, functors B, and D, defined above
are the quasi-inverse of each other and they define, thus, an equivalence of
categories between Perv?(X,Y) and BE.

As suggested by [13, rem. 2.3.7] and theorem 2.3.1, the proof of theorem
3.2.2 can be approached by induction on perversity d.

Remark 3.2.3 In case d = 1 our proof of the isomorphism Id ~ D, B; is
essentially the same as in [13, th. 2.3.4], but it should be noticed that in
loc. cit. there is a mistake in the proof of the faithfulness of D;. Our proof
of theorem 3.2.2 completes the one given in [5].



EXPLICIT MODELS FOR PERVERSE SHEAVES 439

3.3. The proof

First Part: We are going to construct a natural isomorphism O ~ D;B;0
for any O in B¢,

For d = 0 let us call BY = Ay and By = Id : BY — Perv’(X, X).

For any d > 2 we consider functors T : B¢ — B! whose action on
objects (resp. on morphisms) is given by (L, F,u,0) := (QL,F,u,0)
(resp. Z(f,9) := (Qf,g)). For d = 1, functor T : BL — BY is simply
defined by T(L, F,u,0) = F.

For any d > 1 we also consider functors s : B¢ — s, ¢ : BL — Ax and
morphism v : j,FQ?%!s — t defined by s(L, F,u,0) = L, t(L, F,u,0) = F,
V(L Fuo) = u. We obviously have s€ = Qs and j*¢ Z Q4.

From (17) we can identify j*B,; = Tys for d > 1, and from the acyclicity
properties of F with respect to j, in (2.2.1), we deduce

OB, = IORY By = I By = cone(By £2% j,Fj* By = 5.FTys),

ie.
(PBy) ™' = 0@ (j.Fs), (B = (j.F*Q*'s) dt,
(®Ba)* = (5.FQ%s) © 0,
(PBy)' = (.F°Q's) ® (LFQH's), 0<i<d-2,
and
1[0 j.aFs . (3 Fg's j.aFQ™!s .
d‘PBd - <0 _]'*908 ) dCde — 0 _j*gi+1s y 0 <1< d— 3,

d-2 — <j*ng_25 j*aFQd_ls) qi-1 — (j*FQQd_IS (j*anS) o ad] )
®B,; — 0 —v » ®Bg T 0 0 ’

where adj : t — j,5*t = j.Q%s is the adjunction morphism.

By the same reason, morphism u'B, : j,Fj*By = j,FTys — ®B,; be-
comes the natural inclusion.

Let Q4 be the complex of functors from B¢ to A obtained by plumb-
ing Fs in degree —1 and FTys in degrees > 0 by means of Fas. From (13)
and (2.2.1) we deduce that complexes Q4 and j.Qq are exact.
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(3.3.1) For any d > 1 let us call Ly = By_1%, which can be considered as
a complex of functors from B¢ to Ax, and let us define the following exact
sequences:

Ay t=0 m71=(0 1
0—L;'=022"" (@B, 00 ;o1 o,

i _(_1)i+1 j*#@is ) )
Ad_( 1) < —1 ) ﬂ.zi:(lj*’u(@zs)
_

0— Ly (PBy)’ QL —0, 0<i<d-—2,
Agilz(*l)d (j*'deils)O(adj) rd=1_ . d-15)o(adj
0 —>Lg_l ( ) (@Bd)d_l d (1(7«~Q )o(adj)) g g_l_> 0

d_ . -
0— Lt =02 (@B, 200 5.0 -0,

where v : Q — F?, p : FQ — F? have been defined in (1.3.2) and (1.3.3)

respectively.
From (1.3.2), (1.3.3), (3.1.1) and (1.3.4) we deduce, first:

(Fg') o (uQ') = [(FaQ) o (Fg) o p)Q" = FaQ"™*,
(uQ%) 0 g' = [0 (Fg) o (aF)]|Q’ = [aF — Fa]Q',
(7.7Q%1s) o (adj) 0 v = (jAQ?s) 0 (jugQ*'s) = [j.(aF — Fa)Q*]s,
(FqQ%'s) o (yQ'™'s) — aQ’s = [(Fg) 0y — aQ|Q*'s = 0,
and second:
de)Bd oAy =Ag" 0 (Jug™s), digd omy=mi"o ngld for any i.
In particular we obtain an exact sequence of complexes
0= By 25 ©By ™ j,Qu — 0,

which shows that \; : B4_1% — ®By is a quasi-isomorphism and then an
isomorphism between functors from B¢ to Perv?™ (X, ¥).

(3.3.2) For any d > 1 we consider the morphism of functors 6, : j,Fs —
By 1% given by 0; = j.¢°s if d > 2 and 0; = v : j,Fs — t = By%. Diagram

j*FS E— Bd_l‘f
(18) j*IFasl /\dl
By = j.FTys ~“24, @B,

commutes in the homotopy category of complexes and then in the derived
category.
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(3.3.3) For each i > 1 let us call
¢i = (LFQTIET Biy) o (RFQ T Aia) 1 LFQTB,S — 1.FQ'5 Biy.

From rule (1.2.1), (c), and (3.1.7) we deduce that the following diagram
of functors from B to Perv’(X, X)) = Ax

LFQU BT MBE gipg

¢i J/ ! )\iJrl l
. ui+lBi+1 i
. . 1
JsFQ'j*Biyy ——— By,
commutes, where the vertical arrows are isomorphisms.

(3.3.4) With identifications
5.FQ7Y*B;i% = j.FQ'T;sT = j.FQ'T,Qs

and
JxFQ'j* By = j*FQHlQTiJAS
one can prove that ¢; = 7,FQ""'h;s, where h; has been defined in (3.1.2),
but we will not need that result in the rest of this paper.
Summing up (3.3.2) and (3.3.3), for any d > 1 we obtain a commutative
diagram of functors from B¢ to Perv’(X, %) = Ax

d—1
j, FsTd-1 VT ByFTd-1 = ¢gd-1
jﬂFasTdil )\lgdfl
1 d—1
i Fj gt LB ® B, T
¢1Td_2 (I))\Qsd—Q
qsd—QT @Ad_li
. . d-1p, %
7. FQ*%*B, ¥ —% @B, %
ba—1 (0D ¥}
. . ip,
]*FQdilj*Bd Rl 1B,

Compositions of vertical arrows give rise to the natural isomorphism
Id%g = D,B; we wanted and the first part of the proof of theorem 3.2.2 is
finished.
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Second part:

In this part we prove that for any d-perverse sheaf K, there exists a
natural isomorphism K ~ B;D,K. We are using notations of (2.1.9). We
proceed by induction on d > 1.

For any d-perverse sheaf we know (theorem 2.3.1) that Ry K € 8 and
ul
NVK = j,Fj*K - OK.
Let us call )
wi : K= CULFI K -5 OK)
the composition of isomorphism
ul
ryr i SRUK — CNOQRYK = CNYK = C(j,Fj*K — ®K)

defined in (2.1.9) and isomorphism K = SRy K of (10).

Functors v, 2, N commute with j* and we can identify

45* K

ul
(19) JOGF K 5 oK) & OFj K 5 Qj°K).
Then, by using (8) we obtain

95* K

(20) Jwg = —aji T K — CFj"K — Qj*K).

ul
For d = 1 we have By D\ K = j,Fj*K - ®K which is isomorphic to

ul _ul
CHLFI*K 25 oK) = j,Fj*K —5 oK

by means of (1,—1). The composition of this last isomorphism with wg
gives rise to an isomorphism

63 : K — BID\K

natural with respect to K € Perv' (X, ¥) such that j*6k = —ajk.

Now let d be an integer > 2 and suppose there exists
5d_1 . IdPerVdil(X,E) :> Bd_lDd_l
such that

21) 07 = (-1)""aj* : j* — j*By1Dgo1 = Ty-15Dg1 = Ty_1j".
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Isomorphism
(€', 1) : TDy = (Qj*, %, u”, &%) — Dy ®@ = (7@, 0%, u P, D)
allows us to identify both functors and, by (21) we obtain

(j*6471®) o (j*ul) = (—=1)¥ g% : Fj* — j*By_1D4_1® = j*By_1¥Dy
=Ty1Qj".

Then (6971®) o u! = (—1)?715,¢%* and
delon Tl o~ (1) g0
C(1,07®) : C(j,Fj* — @) — C(j.Fj* ———— By_1TDy),

but

-0 * - d—3n) % ud
Bd_l‘ZDd — j*F@]* Jxg°Qj A Qj ]LJF@diQ@ AN @dfl(P

and j,g"'Qj* = j.g'j*. In particular, by using (7) we deduce an isomor-
phism

CULFf* S &) ~

c o (m1)%kg05 d=2jx

s oalax i _ud
(22)  GF —5 FQt =55 5 FQT = @

and the complex (22) is isomorphic to

d—2 ;%

by means of
<<_1>d717 _17 17 _17 RN (_1>d717 <_1)d)

By composing isomorphisms above with w we obtain an isomorphism
6d . IdPervd(X,Z) :) BdDd

such that
5567 = (=) (=aj*) = (=1)%ay*

and the proof of theorem 3.2.2 is finished.
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4. Applications

4.1. Explicit models for perverse sheaves

Theorem 3.2.2 provides explicit models (16) for d-perverse sheaves. Actually,
functor By factorizes through the category of bounded complexes C*(By)
and it defines a faithful exact functor By : BE — C’(Bx) establishing an
equivalence of categories between B¢ and a non full abelian subcategory
of C*(B), whose objects are precisely complexes of the form (16). In par-
ticular, inclusion functor Perv®(X,¥)) C Dx can be lifted to an exact faithful
functor Perv?(X, %) — C"(Bx).

The lifting above allows us to describe in a concrete way the realization
functor (see [1, 3.1.9])

real : D(Perv?(X,Y)) — Dy

by taking single complexes associated with double complexes.

When no functor F is available for the given subcategories 2, C B, we
can always work at the level of the full derived categories D*(8,) by using,
for instance, Godement functor F = A,A* as shown in examples 1.1.1, (1)
and 2.2.3, (1). The corresponding category of perverse sheaves Perv?(X, Y)
(without any constructibility conditions, i.e. 2, = 9B,) is, by theorem 3.2.2,
equivalent to B¢, whose objects are (see Definition 3.1.3) the (£, F,u,o)
where £ € By, F € By, u: 5, FQ1L — F and 0 : QYL = j*F such that
wo j,gs 2 =0 (if d > 2) and 0 0 ¢4 ' = j*u, and whose morphisms from
(L, F,u,0) to (L', F' v, o) are defined as the pairs (f, g) where f : £L — L/,
g : F — F' are morphisms such that v’ o (j,FQ?'f) = gou.

Let us call Perv?(X, X)) the category of perverse sheaves “constructible”
with respect to A, C B,. It is a full (abelian) subcategory of Perv?(X, )
and then it is equivalent to the full subcategory ‘Bféc of B¢ whose objects
are the (£, F,u,0) such that £ € 20y and morphism @ : G4_1£ — F has
kernel and cokernel in A x.

So, even when no functor F is available for the given subcategories
A, C B, explicit models and liftings as above also exist.

Example 4.1.1 (Perverse sheaves categories which split)

In example 1.1.1, (2), let d > 2 be an integer and let us suppose S a
“good” compact, connected and simply connected topological space, and k
a field such that

(23) H (S, k)=0 Vi=1,...,d.
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For example, S can be the (n — 1)-dimensional sphere and X the n-
dimensional disk, stratified by the origin and its complement, for n > d, or
in singularity theory, (X,0) C C4*! is an isolated hypersurface singularity
with complex link S a topological (exotic) sphere [11, §8].

Let us consider the category of Y-constructible complexes of sheaves of
k-vector spaces of arbitrary' rank on each stratum which are d-perverse
sheaves, denoted by Perv?(X, ). It is a full subcategory of the category of
d-perverse sheaves (without constructibility conditions) Perv®(X,¥), which
is equivalent by theorem 3.2.2 to category B¢, with F a functor satisfying
the conditions (2.2.1) (see Example 2.2.3, (1)).

Since S is simply connected, any locally-constant sheaf £ of k-vector
spaces on U is constant with fiber £ = I'(U, £) ~ k" and

(R'j,L)c = nr%Hi(]o,e[xS, L)=H(S,E)=0, 1<i<d.

In particular, the sequence

0— ]*E Joc ]*FE Juae ]*Q‘C —0

is exact and R'j,QL ~ R4, L for all i > 1. Reasoning inductively we
obtain that the sequences

.oi—1
Jxqy

. '*ai71 . .
(24)  0— Q7' IS FQUL ZE L QL —0, i=1,....d

are exact.

Given a constructible d-perverse sheaf K € Perv?(X,Y), let us de-
note (£, F,u,0) = DyK its corresponding object of B¢ by means of theo-
rem 3.2.2. Now K is naturally isomorphic to

. d—2
Jeg2

(25) gL 2 G RQL 22 L e L s RQYIL L F

The exactness of (24) for i = d — 1,d implies that cokelrj*gz_2 = 5,Q7L.
Let s : 5,Q%L — F be the morphism induced by u, whose restriction to U
coincides with 0. Now, ¢ being an isomorphism, the adjunction properties
for (j*,7.) give us a morphism ¢ : F — 5,Q%L verifying ts = 1. Then,
complex (25) is the direct sum of j,T,L and (kert)[—d].

On the other hand, the exactness of (24) implies the 7. 7,;L is concen-
trated in degree 0, its O-cohomology being equal to j,£ and, thus, a con-
stant sheaf.

"'We may also consider only sheaves of finite rank.
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Finally, we obtain a natural isomorphism
K~ (h°K) @ (h*K)[—d]

expressing the category Perv?(X,¥) as a direct sum of the category of con-
stant sheaves of k-vector spaces in X and the category of k-vector spaces,
considered (this last category) as the category of complexes of sheaves on X
concentrated in degree —d and supported by the vertex C.

This is a purely topological result related to a well-known result of
Kashiwara-Kawai [6] (see [9, 6.5, p. 427]). It can be also directly deduced
by using functors j¥, j7 instead of our models. Namely?, our hypothesis
imply that j7j*K = jP*K = j.L ~ h°K and then, from the canonical
morphisms

WitK — K — " K

we deduce that hYK is a direct factor of K.

4.2. Perverse sheaves categories as full abelian subcategories of
K*(%Bx)

In this section we show that functor By : B¢ — K} (Byx) is fully faithful

and then the inclusion functor Perv?(X, %) C Dy lifts to a fully faithful
functor Perv?(X,¥) — Kj (Bx). In particular, category Perv?(X,¥) is
realized as a full abelian subcategory of K%X (Bx).

Theorem 4.2.1 Functor By : BL — K&X(%X) is fully faithful.

Proof. Let O; = (L;, Fi,u;,04), i = 1,2 be two objects in B%. We have to
prove that

By : Homga (01, O2) — Homgo g3y (BaO1, BaO2)
is bijective.
INJECTIVITY: Although the injectivity of By is a consequence of theo-
rem 3.2.2 (the morphism By : Homga(O1, 02) — Homp, (By(O1), Ba(Os))
is bijective), we give here a direct independent proof.
Let (f,g) : O1 — Oq be a morphism such that By(f, ¢g) is null-homotopic.
We obviously have f = j*h°By(f,g) = 0 and B,4(0, g) is null-homotopic.

2We owe this remark to P. Deligne.



EXPLICIT MODELS FOR PERVERSE SHEAVES 447

There exist s' : j,FQ' L, — j,FQ'Ly, i =1,....,d -1, s¢: F, —
JsFQ™ 1L,y such that s' 0 j.g2 =0, s?0j.gp, +jugt, 08" =0,..., sTous +

]*92;2 o Sd71 = O7 g = U0 Sd,
. j*g%I . j*gi;l . d—1 U1
JF L) — 5.FQL, 3 FQ 'Ly ——=F1

| 7 e

JlF Ly — 5 FQI2Ly —= jFQT Ly — = Fo.
Jx9z, Jx9r,

In degree 0, from 0 = j*s'og) = j*s'oay ogqr, we deduce 0 = j*s'oay,

and then, there exists t! : Q*£; — FL, such that t!' o qél = j*sl. From
lemma 1.3.5, there exists 7' : FQ?L; — FL, such that 7' o a7 = t'.

In degree 1, from

0=j"s*ogp, +gg,05s" = (s +gp,07) 00} oqf,

we deduce

0= (j*52 + g%Q o 7'1) o 04%1

and then, there exists 2 : Q3£; — FQL, such that
J'8 g om =t oz,

From lemma 1.3.5 again, there exists 72 : FQ*L; — FQL, s.t. 720 = t2.

We inductively construct
th QiJrlﬁl — ]FQiil,CQ, 2<i<d-1,
i FQM L, — FQiIL,, 2<i<d—2
such that
gngT"’l—f-j*Si = tioqé17 2<i<d-—1,
Tioaiﬁtl = 2<i<d-2.
Let us identify j*F, = QILy, j*u; = q%:l by means of o;.

2 o Sd—l

In degree d — 1, from 0 = s% o u; + j*gg we deduce first

d—1 d—1 d—1

=j"s"oqr, +gi 2ot ogr — g, o

= (J"s" + 92,7 ot" ) o gz,

0=j"s"oqz, +9z,%05"s )

and second
0= j*sd + g‘éf otd 1,
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But s¢ is determined by its restriction j*s¢
s = —(jugs) o (ut"Y) o (adj),
where adj : Fi; — j.5*F1 = 7.Q%L; is the adjunction morphism. Then
g=ur0s" = —uyo (j.gi?) o () o (adj) = 0
and injectivity is proven.

SURJECTIVITY: We need to prove that for any morphism of complexes
F*: ByO; — ByOs, there exists (f,g) : O1 — Oy s.t. By(f, g) is homotopic
to F'°.

Obviously, morphism f : £; — £, must be equal to j*h°F*.

Let us consider the following commutative diagram with exact arrows

9z

0 — L, — FL, — FQL,

ol j*FOfFfl j*FlfJFQfl

0
0 —— Ly —22, FL, 2, FQL,.

There exists o} : QL; — FLy s.t. o) 0 qr, = j*F° — Ff. From lemma 1.3.5,
there exists o' : FQL, — FLy sit. o' ooy = 0y, and then o' o g0 =
J*F® —Ff. Writing s' := j.o', we have s' 0 j,g0 = F° — j.Ff.

In a similar way, we inductively construct st 3, FQIL, — §FQi1L,,
i =2,...,d— 1, such that s’ o j*glﬁ—ll + j*gg? o5l = Fiml _ j FQilf,
Let us write o = j*s.

In degree d — 1 we have
(j*Fét —FQi-1f — ggz oot 1o ail;l o qgQ _
— (j*Fdfl o FQdflf o QZ;Q o O_d71> o gzIZ —
— gzi‘;2 o (j*Fd—2 o FQd—Qf o j*Fd—Q + ]FQd—Qf . 92;3 o o_d—Q) =0
and then
0= (j*Fdfl o FQdflf o gzl:;2 o O_dfl) o Oé%;l.
There exists o : Q1L; — FQ? 'L, such that

d . d=1 _ % qd—1 d—1 -2 _ _d—1
ogoqy =5 F"T —FQ" f—gp "0d" .
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Since j*F; = Q?L;, morphism o¢ determines another morphism s¢ : F; —
5. FQ9'L, such that

Sd o Uy —i—j*g?;f ° Sdfl — Fdfl _j*IFQdflf.
To finish, we take
g = Fé—uyost: Fy — Fy.

An straightforward computation shows that (f,g) : O; — Os is a mor-
phism in B¢, and clearly the s', i = 1,...,d, give an homotopy between F*®
and By(f,9). |

Corollary 4.2.2 The inclusion functor Perv’(X,¥) C Dx = Dy, (Bx)
lifts to a fully faithful functor Perv?(X,%) — Kglx(‘BX). In particular,
category Perv?(X,Y) is realized as a full abelian subcategory of K&X(‘B X)-

Proof. It is a direct consequence of theorems 3.2.2 and 4.2.1. [ |

4.3. Conical perverse sheaves with respect to a K(m, 1) basis

In case of examples 1.1.1, (2) and 2.2.3, (2), we suppose that S is con-
nected and its universal covering space is contractible. Let us choose a base
point zy € S and let us denote H = m (S, x9) = m (U, z0). Let Ay be
(resp. 2Ax) the abelian category of locally constant sheaves of k-modules
(not necessarily finitely generated) on U (resp. of X-constructible sheaves of
k-modules on X). We can take F = p,p*, where p is the universal covering
space of (U, zy).

Objects of category Perv?(X, ) C Dg (kx) are called “conical perverse
sheaves” in [13, def. 2.1.1 and rem. 2.3.7].

(4.3.1) The standard equivalence of categories between 20 and Mod(k[H])
allows us to translate the exact sequence of functors of Ay

0-IdSFLQ—0
in the following way. For each k[H]-module E we have:
1) FE = E" = {f: H — E}, where the action of H is given by

(hf)(o) = f(ch), fe€E" hocH.

2) Adjunction morphism ap : E — FFE is given by

(age)(c) =oe, e€ E,0€ H.
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3) QE ={¢: H— E | (1) = 0}, where the action of H is

(hy)(0) = ¢(oh) —ov(h), Y €QE,0,h € H.
4) Morphism qg : FE — QF is given by

(qef)(0) = f(o)—of(1), feFE=E" ceH.

5) The application ¢ : e € E — c(e) € E¥, where ¢(e)(0) = e for any 0 € H,
gives rise to a natural identification E = (FE)™".

6) For any » > 1 we have a natural identification
QE={¢y:H —E|¢(hy,...,h,) =0 if Jj h; =1}

where the action of H is given by

T

(hr—i-l,lvb)(h'l? ) h’?“) = Z(_l)r_iw(hlv s 7hi—17 hih'i-i-l) hi+27 ) hr-‘rl)+

=1

+(_1)Th1¢(h2; ceey hr+1).

7) Morphisms ¢f, : FQ"E — Q"™ E, g%, : FQ"E — FQ"™ E (see (3.1.1)) are
given by

(), heshegn) = f(hesd) (B oo he) = TRy f(D] (s, - by,
(ggj.)(o-) = O-(qrEf)7 f € FQTE = (QTE)H7 h‘17 seey hr—l—ho- € H

8) By 5), morphism

QTE = (g%)'mv . (FQT’E)Z?’LU — QrE N (]FQT+1E>'MU — QrJrl
is

(QTEw)(h‘lv R h‘T—I-l) = w(hly R h?’) - (hr—l—lw)(hl? R h'r)
forr>1,¢ € Q"E, h; € H. For r = 0, morphism

o} = (%)™ : (FQE)™ = E — (FQE)™ = Q'*!
1s
(0%e)(h1) =e—hie, e€ E h € H.

Remark 4.3.2 The complex (Q"E, ¢;),>0 is the usual complex of E-valued
cochains obtained from the normalized bar resolution [7, chap. IV, §5].
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(4.3.3) Category 2y is equivalent to the category

— whose objects are triplets (V, W,<) where V' is a k[H|-module (repre-
senting the restriction j* of a constructible sheaf), W is a k-module
(representing the fiber i* at I of a constructible sheaf) and ¢ : W —
Vi is a k-linear morphism (representing the adjunction morphism
i = i%.J°).

— whose morphisms are defined in the obvious way.

By (4.3.1), (4.3.3) and the fact that sheaves on X are determined by their
restrictions j*,¢* and the adjunction morphism * — i*7,75*, we deduce that
category B¢ is equivalent to the category €4(k, H):

— whose objects are 4-uples (E, M, u,v) where E is a k[H]|-module, M
is a k-module and u,v appear in a commutative diagram

d—2 d—1

QdiQE 2 N QdflE %p (QdE)im;

N A

M

such that uo o5 2 =0, if d > 2.

— whose morphisms are defined in the obvious way.

By theorem 3.2.2 we conclude that the category of d-conical perverse
sheaves is equivalent to €(k, H).

In case d = 1, by defining v,(y) = —v(y)(0), 0 € H,y € M, we obtain
an equivalence between €!(k, H) and the category of k-module diagrams
FE i M
{Ud}geH

such that
(1) vr6 =v,0u0V, + v, + v, for all o,7 € H.
(2) 1g + v, o u is an automorphism of E for any o € H.

Property (1) comes from the fact that v(y) € (QE)™ for every y € M.
In property (2), automorphism 1g 4 v, o u coincides with the action of o
on E.

In this way we find a new proof of theorem 2.3.4 in [13]. This theorem
is a natural generalization of the first known case [2] on explicit description
of perverse sheaves, namely S = S, H = Z (see also [10], [12]).
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4.4. Explicit description of perverse direct images and intersection
complexes

In this section we give models (16) for j*L, 57 L and j..L, where £ is an object
of Ay. The computations consist of interpreting the proof of theorem 1.4.10
in [1] in terms of our (F,Q)-resolutions (13).

(4.4.1) For each £ € Ay we have a natural isomorphism
Da(j2L) = (£, j.Q'L, jug, 1).
In particular the complex

 med—1 p R g
QL —= 7.Q°L

Jxg2

g FL —= 5,FQL

. . d—2
Jx9% Jegl

(in degrees [0, d]) is an explicit model for jP £, which coincides with 7<4Rj, L
[1, prop. 1.4.23].

(4.4.2) For d = 1 we have a natural isomorphism
Di(j{ L) ~ (L, j.FL/j L, can,1).
In particular the complex
GFL 25 5 FL/GL

(in degrees 0, 1) is an explicit model for j/L. It is quasi-isomorphic to 7L
since 1L is 1-perverse.
For d > 2 we have a natural isomorphism

Dy(§PL) ~ (L, coker j,g% 2, can, 1).
In particular the complex

. . d—2
Gxg% Jxg%

J«FL 7. FQ 1L 25 coker j*gz_2,

(in degrees [0, d]) is an explicit model for j{’ £, which coincides with 7<4_oRj.L
[1, prop. 1.4.23].

(4.4.3) By interpreting natural morphisms j'£ — j?£ on models above,
we have a natural isomorphism

Dd(jl*ﬁ) ~ (,C, Img j*q(@d—lc,j*QQd—lﬂ, 1)
In particular the complex

. ) ;
Jxg% Jxg% Jxlga—1,

JFQUL T g g,

J.FL

(in degrees [0,d]) is an explicit model for the intersection complex IC(L) =
JiL, which coincides with 7«4 1Rj,.L [1, prop. 1.4.23].
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4.5. Further results

Following a suggestion of Deligne, explicit models of perverse sheaves can
be constructed by using other functorial resolutions instead of (13). For
instance, given F = FG : A = By — A = By, a : 1 — F under the
conditions of (1.3.1), with F*£ j,-acyclic for K > 1 and £ € 2y, and not
requiring F(Ay) C Ay, we can use the “simplicial” resolution

(0] 1 d—2 d—1
FLE22,. . 9 gd T, .

where
0" = aF* —FaF' + - + (—1)”115‘”104

(cf. [4, Appendice 5] and [8, VII, 6]). This is the aim of an article in prepa-
ration.
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