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Slopes of hypergeometric systems

of codimension one

Maria Isabel Hartillo Hermoso

Abstract
We describe the slopes, with respect to the coordinates hyper-
planes, of the hypergeometric systems of codimension one, that is
when the toric ideal is generated by one element.

1. Introduction

The D-module theory generalizes the concepts in the classic theory of or-
dinary differential equations with holomorphic coefficients for a complex
variable x.

We consider the Weyl algebra:

An:C<x1,...,xn,81,...,8n>

that is, the ring of differential operators with polynomial coefficients in n
variables. This ring is not commutative, and the above elements verify
the relations: [z;,z;] = 0, [0;,0;] = 0, and [0;,z;] = J;;. We can also
consider D,,:

D, =C{xy1,...,2,}(01,...,0n),
with the same relations between the generators. We denote by (M) the left

ideal generated by the set M.
If we take an element in Aj;:

P = an(2)0™ + a1 (2)0™ "+ +ag(z), with a,(x) #0

it defines an ordinary differential equation.

Fuch’s condition [6] states that the point x = 0 is a regular singular
point if and only if we have the equality: m — val(a,,(z)) = max;—,. n{j —
val(a;(z))}, where val(a;(x)) is the order of a;(x) at z = 0.
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We can define a combinatorial object related to P, the Newton polygon,
defined as:

N (P) = convex hull( U(j,j —wval(aj(x)) + (—N)z).
j=0
Clearly P has a regular singular point in # = 0 if and only if N (P) is a
quadrant. If not, we have a slope in A(P). The equation is regular if and
only if all the singular points are regular, i.e. if there are no slopes.

The generalization of irregularity in several variables is given by the ir-
regularity sheaf with respect to a hypersurface, which was introduced by
Mebhkout (see [10]). We also have the concept of slope of a D-module
with respect to a hypersurface introduced by Laurent [7], which generalizes
the analogous in one variable. Indeed the slopes of a module describe the
jumps in the Gevrey filtration of that sheaf [8]. We have that a D-module
in several variables is regular if and only if it has no slopes for all the hyper-
surfaces ([8]). In the next section we describe briefly the notion of slopes of
a D-module with respect to a smooth hypersurface.

The cases we study are the D-modules arising from the so-called hyper-
geometric systems ([4] and [11]). They are defined from integer matrices of
maximal rank. Given A = (a;;) an d X n integer matrix with rank d, we can
define the toric ideal T4 C C[J)] as the ideal generated by {0% — 0"|u,v € N",
Aut = Avt}. We take 8= (B, ..., 34) € C? and we denote § = (6y,...,0,),
where 0; = 2,;0; is an operator of the Weyl algebra. We denote by A#' — 3
the ideal generated by the operators » " a;;6; — 5;, j = 1,...,d. Finally,
we can define the hypergeometric system of Gelfand’-Kapranov-Zelevinski
as the system defined by the ideal H4(8) = (14, A6" — 3). The A,-module
Ha(B) = A,/Ha(0) is a holonomic module ([4] and [1]).

Given two integer matrices A, A’, such that there exists G € GL4(Q)
with A" = GA, we have 14, = Ix and Hu(8) = Ha(GB). So, to study
the slopes of a hypergeometric system defined by an integer matrix we can
always consider the row-reduced form matrix.

A result by Hotta [5] tells that a hypergeometric system is regular if
the toric ideal is homogeneous with respect to the usual grading or, equiva-
lently, if (1,...,1) is in the Q-span of the rows of A. The aim of our work is
calculate the slopes for an irregular hypergeometric system of codimension
one. In first place, we consider the case when the semigroup is reduced.
Hence, we shall see that there always exist slopes with respect to the coor-
dinates hyperplanes x; = 0 and they can be detected from a generator of 4.
Secondly, we treat the non-reduced semigroup case, and we prove that there
are no slopes with respect to any coordinate plane at zero. Finally, we look
for slopes at infinity, and we find that the system has slopes with respect to
a coordinate hyperplane.
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2. Slopes

There exists an algorithm ([2]) for the explicit calculation of slopes of a
D-module with respect to a smooth hypersurface. In this section we define
what we call a slope with respect to z; = 0 at the origin.

The ring D = D,, admits several filtrations. First, we consider the fil-
tration defined by the order of the differential operators. We denote this
filtration by Fj(D). Given a non-zero operator

P=> ag(x)d’
B

we consider
ordp(P) = max{|f],as # 0}, Fip(D)={P € D, such thatordp(P) < k}.

This defines a filtration in D. In its associated graded ring, which is a
polynomial ring in &, we consider the F-symbol:

or(P)= > ag(x)’.
/67 ‘,6|=OI‘dF(P)
Given an ideal [ in D we define the graded ideal:
gt (I) = (op(P), P € 1I).

We can also consider the Malgrange-Kashiwara filtration with respect to
x; = 0, denoted V(D). Given

P = Z aaﬁxaaﬁ
aHB
we consider

ordy(P) = max{0; — aj, aa s # 0},
Vi(D) = {P € D, such thatordy(P) < k}.

In its associated graded ring, which is isomorphic to a non commutative
subring of D, we consider the V-symbol:

oy(P) = Z (o g2 E°.
(047/6), Bj_aj :OrdV(P)

Given an ideal I in D we define the graded ideal:

gr’(I) = (oy(P), P € I).
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Using the above filtrations we can define an ordered family of filtrations.
Given (p, q) # (0,0), non negative integers, we define the linear form over Q?,
given by L(a,b) = pa + ¢gb. Then, given an operator as before, we define

ord, (P) = max{L(|3], 3; — a;), aas # 0},
Li(D) = {P € D, such thatord;(P) < k}.

In its associated graded ring, that is a polynomial ring in £ if L # V, we
consider the L-symbol:

or(P) = Z (o g2 EP.
(a.8), L(18],8; —cj)=ord L (P)

Given an ideal [ in D we define the graded ideal:
gr®(I) = (o(P), P € I).

The L-filtration also describes the F' and V filtrations. Indeed we can order
these filtrations. Given L, L’ defined by pairs (p, ¢q) and (p/,q’), we say that
L < L'if and only if —p/q < —p'/q’. Given a L-filtration we define its slope
as the ratio —p/q.

If L # V we can define de L-characteristic variety, noted Ch’(I), as the
analytic variety in C?" defined by the graded ideal grf(I).

Definition 1 [7] Let I be an ideal of D. The slopes of the D-module D/I
with respect to x; = 0, are the slopes of the linear forms L # F,V such that
gri(I) is not bihomogeneous for the F and V' filtrations.

Remark 1 In the case when we have a holonomic D-module D/I, if we
find L a filtration with respect to x; = 0 such that (x1&1,...,2,8,) C
Vgrlt(I), then L is not a slope with respect to x; = 0 of this module, because
all the components of the L-characteristic variety are bihomogeneous with
respect to F' and V.

3. Slopes of hypergeometric systems of codimension one

Let A be a n X (n+ 1) integer matrix of rank n and let 8 € C*. We add by
now one condition: all the n x n minors of A are not zero. Using this fact
we can ensure that a generator u of the kernel of A has all its coordinates
different from zero. We denote P € C[J] the generator of the toric ideal.

Our aim is to calculate the slopes of the D-module H4(/3), so we assume
that it is irregular. Then, P is not homogeneous with respect to the usual
grading. We have that P = 9*" —9" ", where u™ are the positive coordinates
of u and —u~ are the negative ones.
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We assume that |ut| # 0 and |u~| # 0. Without loss of generality |u™| >
|u~| and we order the variables to have the first k coordinates those different
from zero in u™.

Lemma 2 Let A be an n x (n+ 1) integer matriz with all its n X n minors
different from zero. We consider the variables ordered as before. Ha(3) has
no slopes with respect to the k first variables.

Proof. We shall prove that H () has no slopes with respect to the hyper-
plane z; = 0.

Using the condition about the minors we can, taking into account a row
reduced form of A, obtain the operators in H4(/3):
Q1= 10y + b6 — B, Q2 = azls + 030, — 535, . .., Qn = anbpyr + bt — 3,

with a;,b; # 0, for all 7 and these elements generate A" — 3. Using the
remark 1, if we want to prove that a given L is not slope it is sufficient to

prove that z1& € \/gr(Ha(f3)). Hence we need an operator H € H4(f3)
such that oy (H) = 2¥1¢F2,

Let L be any slope with respect to the hyperplane z; = 0. We have
the following sequence of elements S; in H4(3), with ord,(R;) < ord;(P) =
ordy(S;):

S = o0Moyloys .. SO Q1 — arz P
= 010,071 05> 7105 -+ O + Ry.
Sy = 010100520 - 0 Q) — a1 w25,
V020 0y 2088 - - O + Ry,

Su2 = b?2_19§”2_18}‘18§3 cee 8,’;’%21 — a1x25u2_1
U2 U2 YU QYU U
- 612012811833"'akk +Ru2
u2 U2 U1 QU3 —1 U
Sug+1 = 020120105 - -+ 0" Q2 — azw3 Sy,

b2 bo T OV 08 T O Ry

o ug 1. u3—1 pus+uz—1 qui Qug UL
Sugtus = 0170y" 0] OOy -+ 0" Qo — 4235wy 4z 1
_ U2 1, U3 NU2+U3 QU QU Uk
= 0?b3°07" 700" - Ot 4 Ruyus
_ U ur—1 pgua+-+ur—1 qu
SU2+"'+Uk - 612 o 'bk—1 91 a11Qk—1 - ak—lkaU2+"'+Uk—1

_ U2 Uk pu2+-tug Qui
= 00,0, ' 4 Rugtegruy,-

This finishes the proof. [
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Theorem 3 Let A be an n X (n—+1) integer matriz with all its n X n minors
different from zero. We consider the variables ordered as before. The only
slope of Ha(5) with respect to x; = 0, with j > k, is L; = u;F + (|u™| —

[u=)V

Proof. First, we prove that if we have a slope L with respect to xz; = 0,
L # L, then L is not slope of H(3).
Let L' < L; be any slope with respect to ; = 0. Then op/(P) =
1R and following the proof of lemma 2 we have that ord(R;) <
ordy/(P) = ord/(.S;) and
UL’(Su2+~--+Uk) = Cxllt2+~~~+uk§it1+m+uk‘
Then L’ is not a slope of H4(/3) with respect to z; = 0.
Let L" > L, be any slope with respect to z; = 0, then op/(P) =

Uk+1 Un+1 . . .
=&t & As before, we can obtain operators in H4(f):

QL =1t + dib; — B, Qy = cab +d20; — 33, . . .,
Qi = a0+ dja0; — By, Qf = ¢ifi +di; — B, .
Q) = cpbnyr +dn; — B,

with ¢;,d; # 0, and we can consider the following sequence of operators S
in H4(f), such that ord;»(R}) < ordp.(P) = ordp(S}):

r Uk+1—1 QUk42 Hlnt
S1o= O 04y 0 Qi + Cr e P
— Uk+1—1 qUrt2  Alnil /
- dk+19 ak+1 ak+2 an+1 _|_ R .
r Uk +1—2 QUkt2 Hint /
Sy = dea0i 0Ly O 0 @y — G T )

_ 29Uk+1—2 qUkt2 | qUntl /
= 050 TN - O + Ry,

! o Uky1—1 pupp1—1 qupys Hlntl /
Suk+1 - dk+1 0] ak‘-i—? 7L+1 QkJrl Ck+1xk+ls’uk+1fl
_ Uk+1 NUK+1 QUES2 L. AQUnt1 /
- dk-‘rl 0 @k-‘r? @nJrl + Ruk+1

! Ukl Uj—1 JUj+1 Una1—1plu”|—u;—1 qu;
lu=|—u; dk+1 s d] 1 d d ntl 9 a Q Cnl'n+1S|u |—u;—1
. Ukl ug 1 u]+1 . Uy +1 ‘U [—u; “J

Thus, L” is not slope of H(f) with respect to z; = 0. Then the only
possible slope is L;.
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Our next idea is similar to one in the work of Castro-Jiménez and
Takayama [3].

Now suppose that L; is not a slope. Then there is no slope, which
implies that the L-characteristic variety Chl(H(3)) is invariant for all L =

pF + qV;.
First, we are going to prove that:
(3.1) gt" (Ha(B)) = (or(P), g (40" - 8)).

The right hand side of the above equality is called in [11] the fake initial ideal,
noted fing(H4(5)). We consider as in [11] the following exact sequence of
modules over the algebra gr®'(D)/er! (1,4):

n

D (& (D) (1)) - e = @ (D) /e (1La) — x(D) /fing (Ha(5) —0
i=1
where di (327, Piei) = 31, Pior((A9" — B)i).

Since o ((A0'—3);)ei—or((A0'—3);)e; clearly belongs to the kernel of d;,
we can extend the exact sequence to the Koszul complex K (grf'(D/1,)):

s KO (@r"(D/14)) 5 K (" (D/14)) — 0

where
Kg(ng(D/[A)) = @ ng(D/IA)eil---ip,
1<iy <-<ip<n
and )
Jp(eil...ip) = Z(—l)rilaF((Aet - ﬁ)ir)eil-ui:mip'
r=1

We can also define the Koszul complex K(D/14) as:

c— K(D/1,) 2 KY(D/1,) 25 KY(D/1,) — 0.

where
KSD/L)= P  D/lLaei,.s,
1<y < <ip<n
and »
dp(€iy.3,) = Z(—l)r_l((fwt - 5)ir)€¢1...i:..-¢p'
r=1

This complex can be filtered by:

F(EJ(D/Ia)= @  FipD/laci.i,.

1<ip < <ip<n
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Clearly
K] (gt"(D/14)) = g™ (K](D/14)).

Using this filtration it is easy to see that the sequence:
K7 (gr"(D/14)) — Kg (er"(D/14)) — " (Ha(8)) — 0

is exact if Hy(KZ(grf(D/14))) = 0.

If this sequence is exact we have proved statement 3.1, so all we need to
prove is H,(KZ(gr¥(D/14))) = 0, or equivalently that {op(P),or((A0" —
O))s .-, 0r((A0"—0),)} form a regular sequence in the commutative graded
ring g’ (D).

It is sufficient to prove that {or(P),o0r((A0" —5)1),...,0r((A0" —5),)}
form a regular sequence in the commutative graded ring C(x)[¢]. Those
elements are homogeneous so if we have that:

Vor(P),ar((A0" = B)),....or((A8" — B),)

is the maximal ideal of the graded ring, then they form a regular sequence.
Given A in row-reduced form, as in the proof of lemma 2, it suffices to prove
that

2y ef? € (op(P),op((A0" = B)1),...,0p((A0" = B),)).

If we consider the elements:
1=0r(Q1) = a1228 + biz1&1, QF = 0p(Q2) = azxsés + bz &y,

cey Q;; = UF(Qn) = ApTpént1 + bpnTn1,

Sy = greries. fﬁk%—alxﬂF(P)

— u1+1 uz—1 Uk
= hn§ 2 3 Sk -

"o u1+1 ug—2 Ug "
_ b2 u1+2 UQ72 . Uk
- 1L 2 3 k -

2 o uo—1 us—1 cuitus—1 u3 Uk

Sy, = b7 1 8 QY — xSy,
_ U2 U2 ultug ¢u3 Uk
= by’a’g SRR
" - Uo uk—l ug+~--+uk 1put]—1 1
Su2+ Fup T bl o b — 5 k 1 ak,1$kSu2+,,.+u,€_1

—+
— py2.. bZk 1$U2+ +Uk§\u |
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Then we have that:

grf (Ha(B)) = (&% - &% a9y + bimi &y, - nTni1Ensr + bpz1&L).

It is clear that

ng(HA(ﬁ)) - <£1 e flm xlglu v >xn+1§n+1>7

and
(€1 &h i, Tpgangr) C VG (HA(B)).

So the characteristic variety is

(&1 &1, T nrr) = Verf (Ha(8)).

We are supposing that the characteristic variety is invariant, but if we take
L" > Lj;, then using the operators S7,... 5] we have that:

lu|—u;

(Crgr &g, 1181, - - Tng1bngr) C Vgrt (Ha(B))

and the component of the characteristic variety

T* )(Cn+1

(Tp41="=Tp4+1=0

is not contained in any of ChL" (H4(3)). |

At the begining of this section we added the condition |ut| # 0 and
|lu~| # 0. If we have |u~| = 0 this means that the generator of the toric
ideal is of the form P = 0" — 1. We now study this case.

Lemma 4 Let A be an n x (n+ 1) integer matriz, with all the n x n minors
different from zero and I, = (0" — 1). Then, Ha(B3) has no slopes at the
origin with respect to any x; = 0.

Proof. We shall prove that H 4 (/) has no slopes with respect to the hyper-
plane z; = 0.

Using the condition about the minors we can, with a row reduced form
of A, obtain the following operators in H4(/3):

Q1 = a105 + b0, — ﬁi: Q2 = asl3 + byl — %» ey Qn = apbp1 + b0 — ﬂ?lza

with a;,b; # 0, for all 7 and these elements generate A" — 3. Using the
remark 1, if we want to prove that a given L is not a slope, it is sufficient

to prove that z1&; € \/gr’(Ha(3)). Hence we need an operator H € H4(/3)
such that o (H) = 2% ¢k
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Let L be any slope with respect to the hyperplane z; = 0. We have
the following sequence of elements S; in H4(/3), with ordy(R;) < ord,(P) =
ordy(S;):

_ w1 u2—1 Quas un+1
_ u1 Qua—1 qu. Un+1
— blglallaQQ 833'”8n11 +R1

Sy = 016,01 03> 205" - 0,1 Qr — anra )
= b1070} 0527205 - Ot + Ry,

n

_ uz—1gua—1 qui Quz u +1
Suy = bP 017701105 - 0,1 Q1 — a1 Su, 1

= DROROR 0 - O+ Ry

n

- D U —1pu2+-Funr1—1 quy
Su2+---+un+1 - bl T bnnJrl 91 " al Qn - anxn+ISU2+---+un+1*1
- u2 . hUn+1 ug+-+uUnt+1 qui
= 07?00, N 4 Rugteootuts -
This finishes the proof. [

In this case the slopes are at infinity, so we must perform the following
change of variables:

!’ 1 /
1171 — - :L'Q :UQ, .y $n+ :En_l,_]_,
T
/
81—:1: 82 ...,(‘9n+1:8n+1.

To simplify the notation we change x} by z; and we note:
[0 =00 +1)---(0+i—1).
The new system obtained is given by:

n

Hy(B)' = (21 [61] 052 -+ 17" — 1, 012205 — i1 0 = By, - ..
- an$n+1an+l - bnxlal - Bn>
Theorem 5 Let A be an n x (n+1) integer matriz with all its n X n minors

different from zero and 14 = (0" —1). If we do the change of coordinates as
before, H4(B) has only the slope Ly = u F + |u|V with respect to x1 = 0.

Proof. First, we prove that if L # Ly, then L is not a slope of H ()’
Let be L' < L; any slope with respect to 1 = 0. Then o (P") =
ayEP - &mtt we can consider the sequence of operators S; in Ha(B),
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such that ord;/ (R}) < ordy/(P") = ordy/(S)):

S| = ()00 O Q) + v P
= by Ou[0h]" 05771 05° - 0,1 + Ry
Sy = —blﬁlel[el]ulagz_%?” Op1' @1 + 4125

= RGO OR Ol + Rl

/ u2—1 _uj gua—1 u1 QU3 un+1 !
Sus =0y a0 T [0h]" 05 - 0,1 Q' + a1225,, 4
. u U1 U2 ul QU3 Un+1 /
= bz 07%[0,]" s "'an+1 +Ru2'
! . _pua | pung1—1up guateoetungpr—l I WaY
Su2+ AUnt1 b b " Ly 01 [91] Qn

+ anw”JFlSuz-i- A Up1—1

= b?Q .. .bZnﬂ 111197;2'*‘ FUnt1 [9 ]Ul i R’

U+ +'Ufn+ 1

Therefore L' is not a slope.

Let be L” > Ly any slope with respect to z; = 0, then op»(P') = 1, and
it is clear that it is bihomogenous, so L” is not a slope.

The only possible slope is L. Suppose that L; is not a slope. Then the
L characteristic variety is invariant for all L = pF' + qV. We have that:

Y (Ha(B)) =1 and /P (Ha(B)) # 1.

Remark 2 We have supposed that all the n x n minors of our matrix were
different from zero. If the matriz A has an n X n minor equal to zero, this
means that there exists an i such that Ha(8) = (z;0; — B;, Ha'(B')). Where
A’ denotes the matriz obtained from A taking out the i-th row and the i-th
column, and (3 is the vector B without the i-th element.

We can obtain, finally, a matriz B with all its minors different from zero
such that:

Hu(B) = (101 — B, ..., x;0; — B;, He(8")),

after renaming the variables, where " = (841, .., Bnt1)-
If we take L a slope with respect to x; =0, with © < j it is easy to see:

gt (Ha(B)) = (o210 = B), .., on(2;0; — B), & (Hp(8")),

and L is not a slope for H(5).
If we take L a slope with respect to x; = 0, with i > j we have:

" (Ha(B)) = (@1&1,- - 2565, gr™ (Hp(6"))),
and L is a slope for Ha(B) if and only if L is a slope for Hp(B").
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