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Slopes of hypergeometric systems
of codimension one

Maŕıa Isabel Hartillo Hermoso

Abstract
We describe the slopes, with respect to the coordinates hyper-

planes, of the hypergeometric systems of codimension one, that is
when the toric ideal is generated by one element.

1. Introduction

The D-module theory generalizes the concepts in the classic theory of or-
dinary differential equations with holomorphic coefficients for a complex
variable x.

We consider the Weyl algebra:

An = C〈x1, . . . , xn, ∂1, . . . , ∂n〉
that is, the ring of differential operators with polynomial coefficients in n
variables. This ring is not commutative, and the above elements verify
the relations: [xi, xj ] = 0, [∂i, ∂j ] = 0, and [∂i, xj ] = δi,j . We can also
consider Dn:

Dn = C{x1, . . . , xn}〈∂1, . . . , ∂n〉,
with the same relations between the generators. We denote by 〈M〉 the left
ideal generated by the set M .

If we take an element in A1:

P = am(x)∂m + am−1(x)∂m−1 + · · · + a0(x), with am(x) �= 0

it defines an ordinary differential equation.
Fuch’s condition [6] states that the point x = 0 is a regular singular

point if and only if we have the equality: m− val(am(x)) = maxj=0,...,m{j −
val(aj(x))}, where val(aj(x)) is the order of aj(x) at x = 0.
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We can define a combinatorial object related to P , the Newton polygon,
defined as:

N (P ) = convex hull

( m⋃
j=0

(j, j − val(aj(x)) + (−N)2

)
.

Clearly P has a regular singular point in x = 0 if and only if N (P ) is a
quadrant. If not, we have a slope in N (P ). The equation is regular if and
only if all the singular points are regular, i.e. if there are no slopes.

The generalization of irregularity in several variables is given by the ir-
regularity sheaf with respect to a hypersurface, which was introduced by
Mebhkout (see [10]). We also have the concept of slope of a D-module
with respect to a hypersurface introduced by Laurent [7], which generalizes
the analogous in one variable. Indeed the slopes of a module describe the
jumps in the Gevrey filtration of that sheaf [8]. We have that a D-module
in several variables is regular if and only if it has no slopes for all the hyper-
surfaces ([8]). In the next section we describe briefly the notion of slopes of
a D-module with respect to a smooth hypersurface.

The cases we study are the D-modules arising from the so-called hyper-
geometric systems ([4] and [11]). They are defined from integer matrices of
maximal rank. Given A = (aij) an d×n integer matrix with rank d, we can
define the toric ideal IA ⊂ C[∂] as the ideal generated by {∂u−∂v|u, v ∈ Nn,
Aut = Avt}. We take β = (β1, . . . , βd) ∈ Cd and we denote θ = (θ1, . . . , θn),
where θi = xi∂i is an operator of the Weyl algebra. We denote by Aθt − β
the ideal generated by the operators

∑n
i=1 aijθi − βj, j = 1, . . . , d. Finally,

we can define the hypergeometric system of Gelfand’-Kapranov-Zelevinski
as the system defined by the ideal HA(β) = 〈IA, Aθt − β〉. The An-module
HA(β) = An/HA(β) is a holonomic module ([4] and [1]).

Given two integer matrices A, A′, such that there exists G ∈ GLd(Q)
with A′ = GA, we have IA = IA′ and HA(β) = HA′(Gβ). So, to study
the slopes of a hypergeometric system defined by an integer matrix we can
always consider the row-reduced form matrix.

A result by Hotta [5] tells that a hypergeometric system is regular if
the toric ideal is homogeneous with respect to the usual grading or, equiva-
lently, if (1, . . . , 1) is in the Q-span of the rows of A. The aim of our work is
calculate the slopes for an irregular hypergeometric system of codimension
one. In first place, we consider the case when the semigroup is reduced.
Hence, we shall see that there always exist slopes with respect to the coor-
dinates hyperplanes xi = 0 and they can be detected from a generator of IA.
Secondly, we treat the non-reduced semigroup case, and we prove that there
are no slopes with respect to any coordinate plane at zero. Finally, we look
for slopes at infinity, and we find that the system has slopes with respect to
a coordinate hyperplane.
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2. Slopes

There exists an algorithm ([2]) for the explicit calculation of slopes of a
D-module with respect to a smooth hypersurface. In this section we define
what we call a slope with respect to xj = 0 at the origin.

The ring D = Dn admits several filtrations. First, we consider the fil-
tration defined by the order of the differential operators. We denote this
filtration by Fk(D). Given a non-zero operator

P =
∑

β

aβ(x)∂β

we consider

ordF (P ) = max{|β|, aβ �= 0}, Fk(D) = {P ∈ D, such that ordF (P ) ≤ k}.
This defines a filtration in D. In its associated graded ring, which is a
polynomial ring in ξ, we consider the F -symbol:

σF (P ) =
∑

β, |β|=ordF (P )

aβ(x)ξβ .

Given an ideal I in D we define the graded ideal:

grF (I) = 〈σF (P ), P ∈ I〉.
We can also consider the Malgrange-Kashiwara filtration with respect to

xj = 0, denoted Vk(D). Given

P =
∑
α,β

aα,βxα∂β

we consider

ordV (P ) = max{βj − αj , aα,β �= 0},
Vk(D) = {P ∈ D, such that ordV (P ) ≤ k}.

In its associated graded ring, which is isomorphic to a non commutative
subring of D, we consider the V -symbol:

σV (P ) =
∑

(α,β), βj−αj=ordV (P )

aα,βxαξβ.

Given an ideal I in D we define the graded ideal:

grV (I) = 〈σV (P ), P ∈ I〉.
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Using the above filtrations we can define an ordered family of filtrations.
Given (p, q) �= (0, 0), non negative integers, we define the linear form over Q2,
given by L(a, b) = pa + qb. Then, given an operator as before, we define

ordL(P ) = max{L(|β|, βj − αj), aα,β �= 0},
Lk(D) = {P ∈ D, such that ordL(P ) ≤ k}.

In its associated graded ring, that is a polynomial ring in ξ if L �= V , we
consider the L-symbol:

σL(P ) =
∑

(α,β), L(|β|,βj−αj)=ordL(P )

aα,βxαξβ.

Given an ideal I in D we define the graded ideal:

grL(I) = 〈σL(P ), P ∈ I〉.
The L-filtration also describes the F and V filtrations. Indeed we can order
these filtrations. Given L, L′ defined by pairs (p, q) and (p′, q′), we say that
L < L′ if and only if −p/q < −p′/q′. Given a L-filtration we define its slope
as the ratio −p/q.

If L �= V we can define de L-characteristic variety, noted ChL(I), as the
analytic variety in C2n defined by the graded ideal grL(I).

Definition 1 [7] Let I be an ideal of D. The slopes of the D-module D/I
with respect to xj = 0, are the slopes of the linear forms L �= F, V such that√

grL(I) is not bihomogeneous for the F and V filtrations.

Remark 1 In the case when we have a holonomic D-module D/I, if we
find L a filtration with respect to xj = 0 such that (x1ξ1, . . . , xnξn) ⊂√

grL(I), then L is not a slope with respect to xj = 0 of this module, because
all the components of the L-characteristic variety are bihomogeneous with
respect to F and V .

3. Slopes of hypergeometric systems of codimension one

Let A be a n× (n + 1) integer matrix of rank n and let β ∈ Cn. We add by
now one condition: all the n × n minors of A are not zero. Using this fact
we can ensure that a generator u of the kernel of A has all its coordinates
different from zero. We denote P ∈ C[∂] the generator of the toric ideal.

Our aim is to calculate the slopes of the D-module HA(β), so we assume
that it is irregular. Then, P is not homogeneous with respect to the usual
grading. We have that P = ∂u+ −∂u−

, where u+ are the positive coordinates
of u and −u− are the negative ones.
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We assume that |u+| �= 0 and |u−| �= 0. Without loss of generality |u+| >
|u−| and we order the variables to have the first k coordinates those different
from zero in u+.

Lemma 2 Let A be an n× (n + 1) integer matrix with all its n× n minors
different from zero. We consider the variables ordered as before. HA(β) has
no slopes with respect to the k first variables.

Proof. We shall prove that HA(β) has no slopes with respect to the hyper-
plane x1 = 0.

Using the condition about the minors we can, taking into account a row
reduced form of A, obtain the operators in HA(β):

Q1 = a1θ2 + b1θ1 − β ′
1, Q2 = a2θ3 + b2θ1 − β ′

2, . . . , Qn = anθn+1 + bnθ1 − β ′
n,

with ai, bi �= 0, for all i and these elements generate Aθt − β. Using the
remark 1, if we want to prove that a given L is not slope it is sufficient to
prove that x1ξ1 ∈ √

grL(HA(β)). Hence we need an operator H ∈ HA(β)
such that σL(H) = xk1

1 ξk2
1 .

Let L be any slope with respect to the hyperplane x1 = 0. We have
the following sequence of elements Si in HA(β), with ordL(Ri) < ordL(P ) =
ordL(Si):

S1 = ∂u1
1 ∂u2−1

2 ∂u3
3 · · · ∂uk

k Q1 − a1x2P

= b1θ1∂
u1
1 ∂u2−1

2 ∂u3
3 · · · ∂uk

k + R1.

S2 = b1θ1∂
u1
1 ∂u2−2

2 ∂u3
3 · · · ∂uk

k Q1 − a1x2S1

= b2
1θ

2
1∂

u1
1 ∂u2−2

2 ∂u3
3 · · · ∂uk

k + R2.
...

Su2 = bu2−1
1 θu2−1

1 ∂u1
1 ∂u3

3 · · · ∂uk
k Q1 − a1x2Su2−1

= bu2
1 θu2

1 ∂u1
1 ∂u3

3 · · · ∂uk
k + Ru2 .

Su2+1 = bu2
1 θu2

1 ∂u1
1 ∂u3−1

3 · · · ∂uk
k Q2 − a2x3Su2

= bu2
1 b2θ

u2+1
1 ∂u1

1 ∂u3−1
3 · · · ∂uk

k + Ru2+1.
...

Su2+u3 = bu2
1 bu3−1

2 θu2+u3−1
1 ∂u1

1 ∂u4
4 · · · ∂uk

k Q2 − a2x3Su2+u3−1

= bu2
1 bu3

2 θu2+u3
1 ∂u1

1 ∂u4
4 · · · ∂uk

k + Ru2+u3 .
...

Su2+···+uk
= bu2

1 · · · buk−1
k−1 θu2+···+uk−1

1 ∂u1
1 Qk−1 − ak−1xkSu2+···+uk−1

= bu2
1 · · · buk

k−1θ
u2+···+uk
1 ∂u1

1 + Ru2+···+uk
.

This finishes the proof. �



460 M. I. Hartillo Hermoso

Theorem 3 Let A be an n× (n+1) integer matrix with all its n×n minors
different from zero. We consider the variables ordered as before. The only
slope of HA(β) with respect to xj = 0, with j > k, is Lj = ujF + (|u+| −
|u−|)V .

Proof. First, we prove that if we have a slope L with respect to xj = 0,
L �= Lj , then L is not slope of HA(β).

Let L′ < Lj be any slope with respect to xj = 0. Then σL′(P ) =
ξu1
1 · · · ξuk

k , and following the proof of lemma 2 we have that ordL′(Ri) <
ordL′(P ) = ordL′(Si) and

σL′(Su2+···+uk
) = cxu2+···+uk

1 ξu1+···+uk
1 .

Then L′ is not a slope of HA(β) with respect to xj = 0.
Let L′′ > Lj be any slope with respect to xj = 0, then σL′′(P ) =

−ξ
uk+1

k+1 · · · ξun+1

n+1 . As before, we can obtain operators in HA(β):

Q′
1 = c1θ1 + d1θj − β ′′

1 , Q′
2 = c2θ2 + d2θj − β ′′

2 , . . . ,

. . . Q′
j−1 = cj−1θj−1 + dj−1θj − β ′′

j−1, Q′
j = cjθj+1 + djθj − β ′′

j , . . . ,

. . . Q′
n = cnθn+1 + dnθj − β ′′

n.

with ci, di �= 0, and we can consider the following sequence of operators S′
i

in HA(β), such that ordL′′(R′
i) < ordL′′(P ) = ordL′′(S′

i):

S′
1 = ∂

uk+1−1
k+1 ∂

uk+2

k+2 · · · ∂un+1

n+1 Q′
k+1 + ck+1xk+1P

= dk+1θj∂
uk+1−1
k+1 ∂

uk+2

k+2 · · · ∂un+1

n+1 + R′
1.

S′
2 = dk+1θj∂

uk+1−2
k+1 ∂

uk+2

k+2 · · · ∂un+1

n+1 Q′
k+1 − ck+1xk+1S

′
1

= d2
k+1θ

2
j∂

uk+1−2
k+1 ∂

uk+2

k+2 · · · ∂un+1

n+1 + R′
2.

...

S′
uk+1

= d
uk+1−1
k+1 θ

uk+1−1
j ∂

uk+2

k+2 · · · ∂un+1

n+1 Q′
k+1 − ck+1xk+1S

′
uk+1−1

= d
uk+1

k+1 θ
uk+1

j ∂
uk+2

k+2 · · · ∂un+1

n+1 + R′
uk+1

.

...

S′
|u−|−uj

= d
uk+1

k+1 · · · duj−1

j−1 d
uj+1

j · · · dun+1−1
n θ

|u−|−uj−1
j ∂

uj

j Q′
n− cnxn+1S

′
|u−|−uj−1

= d
uk+1

k+1 · · · duj−1

j−1 d
uj+1

j · · · dun+1
n θ

|u−|−uj

j ∂
uj

j + R′
|u−|−uj

.

Thus, L′′ is not slope of HA(β) with respect to xj = 0. Then the only
possible slope is Lj .
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Our next idea is similar to one in the work of Castro-Jiménez and
Takayama [3].

Now suppose that Lj is not a slope. Then there is no slope, which
implies that the L-characteristic variety ChL(HA(β)) is invariant for all L =
pF + qVj.

First, we are going to prove that:

(3.1) grF (HA(β)) = 〈σF (P ), grF (Aθt − β)〉.
The right hand side of the above equality is called in [11] the fake initial ideal,
noted finF (HA(β)). We consider as in [11] the following exact sequence of
modules over the algebra grF (D)/grF (IA):

n⊕
i=1

(
grF(D)/grF(IA)

) · ei
d̄1−→ grF (D)/grF(IA)−→ grF(D)/finF (HA(β))−→0

where d̄1(
∑n

i=1 Piei) =
∑n

i=1 PiσF ((Aθt − β)i).

Since σF ((Aθt−β)j)ei−σF ((Aθt−β)i)ej clearly belongs to the kernel of d̄1,
we can extend the exact sequence to the Koszul complex Kβ

• (grF (D/IA)):

· · · d̄2−→ Kβ
1 (grF (D/IA))

d̄1−→ Kβ
0 (grF (D/IA)) −→ 0

where
Kβ

p (grF (D/IA)) =
⊕

1≤i1<···<ip≤n

grF (D/IA)ei1···ip ,

and

d̄p(ei1···ip) =

p∑
r=1

(−1)r−1σF ((Aθt − β)ir)ei1···îr···ip .

We can also define the Koszul complex Kβ
• (D/IA) as:

· · · −→ Kβ
2 (D/IA)

d2−→ Kβ
1 (D/IA)

d1−→ Kβ
0 (D/IA) −→ 0.

where
Kβ

p (D/IA) =
⊕

1≤i1<···<ip≤n

D/IAei1···ip

and

dp(ei1···ip) =

p∑
r=1

(−1)r−1((Aθt − β)ir)ei1···îr···ip .

This complex can be filtered by:

Fq(K
β
p (D/IA)) =

⊕
1≤i1<···<ip≤n

Fq−pD/IAei1···ip .
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Clearly
Kβ

• (grF (D/IA)) = grF (Kβ
• (D/IA)).

Using this filtration it is easy to see that the sequence:

Kβ
1 (grF (D/IA)) −→ Kβ

0 (grF (D/IA)) −→ grF (HA(β)) −→ 0

is exact if H1(K
β
• (grF (D/IA))) = 0.

If this sequence is exact we have proved statement 3.1, so all we need to
prove is H1(K

β
• (grF (D/IA))) = 0, or equivalently that {σF (P ), σF ((Aθt −

β)1), . . . , σF ((Aθt−β)n)} form a regular sequence in the commutative graded
ring grF (D).

It is sufficient to prove that {σF (P ), σF ((Aθt −β)1), . . . , σF ((Aθt −β)n)}
form a regular sequence in the commutative graded ring C(x)[ξ]. Those
elements are homogeneous so if we have that:√

σF (P ), σF ((Aθt − β)1), . . . , σF ((Aθt − β)n)

is the maximal ideal of the graded ring, then they form a regular sequence.
Given A in row-reduced form, as in the proof of lemma 2, it suffices to prove
that

xk1
1 ξk2

1 ∈ 〈σF (P ), σF ((Aθt − β)1), . . . , σF ((Aθt − β)n)〉.
If we consider the elements:

Q′′
1 = σF (Q1) = a1x2ξ2 + b1x1ξ1, Q′′

2 = σF (Q2) = a2x3ξ3 + b2x1ξ1,

. . . , Q′′
n = σF (Qn) = anxnξn+1 + bnxnξ1,

S′′
1 = ξu1

1 ξu2−1
2 ξu3

3 · · · ξuk
k Q′′

1 − a1x2σF (P )

= b1x1ξ
u1+1
1 ξu2−1

2 ξu3
3 · · · ξuk

k .

S′′
2 = b1x1ξ

u1+1
1 ξu2−2

2 ξu3
3 · · · ξuk

k Q′′
1 − a1x2S

′′
1

= b2
1x

2
1ξ

u1+2
1 ξu2−2

2 ξu3
3 · · · ξuk

k .
...

S′′
u2

= bu2−1
1 xu2−1

1 ξu1+u2−1
1 ξu3

3 · · · ξuk
k Q′′

1 − a1x2S
′′
u2−1

= bu2
1 xu2

1 ξu1+u2
1 ξu3

3 · · · ξuk
k .

...

S′′
u2+···+uk

= bu2
1 · · · buk−1

k−1 xu2+···+uk−1
1 ξ

|u+|−1
1 Q′′

k−1 − ak−1xkS
′′
u2+···+uk−1

= bu2
1 · · · buk

k−1x
u2+···+uk
1 ξ

|u+|
1 .
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Then we have that:

grF (HA(β)) = 〈ξu1
1 · · · ξuk

k , a1x2ξ2 + b1x1ξ1, . . . , anxn+1ξn+1 + bnx1ξ1〉.
It is clear that

grF (HA(β)) ⊂ 〈ξ1 · · · ξk, x1ξ1, . . . , xn+1ξn+1〉,
and

〈ξ1 · · · ξk, x1ξ1, . . . , xn+1ξn+1〉 ⊂
√

grF (HA(β)).

So the characteristic variety is

〈ξ1 · · · ξk, x1ξ1, . . . , xn+1ξn+1〉 =
√

grF (HA(β)).

We are supposing that the characteristic variety is invariant, but if we take
L′′ > Lj , then using the operators S′

1, . . . S
′
|u−|−uj

we have that:

〈ξk+1 · · · ξn+1, x1ξ1, . . . , xn+1ξn+1〉 ⊂
√

grL′′(HA(β))

and the component of the characteristic variety

T ∗
(xk+1=···=xn+1=0)C

n+1

is not contained in any of ChL′′
(HA(β)). �

At the begining of this section we added the condition |u+| �= 0 and
|u−| �= 0. If we have |u−| = 0 this means that the generator of the toric
ideal is of the form P = ∂u − 1. We now study this case.

Lemma 4 Let A be an n× (n+1) integer matrix, with all the n×n minors
different from zero and IA = 〈∂u − 1〉. Then, HA(β) has no slopes at the
origin with respect to any xj = 0.

Proof. We shall prove that HA(β) has no slopes with respect to the hyper-
plane x1 = 0.

Using the condition about the minors we can, with a row reduced form
of A, obtain the following operators in HA(β):

Q1 = a1θ2 + b1θ1 − β ′
1, Q2 = a2θ3 + b2θ1 − β ′

2, . . . , Qn = anθn+1 + bnθ1 − β ′
n,

with ai, bi �= 0, for all i and these elements generate Aθt − β. Using the
remark 1, if we want to prove that a given L is not a slope, it is sufficient
to prove that x1ξ1 ∈

√
grL(HA(β)). Hence we need an operator H ∈ HA(β)

such that σL(H) = xk1
1 ξk2

1 .
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Let L be any slope with respect to the hyperplane x1 = 0. We have
the following sequence of elements Si in HA(β), with ordL(Ri) < ordL(P ) =
ordL(Si):

S1 = ∂u1
1 ∂u2−1

2 ∂u3
3 · · · ∂un+1

n+1 Q1 − a1x2P

= b1θ1∂
u1
1 ∂u2−1

2 ∂u3
3 · · · ∂un+1

n+1 + R1.

S2 = b1θ1∂
u1
1 ∂u2−2

2 ∂u3
3 · · · ∂un+1

n+1 Q1 − a1x2S1

= b2
1θ

2
1∂

u1
1 ∂u2−2

2 ∂u3
3 · · · ∂un+1

n+1 + R2.
...

Su2 = bu2−1
1 θu2−1

1 ∂u1
1 ∂u3

3 · · · ∂un+1

n+1 Q1 − a1x2Su2−1

= bu2
1 θu2

1 ∂u1
1 ∂u3

3 · · · ∂un+1

n+1 + Ru2 .
...

Su2+···+un+1 = bu2
1 · · · bun+1−1

n θ
u2+···+un+1−1
1 ∂u1

1 Qn − anxn+1Su2+···+un+1−1

= bu2
1 · · · bun+1

n θ
u2+···+un+1

1 ∂u1
1 + Ru2+···+un+1 .

This finishes the proof. �
In this case the slopes are at infinity, so we must perform the following

change of variables:

x′
1 = − 1

x1

, x′
2 = x2, . . . , x′

n+1 = xn+1,

∂1 = x′2
1 ∂′

1, ∂2 = ∂′
2, . . . , ∂n+1 = ∂′

n+1.

To simplify the notation we change x′
i by xi and we note:

[θ]i = θ(θ + 1) · · · (θ + i − 1).

The new system obtained is given by:

HA(β)′ = 〈xu1
1 [θ1]

u1∂u2
2 · · · ∂un+1

n+1 − 1, a1x2∂2 − b1x1∂1 − β1, . . .

. . . anxn+1∂n+1 − bnx1∂1 − βn〉.

Theorem 5 Let A be an n× (n+1) integer matrix with all its n×n minors
different from zero and IA = 〈∂u − 1〉. If we do the change of coordinates as
before, HA(β)′ has only the slope L1 = u1F + |u|V with respect to x1 = 0.

Proof. First, we prove that if L �= L1, then L is not a slope of HA(β)′.
Let be L′ < L1 any slope with respect to x1 = 0. Then σL′(P ′) =

x2u1
1 ξu1

1 · · · ξun+1

n+1 , we can consider the sequence of operators S′
i in HA(β)′,
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such that ordL′(R′
i) < ordL′(P ′) = ordL′(S′

i):

S′
1 = −xu1

1 [θ1]
u1∂u2−1

2 ∂u3
3 · · · ∂un+1

n+1 Q′
1 + a1x2P

′

= b1x
u1
1 θ1[θ1]

u1∂u2−1
2 ∂u3

3 · · · ∂un+1

n+1 + R′
1.

S′
2 = −b1x

u1
1 θ1[θ1]

u1∂u2−2
2 ∂u3

3 · · · ∂un+1

n+1 Q′
1 + a1x2S

′
1

= b2
1x

u1
1 θ2

1[θ1]
u1∂u2−2

2 ∂u3
3 · · · ∂un+1

n+1 + R′
2.

...

S′
u2

= −bu2−1
1 xu1

1 θu2−1
1 [θ1]

u1∂u3
3 · · · ∂un+1

n+1 Q′
1 + a1x2S

′
u2−1

= bu2
1 xu1

1 θu2
1 [θ1]

u1∂u3
3 · · · ∂un+1

n+1 + R′
u2

.

...

S′
u2+···+un+1

= −bu2
1 · · · bun+1−1

n xu1
1 θ

u2+···+un+1−1
1 [θ1]

u1Q′
n

+ anxn+1S
′
u2+···+un+1−1

= bu2
1 · · · bun+1

n xu1
1 θ

u2+···+un+1

1 [θ1]
u1 + R′

u2+···+un+1
.

Therefore L′ is not a slope.
Let be L′′ > L1 any slope with respect to x1 = 0, then σL′′(P ′) = 1, and

it is clear that it is bihomogenous, so L′′ is not a slope.
The only possible slope is L1. Suppose that L1 is not a slope. Then the

L characteristic variety is invariant for all L = pF + qV . We have that:

grV (HA(β)′) = 1 and
√

grF (HA(β)′) �= 1. �

Remark 2 We have supposed that all the n× n minors of our matrix were
different from zero. If the matrix A has an n × n minor equal to zero, this
means that there exists an i such that HA(β) = 〈xi∂i − βi, HA′(β ′)〉. Where
A′ denotes the matrix obtained from A taking out the i-th row and the i-th
column, and β ′ is the vector β without the i-th element.

We can obtain, finally, a matrix B with all its minors different from zero
such that:

HA(β) = 〈x1∂1 − β1, . . . , xj∂j − βj, HB(β ′′)〉,
after renaming the variables, where β ′′ = (βj+1, . . . , βn+1).

If we take L a slope with respect to xi = 0, with i < j it is easy to see:

grL(HA(β)) = 〈σL(x1∂1 − β1), . . . , σL(xj∂j − βj), grF (HB(β ′′))〉,
and L is not a slope for HA(β).

If we take L a slope with respect to xi = 0, with i > j we have:

grL(HA(β)) = 〈x1ξ1, . . . , xjξj, grL(HB(β ′′))〉,
and L is a slope for HA(β) if and only if L is a slope for HB(β ′′).
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Universidad de Cádiz
11510 Puerto Real (Cádiz), Spain

isabel.hartillo@uca.es

Partially supported by FQM-218, FQM-813, DGESIC BFM2001-3164 and HF2000-0044.


