# Integral Closure of Monomial Ideals on Regular Sequences

### Karlheinz Kiyek and Jürgen Stückrad

#### Abstract

It is well known that the integral closure of a monomial ideal in a polynomial ring in a finite number of indeterminates over a field is a monomial ideal, again. Let R be a noetherian ring, and let  $(x_1, \ldots, x_d)$  be a regular sequence in R which is contained in the Jacobson radical of R. An ideal  $\mathfrak{a}$  of R is called a monomial ideal with respect to  $(x_1, \ldots, x_d)$  if it can be generated by monomials  $x_1^{i_1} \cdots x_d^{i_d}$ . If  $x_1R + \cdots + x_dR$  is a radical ideal of R, then we show that the integral closure of a monomial ideal of R is monomial, again. This result holds, in particular, for a regular local ring if  $(x_1, \ldots, x_d)$  is a regular system of parameters of R.

#### 1. Introduction

Let A be a polynomial ring over a field in a finite number of indeterminates. It is well known that the integral closure  $\overline{\mathfrak{A}}$  of a monomial ideal  $\mathfrak{A}$  of A is a monomial ideal, again:  $\overline{\mathfrak{A}}$  is generated by all monomials m with  $m^l \in \mathfrak{A}^l$  for some  $l \in \mathbb{N}$  [cf. [12], section 6.6, Example 6.6.1]. While studying a particular class of ideals in two-dimensional regular local rings [cf. the example at the end of this paper], the following question arose naturally: Let R be a noetherian ring, and let  $(x_1, \ldots, x_d)$  be a regular sequence in R such that  $\mathfrak{q} := x_1R + \cdots + x_dR$  is contained in the Jacobson radical of R. Let  $\mathfrak{a}$  be an ideal of R that is generated by monomials in  $x_1, \ldots, x_d$ ; such ideals shall be called monomial ideals. Is the integral closure  $\overline{\mathfrak{a}}$  of  $\mathfrak{a}$  a monomial ideal, again?

In this paper the question is answered in the positive under the assumption that  $R/\mathfrak{q}$  is a reduced ring.

2000 Mathematics Subject Classification: Primary 13B22; Secondary 13B25. Keywords: Regular sequences, monomial ideals, integral closure of monomial ideals.

In section 2 we collect some useful results on monomial ideals; in particular, we show that the usual ideal-theoretic operations, applied to monomial ideals, lead again to monomial ideals. It is also shown that for a monomial ideal  $\mathfrak{a}$  the ideal  $\operatorname{gr}(\mathfrak{a})$  in the associated graded ring  $\operatorname{gr}_{\mathfrak{q}}(R)$  which is a polynomial ring over  $R/\mathfrak{q}$  is a monomial ideal.

In section 3 we introduce the notion of a monomial representation of an element of R and we show that, if R is complete, every element of R admits a monomial representation. In section 4 we associate with a monomial ideal  $\mathfrak{a}$  the ideal  $\widetilde{\mathfrak{a}}$  which is generated by all monomials m in R with  $m^l \in \mathfrak{a}^l$  for some  $l \in \mathbb{N}$ . In section 5 we study monomial ideals in a polynomial ring over a reduced ring, and we show that for a monomial ideal  $\mathfrak{A}$  we have  $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$  where  $\overline{\mathfrak{A}}$  denotes the integral closure of  $\mathfrak{A}$ . Let  $\mathfrak{a}$  be a monomial ideal in R. Using the results of section 5 we show in section 6 that  $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$  if R is complete and  $\mathfrak{q}$  is a prime ideal. As a last step we show that this equality holds also if R is not necessarily complete, and if  $R/\mathfrak{q}$  is a reduced ring.

### 2. Monomial Ideals

#### 2.1. Basic Definitions

**Notation 1** Let R be a ring. A sequence  $\mathbf{x} := (x_1, \dots, x_d)$  in R is called a weak regular sequence in R if

(a)  $x_i$  is regular for  $R/(x_1, \ldots, x_{i-1})$  [i.e., the image of  $x_i$  in  $R/(x_1, \ldots, x_{i-1})$  is a non-zero divisor] for every  $i \in \{1, \ldots, d\}$ ,

and it is called a regular sequence in R if, in addition,

(b)  $R \neq \mathbf{x}R$ .

In the sequel, we consider regular sequences  $\mathbf{x}$  in R with the following additional property:

(c) every permutation  $(x_{\pi(1)}, \ldots, x_{\pi(d)})$  of **x** is a regular sequence in R.

Then every subsequence of  $\mathbf{x}$  satisfies (a)-(c).

If R is noetherian, and if a regular sequence  $\mathbf{x}$  in R is contained in the Jacobson radical [i.e., in the intersection of all maximal ideals] of R, then (a) implies (c) [cf. [2], Ch. X, § 9, no. 7, Th. 1 and Cor. 1], and for the ideal  $\mathfrak{q}$  generated by  $x_1, \ldots, x_d$  we have  $\bigcap \mathfrak{q}^p = (0)$  [cf. [3], Ch. III, § 3, no. 3, Prop. 6].

If  $\varphi \colon R \to S$  is a flat homomorphism of rings, and if  $\varphi(\mathbf{x})S \neq S$ , then the sequence  $\varphi(\mathbf{x})$  in S satisfies (a)-(c) [cf. [4], Ch. I, Prop. 1.1.1].

$$\mathbf{x}^{\mathbf{i}} := x_1^{i_1} \cdots x_d^{i_d}$$
.

Since  $\mathbf{x}$  is a regular sequence, we have, for  $\mathbf{i}$ ,  $\mathbf{j} \in \mathbb{N}_0^d$ ,  $\mathbf{x}^{\mathbf{i}} = \mathbf{x}^{\mathbf{j}}$  iff  $\mathbf{i} = \mathbf{j}$ .

- (2) An element  $m \in R$  is called a monomial with respect to  $\mathbf{x}$  if there exists  $\mathbf{i} \in \mathbb{N}_0^d$  with  $m = \mathbf{x}^{\mathbf{i}}$ ;  $\mathbf{i}$  is determined uniquely by m. We call  $\deg(m) := \deg(\mathbf{i})$  the degree of m.
- (3) Let  $\mathbf{x}^{\mathbf{i}} = x_1^{i_1} \cdots x_d^{i_d}$  be a monomial with respect to  $\mathbf{x}$ . The set

$$\text{Supp}(\mathbf{x}^{\mathbf{i}}) := \{ j \mid j \in \{1, \dots, d\}, i_j \neq 0 \}$$

is called the support of  $\mathbf{x}^{\mathbf{i}}$ .

- (4) Let  $M(\mathbf{x})$  be the set of all monomials of R with respect to  $\mathbf{x}$ . Clearly  $M(\mathbf{x})$  is a commutative monoid with cancellation law, and deg:  $M(\mathbf{x}) \to \mathbb{N}_0$  is a surjective homomorphism of monoids.
- (5) An ideal  $\mathfrak{a}$  of R is called monomial with respect to  $\mathbf{x}$  if it is generated by elements in  $M(\mathbf{x})$ . In particular, the zero ideal and R itself are monomial ideals.

**Remark 1** Let  $\mathbf{i} = (i_1, \dots, i_d), \mathbf{j} = (j_1, \dots, j_d) \in \mathbb{N}_0^d$ 

- (1) If  $\mathbf{x}^{\mathbf{i}} \in \mathbf{x}^{\mathbf{j}} R$ , then we have  $i_1 \geqslant j_1, \dots, i_d \geq j_d$  and  $\mathbf{x}^{\mathbf{i}} = \mathbf{x}^{\mathbf{j}} \mathbf{x}^{\mathbf{i} \mathbf{j}}$ . In this case we say that  $\mathbf{x}^{\mathbf{j}}$  divides  $\mathbf{x}^{\mathbf{i}}$ , and we write  $\mathbf{x}^{\mathbf{j}} \mid \mathbf{x}^{\mathbf{i}}$ .
- (2) We define

$$k_{\tau} := \min\{i_{\tau}, j_{\tau}\}, \ l_{\tau} := \max\{i_{\tau}, j_{\tau}\} \text{ for } \tau \in \{1, \dots, d\}$$

and

$$\mathbf{k} := (k_1, \dots, k_d), \ \mathbf{l} := (l_1, \dots, l_d);$$

then

$$gcd(\mathbf{x}^i, \mathbf{x}^j) := \mathbf{x}^k, \ lcm(\mathbf{x}^i, \mathbf{x}^j) := \mathbf{x}^l$$

is the greatest common divisor resp. the least common multiple of  $\mathbf{x}^{\mathbf{i}}$  and  $\mathbf{x}^{\mathbf{j}}$ . In particular, for monomials m, n we have  $mR : nR = (\text{lcm}(m,n)/n)R = (m/\gcd(m,n))R$ .

**Notation 2** For the rest of this paper let R be a noetherian ring, and let  $\mathbf{x} = (x_1, \dots, x_d)$  be a fixed sequence in R which satisfies (a)-(c) above; all monomials of R are monomials with respect to  $\mathbf{x}$ , and all monomial ideals of R are monomial ideals with respect to  $\mathbf{x}$ . The set of all monomials of R shall be denoted by M.

**Definition 1** Let U be a subset of  $\{1, \ldots, d\}$ ; we define

$$\mathfrak{q}_U := \sum_{i \in U} x_i R, \ \mathcal{P}_U := \mathrm{Ass}(R/\mathfrak{q}_U).$$

If  $U = \{1, \ldots, d\}$ , then we write

$$\mathfrak{q} := \mathfrak{q}_U = \sum_{i=1}^d x_i R, \ \mathcal{P} := \mathrm{Ass}(R/\mathfrak{q}).$$

**Remark 2** (1) Note that  $Ass(R) = \mathcal{P}_{\emptyset}$ .

(2) Let  $U \subset \{1, \ldots, d\}$ ,  $i \in \{1, \ldots, d\} \setminus U$ . Then  $x_i$  is regular for  $R/\mathfrak{q}_U$ , hence, in particular,  $x_i \notin \mathfrak{p}$  for every  $\mathfrak{p} \in \mathcal{P}_U$ .

**Lemma 1** Let  $\mathfrak{a}$  be a monomial ideal of R, and let  $\{m_1, \ldots, m_r\}$  be a system of generators of  $\mathfrak a$  consisting of monomials. Then we have

$$\operatorname{Ass}(R/\mathfrak{a}) \subset \bigcup_{U \subset \operatorname{Supp}(m_1) \cup \cdots \cup \operatorname{Supp}(m_r)} \mathcal{P}_U.$$

**Proof:** There is nothing to prove if  $\mathfrak{a} = (0)$ . We consider the case that  $\mathfrak{a} \neq (0)$ . We define  $V := \operatorname{Supp}(m_1) \cup \cdots \cup \operatorname{Supp}(m_r)$ . We prove the assertion by induction on  $s := \deg(m_1) + \cdots + \deg(m_r) - r$ . If s = 0, then we have  $\mathfrak{a} = \mathfrak{q}_V$ ; in this case the assertion holds. Let s > 0, and assume that the assertion holds for all monomial ideals of R which admit a system of monomial generators  $m'_1, \ldots, m'_{r'}$  with  $\deg(m'_1) + \cdots + \deg(m'_{r'}) - r' < s$ . Now let  $\mathfrak{a}$  be a monomial ideal of R having a system of monomial generators  $m_1, \ldots, m_r$  with  $\deg(m_1) + \cdots + \deg(m_r) - r = s$ . Then there exists  $j \in$  $\{1,\ldots,r\}$  with  $\deg(m_i)\geq 2$ ; by relabelling, we may assume that j=1.

Let  $i \in \text{Supp}(m_1)$ ; let us label the monomials  $m_1, \ldots, m_r$  in such a way that  $i \in \text{Supp}(m_j)$  for  $j \in \{1, \dots, t\}$  and  $i \notin \text{Supp}(m_j)$  for  $j \in \{t+1, \dots, r\}$ ; here we have  $t \in \{1, ..., r\}$ . For  $j \in \{1, ..., t\}$  we have  $m_j = x_i m'_j$  where  $m'_1, \ldots, m'_t$  are monomials. We put

$$\mathfrak{a}_1 := m_1' R + \dots + m_t' R, \ \mathfrak{a}_2 = m_{t+1} R + \dots + m_r R, \ \mathfrak{b} := \mathfrak{a}_1 + \mathfrak{a}_2,$$

$$V_1 := \bigcup_{j=1}^t \operatorname{Supp}(m_j'), \quad V_2 := \bigcup_{j=t+1}^r \operatorname{Supp}(m_j).$$

If  $\mathfrak{a}_2 = (0)$ , then we have  $\mathfrak{a}: x_i = \mathfrak{b}$ . This is also true if  $\mathfrak{a}_2 \neq (0)$ . In fact, by our induction assumption we get  $\mathrm{Ass}(R/\mathfrak{a}_2) \subset \bigcup_{U \subset V_2} \mathcal{P}_U$ . Using  $i \notin V_2$ , we see that  $V_2 \subset \{1,\ldots,d\} \setminus \{i\}$ . From Remark 2 we get the following: If  $U \subset V_2$ , then  $x_i \notin \mathfrak{p}$  for every prime ideal  $\mathfrak{p} \in \mathcal{P}_U$ , hence  $x_i \notin \mathfrak{p}$  for every  $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{a}_2)$ , hence  $x_i$  is regular for  $R/\mathfrak{a}_2$ . This implies that  $\mathfrak{a}: x_i = \mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{b}$  since  $\mathfrak{a} = x_i \mathfrak{a}_1 + \mathfrak{a}_2$ .

Therefore the sequence

$$0 \longrightarrow R/\mathfrak{b} \xrightarrow{x_i} R/\mathfrak{a} \longrightarrow R/(\mathfrak{a} + x_i R) \longrightarrow 0$$

is exact; note that

$$\operatorname{Ass}(R/\mathfrak{a}) \subset \operatorname{Ass}(R/\mathfrak{b}) \cup \operatorname{Ass}(R/(\mathfrak{a} + x_i R)). \tag{*}$$

We have  $\mathfrak{a} + x_i R = x_i R + m_{t+1} R + \cdots + m_r R$ . Applying our induction assumption to  $\mathfrak{b}$  and to  $\mathfrak{a} + x_i R$  we obtain

$$\operatorname{Ass}(R/\mathfrak{b}) \subset \bigcup_{U \subset V_1 \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U,$$

$$\operatorname{Ass}(R/(\mathfrak{a}+x_iR)) \subset \bigcup_{U \subset \{i\} \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U.$$

Therefore we get, using (\*), that  $\operatorname{Ass}(R/\mathfrak{a}) \subset \bigcup_{U \subset V} \mathcal{P}_U$ .

Corollary 1 If  $i \notin \bigcup_{j=1}^r \operatorname{Supp}(m_j)$ , then we have  $\mathfrak{a} : x_i = \mathfrak{a}$ .

**Proof:** The element  $x_i$  is not contained in any of the prime ideals in  $Ass(R/\mathfrak{a})$  [cf. Lemma 1].

#### 2.2. Operations on Monomial Ideals

**Lemma 2** Let  $\mathfrak{a} = m_1R + \cdots + m_rR$  with  $m_1, \ldots, m_r \in M$  be a monomial ideal in R. For every  $m \in M$  the ideal  $\mathfrak{a} : m$  is monomial, again. More precisely, we have

$$\mathfrak{a}: m = \sum_{j=1}^{r} \frac{\operatorname{lcm}(m_j, m)}{m} R.$$

**Proof:** We may assume that  $\mathfrak{a} \neq (0)$ . We prove the assertion by induction on  $\deg(m)$ . The case  $\deg(m) = 0$ , i.e., m = 1, is clear. Let  $\deg(m) > 0$ ; then there exists  $i \in \{1, \ldots, d\}$  with  $x_i \mid m$ , and we write  $m = x_i m'$  with  $m' \in M$ . As in the proof of Lemma 1 we label the monomials  $m_1, \ldots, m_r$  in such a way that  $x_i \mid m_j$  for  $j \in \{1, \ldots, t\}$ ,  $x_i \nmid m_j$  for  $j \in \{t+1, \ldots, r\}$ 

with  $t \in \{0, ..., r\}$ , and we write, for  $j \in \{1, ..., t\}$ ,  $m_j = x_i m'_j$  with monomials  $m'_1, ..., m'_j$ . Then we have, as above,

$$\mathfrak{a}: m = (\mathfrak{a}: x_i): m' = \left(\sum_{j=1}^t m'_j R + \sum_{j=t+1}^r m_j R\right): m'$$

$$= \sum_{j=1}^t \frac{\text{lcm}(m'_j, m')}{m'} R + \sum_{j=t+1}^r \frac{\text{lcm}(m_j, m')}{m'} R = \sum_{j=1}^r \frac{\text{lcm}(m_j, m)}{m} R.$$

Corollary 2 Let  $\mathfrak{a} = m_1R + \cdots + m_rR$  with  $m_1, \ldots, m_r \in M$  be a monomial ideal in R. Let  $m \in M$ ; then we have

$$\mathfrak{a} \cap mR = \sum_{j=1}^{r} \operatorname{lcm}(m_j, m)R.$$

**Proof:** We have  $\mathfrak{a} \cap mR = (\mathfrak{a} : m)m$ .

**Lemma 3** Let  $\mathfrak{a} = m_1 R + \cdots + m_r R$ ,  $\mathfrak{b} = n_1 R + \cdots + n_s R$  with  $m_1, \ldots, n_s \in M$  be monomial ideals in R. Then  $\mathfrak{a} \cap \mathfrak{b}$  is a monomial ideal; more precisely, we have

$$\mathfrak{a} \cap \mathfrak{b} = \sum_{i=1}^{r} \sum_{j=1}^{s} \operatorname{lcm}(m_i, n_j) R. \tag{*}$$

**Proof:** It is clear that the right-hand side of (\*) is contained in the left-hand side. We prove that the left-hand side of (\*) is contained in the right hand side by induction on s. For s=0 the assertion is clear, and for s=1 the assertion follows from Cor. 2. Now we assume that  $s\geq 2$ , and we define  $\mathfrak{b}'=n_1R+\cdots+n_{s-1}R$ . Let  $z\in\mathfrak{a}\cap\mathfrak{b}$ . We write  $z=a_1m_1+\cdots+a_rm_r=b_1n_1+\cdots+b_sn_s$  with  $a_1,\ldots,b_s\in R$ . Since  $b_sn_s=a_1m_1+\cdots+a_rm_r-(b_1n_1+\cdots+b_{s-1}n_{s-1})$ , we have  $b_sn_s\in(\mathfrak{a}+\mathfrak{b}')\cap n_sR$ , hence we can write [cf. Cor. 2]

$$b_s n_s = \sum_{i=1}^r c_i \operatorname{lcm}(m_i, n_s) + \sum_{j=1}^{s-1} d_j \operatorname{lcm}(n_j, n_s)$$
 with  $c_1, \dots, d_{s-1} \in R$ .

We define

$$w := \sum_{j=1}^{s-1} (b_j n_j + d_j \operatorname{lcm}(n_j, n_s)).$$

Then we have  $w \in \mathfrak{b}'$ , and since  $w = z - (c_1 \text{lcm}(m_1, n_s) + \cdots + c_r \text{lcm}(m_r, n_s)) \in \mathfrak{a}$ , we have

$$w \in \mathfrak{a} \cap \mathfrak{b}' = \sum_{i=1}^r \sum_{j=1}^{s-1} \operatorname{lcm}(m_i, n_j) R$$

by our induction assumption. Then we get

$$z = w + \sum_{i=1}^{r} c_i \text{lcm}(m_i, n_s) \in \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R,$$

and therefore the left-hand side of (\*) lies in the right hand side.

Collection our results, we have

**Proposition 1** Let  $\mathfrak{a}$ ,  $\mathfrak{b}$  be monomial ideals in R. Then  $\mathfrak{a} \cap \mathfrak{b}$ ,  $\mathfrak{a} \cdot \mathfrak{b}$ ,  $\mathfrak{a} : \mathfrak{b}$  are monomial ideals, again. More precisely, if  $\mathfrak{a} = m_1 R + \cdots + m_r R$  and  $\mathfrak{b} = n_1 R + \cdots + n_s R$  with monomials  $m_1, \ldots, n_s \in M$ , then we have

(2.1) 
$$\mathfrak{a} \cap \mathfrak{b} = \sum_{i=1}^{r} \sum_{j=1}^{s} \operatorname{lcm}(m_i, n_j) R,$$

(2.2) 
$$\mathfrak{a}:\mathfrak{b}=\bigcap_{j=1}^{s}\sum_{i=1}^{r}\frac{\mathrm{lcm}(m_{i},n_{j})}{n_{j}}R.$$

If  $\mathfrak{c}$  is another monomial ideal, then we have

$$(\mathfrak{a}+\mathfrak{b})\cap\mathfrak{c}=(\mathfrak{a}\cap\mathfrak{c})+(\mathfrak{b}\cap\mathfrak{c}).$$

**Proof:** (2.3) follows from (2.1), and (2.2) is a consequence of Lemma 2 since

$$\mathfrak{a}:\mathfrak{b}=\bigcap_{j=1}^s(\mathfrak{a}:n_j).$$

Corollary 3 Let  $\mathfrak{a} = m_1 R + \cdots + m_r R$  with  $m_1, \ldots, m_r \in M$  be a monomial ideal in R, and let  $m \in M$ . Then we have  $m \in \mathfrak{a}$  iff  $m_i \mid m$  for some  $i \in \{1, \ldots, r\}$ .

**Proof:** We have  $m \in \mathfrak{a}$  iff

$$1 \in \mathfrak{a} : m = (\operatorname{lcm}(m_1, m)/m)R + \cdots + (\operatorname{lcm}(m_r, m)/m)R$$

hence iff  $lcm(m_i, m)/m = 1$  for some  $i \in \{1, ..., r\}$ , and this is the case iff  $m_i \mid m$  for some  $i \in \{1, ..., r\}$ .

**Corollary 4** Let  $\mathfrak{a}$  be a monomial ideal in R, and let  $m_1, \ldots, m_r, n_1, \ldots, n_s$  be monomials with

$$\mathfrak{a} = \sum_{i=1}^{r} m_i R = \sum_{j=1}^{s} n_j R.$$

- (1) We assume that  $m_i \nmid m_k$  for all  $i, k \in \{1, ..., r\}$  with  $i \neq k$ . Then we have  $\{m_1, ..., m_r\} \subset \{n_1, ..., n_s\}$ .
- (2) We assume, furthermore, that  $n_j \nmid n_l$  for all  $j, l \in \{1, ..., s\}$  with  $j \neq l$ . Then we have r = s and  $\{m_1, ..., m_r\} = \{n_1, ..., n_s\}$ .

**Proof:** (1) Note that  $\#\{m_1,\ldots,m_r\}=r$ . Let  $i\in\{1,\ldots,r\}$ . Then, by Cor. 3, there exist  $j\in\{1,\ldots,s\}$  and  $k\in\{1,\ldots,r\}$  with  $m_i\mid n_j$  and  $n_j\mid m_k$ , hence we have  $m_i\mid m_k$ . Therefore we have i=k and  $m_i=n_j\in\{n_1,\ldots,n_s\}$ . This implies that  $\{m_1,\ldots,m_r\}\subset\{n_1,\ldots,n_s\}$ .

**Remark 3** The result of Cor. 4 implies the following: Every monomial ideal of R admits a uniquely determined minimal set of monomial generators where "minimal" can be understood as "minimal with respect to number" or as "irredundant". We denote this number by  $\nu(\mathfrak{a})$ . But we can even say more:

Corollary 5 Let  $\mathfrak{a}$  be a monomial ideal in R, let  $r := \nu(\mathfrak{a})$ , and let  $\{m_1, \ldots, m_r\} \subset M$  be a minimal set of monomial generators of  $\mathfrak{a}$ . Then we have

$$\mu_{R_{\mathfrak{p}}}(\mathfrak{a}R_{\mathfrak{p}}) = r \quad \text{for all } \mathfrak{p} \in V((x_1, \dots, x_r)).$$

Moreover, every set of generators which generates  $\mathfrak{a}$  contains at least r elements.

(In a local ring A we denote by  $\mu_A(M)$  the minimal number of generators of a finitely generated A-module M.)

**Proof:** The second statement follows from the first one, and the first statement is obtained from Cor. 4 by replacing R by  $R_{\mathfrak{p}}$ .

#### 2.3. The Associated Graded Ring

Remark 4 The associated graded ring

$$\operatorname{gr}(R) := \operatorname{gr}_{\mathfrak{q}}(R) = \bigoplus_{p \geq 0} \mathfrak{q}^p / \mathfrak{q}^{p+1} = R/\mathfrak{q}[\,\overline{x}_1, \dots, \overline{x}_d\,]$$

is a polynomial ring over  $R/\mathfrak{q}$  in  $\overline{x}_1 := x_1 \mod \mathfrak{q}^2, \ldots, \overline{x}_d := x_d \mod \mathfrak{q}^2$  [cf. [2], Ch. X, § 9, no. 7, Th. 1]. Notice that the sequence  $(\overline{x}_1, \ldots, \overline{x}_d)$  is a sequence in gr(R) which satisfies (a)-(c) above.

- (1) Let  $\overline{M} = \{\overline{\mathbf{x}}^{\mathbf{i}} := \overline{x}_1^{i_1} \cdots \overline{x}_d^{i_d} \mid \mathbf{i} \in \mathbb{N}_0^d\}$  be the set of monomials of the polynomial ring  $R/\mathfrak{q}[\overline{x}_1, \dots, \overline{x}_d]$ ; the map  $\mathbf{x}^{\mathbf{i}} \mapsto \overline{\mathbf{x}}^{\mathbf{i}} : M \to \overline{M}$  is an isomorphism of monoids. An ideal  $\mathfrak{A}$  of  $\operatorname{gr}(R)$  is called a monomial ideal if it can be generated by elements in  $\overline{M}$ ; such an ideal is a homogeneous ideal of the graded ring  $\operatorname{gr}(R)$ . Every non-zero element  $z \in \operatorname{gr}(R)$  has a unique representation  $z = \overline{e}_1 \overline{m}_1 + \cdots + \overline{e}_r \overline{m}_r$  with pairwise distinct monomials  $\overline{m}_1, \dots, \overline{m}_r \in \overline{M}$  and non-zero elements  $\overline{e}_1, \dots, \overline{e}_r \in R/\mathfrak{q}$ ; we call this the monomial representation of z.
- (2) For every  $z \in R$  with  $z \notin \bigcap \mathfrak{q}^p$  we define the order  $\operatorname{ord}(z)$  to be the largest integer p with  $z \in \mathfrak{q}^p$ . Let  $p := \operatorname{ord}(z)$ ; then we define the initial form of z as  $\operatorname{In}(z) := z \mod \mathfrak{q}^{p+1} \in \operatorname{gr}(R)_p$ ; note that  $\operatorname{In}(z)$  is a homogeneous nonzero polynomial of degree p. In particular, for a monomial  $m \in M$   $\operatorname{ord}(m)$  is defined, and we have  $\operatorname{ord}(m) = \deg(m)$  and  $\operatorname{In}(m) = \overline{m}$ .
  - (3) For every ideal  $\mathfrak{a}$  of R we define

$$\operatorname{gr}(\mathfrak{a}) := \bigoplus_{p \geq 0} (\mathfrak{a} \cap \mathfrak{q}^p + \mathfrak{q}^{p+1})/\mathfrak{q}^{p+1} \subset \operatorname{gr}(R);$$

 $\operatorname{gr}(\mathfrak{a})$  is a homogeneous ideal in  $\operatorname{gr}(R)$ . If  $\mathfrak{b}$  is another ideal in R, then we have  $\operatorname{gr}(\mathfrak{a})\operatorname{gr}(\mathfrak{b})\subset\operatorname{gr}(\mathfrak{a}\mathfrak{b})$ .

(4) Let  $\mathfrak{a} = m_1 R + \cdots + m_r R$  with  $m_1, \dots, m_r \in M$  be a monomial ideal in R. Then we have  $\operatorname{gr}(\mathfrak{a}) = \overline{m}_1 \operatorname{gr}(R) + \cdots + \overline{m}_r \operatorname{gr}(R)$ , hence, in particular,  $\operatorname{gr}(\mathfrak{a})$  is a monomial ideal in  $\operatorname{gr}(R)$  [note that, for  $p \in \mathbb{N}_0$ ,  $\mathfrak{a} \cap \mathfrak{q}^p$  is generated by the elements  $m_{ij} := \operatorname{lcm}(m_i, n_j)$  where  $n_j \in M$  is of degree p by Lemma 3, and that  $m_{ij} \in \mathfrak{q}^{p+1}$  if  $\operatorname{deg}(m_{ij}) > p$ ]. In particular, for monomial ideals  $\mathfrak{a}$ ,  $\mathfrak{b}$  in R we have  $\operatorname{gr}(\mathfrak{a}\mathfrak{b}) = \operatorname{gr}(\mathfrak{a})\operatorname{gr}(\mathfrak{b})$  and  $\operatorname{gr}(\mathfrak{a}^i) = (\operatorname{gr}(\mathfrak{a}))^i$  for every  $i \in \mathbb{N}$ .

Remark 5 Now we assume that  $\mathfrak{q}$  is a prime ideal of R which is contained in the Jacobson radical of R and we equip R with the  $\mathfrak{q}$ -adic topology. Then  $\bigcap \mathfrak{q}^p = (0)$  [cf. [3], Ch. III, § 3, no. 3, Prop. 6], gr(R) is a domain, hence R is a domain, also, and the order function is a valuation of the quotient field of R [cf. [13], vol. II, Ch. VIII, § 1, Th. 1]. Moreover, all the ideals  $\mathfrak{q}_U$  for every  $U \subset \{1,\ldots,d\}$  are prime ideals as is easily seen by considering the sequence  $(x_i \mod \mathfrak{q}_U)_{i\in\{1,\ldots,d\}\setminus U}$  in  $R/\mathfrak{q}_U$ . Therefore all the associated ideals of a monomial ideal  $\mathfrak{a}$  of R are of the form  $\mathfrak{q}_U$  for some  $U \subset \{1,\ldots,d\}$  [cf. Lemma 1], and therefore, by considering a primary representation of  $\mathfrak{a}$ , we get: if  $em \in \mathfrak{a}$  with  $e \in R \setminus \mathfrak{q}$  and  $m \in M$ , then we have  $m \in \mathfrak{a}$ .

Let  $\hat{R}$  be the  $\mathfrak{q}$ -adic completion of R. Then  $\mathbf{x}$  is a sequence in  $\hat{R}$  which satisfies (a)-(c),  $\hat{\mathfrak{q}} = \mathfrak{q}\hat{R}$  is a prime ideal in  $\hat{R}$ , and  $\hat{R}$  is a faithfully flat R-module [cf. [3], Ch. III, § 3, no. 3, Prop. 6].

## 3. Monomial Representations

**Assumption 1** In this section we assume that  $\mathfrak{q}$  is a prime ideal of R which is contained in the Jacobson radical of R.

**Notation 3** Let  $w \in R$  be different from 0. Then  $\operatorname{In}(w) \in \operatorname{gr}(R)$  is a homogeneous polynomial of degree  $\operatorname{ord}(w)$ ; therefore there exist uniquely determined and pairwise distinct monomials  $m_1, \ldots, m_r \in M$  having degree  $\operatorname{ord}(w)$  and elements  $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$  such that  $\operatorname{In}(w) = \operatorname{In}(e_1 m_1 + \cdots + e_r m_r)$ ; we define the set of terms of w by

$$Tm(w) := \{m_1, \dots, m_r\}.$$

For w = 0 we put In(w) = 0 and  $Tm(w) = \emptyset$ .

**Definition 2** We say that  $w \in R$ ,  $w \neq 0$ , admits a monomial representation (with respect to  $\mathbf{x}$ ), if there exist monomials  $m_1, \ldots, m_r \in M$  and elements  $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$  such that

$$w = e_1 m_1 + \dots + e_r m_r \text{ and } \nu(m_1 R + \dots + m_r R) = r.$$
 (\*)

In (\*) we have  $m_i \nmid m_j$  for all  $i, j \in \{1, ..., r\}$  with  $i \neq j$ ; in particular, the monomials  $m_1, ..., m_r$  are pairwise distinct. For every nonempty subset  $U \subset \{1, ..., r\}$  clearly  $\sum_{i \in U} e_i m_i =: z$  is a monomial representation of z.

**Lemma 4** Let  $w \in R \setminus \{0\}$ . If w admits a monomial representation  $w = e_1m_1 + \cdots + e_rm_r$ , then we have

$$\operatorname{In}(w) = \sum_{\substack{i=1\\ \deg(m_i) = \operatorname{ord}(w)}}^{r} \operatorname{In}(e_i) \operatorname{In}(m_i),$$
$$\operatorname{ord}(w) = \min\{\deg(m_i) \mid i \in \{1, \dots, r\}\},$$
$$\operatorname{Tm}(w) = \{m_i \mid i \in \{1, \dots, r\}, \deg(m_i) = \operatorname{ord}(w)\}.$$

**Proof:** Let  $s := \min\{\deg(m_i) \mid i \in \{1, ..., r\}\}$ . Then

$$\operatorname{In}\left(\sum_{\substack{i=1\\\deg(m_i)=s}}^r e_i m_i\right) = \sum_{\substack{i=1\\\deg(m_i)=s}}^r \operatorname{In}(e_i) \operatorname{In}(m_i),$$

and since  $In(e_i) \neq 0$  for  $i \in \{1, ..., r\}$ , we obtain

$$\operatorname{ord}\left(\sum_{\substack{i=1\\\deg(m_i)=s}}^r e_i m_i\right) = s,$$

hence  $\operatorname{ord}(w) = s$ . Clearly we have

$$\operatorname{In}\left(\sum_{i=1}^{r} e_{i} m_{i}\right) = \operatorname{In}\left(\sum_{\substack{i=1\\ \deg(m_{i})=s}}^{r} e_{i} m_{i}\right) = \operatorname{In}(w).$$

**Proposition 2** Let R be complete with respect to the  $\mathfrak{q}$ -adic topology. Every  $w \in R$ ,  $w \neq 0$ , admits a monomial representation.

**Proof:** (1) Let  $w \in R$ ,  $w \neq 0$ . Let  $Tm(w) = \{m_1, \ldots, m_r\}$ . There exist elements  $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$  such that

$$In(w) = In(e_1m_1 + \cdots + e_rm_r);$$

let us put  $\iota(w) := e_1 m_1 + \dots + e_r m_r$ . Then we have  $\operatorname{ord}(w) = \operatorname{ord}(\iota(w))$  and  $\operatorname{ord}(w - \iota(w)) > \operatorname{ord}(w)$ . If w = 0, then we put  $\iota(w) = 0$ .

(2) Let  $w \in R$ ,  $w \neq 0$ . We define a sequence  $(w_p)_{p \in \mathbb{N}_0}$  in R: Let  $w_0 := w$ ; if  $p \in \mathbb{N}_0$ , and if  $w_p$  is defined, then we define  $w_{p+1} := w_p - \iota(w_p)$ .

Note the following: If  $w_p = 0$  for one  $p \in \mathbb{N}_0$ , then  $w_q = 0$  for every  $q \in \mathbb{N}_0$  with  $q \geq p$ , and if  $w_p \neq 0$  for one  $p \in \mathbb{N}_0$ , then the elements  $w_0, \ldots, w_{p-1}$  are different from 0, and we have

$$\operatorname{ord}(w) = \operatorname{ord}(w_0) < \operatorname{ord}(w_1) < \cdots < \operatorname{ord}(w_p);$$

in particular, we have  $\operatorname{ord}(w_p) \geq p$ .

For every  $p \in \mathbb{N}_0$  let  $\mathfrak{a}_p$  be that monomial ideal of R which is generated by the monomials in  $\mathrm{Tm}(w_0), \ldots, \mathrm{Tm}(w_p)$ . Then  $(\mathfrak{a}_p)_{p \in \mathbb{N}_0}$  is an increasing sequence of ideals in R, and therefore it becomes stationary, i.e., there exists  $q \in \mathbb{N}_0$  with  $\mathfrak{a}_q = \mathfrak{a}_{q+1} = \cdots =: \mathfrak{a}$ . We can write  $\mathfrak{a} = m_1 R + \cdots + m_r R$  where  $m_1, \ldots, m_r \in M$  and  $r := \nu(\mathfrak{a})$ .

(3) We have

$$w = w_{p+1} + \sum_{j=0}^{p} \iota(w_j)$$
 for every  $p \in \mathbb{N}_0$ ;

note that  $w_{p+1} = 0$  or  $\operatorname{ord}(w_{p+1}) \ge p+1$ , hence  $w_{p+1} \in \mathfrak{q}^{p+1}$ .

Let  $j \in \mathbb{N}_0$  with  $w_i \neq 0$ . Then we can write  $\iota(w_i)$  as a sum

$$\iota(w_j) = \sum_{i=1}^r a_{ji} m_i$$

where the elements  $a_{ji} \in R$  for  $i \in \{1, ..., r\}$  satisfy the following condition: If  $\operatorname{ord}(w_j) < \operatorname{deg}(m_i)$ , then  $a_{ji} = 0$ , and if  $\operatorname{ord}(w_j) \ge \operatorname{deg}(m_i)$  and  $a_{ji} \ne 0$ , then  $a_{ji}$  is a linear combination of monomials of degree  $\operatorname{ord}(w_j) - \operatorname{deg}(m_i)$  with coefficients which lie in  $R \setminus \mathfrak{q}$  [note that the monomials in  $\operatorname{Tm}(w_j)$  lie in  $\mathfrak{a}$ ]. For  $p \in \mathbb{N}_0$  we have

$$\sum_{j=0}^{p} \iota(w_j) = \sum_{i=1}^{r} e_{pi} m_i$$

with

$$e_{pi} := \sum_{j=0}^{p} a_{ji}$$
 for every  $i \in \{1, \dots, r\}$ .

Let  $i \in \{1, ..., r\}$ . There exists a unique  $j_i \in \{0, ..., q\}$  with  $\operatorname{ord}(w_{j_i}) = \operatorname{deg}(m_i)$  [cf. (2) and note that  $\{m_1, ..., m_r\}$  is a minimal system of generators of  $\mathfrak{a}$ ].

We consider any integer  $p \geq q$ . Then we have  $a_{ji} = 0$  for  $j \in \{0, \ldots, j_i - 1\}$ ,  $a_{j_i i} \in R \setminus \mathfrak{q}$ , and  $a_{j i} \in \mathfrak{q}^{j - \deg(m_i)}$  for  $j \in \{j_i + 1, \ldots, p\}$ . In particular,  $e_{p i} \in R \setminus \mathfrak{q}$ . Furthermore, we have

$$e_{p+1,i} - e_{pi} = a_{p+1,i} \in \mathfrak{q}^{p+1-\deg(m_i)};$$

therefore, the sequence  $(e_{pi})_{p\geq 0}$  is a Cauchy sequence in  $R\setminus \mathfrak{q}$ . Since  $\mathfrak{q}$  is an open ideal in the  $\mathfrak{q}$ -adic topology, we have

$$e_i := \lim_{p \to \infty} e_{pi} \in R \setminus \mathfrak{q}.$$

From

$$\sum_{i=1}^{r} e_i m_i = \sum_{i=1}^{r} (\lim_{p \to \infty} e_{pi}) m_i = \lim_{p \to \infty} \left( \sum_{i=1}^{r} e_{pi} m_i \right)$$
$$= \lim_{p \to \infty} \left( \sum_{j=0}^{p} \iota(w_j) \right) = \lim_{p \to \infty} (w - w_{p+1})$$

and  $w_{p+1} \in \mathfrak{q}^{p+1}$  for every  $p \in \mathbb{N}_0$  we obtain

$$w = \sum_{i=1}^{r} e_i m_i.$$

**Proposition 3** Let  $\mathfrak{a} \neq (0)$  be an ideal in R. The following statements are equivalent:

- (1) a is a monomial ideal.
- (2) For every  $w \in \mathfrak{a}$ ,  $w \neq 0$ , we have  $Tm(w) \subset \mathfrak{a}$ .

Now we assume, in addition, that R is complete in the  $\mathfrak{q}$ -adic topology. Then the following statements are equivalent with (1) and (2):

- (3) Every  $w \in \mathfrak{a}$ ,  $w \neq 0$ , admits a monomial representation  $w = e_1 m_1 + \cdots + e_r m_r$  with  $m_1, \ldots, m_r \in \mathfrak{a}$ .
- (4) Let  $w \in \mathfrak{a}$ ,  $w \neq 0$ , and let  $w = e_1 m_1 + \cdots + e_r m_r$  be a monomial representation of w, then  $m_1, \ldots, m_r \in \mathfrak{a}$ .

**Proof:** (1)  $\Rightarrow$  (2): Let  $w \in \mathfrak{a}$ ,  $w \neq 0$ , and let  $\operatorname{Tm}(w) = \{m_1, \dots, m_r\}$ ; let  $s := \operatorname{ord}(w)$ , hence we have  $\operatorname{deg}(m_1) = \dots = \operatorname{deg}(m_r) = s$  [cf. Lemma 4]. There exist elements  $e_1, \dots, e_r \in R \setminus \mathfrak{q}$  with  $\operatorname{ord}(w - (e_1m_1 + \dots + e_rm_r)) > s$ . Let  $i \in \{1, \dots, r\}$ , and define

$$\mathfrak{b}_i := \mathfrak{a} + m_1 R + \dots + m_{i-1} R + m_{i+1} R + \dots + m_r R + \mathfrak{q}^{s+1};$$

 $\mathfrak{b}_i$  is a monomial ideal of R. Note that  $e_i m_i \in \mathfrak{b}_i$ , and therefore we have  $m_i \in \mathfrak{b}_i$  [cf. Remark 5]. For no monomial  $m \in \mathfrak{q}^{s+1}$  we have  $m \mid m_i$  [since  $\deg(m_i) = s < \deg(m)$ ], and we have  $m_j \nmid m_i$  for  $j \in \{1, \ldots, r\}, j \neq i$ . Therefore, by Cor. 3, there exists a monomial  $m \in \mathfrak{a}$  with  $m \mid m_i$ , hence we have  $m_i \in \mathfrak{a}$ , and therefore we have shown that  $\mathrm{Tm}(w) \subset \mathfrak{a}$ .

(2)  $\Rightarrow$  (1): Suppose that  $\mathfrak{a}$  is not a monomial ideal. This means, in particular, that  $\mathfrak{a} \neq R$ . Let  $\mathfrak{a}'$  be the monomial ideal which is generated by all the monomials which lie in  $\mathfrak{a}$ ; then we have  $\mathfrak{a}' \subsetneq \mathfrak{a}$ . By assumption we have  $\mathrm{Tm}(w) \subset \mathfrak{a}'$  for every  $w \in \mathfrak{a}$ ,  $w \neq 0$ . The prime ideals in  $\mathrm{Ass}(R/\mathfrak{a}')$  are of the form  $\mathfrak{q}_U$  for  $U \subset \{1,\ldots,d\}$ , hence are contained in  $\mathfrak{q}$  [cf. Remark 5]. By Krull's intersection theorem [cf. [13], Vol. I, Ch. 4, § 7, Th. 12'] we have  $\bigcap_{n\geq 0}(\mathfrak{a}'+\mathfrak{q}^n)=\mathfrak{a}'$ . Therefore there exists  $n\in\mathbb{N}_0$  with  $\mathfrak{a}\subset\mathfrak{a}'+\mathfrak{q}^n$ ,  $\mathfrak{a}\not\subset\mathfrak{a}'+\mathfrak{q}^{n+1}$ . We choose  $w\in\mathfrak{a}$ ,  $w\notin\mathfrak{a}'+\mathfrak{q}^{n+1}$ ; we can write  $w=w_1+z$  with  $w_1\in\mathfrak{a}'$ ,  $z\in\mathfrak{q}^n$  and  $z\notin\mathfrak{q}^{n+1}$ . This implies that  $z=w-w_1\in\mathfrak{a}$ ,  $z\neq 0$ , and, by assumption, we have  $\mathrm{Tm}(z)\subset\mathfrak{a}$ , hence  $\mathrm{Tm}(z)\subset\mathfrak{a}'$ . Let  $\mathrm{Tm}(z)=\{m_1,\ldots,m_r\}$ . Then there exist elements  $e_1,\ldots,e_r\in R\setminus\mathfrak{q}$  such that, putting  $z_1:=e_1m_1+\cdots+e_rm_r$ , we have  $z_1\in\mathfrak{a}'$  and  $z-z_1\in\mathfrak{q}^{n+1}$ . This implies that  $w=w_1+z=w_1+z_1+(z-z_1)\in\mathfrak{a}'+\mathfrak{q}^{n+1}$ , in contradiction with the choice of w.

Now we assume that R is complete; then every  $w \in R$ ,  $w \neq 0$ , admits a monomial representation [cf. Prop. 2].

 $(2)\Rightarrow (4)$ : Let  $w\in\mathfrak{a}, w\neq 0$ , and let  $w=e_1m_1+\cdots+e_rm_r$  be a monomial representation of w. We show by induction on r that  $\{m_1,\ldots,m_r\}\subset\mathfrak{a}$ . Let r=1, hence  $\mathrm{Tm}(w)=\{m_1\}\subset\mathfrak{a}$ . Now let r>1. It is clear that  $\mathrm{Tm}(w)\subset\{m_1,\ldots,m_r\}$ . We label the elements  $m_1,\ldots,m_r$  in such a way that  $\mathrm{Tm}(w)=\{m_1,\ldots,m_q\}$  with  $q\leq r$ . We put  $w_1:=e_1m_1+\cdots+e_qm_q$ . Now we have  $w_1\in\mathfrak{a}$  by assumption. If q=r, then the elements  $m_1,\ldots,m_q$  lie in  $\mathfrak{a}$ . If q< r, then we have  $w-w_1=e_{q+1}m_{q+1}+\cdots+e_rm_r$ , and since  $w-w_1\in\mathfrak{a}$ , we get by our induction assumption that  $m_{q+1},\ldots,m_r\in\mathfrak{a}$ .

$$(4) \Rightarrow (3)$$
 and  $(3) \Rightarrow (1)$  are trivial.

## 4. Integral Elements

**Remark 6** Let S be a ring, and let  $\mathfrak{a}$  be an ideal in S. The integral closure of the Rees ring

$$\mathcal{R}(\mathfrak{a}, S) = \bigoplus_{p \ge 0} \mathfrak{a}^p T^p \subset S[T]$$

in the polynomial ring S[T] is the graded ring  $\bigoplus_{p\geq 0} \overline{\mathfrak{a}^p} T^p$  where, for every  $p\in \mathbb{N}$ ,  $\overline{\mathfrak{a}^p}$  is the integral closure of  $\mathfrak{a}^p$  in S [cf. [10], Ch. II, § 5]. In particular, an element  $z\in S$  is integral over  $\mathfrak{a}$  iff  $zT\in S[T]$  is integral over  $\bigoplus_{p>0} \mathfrak{a}^p T^p$ .

**Notation 4** Let  $\mathfrak{a}$ ,  $\mathfrak{b}$  be monomial ideals in R.

(1) We define

$$\widetilde{\mathfrak{a}} := (\{m \in M \mid \text{ there exists } l \in \mathbb{N} \text{ with } m^l \in \mathfrak{a}^l\});$$

 $\widetilde{\mathfrak{a}}$  is a monomial ideal of R. Since the monomials which generate  $\widetilde{\mathfrak{a}}$  are integral over  $\mathfrak{a}$ ,  $\widetilde{\mathfrak{a}}$  is an ideal which is integral over  $\mathfrak{a}$ , and therefore  $\widetilde{\mathfrak{a}}$  is contained in the integral closure  $\overline{\mathfrak{a}}$  of  $\mathfrak{a}$  in R, and we have

$$\mathfrak{a} \subset \widetilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$$
.

It is clear that  $\widetilde{\mathfrak{a}}$   $\widetilde{\mathfrak{b}} \subset \widetilde{\mathfrak{ab}}$ , and if  $\mathfrak{a} \subset \mathfrak{b}$ , then we have  $\widetilde{\mathfrak{a}} \subset \widetilde{\mathfrak{b}}$ .

(2) We show that

$$\widetilde{\widetilde{\mathfrak{a}}} = \widetilde{\mathfrak{a}}.$$

In fact, let  $\widetilde{\mathfrak{a}}=m_1R+\cdots+m_rR$ . For every  $i\in\{1,\ldots,r\}$  there exists  $l_i\in\mathbb{N}$  with  $m_i^{l_i}\in\mathfrak{a}^{l_i}$ . Let m be a monomial in  $\widetilde{\widetilde{\mathfrak{a}}}$ . Then there exists  $l\in\mathbb{N}$  with  $m^l\in\widetilde{\mathfrak{a}}^l$ . This implies that there exist  $(i_1,\ldots,i_r)\in\mathbb{N}_0^r$  with  $i_1+\cdots+i_r=l$  and such that  $m_1^{i_1}\cdots m_r^{i_r}$  divides  $m^l$  [cf. Cor. 3]. Since  $(m_1^{i_1}\cdots m_r^{i_r})^{l_1\cdots l_r}$  lies in  $\mathfrak{a}^{ll_1\cdots l_r}$ , we see that  $m^{ll_1\cdots l_r}$  lies in  $\mathfrak{a}^{ll_1\cdots l_r}$ , also, and this means that  $m\in\widetilde{\mathfrak{a}}$ .

(3) By (1) we get  $\widetilde{\mathfrak{a}}^p \widetilde{\mathfrak{a}}^q \subset \widetilde{\mathfrak{a}}^{p+q}$  for all  $p, q \in \mathbb{N}_0$ . Therefore

$$\widetilde{\mathcal{R}(\mathfrak{a},R)} := \bigoplus_{p>0} \widetilde{\mathfrak{a}^p} T^p \subset R[T]$$

is a graded R-algebra and a graded R-subalgebra of R[T], and it contains the Rees ring  $\mathcal{R}(\mathfrak{a},R):=\bigoplus_{p>0}\mathfrak{a}^pT^p$  of  $\mathfrak{a}$  as a graded R-subalgebra.

- (4) Since  $\widetilde{\mathfrak{a}^p} \subset \overline{\mathfrak{a}^p}$  for every  $p \in \mathbb{N}$ , the integral closure of  $\widetilde{\mathcal{R}(\mathfrak{a},R)}$  in R[T] is the ring  $\bigoplus_{p>0} \overline{\mathfrak{a}^p} T^p$  [cf. Remark 6].
- (5) Just as in [8], Prop. 4.6, one may prove, using (4): For  $z \in R$  we have  $z \in \overline{\mathfrak{a}}$  iff there exist  $p \in \mathbb{N}$  and elements  $a_i \in \widetilde{\mathfrak{a}}^i$ ,  $i \in \{1, \ldots, p\}$ , such that

$$z^p + a_1 z^{p-1} + \dots + a_p = 0.$$

**Assumption 2** For the rest of this section we again assume that  $\mathfrak{q}$  is a prime ideal of R which is contained in the Jacobson radical of R. The  $\mathfrak{q}$ -adic completion of R shall be denoted by  $\hat{R}$ .

**Proposition 4** Let  $\mathfrak{a}$  be a monomial ideal of R, and let  $m = x_1^{j_1} \cdots x_d^{j_d} \in M$ . The following statements are equivalent:

- (1) m is integral over  $\mathfrak{a}$ .
- (2) m is integral over  $a\hat{R}$ .
- (3) There exists  $l \in \mathbb{N}$  with  $m^l \in \mathfrak{a}^l$ .
- (4)  $(j_1, \ldots, j_d)$  lies in the convex hull of  $\Gamma + \mathbb{R}^d_{\geq 0}$  where  $\Gamma \subset \mathbb{N}^d_0$  is the set of exponents of monomials appearing in  $\mathfrak{a}$ .

In particular, every monomial in  $\overline{\mathfrak{a}}$  lies in  $\widetilde{\mathfrak{a}}$ .

**Proof:**  $(1) \Rightarrow (2)$  and  $(3) \Rightarrow (1)$  hold trivially.

 $(2) \Rightarrow (3)$ : Let  $T^p + a_1 T^{p-1} + \dots + a_p \in \hat{R}[T]$  with  $a_i \in (\mathfrak{a}\hat{R})^i = \mathfrak{a}^i \hat{R}$  for  $i \in \{1, \dots, p\}$  be an equation of integral dependence for m over  $\mathfrak{a}\hat{R}$ . Let  $i \in \{1, \dots, p\}$ . Since  $\mathfrak{a}^i$  is a monomial ideal of R, the ideal  $\mathfrak{a}^i \hat{R}$  is a monomial ideal of  $\hat{R}$ , and, by Prop. 2, there exist elements  $e_{i1}, \dots, e_{ir_i} \in \hat{R} \setminus \mathfrak{q}\hat{R}$  and monomials  $m_{i1}, \dots, m_{ir_i} \in M$  with

$$a_i = \sum_{j=1}^{r_i} e_{ij} m_{ij}.$$

From Prop. 3 we obtain  $m_{ij} \in \mathfrak{a}^i \hat{R} \cap R = \mathfrak{a}^i$  for  $i \in \{1, \dots, p\}, j \in \{1, \dots, r_i\}$  [note that  $\hat{R}$  is a faithfully flat extension of R]. Therefore the monomial  $m^p$ 

lies in the  $\hat{R}$ -ideal which is generated by the set  $\{m_{ij}m^{p-i} \mid i \in \{1,\ldots,p\}, j \in \{1,\ldots,r_i\}\}$ . Using Cor. 3 we find  $i \in \{1,\ldots,p\}$  and  $j \in \{1,\ldots,r_i\}$  with  $m_{ij}m^{p-i} \mid m^p$ , hence  $m_{ij} \mid m^i$ . Thus, we have shown that  $m^i \in m_{ij}R \subset \mathfrak{a}^i$ .

 $(3) \iff (4)$  This is an easy consequence of Cor. 3 and Carathéodory's theorem [for Carathéodory's theorem cf. [11], Th. 17.1].

Corollary 6 Let  $\mathfrak{a}$  be a monomial ideal of R.

- (1) We have  $\widetilde{\mathfrak{a}}\widehat{R} = \widehat{\mathfrak{a}}\widehat{R}$  and  $\overline{\mathfrak{a}}\widehat{R} \subset \overline{\mathfrak{a}}\widehat{R}$ .
- (2) We have  $\widetilde{\operatorname{gr}(\mathfrak{a})} = \operatorname{gr}(\widetilde{\mathfrak{a}})$ .

**Proof:** (1) The first assertion is an easy consequence of Prop. 4, and the second assertion is clear.

(2) Let  $\widetilde{\mathfrak{a}}$  be generated by the monomials  $m_1, \ldots, m_r$ . Then  $\operatorname{gr}(\widetilde{\mathfrak{a}})$  is generated by the monomials  $\overline{m}_1, \ldots, \overline{m}_r$  [cf. (4) in Remark 4]. For every  $i \in \{1, \ldots, r\}$  there exists  $l_i \in \mathbb{N}$  with  $m_i^{l_i} \in \mathfrak{a}^{l_i}$ , hence  $\overline{m}_i^{l_i} \in \operatorname{gr}(\mathfrak{a}^{l_i}) = \operatorname{gr}(\mathfrak{a})^{l_i}$ , and therefore we have  $\overline{m}_i \in \operatorname{gr}(\mathfrak{a})$ . Conversely, let  $m \in M$  be a monomial with  $\overline{m} \in \operatorname{gr}(\mathfrak{a})$ . Then there exists  $l \in \mathbb{N}$  with  $\overline{m}^l \in (\operatorname{gr}(\mathfrak{a}))^l = \operatorname{gr}(\mathfrak{a}^l)$ , hence  $m^l \in \mathfrak{a}^l$ , and therefore  $m \in \widetilde{\mathfrak{a}}$ , hence  $\overline{m} \in \operatorname{gr}(\widetilde{\mathfrak{a}})$ .

## 5. Monomial Ideals in Polynomial Rings

The following result in Prop. 5 should be known, but we could not find a source for it.

**Notation 5** Let  $(\Gamma, \prec)$  be a totally ordered commutative monoid with neutral element 0 satisfying the following condition:

Every non-empty subset of  $\Gamma$  has a smallest element.

This condition is satisfied if  $\prec$  is a well-ordering; in particular, a monomial ordering on  $\mathbb{N}_0^d$  satisfies this condition.

Let  $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$  be a  $\Gamma$ -graded ring. For  $z \in R$  let  $z_{\gamma} \in R_{\gamma}$  be the homogeneous component of z of degree  $\gamma$ , and if  $z \neq 0$ , then define

$$\operatorname{Supp}(z) := \{ \gamma \in \Gamma \mid z_{\gamma} \neq 0 \}, \ \deg(z) := \max_{\prec} \{ \gamma \mid \gamma \in \operatorname{Supp}(z) \}, \ z^* := z_{\deg(z)}.$$

Let  $z, w \in R \setminus \{0\}$ ; then we have  $\deg(zw) \leq \deg(z) + \deg(w)$  if  $zw \neq 0$  and  $\deg(z+w) \leq \max_{\prec} \{\deg(z), \deg(w)\}$  if  $z+w \neq 0$ . Notice that, if z is not homogeneous, then we have  $\deg(z-z^*) \prec \deg(z)$ .

**Proposition 5** Let S be a  $\Gamma$ -graded ring, and let R be a  $\Gamma$ -graded subring of S. Then the integral closure  $\overline{R}$  of R in S is a  $\Gamma$ -graded subring of S.

**Proof:** (1) Firstly, we consider the case that every homogeneous element of S which is integral over R already lies in R. Then we have to show that  $\overline{R} = R$ . Suppose that  $R \subsetneq \overline{R}$ , and choose  $z \in \overline{R} \setminus R$  in such a way that  $\#(\operatorname{Supp}(z)) \leq \#(\operatorname{Supp}(w))$  for every  $w \in \overline{R} \setminus R$ . Now z is not homogeneous by our assumption on R. If  $z^* \in \overline{R}$ , then we would have  $z^* \in R$  since  $z^*$  is homogeneous, hence  $z - z^* \in \overline{R}$ , and therefore  $z - z^* \in R$  by the choice of z [note that  $\#(\operatorname{Supp}(z - z^*)) < \#(\operatorname{Supp}(z))$ ]. Therefore we have  $z^* \notin \overline{R}$ . In particular, we have  $(z^*)^i \neq 0$  for every  $i \in \mathbb{N}$ , hence  $(z^i)^* = (z^*)^i$  and  $\deg(z^i) = i \deg(z)$  for every  $i \in \mathbb{N}$ .

Let

$$\mathcal{V} := \{ \mathbf{a} = (a_1, \dots, a_p) \mid a_1, \dots, a_p \in R, z^p + a_1 z^{p-1} + \dots + a_p = 0 \}.$$

Obviously  $\mathcal{V}$  is not empty. For every  $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}$  we define

$$\gamma(\mathbf{a}) := \max_{\prec} \{ \deg(a_i) - i \deg(z) \mid a_i \neq 0, i \in \{0, 1, \dots, p\} \} \in \Gamma,$$

$$s(\mathbf{a}) := \min\{i \in \{0, \dots, p\} \mid a_i \neq 0, \deg(a_i) - i \deg(z) = \gamma(\mathbf{a})\} \in \{0, \dots, p\}$$

[we define  $a_0 := 1$ ]. Then we have  $\gamma(\mathbf{a}) \succeq 0$  [since  $a_0 = 1 \in R_0$ ]. Suppose that there exists  $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}$  with  $\gamma(\mathbf{a}) = 0$ . Then we have for every  $i \in \{1, \dots, p\}$  with  $a_i z^{p-i} \neq 0$ 

$$\deg(a_i z^{p-i}) \leq \deg(a_i) + \deg(z^{p-i}) = \deg(a_i) + (p-i)\deg(z)$$
$$\leq p \deg(z) + \gamma(\mathbf{a}) = p \deg(z).$$

In  $z^p + a_1 z^{p-1} + \cdots + a_p = 0$  we consider the homogeneous component of degree  $p \deg(z) = \deg(z^p)$ . Then we get  $(z^*)^p + a_1'(z^*)^{p-1} + \cdots + a_p' = 0$  with

$$a_i' := \begin{cases} a_i^* & \text{if } a_i z^{p-i} \neq 0 \text{ and } \deg(a_i z^{p-i}) = p \deg(z), \\ 0 & \text{else} \end{cases}$$
 for  $i \in \{1, \dots, p\}.$ 

But this would imply that  $z^* \in \overline{R}$ , in contradiction with our observation above.

Therefore we have  $\gamma(\mathbf{a}) \succ 0$  for every  $\mathbf{a} \in \mathcal{V}$ . This implies that  $s(\mathbf{a}) > 0$ ; moreover, we have  $s(\mathbf{a}) \leq p-1$  since otherwise  $a_p^* = 0$ .

Let

$$\gamma_0 := \min_{\prec} \{ \gamma(\mathbf{a}) \mid \mathbf{a} \in \mathcal{V} \}, \ \mathcal{V}_0 := \{ \mathbf{a} \in \mathcal{V} \mid \gamma(\mathbf{a}) = \gamma_0 \}.$$

Then we have  $\gamma_0 \succ 0$ . We choose  $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}_0$  with  $s(\mathbf{b}) \leq s(\mathbf{a})$  for every  $\mathbf{b} \in \mathcal{V}_0$ . We define

$$a'_{j} := \begin{cases} a_{j}^{*} & \text{if } a_{j} \neq 0, \deg(a_{j}) - j \deg(z) = \gamma_{0}, \\ 0 & \text{else} \end{cases}$$
 for  $j \in \{1, \dots, p\}.$ 

By the choice of s we have  $a'_1 = \cdots = a'_{s-1} = 0$ ,  $a'_s = a^*_s \neq 0$ , and

$$a'_s(z^*)^{p-s} + a'_{s+1}(z^*)^{p-s-1} + \dots + a'_p = 0$$
 (\*)

[consider in  $z^p + a_1 z^{p-1} + \cdots + a_p = 0$  the homogeneous component of degree  $\gamma_0 + p \deg(z)$ ]. We multiply (\*) by  $a_s'^{p-s-1}$  and obtain

$$(a'_s z^*)^{p-s} + a'_{s+1} (a'_s z^*)^{p-s-1} + \dots + a'_p a'_s^{p-s-1} = 0.$$

Therefore the homogeneous element  $a_s'z^*$  is integral over R, hence lies in R. Since  $a_s'z - a_s'z^*$  is integral over R, and since either  $a_s'z = a_s'z^*$  or  $\#(\operatorname{Supp}(a_s'z - a_s'z^*)) < \#(\operatorname{Supp}(a_s'z))$ , we have  $a_s'z - a_s'z^* \in R$  by the choice of z, hence  $a_s'z \in R$ . We define

$$\overline{a}_i := \begin{cases} a_i & \text{if } i \neq s, s+1, \\ a_s - a'_s & \text{if } i = s, \\ a_{s+1} + a'_s z & \text{if } i = s+1 \end{cases}$$
 for  $i \in \{1, \dots, p\}$ .

Then we have  $\overline{\mathbf{a}} = (\overline{a}_1, \dots, \overline{a}_p) \in R^p$ , and since  $z^p + \overline{a}_1 z^{p-1} + \dots + \overline{a}_p = 0$ , we have  $\overline{\mathbf{a}} \in \mathcal{V}$ . We show that we even have  $\overline{\mathbf{a}} \in \mathcal{V}_0$ . We have  $\overline{a}_s = 0$  or  $\deg(a_s - a'_s) - s \deg(z) \prec \deg(a_s) - s \deg(z) \preceq \gamma_0$ , and we have  $\overline{a}_{s+1} = 0$  or  $\deg(a_{s+1} + a'_s z) - (s+1) \deg(z) \preceq \gamma_0$ , and therefore we have  $\gamma(\overline{\mathbf{a}}) = \gamma_0$ . Obviously we have  $s(\overline{\mathbf{a}}) \geq s+1$ , in contradiction with the choice of  $\overline{\mathbf{a}}$ . Therefore we have  $\overline{R} = R$ .

(2) Now we consider the general case. Let  $R' := R[\Sigma]$  where  $\Sigma$  is the set of homogeneous elements of S which are integral over R; then R' is a  $\Gamma$ -graded subring of S. We have  $R \subset R' \subset \overline{R}$ , hence  $\overline{R} = \overline{R'}$ . Since  $\overline{R'} = R'$  by (1), we have  $\overline{R} = R'$ .

Corollary 7 Let R be a  $\Gamma$ -graded ring, and let  $\mathfrak{a}$  be a  $\Gamma$ -homogeneous ideal of R. Then the integral closure of  $\mathfrak{a}$  in R is a  $\Gamma$ -homogeneous ideal of R, again.

**Proof:** We equip the polynomial ring R[T] in a natural way with a  $\Gamma \times \mathbb{N}_0$ -grading; then we can consider the Rees ring  $\mathcal{R}(\mathfrak{a}, R)$  as a  $\Gamma \times \mathbb{N}_0$ -graded

subring of R[T]. The integral closure of  $\mathcal{R}(\mathfrak{a}, R)$  in R[T] is a  $\Gamma \times \mathbb{N}_0$ -graded subring by Prop. 5, and  $w \in R$  is integral over  $\mathfrak{a}$  iff  $wT \in R[T]$  lies in

$$\overline{\mathcal{R}(\mathfrak{a},R)} = \bigoplus_{p \ge 0} \overline{\mathfrak{a}^p} \, T^p$$

[cf. Remark 6].

**Notation 6** For the rest of this section let k be a ring, and let  $A = k[x_1, \ldots, x_d]$  be the polynomial ring over k in d variables  $x_1, \ldots, x_d$ . Then  $(x_1, \ldots, x_d)$  is a regular sequence in A which satisfies (a)-(c) above; let M be the set of monomials  $\mathbf{x}^{\mathbf{i}} = x_1^{i_1} \cdots x_d^{i_d}$ ,  $\mathbf{i} \in \mathbb{N}_0^d$ . Every non-zero  $z \in A$  has a unique representation  $z = c_1 m_1 + \cdots + c_r m_r$  with non-zero elements  $c_1, \ldots, c_r \in k$  and pairwise distinct monomials  $m_1, \ldots, m_r \in M$ ; we call this the monomial representation of z.

An ideal  $\mathfrak A$  of A is called a monomial ideal if it is generated by a set of monomials. Let  $\mathfrak A$  be a monomial ideal in A; then  $\mathfrak A$  is generated by a finite set of monomials [Dickson's Lemma, cf. [1], Ch. 4, Cor. 4.48 and Th. 5.2 or [5], Ch. II, § 4, in particular Exercise 7] and a monomial  $m \in M$  belongs to  $\mathfrak A$  iff it is a multiple of a monomial in  $\mathfrak A$ . Moreover, if  $cm \in \mathfrak A$  with  $c \in k \setminus \{0\}$  and  $m \in M$ , then  $m \in \mathfrak A$ .

Corollary 8 Let A be a monomial ideal in A. Then we have

$$\overline{\mathfrak{A}} = \operatorname{rad}_k(0)A + \widetilde{\mathfrak{A}}.$$

**Proof:** Clearly we have  $\operatorname{rad}_k(0) \subset \overline{\mathfrak{A}}$  and  $\mathfrak{A} \subset \overline{\mathfrak{A}}$ . Let  $z \in \overline{\mathfrak{A}}$ ,  $z \neq 0$ ; since  $\overline{\mathfrak{A}}$  is an  $\mathbb{N}_0^d$ -homogeneous ideal of A [cf. Cor. 7], there exist  $s \in \mathbb{N}$ , non-zero elements  $c_1, \ldots, c_s \in k$  and monomials  $n_1, \ldots, n_s \in M$  with  $z = c_1 n_1 + \cdots + c_s n_s$  and such that  $c_i n_i$  is integral over  $\mathfrak{A}$  for  $i \in \{1, \ldots, s\}$ . Let  $i \in \{1, \ldots, s\}$ . Then there exist  $p \in \mathbb{N}$ , elements  $d_1, \ldots, d_p \in k$  and monomials  $m_1 \in \mathfrak{A}, \ldots, m_p \in \mathfrak{A}^p$  such that

$$(c_i n_i)^p + d_1 m_1 (c_i n_i)^{p-1} + \dots + d_p m_p = 0.$$

If  $d_1 = \cdots = d_p = 0$ , then we have  $c_i^p = 0$ , hence  $c_i \in \operatorname{rad}_k(0)$ . Otherwise, there exists  $l \in \{1, \ldots, p\}$  with  $n_i^p = m_l n_i^{p-l}$ , hence  $n_i^l = m_l \in \mathfrak{A}^l$ , hence  $n_i \in \widetilde{\mathfrak{A}}$ . Therefore we have  $z \in \operatorname{rad}_k(0)A + \widetilde{\mathfrak{A}}$ .

**Corollary 9** The following statements are equivalent:

- (1) k is a reduced ring.
- (2) There exists a monomial ideal  $\mathfrak{A}$  in A such that  $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$ .
- (3) For every monomial ideal  $\mathfrak{A}$  of A we have  $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$ .

## 6. The Main Theorem

We keep the notations and assumptions introduced in section 2.

**Notation 7** (1) A monomial ordering  $\prec$  of  $\mathbb{N}_0^d$  is said to be degree-compatible if it satisfies the following condition: for any  $\mathbf{i}$ ,  $\mathbf{j} \in \mathbb{N}_0^d$  with  $\deg(\mathbf{i}) < \deg(\mathbf{j})$  we have  $\mathbf{i} \prec \mathbf{j}$ .

- (2) Let  $\prec$  be a degree-compatible ordering on  $\mathbb{N}_0^d$ . Then every subset of  $\mathbb{N}_0^d$  which is bounded above is finite.
- (3) Let  $\prec$  be a monomial ordering on  $\mathbb{N}_0^d$ . Let  $\mathbf{i} \neq \mathbf{j}$  be in  $\mathbb{N}_0^d$ . We define  $\mathbf{i} \prec_g \mathbf{j}$  if  $\deg(\mathbf{i}) < \deg(\mathbf{j})$  or if  $\deg(\mathbf{i}) = \deg(\mathbf{j})$  and  $\mathbf{i} \prec \mathbf{j}$ . Then  $\prec_g$  is a degree-compatible monomial ordering on  $\mathbb{N}_0^d$ .
- (4) If  $\prec$  is the lexicographical ordering lex on  $\mathbb{N}_0^d$ , then  $\prec_g$  is the degree-lexicographical ordering deglex on  $\mathbb{N}_0^d$ .
- (5) Every monomial ordering  $\prec$  on  $\mathbb{N}_0^d$  induces an ordering on M which will be denoted by  $\prec$ , again.

**Proposition 6** We assume that  $R/\mathfrak{q}$  is a reduced ring. Let  $\mathfrak{a}$  be a monomial ideal of R; then  $\operatorname{gr}(\widetilde{\mathfrak{a}})$  is the integral closure of the monomial ideal  $\operatorname{gr}(\mathfrak{a})$  in  $\operatorname{gr}(R)$ .

**Proof:** Since  $\widetilde{\mathfrak{a}}$  is integral over  $\mathfrak{a}$ , obviously  $\widetilde{\operatorname{gr}(\mathfrak{a})} = \operatorname{gr}(\widetilde{\mathfrak{a}})$  [cf. Cor. 9(2)] is integral over  $\operatorname{gr}(\mathfrak{a})$ . Let  $m \in M$  be a monomial, and assume that  $\operatorname{In}(m) = \overline{m}$  is integral over  $\operatorname{gr}(\mathfrak{a})$ . Then there exists  $h \in \mathbb{N}$  with  $\operatorname{In}(m)^h \in (\operatorname{gr}(\mathfrak{a}))^h = \operatorname{gr}(\mathfrak{a}^h)$  [cf. Cor. 9], hence we see that  $m^h \in \mathfrak{a}^h \cap \mathfrak{q}^{h \operatorname{deg}(m)} \subset \mathfrak{a}^h$ , hence  $m \in \widetilde{\mathfrak{a}}$ , and therefore we obtain that  $\operatorname{In}(m) \in \operatorname{gr}(\widetilde{\mathfrak{a}})$ .

Remark 7 We assume that R is complete, and that  $\mathfrak{q}$  is a prime ideal which is contained in the Jacobson radical of R. Let  $\prec$  be a degree-compatible monomial ordering on M, and let  $z \in R \setminus \{0\}$ ; we define

$$lm(z) := \min_{\prec} \{ Tm(z) \}.$$

Let

$$z = e_1 m_1 + \dots + e_r m_r$$

be a monomial representation of z, then we have  $\text{Im}(z) \leq m_j$  for every  $j \in \{1, \ldots, r\}$  [cf. Lemma 4 and note that  $\prec$  is a degree-compatible ordering], hence we even have

$$lm(z) = min_{\prec} \{ m_i \mid i \in \{1, \dots, r\} \}.$$

For  $z, w \in R \setminus \{0\}$  we obviously have

$$lm(zw) = lm(z)lm(w).$$

**Proposition 7** We assume that R is complete, and that  $\mathfrak{q}$  is a prime ideal which is contained in the Jacobson radical of R. For every monomial ideal  $\mathfrak{a}$  of R we have  $\overline{\mathfrak{q}} = \widetilde{\mathfrak{a}}$ .

**Proof:** (1) We have  $\tilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$  for every monomial ideal  $\mathfrak{a}$  of R [cf. (1) in Notation 4]. Suppose that the proposition does not hold. Then the family

$$\mathcal{I} := \{\mathfrak{a} \mid \mathfrak{a} \text{ monomial ideal of } R, \, \widetilde{\mathfrak{a}} \subsetneqq \overline{\mathfrak{a}}\}$$

is not empty. For every  $\mathfrak{a} \in \mathcal{I}$  we define  $r(\mathfrak{a}) \in \mathbb{N}$  in the following way: If  $y \in \overline{\mathfrak{a}} \setminus \widetilde{\mathfrak{a}}$ , and if  $y = e_1 m_1 + \cdots + e_r m_r$  is a monomial representation of y [cf. Prop. 2], then we have  $r \geq r(\mathfrak{a})$ . Now we choose  $\mathfrak{a} \in \mathcal{I}$  in such a way that  $r(\mathfrak{a}) \leq r(\mathfrak{b})$  for every  $\mathfrak{b} \in \mathcal{I}$ . We define  $r := r(\mathfrak{a})$ , and we choose  $y \in \overline{\mathfrak{a}} \setminus \widetilde{\mathfrak{a}}$  such that y admits a monomial representation  $y = e_1 m_1 + \cdots + e_r m_r$  having r terms. By Prop. 4 we have  $r \geq 2$ . By (5) in Notation 4 there exist  $p \in \mathbb{N}$  and  $a_i \in \widetilde{\mathfrak{a}}^i$  for  $i \in \{1, \ldots, p\}$  with

$$y^p + a_1 y^{p-1} + \dots + a_p = 0.$$

(2) Let  $\prec$  be a degree-compatible monomial ordering on M. Without loss of generality we may assume that in the monomial representation of y we have  $m_1 \prec m_2 \prec \cdots \prec m_r$ , hence that  $\operatorname{Im}(y) = m_1$ , and that  $\deg(m_1) \leq \deg(m_2) \leq \cdots \leq \deg(m_r)$ . We choose  $t \in \{1, \ldots, r\}$  with  $\deg(m_1) = \deg(m_2) = \cdots = \deg(m_t) < \deg(m_{t+1})$ , and we define  $y_1 := e_1 m_1 + \cdots + e_t m_t$ ; then we have  $\operatorname{In}(y) = \operatorname{In}(y_1)$ .

(3) Let

$$S := \{ \mathbf{b} = (b_1, \dots, b_p) \mid b_i \in \widetilde{\mathfrak{a}}^i \text{ for } i \in \{1, \dots, p\}, \ y^p + b_1 y^{p-1} + \dots + b_p = 0 \}.$$

The set S is not empty [cf. (1)]; we define for  $\mathbf{b} \in S$ 

$$\rho(\mathbf{b}) := \min_{\prec} \{ \ln(b_i y^{p-i}) \mid i \in \{1, \dots, p\}, \ b_i \neq 0 \} \in M,$$

$$s(\mathbf{b}) := \min\{i \in \{1, \dots, p\} \mid b_i \neq 0, \ \lim(b_i y^{p-i}) = \rho(\mathbf{b})\} \in \{1, \dots, p\}.$$

(4) There exists  $\mathbf{b} \in \mathcal{S}$  with

$$\rho(\mathbf{b}) \succcurlyeq \operatorname{lm}(y^p).$$

Proof: Let us suppose, on the contrary, that

$$\rho(\mathbf{b}) \prec \operatorname{lm}(y^p)$$
 for every  $\mathbf{b} \in \mathcal{S}$ .

This implies that  $s(\mathbf{b}) \leq p-1$  for every  $\mathbf{b} \in \mathcal{S}$ . The set  $\{\rho(\mathbf{b}) \mid \mathbf{b} \in \mathcal{S}\}$  is bounded above, hence finite; we define

$$\rho := \max_{\prec} \{ \rho(\mathbf{b}) \mid \mathbf{b} \in \mathcal{S} \} \in M.$$

Furthermore, we define

$$\mathcal{S}' := \{ \mathbf{b} \in \mathcal{S} \mid \rho(\mathbf{b}) = \rho \}.$$

We choose  $\mathbf{b}' = (b'_1, \dots, b'_p) \in \mathcal{S}'$  in such a way that  $s(\mathbf{b}) \leq s(\mathbf{b}')$  for every  $\mathbf{b} \in \mathcal{S}'$ , and we define  $s := s(\mathbf{b}')$ ; note that  $1 \leq s \leq p-1$ .

Let  $i \in \{1, ..., p\}$  with  $b'_i \neq 0$ . We consider a monomial representation

$$b'_i = e_{i1}m_{i1} + \dots + e_{i,r_i}m_{i,r_i}.$$

Since  $\widetilde{\mathfrak{a}}^i$  is a monomial ideal, we have  $m_{i1}, \ldots, m_{i,r_i} \in \widetilde{\mathfrak{a}}^i$  [cf. Prop. 3]. Without loss of generality we may assume that  $m_{i1} \prec m_{i2} \prec \cdots \prec m_{i,r_i}$ . We choose  $t_i \in \{1, \ldots, r_i\}$  with  $\deg(m_{i1}) = \cdots = \deg(m_{i,t_i}) < \deg(m_{i,t_i+1})$ , and we define  $b_i'' := e_{i1}m_{i1} + \cdots + e_{i,t_i}m_{i,t_i}$ ; then we have  $\operatorname{In}(b_i') = \operatorname{In}(b_i'')$  in  $\operatorname{gr}(R)$ .

For  $i \in \{1, \ldots, p\}$  we define

$$d_i := \begin{cases} 0 & \text{if } b'_i = 0 \text{ or if } b'_i \neq 0 \text{ and } \lim(b'_i y^{p-i}) \succ \rho, \\ b''_i & \text{if } b'_i \neq 0 \text{ and } \lim(b'_i y^{p-i}) = \rho. \end{cases}$$

Then we have  $d_i \in \widetilde{\mathfrak{a}}^i$  for every  $i \in \{1, \dots, p\}$ .

We consider the equation

$$y^p + b_1' y^{p-1} + \dots + b_p' = 0. \tag{*}$$

For  $i \in \{1, ..., p\}$  we replace  $b'_i$  by  $d_i$ , and we replace y by  $y_1$ ; using the inequality  $\rho \prec \text{lm}(y^p)$ , we obtain the following equation in gr(R)

$$In(d_s)In(y_1^{p-s}) + In(d_{s+1})In(y_1^{p-s-1}) + \dots + In(d_p) = 0.$$
 (\*\*)

We multiply (\*\*) with  $In(d_s^{p-s-1})$ , and we obtain

$$(\operatorname{In}(d_s y_1))^{p-s} + \operatorname{In}(d_{s+1})(\operatorname{In}(d_s y_1))^{p-s-1} + \operatorname{In}(d_{s+2} d_s)(\operatorname{In}(d_s y_1))^{p-s-2} + \cdots + \operatorname{In}(d_p d_s^{p-s-1}) = 0.$$

We have

$$d_{s+l} d_s^{l-1} \in \widetilde{\mathfrak{a}^{s+l}}(\widetilde{\mathfrak{a}^s})^{l-1} \subset \widetilde{\mathfrak{a}^{(s+1)l}} \quad \text{for } l \in \{1, \dots, p-s\}.$$

Therefore we have  $\operatorname{In}(d_{s+l}d_s^{l-1}) \in \operatorname{gr}(\widehat{\mathfrak{a}^{(s+1)l}}) = (\operatorname{gr}(\widehat{\mathfrak{a}^{s+1}})^l)$  [cf. Cor. 6(2) and (4) in Remark 4] for  $l \in \{1, \ldots, p-s\}$ , hence  $\operatorname{In}(d_s y_1)$  is integral over  $(\operatorname{gr}(\mathfrak{a}))^{s+1}$  [cf. (5) in Notation 4],  $\operatorname{In}(m_{s1}m_1)$  is integral over  $(\operatorname{gr}(\mathfrak{a}))^{s+1}$ , also [cf. Cor. 9], and therefore  $e_{s1}e_1m_{s1}m_1$  is an element of  $\widehat{\mathfrak{a}^{s+1}}$ . We multiply (\*) with  $(e_{s1}m_{s1})^p$  and we obtain

$$(e_{s1}m_{s1}y)^p + b_1'e_{s1}m_{s1}(e_{s1}m_{s1}y)^{p-1} + \dots + b_p'(e_{s1}m_{s1})^p = 0.$$

Note that

$$b'_l(e_{s1}m_{s1})^l \in \widetilde{\mathfrak{a}}^l(\widetilde{\mathfrak{a}}^s)^l \subset (\widetilde{\mathfrak{a}}^{s+1})^l \quad \text{for } l \in \{1, \dots, p\},$$

and therefore  $e_{s1}m_{s1}y$  is integral over  $\mathfrak{a}^{s+1}$  [cf. (5) in Notation 4]. Let  $y' := y - e_1m_1$ ; then  $e_{s1}m_{s1}y'$  is integral over  $\mathfrak{a}^{s+1}$ , and  $e_{s1}m_{s1}y' = \sum_{i=2}^r e_i e_{s1}m_{s1}m_i$  admits a monomial representation having only r-1 terms.

We have  $e_{s1}m_{s1}y' \in \widetilde{\mathfrak{a}^{s+1}}$  [this is clear if  $\overline{\mathfrak{a}^{s+1}} = \widetilde{\mathfrak{a}^{s+1}}$ , and if  $\overline{\mathfrak{a}^{s+1}} \supseteq \widetilde{\mathfrak{a}^{s+1}}$ , then  $\mathfrak{a}^{s+1}$  lies in  $\mathcal{I}$ , and by the choice of r [cf. (1)] we get  $e_{s1}m_{s1}y' \in \widetilde{\mathfrak{a}^{s+1}}$  in this case, also]. Since  $e_{s1}m_{s1}y'$  and  $e_1e_{s1}m_1m_{s1}$  lie in  $\widetilde{\mathfrak{a}^{s+1}}$ , the element  $e_{s1}m_{s1}y$  lies in  $\widetilde{\mathfrak{a}^{s+1}}$ , also.

We define [note that  $s \leq p-1$ ]

$$\widetilde{b}_i := \begin{cases} b'_i & \text{if } i \neq s, s+1, \\ b'_s - e_{s1} m_{s1} & \text{if } i = s, \\ b'_{s+1} + e_{s1} m_{s1} y & \text{if } i = s+1 \end{cases}$$
 for  $i \in \{1, \dots, p\}$ .

We have  $\mathbf{b}' \in \mathcal{S}$ ,  $e_{s1}m_{s1} \in \widetilde{\mathfrak{a}}^s$  and  $e_{s1}m_{s1}y \in \widetilde{\mathfrak{a}}^{s+1}$ , hence we have  $\widetilde{b}_i \in \widetilde{\mathfrak{a}}^i$  for  $i \in \{1, \dots, p\}$ . Clearly we have

$$y^p + \widetilde{b}_1 y^{p-1} + \dots + \widetilde{b}_p = 0,$$

and therefore  $\widetilde{\mathbf{b}} := (\widetilde{b}_1, \dots, \widetilde{b}_p)$  lies in  $\mathcal{S}$ , and this implies that  $\rho(\widetilde{\mathbf{b}}) \leq \rho$  by the choice of  $\rho$ . We show that  $\widetilde{\mathbf{b}}$  even lies in  $\mathcal{S}'$ .

We have  $\widetilde{b}_s = 0$  or  $\widetilde{b}_s = e_{s2}m_{s2} + \cdots + e_{s,r_s}m_{s,r_s}$  and  $\operatorname{Im}(\widetilde{b}_s) = m_{s2} \succ m_{s1} = \operatorname{Im}(b'_s) = \rho$ . We have  $\operatorname{Im}(e_{s1}m_{s1}y^{p-s}) = \rho$ , and if  $b'_{s+1} \neq 0$ , then we have  $\operatorname{Im}(b'_{s+1}y^{p-s-1}) \succcurlyeq \rho$ . Therefore we have  $\operatorname{Im}(\widetilde{b}_{s+1}y^{p-s-1}) \succcurlyeq \rho$ , and since  $\rho(\mathbf{b}') = \rho$ , we obtain  $\rho(\widetilde{\mathbf{b}}) \succcurlyeq \rho$ . This implies that  $\rho(\widetilde{\mathbf{b}}) = \rho$ , hence we get, in fact, that  $\widetilde{\mathbf{b}} \in \mathcal{S}'$ .

Now we have  $\widetilde{b}_s = 0$  or  $\operatorname{Im}(\widetilde{b}_s) > \rho$  and  $\widetilde{b}_i = b'_i$  for  $i \in \{1, \dots, s-1\}$ , and this implies  $s(\widetilde{\mathbf{b}}) > s(\mathbf{b}') = s$ , in contradiction with the choice of  $\mathbf{b}'$ .

(5) By (4) there exists  $\mathbf{b} \in \mathcal{S}$  with  $\text{lm}(b_i y^{p-i}) \geq \text{lm}(y^p)$  for every  $i \in \{1, \ldots, p\}$  with  $b_i \neq 0$ .

Let  $i \in \{1, \ldots, p\}$  with  $b_i \neq 0$ , and let  $b_i = e_{i1}m_{i1} + \cdots + e_{i,r_i}m_{i,r_i} \in \widetilde{\mathfrak{a}}^i$  be a monomial representation of  $b_i$ ; without loss of generality we may assume that  $m_{i1} \prec m_{i2} \prec \cdots \prec m_{i,r_i}$ , which implies that  $m_{i1} = \operatorname{lm}(b_i)$ . We choose  $t_i \in \{1, \ldots, r_i\}$  with  $\operatorname{deg}(m_{i1}) = \cdots = \operatorname{deg}(m_{i,t_i}) < \operatorname{deg}(m_{i,t_{i+1}})$ , and we define

$$b'_i := e_{i1}m_{i1} + \cdots + e_{i,t_i}m_{i,t_i};$$

note that  $\operatorname{In}(b_i) = \operatorname{In}(b'_i)$ . We have  $m_{ij} \in \widetilde{\mathfrak{a}}^i$  for  $j \in \{1, \dots, r_i\}$  [cf. Prop. 3], hence, in particular,  $b'_i \in \widetilde{\mathfrak{a}}^i$ .

Now let  $i \in \{1, \dots, p\}$ ; we define

$$c_i := \begin{cases} 0 & \text{if } b_i = 0 \text{ or if } b_i \neq 0 \text{ and } \operatorname{lm}(b_i y^{p-i}) \succ \operatorname{lm}(y^p), \\ b'_i & \text{if } b_i \neq 0 \text{ and } \operatorname{lm}(b_i y^{p-i}) = \operatorname{lm}(y^p). \end{cases}$$

Clearly we have  $c_i \in \widetilde{\mathfrak{a}}^i$ . From  $y^p + b_1 y^{p-1} + \cdots + b_p = 0$  we obtain the following equation in  $\operatorname{gr}(R)$ 

$$\operatorname{In}(y_1)^p + \operatorname{In}(c_1)\operatorname{In}(y_1)^{p-1} + \dots + \operatorname{In}(c_p) = 0.$$

Now we have  $\operatorname{In}(c_i) \in \operatorname{gr}(\widetilde{\mathfrak{a}}^i)$  for every  $i \in \{1, \dots, p\}$ . Just as in (4) we see that  $\operatorname{In}(y_1)$  is integral over  $\operatorname{gr}(\mathfrak{a})$  and that therefore  $\operatorname{In}(m_1)$  is integral over  $\operatorname{gr}(\mathfrak{a})$ , hence we have  $m_1 \in \widetilde{\mathfrak{a}}$ , hence  $e_1m_1 \in \widetilde{\mathfrak{a}}$ . Now  $y' := y - e_1m_1$  lies in  $\overline{\mathfrak{a}}$ , and therefore y' lies in  $\widetilde{\mathfrak{a}}$  by the choice of r. From this we get that  $y = y' + e_1m_1$  lies in  $\widetilde{\mathfrak{a}}$ , in contradiction with the choice of y.

**Theorem 1** Let R be a noetherian ring, let  $\mathbf{x} = (x_1, \dots, x_d)$  be a regular sequence in R, and assume that  $\mathfrak{q} := \mathbf{x}R$  is contained in the Jacobson radical of R and that  $R/\mathfrak{q}$  is a reduced ring. For every monomial ideal  $\mathfrak{q}$  of R we have  $\overline{\mathfrak{q}} = \widetilde{\mathfrak{q}}$ ; in particular,  $\overline{\mathfrak{q}}$  is a monomial ideal, also.

**Proof:** (1) Firstly, let  $\mathfrak{q}$  be a prime ideal. Let  $y \in \overline{\mathfrak{a}}$ . We have  $\overline{\mathfrak{a}}\hat{R} \subset \overline{(\mathfrak{a}\hat{R})}$  and  $\widetilde{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R}$  [cf. Cor. 6], hence  $y \in \overline{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R}$  [cf. Prop. 7], and since  $\widetilde{\mathfrak{a}}\hat{R} \cap R = \widetilde{\mathfrak{a}}$  we obtain  $y \in \widetilde{\mathfrak{a}}$ . Thus, we have shown that  $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$ .

- (2) Now we consider the case that  $R/\mathfrak{q}$  is reduced.
- (a) Let  $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$ . Then  $\mathfrak{q}R_{\mathfrak{p}}$  is the maximal ideal of  $R_{\mathfrak{p}}$ , hence we have  $\widetilde{\mathfrak{a}R_{\mathfrak{p}}} = \overline{\mathfrak{a}R_{\mathfrak{p}}}$  by (1). Obviously we have  $\widetilde{\mathfrak{a}R_{\mathfrak{p}}} = \widetilde{\mathfrak{a}}R_{\mathfrak{p}}$  and  $\overline{\mathfrak{a}}R_{\mathfrak{p}} \subset \overline{\mathfrak{a}}R_{\mathfrak{p}}$ . Therefore we have  $\overline{\mathfrak{a}}R_{\mathfrak{p}} \subset \widetilde{\mathfrak{a}}R_{\mathfrak{p}}$ .
- (b) For every  $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$  there exists, by (a), an element  $s_{\mathfrak{p}} \in R \setminus \mathfrak{p}$  with  $\overline{\mathfrak{q}} \subset \widetilde{\mathfrak{q}} : s_{\mathfrak{p}}$ . Let  $\mathfrak{b}$  be the ideal generated by the elements  $s_{\mathfrak{p}}$ ; then we

have  $\overline{\mathfrak{a}} \subset \widetilde{\mathfrak{a}} : \mathfrak{b}$ . Let  $\mathfrak{p}' \in \mathrm{Ass}(R/\widetilde{\mathfrak{a}})$ . Since  $\widetilde{\mathfrak{a}}$  is a monomial ideal, there exists  $U \subset \{1,\ldots,d\}$  with  $\mathfrak{p}' \in \mathrm{Ass}(R/\mathfrak{q}_U)$  [cf. Lemma 1]. Repeated application of Lemma 1 in [13], vol. II, Appendix 6, shows that there exists a prime ideal  $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$  with  $\mathfrak{p}' \subset \mathfrak{p}$ . Therefore  $\mathfrak{b}$  is not contained in any prime ideal in  $\mathrm{Ass}(R/\widetilde{\mathfrak{a}})$ , hence  $\widetilde{\mathfrak{a}} : \mathfrak{b} = \widetilde{\mathfrak{a}}$ , hence  $\overline{\mathfrak{a}} \subset \widetilde{\mathfrak{a}}$ . The inclusion  $\widetilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$  was noticed in (1) of Notation 4, and therefore we have  $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$ .

**Example 1** Let R be a regular local two-dimensional ring, and let  $\{x,y\}$  be a regular system of parameters of R. Let m > n > 1 be coprime integers, and write  $m = s_1 n + n_1$  with  $1 \le n_1 < n$ . Let  $\mathfrak{a}$  be the ideal of R generated by  $x^m$  and  $y^n$ . Then  $\mathfrak{a}$  is a monomial ideal. It can be shown [cf. [7]] that the integral closure  $\wp$  of  $\mathfrak{a}$  has a minimal system of generators  $\{x^{m-\sigma_{m,n}(i)}y^i \mid i \in \{0,\ldots,n\}\}$  where  $\sigma_{m,n} \colon \{0,\ldots,n\} \to \{0,\ldots,m\}$  is a strictly increasing function; in particular, one has

$$\sigma_{m,n}(0) = 0, \sigma_{m,n}(1) = s_1, \sigma_{m,n}(n-1) = m - (s_1 + 1), \sigma_{m,n}(n) = m,$$

and

$$\sigma_{m,n}(i+j) \ge \sigma_{m,n}(i) + \sigma_{m,n}(j)$$
 for  $i, j \in \{0, \dots, n\}$  with  $i+j \le n$ .

Moreover, the polar ideal  $\mathfrak{P}_{\wp}$  of  $\wp$  has

$$\{x^{m-\sigma_{m,n}(i+1)}y^i \mid i \in \{0,\dots,n-1\}\}$$

as minimal set of generators.

### References

- [1] Becker, Th. and Weispfenning, V.: *Gröbner Bases*. Graduate Texts in Mathematics **141**. Springer, New York, 1993.
- [2] Bourbaki, N.: Algèbre. Masson, Paris, 1980.
- [3] Bourbaki, N.: Algèbre Commutative. Masson, Paris, 1983.
- [4] Bruns, W. and Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge, 1993.
- [5] COX, D., LITTLE, J. AND O'SHEA, D.: Ideals, Varieties, and Algorithms. An introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics, Springer, New York, 1992.
- [6] Fröberg, R.: An Introduction to Gröbner Bases. Wiley, New York, 1997.
- [7] Greco, S. and Kiyek, K.: The polar ideal of a simple complete ideal having one characteristic pair. Preprint, Politecnico di Torino, Rapporto interno N. 32.

- [8] HERRMANN, M., IKEDA, S. AND ORBANZ, U.: Equimultiplicity and Blowing up. Springer, Berlin, 1988.
- [9] KEMPF, G., KNUDSEN, F., MUMFORD, D. AND SAINT-DONAT, B.: *Toroidal embeddings I.* Lecture notes in Mathematics **339**: Springer-Verlag, Berlin, 1973.
- [10] LIPMAN, J.: Rational singularities with applications to algebraic surfaces and unique factorization. *Inst. Hautes Études Sci. Publ. Math.* **36** (1969), 195-279.
- [11] ROCKAFELLAR, R. T.: Convex Analysis. Princeton Landmarks in Mathematics, Princeton University Press, 10th printing, Princeton, 1997.
- [12] VASCONCELOS, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer-Verlag, Berlin, 1998.
- [13] Zariski, O., and Samuel, P.: Commutative Algebra. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960.

Recibido: 20 de febrero de 2002 Revisado: 23 de octubre de 2002

Karlheinz Kiyek Institut für Mathematik Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn 33098 Paderborn, Deutschland karlh@uni-paderborn.de

Jürgen Stückrad
Mathematisches Institut
Universität Leipzig
Augustusplatz 10-11
04109 Leipzig, Deutschland
stueckrad@mathematik.uni-leipzig.de