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Integral Closure of Monomial Ideals on

Regular Sequences

Karlheinz Kiyek and Jiirgen Stiickrad

Abstract

It is well known that the integral closure of a monomial ideal in
a polynomial ring in a finite number of indeterminates over a field
is a monomial ideal, again. Let R be a noetherian ring, and let
(z1,...,24) be a regular sequence in R which is contained in the
Jacobson radical of R. An ideal a of R is called a monomial ideal with
respect to (x1,...,x4) if it can be generated by monomials ZL'Zf e
If z1R + --- 4+ x4R is a radical ideal of R, then we show that the
integral closure of a monomial ideal of R is monomial, again. This
result holds, in particular, for a regular local ring if (z1,...,24) is a
regular system of parameters of R.

1. Introduction

Let A be a polynomial ring over a field in a finite number of indeterminates.
It is well known that the integral closure 2 of a monomial ideal 2 of A is a
monomial ideal, again: 2 is generated by all monomials m with m! € ! for
some [ € N [cf. [12], section 6.6, Example 6.6.1]. While studying a particular
class of ideals in two-dimensional regular local rings [cf. the example at
the end of this paper], the following question arose naturally: Let R be a
noetherian ring, and let (z1,...,24) be a regular sequence in R such that
q:=xR+---+ x4R is contained in the Jacobson radical of R. Let a be
an ideal of R that is generated by monomials in xq, ..., z4; such ideals shall
be called monomial ideals. Is the integral closure @ of a a monomial ideal,
again?

In this paper the question is answered in the positive under the assump-
tion that R/q is a reduced ring.
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In section 2 we collect some useful results on monomial ideals; in particu-
lar, we show that the usual ideal-theoretic operations, applied to monomial
ideals, lead again to monomial ideals. It is also shown that for a mono-
mial ideal a the ideal gr(a) in the associated graded ring gr,(R) which is a
polynomial ring over R/q is a monomial ideal.

In section 3 we introduce the notion of a monomial representation of an
element of R and we show that, if R is complete, every element of R admits
a monomial representation. In section 4 we associate with a monomial ideal
a the ideal @ which is generated by all monomials m in R with m! € a’ for
some [ € N. In section 5 we study monomial ideals in a polynomial ring over
a reduced ring, and we show that for a monomial ideal 2 we have A =
where 2 denotes the integral closure of 2. Let a be a monomial ideal in
R. Using the results of section 5 we show in section 6 that @ = a if R is
complete and q is a prime ideal. As a last step we show that this equality
holds also if R is not necessarily complete, and if R/q is a reduced ring.

2. Monomial Ideals

2.1. Basic Definitions

Notation 1 Let R be a ring. A sequence x := (x1,...,x4) in R is called a
weak regular sequence in R if

(a) m;isregular for R/(zy,...,x;—1) [i.e., theimage of x;in R/(z1, ..., 2-1)
is a non-zero divisor | for every i € {1,...,d},

and it is called a regular sequence in R if, in addition,
(b) R # xR.

In the sequel, we consider regular sequences x in R with the following addi-
tional property:

(c) every permutation (z(1),...,%xaq)) of X is a regular sequence in R.

Then every subsequence of x satisfies (a)-(c).

If R is noetherian, and if a regular sequence x in R is contained in the
Jacobson radical [i.e., in the intersection of all maximal ideals] of R, then
(a) implies (c) [cf. [2], Ch. X, § 9, no. 7, Th. 1 and Cor. 1], and for the ideal
q generated by xy,...,x, we have (q” = (0) [cf. [3], Ch. III, § 3, no. 3,
Prop. 6].

If o: R — S is a flat homomorphism of rings, and if ¢(x)S # S, then
the sequence p(x) in S satisfies (a)-(c) [cf. [4], Ch. I, Prop. 1.1.1].
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For every d-tuple i := (i1, ...,i4) € NI we define deg(i) := iy + - - - +1iq,
the degree of i, and we write

X =a - a

Since x is a regular sequence, we have, for i, j € N¢, x!' = xJ iff i = j.

An element m € R is called a monomial with respect to x if there
exists i € N¢ with m = x'; i is determined uniquely by m. We call
deg(m) := deg(i) the degree of m.

Let x! =z .. -xff be a monomial with respect to x. The set
Supp(x) := {j | j € {1,...,d},i; # 0}
is called the support of x!.

Let M (x) be the set of all monomials of R with respect to x. Clearly
M (x) is a commutative monoid with cancellation law, and deg: M (x)
— Ny is a surjective homomorphism of monoids.

An ideal a of R is called monomial with respect to x if it is generated
by elements in M (x). In particular, the zero ideal and R itself are
monomial ideals.

Remark 1 Let i= (i1,...,i4), j = (j1,...,j4) € N&

(1)

(2)

If x! € x)R, then we have i1 > ji,...,iq > jg and x' = xIxiJ. In this
case we say that xJ divides x!, and we write xJ | x.

We define
k; :=min{i,, j, }, I, := max{i,,j,} forre{l,... d}
and
k= (ki,...,kq), L:=(ls,...,1lq);

then
1

ged(x', x1) := x¥ lem(x', %) ;== x
is the greatest common divisor resp. the least common multiple of
x' and xJ. In particular, for monomials m, n we have mR : nR =

(lem(m,n)/n)R = (m/ ged(m,n))R.
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Notation 2 For the rest of this paper let R be a noetherian ring, and let
x = (x1,...,24) be a fixed sequence in R which satisfies (a)-(c) above; all
monomials of R are monomials with respect to x, and all monomial ideals
of R are monomial ideals with respect to x. The set of all monomials of R
shall be denoted by M.

Definition 1 Let U be a subset of {1,...,d}; we define

qu = inR, Py = Ass(R/qu).
€U

If U={1,...,d}, then we write

d
q:=qu = inR, P = Ass(R/q).

i=1
Remark 2 (1) Note that Ass(R) = Py.

(2) Let U C {1,...,d}, i€ {1,...,d} \U. Then z; is regular for R/qy,
hence, in particular, z; ¢ p for every p € Py.

Lemma 1 Let a be a monomial ideal of R, and let {my, ..., m,} be a system
of generators of a consisting of monomials. Then we have

Ass(R/a) C U Pu.

U CSupp(ma)U---USupp(my)

Proof: There is nothing to prove if a = (0). We consider the case that
a # (0). We define V' := Supp(my)U- - -USupp(m,.). We prove the assertion
by induction on s := deg(my) + --- + deg(m,) —r. If s = 0, then we
have a = qy; in this case the assertion holds. Let s > 0, and assume that
the assertion holds for all monomial ideals of R which admit a system of
monomial generators m/,...,m., with deg(m}) + --- + deg(ml,) —r' < s.
Now let a be a monomial ideal of R having a system of monomial generators
mi,...,m, with deg(my) + --- + deg(m,) —r = s. Then there exists j €
{1,...,r} with deg(m;) > 2; by relabelling, we may assume that j = 1.

Let i € Supp(my); let us label the monomials my, ..., m, in such a way
that ¢ € Supp(m;) for j € {1,...,t} and i ¢ Supp(m;) for j € {t+1,...,7};
here we have t € {1,...,7}. For j € {1,...,t} we have m; = z;m/; where
my, ..., m, are monomials. We put

a:=miR+---+miR, ag=my 1R+ ---+m.R, b:=a;+ay,

t r
Vii= U Supp(mj), Va:= U Supp(m;).
j=1

j=t+1
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If ay = (0), then we have a : z; = b. This is also true if ay # (0). In
fact, by our induction assumption we get Ass(R/ay) C -y, Pu. Using
i ¢ Vi, we see that Vo C {1,...,d} \ {i}. From Remark 2 we get the
following: If U C V4, then z; ¢ p for every prime ideal p € Py, hence z; ¢ p
for every p € Ass(R/ay), hence z; is regular for R/ay. This implies that
a:x; =a; +as = b since a = z;a; + as.

Therefore the sequence

0 — R/b 2 R/a — R/(a+z;R) — 0
is exact; note that
Ass(R/a) C Ass(R/b) U Ass(R/(a + x;R)). ()

We have a + ;R = ;R + my 1R+ -+ + m,.R. Applying our induction
assumption to b and to a + z; R we obtain

Ass(R/o)c ) Poc | P

UCViuVs ucv

Ass(R/(a+zR))C | Puvc | Pu

Uc{i}uVa ucv

Therefore we get, using (), that Ass(R/a) C Uycy Pu- |
Corollary 1 Ifi ¢ |J;_, Supp(m;), then we have a: z; = a.

Proof: The element z; is not contained in any of the prime ideals in

Ass(R/a) [cf. Lemma 1]. [

2.2. Operations on Monomial Ideals

Lemma 2 Leta=m R+ ---+m,R with mq,...,m, € M be a monomual
tdeal in R. For every m € M the ideal a : m is monomial, again. More
precisely, we have

 lem(mj, m)
aim= Y omlmim)
J=1 m

Proof: We may assume that a # (0). We prove the assertion by induction
on deg(m). The case deg(m) = 0, i.e., m = 1, is clear. Let deg(m) > 0;
then there exists ¢ € {1,...,d} with z; | m, and we write m = z;m’ with
m’ € M. As in the proof of Lemma 1 we label the monomials mq,...,m,
in such a way that z; | m; for j € {1,...,t}, z; {m; for j € {t +1,...,7}
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with t € {0,...,r}, and we write, for j € {1,...,t}, m; = x;m} with

monomials m, ..., m}. Then we have, as above,
a:m=(a:z;) m—(g mR+E mj): !
J=t+1
' lem( (m,m') 1 1
_ fem(my, M) o Z cm mj, R Z cm(mj,m)R
: m
Jj=1 Jj=t+1 j=1

Corollary 2 Leta=mR+---+m,R withmq,...,m, € M be a monomial
1deal in R. Let m € M; then we have

anNmR = Z lem(m;, m)R.

j=1
Proof: We have anmR = (a: m)m. |

Lemma 3 Leta=mR+---+m,R, b =nR+---+n,R withmgy,...,n, €
M be monomial ideals in R. Then anb is a monomial ideal; more precisely,

we have L
anb= ZZlcm(mi, n;)R. (%)

i=1 j=1

Proof: It is clear that the right-hand side of () is contained in the left-
hand side. We prove that the left-hand side of () is contained in the right
hand side by induction on s. For s = 0 the assertion is clear, and for
s = 1 the assertion follows from Cor. 2. Now we assume that s > 2,
and we define b’ = R+ ---+n,_1R. Let 2z € anb. We write z =
aymy + -+ + a,m, = byny + -+ + byng with aq,...,b, € R. Since byng =
aymy + - -+ a,m, — (byng + -+ - + bs_1ns_1), we have bgns € (a+ b)) Nn R,
hence we can write [cf. Cor. 2]

s—1
chlcm mi,ns) + Zd lem(n;,ng) with ¢,...,ds-1 € R.
=1 7=1

We define

»
|
—

w:=Y (bjn;+ d;jlem(n;,ny)).
1

<.
Il
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Then we have w € b’, and since w=z—(¢ylem(my,ng)+- - -+c.lem(m,,ng)) €a,

we have
,

s—1
weanb = ZZlcm(mi,nj)R

i=1 j=1

by our induction assumption. Then we get
z=w+ Z cilem(m;, ng) € Z Z lem(m;, n;)R,
i=1 i=1 j=1
and therefore the left-hand side of (%) lies in the right hand side. [

Collection our results, we have

Proposition 1 Let a, b be monomial ideals in R. Then anNb, a-b, a:b
are monomial ideals, again. More precisely, if a = miR + --- +m,R and
b=nR+ - -+ n,R with monomials my,...,n, € M, then we have

(2.1) anb = iilcm(mi, n;)R,

i=1 j=1

2 o lem(my, ny)
2.2 (b= ——— i1
(2.2) a:b jﬂlz; " R

If ¢ is another monomial ideal, then we have
(2.3) (a+b)Nc=(anc)+ (bNec).

Proof: (2.3) follows from (2.1), and (2.2) is a consequence of Lemma 2 since

s

a:b:ﬂ(a:nj). m

J=1

Corollary 3 Leta=m;R+---+m,R withmq,...,m, € M be a monomial
ideal in R, and let m € M. Then we have m € a iff m; | m for some
ie{l,...,r}.

Proof: We have m € a ift
1 €a:m= (lem(my,m)/m)R+ -+ (lem(m,,m)/m)R,

hence iff lem(m;, m)/m = 1 for some i € {1,...,r}, and this is the case iff
m; | m for some i € {1,...,7}. |



490 K. KIYEK AND J. STUCKRAD

Corollary 4 Let a be a monomial ideal in R, and let mq,...,m,, ny,...,Ng
be monomials with . )
a= Y mR=Y nk.
i=1 j=1

(1) We assume that m; { my, for all i, k € {1,...,r} with i # k. Then we
have {my,...,m,} C {ny,...,ng}.

(2) We assume, furthermore, that n; tny for all j, 1 € {1,...,s} with j # L.
Then we have r = s and {mq,...,m.} ={ny,...,ng}.

Proof: (1) Note that #{my,...,m,} = r. Let i € {1,...,r}. Then, by
Cor. 3, thereexist j € {1,...,s}and k € {1,...,r} with m; | n; and n; | my,

hence we have m; | my. Therefore we have i = k and m; =n; € {ny,...,ns}.
This implies that {mq,...,m,} C{ny,...,ns}
(2) This follows immediately from (1). |

Remark 3 The result of Cor. 4 implies the following: Every monomial
ideal of R admits a uniquely determined minimal set of monomial generators
where “minimal”’can be understood as “minimal with respect to number” or
as “irredundant”. We denote this number by v(a). But we can even say
more:

Corollary 5 Let a be a monomial ideal in R, let r := v(a), and let {m., ...,
m,} C M be a minimal set of monomial generators of a. Then we have

pr,(aRy) =1 forallp € V((z1,...,2,)).

Moreover, every set of generators which generates a contains at least r ele-
ments.

(In a local ring A we denote by pa(M) the minimal number of generators
of a finitely generated A-module M)

Proof: The second statement follows from the first one, and the first state-
ment is obtained from Cor. 4 by replacing & by R,,. [
2.3. The Associated Graded Ring

Remark 4 The associated graded ring

gr(R) = gry(R) = P a"/a"* = R/a[ Ty, ..., Ta
p=0
is a polynomial ring over R/q in T; := x; mod ¢?,...,7T; = x4 mod g°
[cf. [2], Ch. X, § 9, no. 7, Th. 1]. Notice that the sequence (Zy,...,T4) is a
sequence in gr(R) which satisfies (a)-(c) above.
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(1) Let M = {X := 70" ---7% | i € N¢} be the set of monomials of
the polynomial ring R/q[Ty,...,T4]; the map x!' — X' : M — M is an
isomorphism of monoids. An ideal 2 of gr(R) is called a monomial ideal if
it can be generated by elements in M; such an ideal is a homogeneous ideal
of the graded ring gr(R). Every non-zero element z € gr(R) has a unique
representation z = e;m; + --- + €.,m, with pairwise distinct monomials
My, ...,m, € M and non-zero elements €,...,¢, € R/q; we call this the
monomial representation of z.

(2) For every z € R with z ¢ [ g” we define the order ord(z) to be the
largest integer p with z € gP. Let p := ord(z); then we define the initial form
of z as In(z) := 2z mod ¢?™ € gr(R),; note that In(z) is a homogeneous non-
zero polynomial of degree p. In particular, for a monomial m € M ord(m)
is defined, and we have ord(m) = deg(m) and In(m) = m.

(3) For every ideal a of R we define

gr(a) .= Pang’ +q)/q"" C gr(R);

p=0

gr(a) is a homogeneous ideal in gr(R). If b is another ideal in R, then we
have gr(a)gr(b) C gr(ab).

(4) Let a = myR+---+m,.R with my,...,m, € M be a monomial ideal
in R. Then we have gr(a) = mgr(R) + - - - +m,gr(R), hence, in particular,
gr(a) is a monomial ideal in gr(R) [note that, for p € Ny, aNg® is generated
by the elements m;; := lem(m;, n;) where n; € M is of degree p by Lemma 3,
and that m;; € g?** if deg(m;;) > p]. In particular, for monomial ideals a, b
in R we have gr(ab) = gr(a)gr(b) and gr(a’) = (gr(a))’ for every i € N.

Remark 5 Now we assume that q is a prime ideal of R which is contained
in the Jacobson radical of R and we equip R with the g-adic topology. Then
N g? = (0) [cf. [3], Ch. III, § 3, no. 3, Prop. 6], gr(R) is a domain, hence
R is a domain, also, and the order function is a valuation of the quotient
field of R [cf. [13], vol. II, Ch. VIII, § 1, Th. 1]. Moreover, all the ideals
qu for every U C {1,...,d} are prime ideals as is easily seen by considering
ideals of a monomial ideal a of R are of the form qy for some U C {1,...,d}
[cf. Lemma 1], and therefore, by considering a primary representation of a,
we get: if em € a withe € R\ q and m € M, then we have m € a.

Let R be the g-adic completion of R. Then x is a sequence in R which
satisfies (a)-(c), § = qR is a prime ideal in R, and R is a faithfully flat
R-module [cf. [3], Ch. III, § 3, no. 3, Prop. 6].
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3. Monomial Representations

Assumption 1 In this section we assume that q is a prime ideal of R which
is contained in the Jacobson radical of R.

Notation 3 Let w € R be different from 0. Then In(w) € gr(R) is a
homogeneous polynomial of degree ord(w); therefore there exist uniquely
determined and pairwise distinct monomials my, ..., m, € M having degree
ord(w) and elements ey, ...,e, € R\ q such that In(w) = In(eymy + -+ +
e-m,); we define the set of terms of w by

Tm(w) :=={mq,...,m,}.
For w = 0 we put In(w) = 0 and Tm(w) = O.

Definition 2 We say that w € R, w # 0, admits a monomial representation
(with respect to x), if there exist monomials my,...,m, € M and elements
e1,...,6 € R\ q such that

w=emy+---+em, and v(mR+---+m,.R)=r. (%)

In () we have m; { m; for all 4, j € {1,...,r} with ¢ # j; in particular,
the monomials my, ..., m, are pairwise distinct. For every nonempty subset
Uc{l,...,r}clearly >, , e;m; =: z is a monomial representation of z.

Lemma 4 Let w € R\ {0}. If w admits a monomial representation w =
eymq + - - -+ e,m,., then we have

T

In(w) = Z In(e;)In(m;),
i=1
deg(m;)=ord(w)

ord(w) = min{deg(m;) | i € {1,...,7}},
Tm(w) = {m; |i € {1,...,r}, deg(m;) = ord(w)}.

Proof: Let s := min{deg(m;) |i € {1,...,7}}. Then
In< Z Gimi> = Z In(e;)In(m;),

i=1 =1
deg(m;)=s deg(m;)=s

and since In(e;) # 0 for ¢ € {1,...,r}, we obtain
ord( Z eimi> = s,

i=1
deg(m;)=s
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hence ord(w) = s. Clearly we have

In( g eimi> = In( E eimi> = In(w).
i=1 i=1
deg(m;)=s m

Proposition 2 Let R be complete with respect to the q-adic topology. Fvery
w € R, w+# 0, admits a monomial representation.

Proof: (1) Let w € R, w # 0. Let Tm(w) = {my,...,m,}. There exist
elements ey, ...,e. € R\ q such that

In(w) = In(eymy + - - - + e,m,.);

let us put «(w) := eymq +- - -+ e,m,. Then we have ord(w) = ord(¢(w)) and
ord(w — t(w)) > ord(w). If w = 0, then we put ¢(w) = 0.

(2) Let w € R, w # 0. We define a sequence (w,),en, in R: Let wy := w;
if p € No, and if w,, is defined, then we define wy4; := w, — t(w).

Note the following: If w, = 0 for one p € Ny, then w, = 0 for every ¢ € Ny
with ¢ > p, and if w, # 0 for one p € Ny, then the elements wy,...,w,_;
are different from 0, and we have

ord(w) = ord(wp) < ord(w) < - -+ < ord(w,);

in particular, we have ord(w,) > p.

For every p € Ny let a, be that monomial ideal of R which is generated
by the monomials in Tm(wy), ..., Tm(w,). Then (a,)yen, is an increasing
sequence of ideals in R, and therefore it becomes stationary, i.e., there exists
q € No with a; = a1 = --- =: a. We can write a = m;R+---+m, R where
mi,...,m, € M and r := v(a).

(3) We have
p
W= Wy + Z t(w;) for every p € Ny;
=0

note that wy,q = 0 or ord(wy41) > p+ 1, hence w,41 € gPH.

Let j € Ny with w; # 0. Then we can write ¢(w;) as a sum

.
Wwy) =) ajim;
=1
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where the elements aj; € R for i € {1,...,r} satisfy the following condition:
If ord(w;) < deg(m;), then a;; = 0, and if ord(w;) > deg(m;) and aj; # 0,
then a;; is a linear combination of monomials of degree ord(w;) — deg(m;)
with coefficients which lie in R\ g [note that the monomials in Tm(w,) lie
in a]. For p € Ny we have

p

> uwy) = Zemmz‘

=0
with
P
epi = Zaﬂ for every i € {1,...,r}.
=0

Let ¢ € {1,...,7}. There exists a unique j; € {0,...,q} with ord(w;,) =
deg(m;) [cf. (2) and note that {m,..., m,} is a minimal system of genera-
tors of a].

We consider any integer p > ¢. Then we have aj; =0 for j € {0,...,j; —
1}, aj; € R\ q, and aj; € g'=9€™) for j € {j; + 1,...,p}. In particular,
epi € R\ q. Furthermore, we have

c qp+1fdeg(mi) .

Ep+1,i — €pi = Qp+1,i ;

therefore, the sequence (e,;),>0 is a Cauchy sequence in R\ q. Since q is an
open ideal in the g-adic topology, we have

e; = lim e, € R\ q.
p—o0

From

T ' T
g e;m; = E (lim ey;)m; = lim g €pilM;
p—o0 p—o0

i—1 i—1 i—1
P
= lim (Z L(wj)) = lim (w — wp41)
p—0 p—00
=0
and wy,; € g°™ for every p € Ny we obtain

T

w = E €;my;.

=1
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Proposition 3 Let a # (0) be an ideal in R. The following statements are
equivalent:

(1) a is a monomial ideal.
(2) For every w € a, w # 0, we have Tm(w) C a.

Now we assume, in addition, that R is complete in the q-adic topology. Then
the following statements are equivalent with (1) and (2):

(3) Every w € a, w # 0, admits a monomial representation w = eymy +
<o+ e,my with mq,...,m, € a.

(4) Let w € a, w # 0, and let w = eymy + -+ + e,m, be a monomial
representation of w, then mq,...,m, € a.

Proof: (1) = (2): Let w € a, w # 0, and let Tm(w) = {my,...,m,}; let
s := ord(w), hence we have deg(m,) = --- = deg(m,) = s [cf. Lemma 4].
There exist elements ey, ..., e, € R\ q with ord(w— (eymi+---+e,m,)) > s.
Let i € {1,...,r}, and define

b :=a+mR+- - +mi R+m R+ +mR+q"

b; is a monomial ideal of R. Note that e;m; € b;, and therefore we have
m; € b; [cf. Remark 5]. For no monomial m € q**! we have m | m; [since
deg(m;) = s < deg(m)], and we have m; { m; for j € {1,...,r}, j # 1.
Therefore, by Cor. 3, there exists a monomial m € a with m | m;, hence we
have m; € a, and therefore we have shown that Tm(w) C a.

(2) = (1): Suppose that a is not a monomial ideal. This means, in
particular, that a # R. Let a’ be the monomial ideal which is generated by
all the monomials which lie in a; then we have o ; a. By assumption we
have Tm(w) C o for every w € a, w # 0. The prime ideals in Ass(R/a’) are
of the form qy for U C {1,...,d}, hence are contained in q [cf. Remark 5].
By Krull’s intersection theorem [cf. [13], Vol. I, Ch. 4, § 7, Th. 12'] we
have (,so(a’ + q") = a’. Therefore there exists n € Ny with a C o' + q",
a da + gt We choose w € a, w ¢ a’ + q"*!; we can write w = w; + 2
with w; € @/, z € g" and z ¢ g""!. This implies that z = w — w; € a,
z # 0, and, by assumption, we have Tm(z) C a, hence Tm(z) C a'. Let
Tm(z) = {my,...,m,}. Then there exist elements ey,...,e, € R\ ¢ such
that, putting z; := e;my + --- + e,m,, we have z; € a’ and z — z; € q"L.
This implies that w = w; +2 = w;+2,+ (2 —2;) € @ +q*, in contradiction
with the choice of w.

Now we assume that R is complete; then every w € R, w # 0, admits a
monomial representation [cf. Prop. 2].
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(2) = (4): Let w € a, w # 0, and let w = eymy+- - -+e,m,. be a monomial
representation of w. We show by induction on r that {ms,...,m,} C a.
Let r = 1, hence Tm(w) = {m1} C a. Now let » > 1. It is clear that
Tm(w) C {my,...,m,}. We label the elements my,...,m, in such a way
that Tm(w) = {my,...,m,} with ¢ < r. We put w; := eymy + - -+ + e;my.
Now we have w; € a by assumption. If ¢ = r, then the elements m,,...,m,
lie in a. If ¢ < r, then we have w — w; = e;41mgq1 + -+ - + e,m,, and since
w —w; € a, we get by our induction assumption that mgyq,...,m, € a.

(4) = (3) and (3) = (1) are trivial. [

4. Integral Elements

Remark 6 Let S be a ring, and let a be an ideal in S. The integral closure
of the Rees ring
R(a,S) = @a”T” C S[T]

p=0
in the polynomial ring S[7T'] is the graded ring P, a? T? where, for every

p € N, @7 is the integral closure of a? in S [cf. [10], Ch. II, § 5]. In particular,
an element 2 € S is integral over a iff 27" € S[T'] is integral over (P, aT™.

Notation 4 Let a, b be monomial ideals in R.
(1) We define

a:=({m &€ M | there exists [ € N with m! e al});

a is a monomial ideal of R. Since the monomials which generate a are
integral over a, a is an ideal which is integral over a, and therefore a is
contained in the integral closure @ of a in R, and we have

aCacCa.

It is clear that @ b C ab, and if a C b, then we have @ C b.
(2) We show that

a—=a.

In fact, let @ = m;R+---+m,R. For everyi € {1,...,r} there exists [; € N
with m“ € a%. Let m be a monomial in a@. Then there exists | € N with
m! € a@'. This implies that there exist (iy,...,%,) € Nj with i; + -+ 414, =1
and such that m}' - --m divides m' [cf. Cor. 3]. Since (m}! - --mi )1t lies
in a1 we see that m' 1" lies in a'* also, and this means that m € a.
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(3) By (1) we get aPa? C arta for all p, ¢ € Ny. Therefore

R(a, R) = @ @17 € R[T]

p>0

is a graded R-algebra and a graded R-subalgebra of R[T'], and it contains
the Rees ring R(a, R) := P, a?T? of a as a graded R-subalgebra.

(4) Since a? C a? for every p € N, the integral closure of R(a, R) in R[T]
is the ring @, @ 77 [cf. Remark 6].

(5) Just as in [8], Prop. 4.6, one may prove, using (4): For z € R we have
z € a iff there exist p € N and elements a; € a’, i € {1,...,p}, such that

a2+ 4a, =0

Assumption 2 For the rest of this section we again assume that q is a
prime ideal of R which is contained in the Jacobson radical of R. The g-adic
completion of R shall be denoted by R.

Proposition 4 Let a be a monomial ideal of R, and let m = x{l x -xff e M.
The following statements are equivalent:

(1) m is integral over a.

)
(2) m is integral over aR.

(3) There exists | € N with m! € a'.

(4) (j1,---,Ja) lies in the convex hull of T + R, where T C N is the set
of exponents of monomials appearing in a.

In particular, every monomial in @ lies in a.

Proof: (1) = (2) and (3) = (1) hold trivially.

(2) = (3): Let TP + a,T" ' +--- +a, € R[T] with a; € (aR)’ = a'R
for i € {1,...,p} be an equation of integral dependence for m over aR. Let
ie{l,...,p}. Since a’ is a monomial ideal of R, the ideal a’R is a monomial
ideal of R, and, by Prop. 2, there exist elements e;1,...,¢€;, € R \ qﬁi and
monomials m;1, ..., m;, € M with

T
a; = E eijmij.
j=1

From Prop. 3 we obtain m;; € a’RNR = ai fori € {1,...,p}, 7 €{1,...,r;}
[note that R is a faithfully flat extension of R]. Therefore the monomial m?
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lies in the R-ideal which is generated by the set {m;;m?~" |i € {1,...,p},j €
{1,...,7;}}. Using Cor. 3 we find ¢ € {1,...,p} and j € {1,...,r;} with
mi;mP~" | mP, hence m;; | m’. Thus, we have shown that m’ € m;; R C a’.
(3) <= (4) This is an easy consequence of Cor. 3 and Carathéodory’s
theorem [for Carathéodory’s theorem cf. [11], Th. 17.1]. |

Corollary 6 Let a be a monomial ideal of R.

(1) We have aR = aR and GR C ak.

(2) We have gr(a) = gr(a).

Proof: (1) The first assertion is an easy consequence of Prop. 4, and the
second assertion is clear.

(2) Let a be generated by the monomials myq,...,m,. Then gr(a) is
generated by the monomials Ty, ..., m, [cf. (4) in Remark 4]. For every
i€ {1,...,r} there exists I; € N with m} € a%, hence m" € gr(a¥) = gr(a)",

and therefore we have m; € gr(a). Conversely, let m € M be a monomial

with m € ggz_a/). Then there exists | € N with m' € (gr(a))! = gr(a'), hence
m! € a!, and therefore m € a, hence m € gr(a). |

5. Monomial Ideals in Polynomial Rings

The following result in Prop. 5 should be known, but we could not find a
source for it.

Notation 5 Let (I', <) be a totally ordered commutative monoid with neu-
tral element 0 satisfying the following condition:

Every non-empty subset of I' has a smallest element.

This condition is satisfied if < is a well-ordering; in particular, a monomial
ordering on N¢ satisfies this condition.

Let R = @«/er R, be a I'-graded ring. For z € R let z, € R, be the
homogeneous component of z of degree v, and if z # 0, then define

Supp(z):={v€l'|z, # 0}, deg(z) :=max_{v|y€Supp(2)}, 2* = Zdeg(2)-

Let z, w € R\ {0}; then we have deg(zw) < deg(z) 4+ deg(w) if zw # 0 and
deg(z + w) = max_{deg(z),deg(w)} if z + w # 0. Notice that, if z is not
homogeneous, then we have deg(z — z*) < deg(z).
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Proposition 5 Let S be a I'-graded ring, and let R be a I'-graded subring
of S. Then the integral closure R of R in S is a I'-graded subring of S.

Proof: (1) Firstly, we consider the case that every homogeneous element
of S which is integral over R already lies in R. Then we have to show that
R = R. Suppose that R ; R, and choose z € R\ R in such a way that
#(Supp(z)) < #(Supp(w)) for every w € R\ R. Now z is not homogeneous
by our assumption on R. If z* € R, then we would have z* € R since z*
is homogeneous, hence z — z* € R, and therefore z — z* € R by the choice
of 2 [note that #(Supp(z — 2*)) < #(Supp(z))]. Therefore we have z* ¢ R.
In particular, we have (2*)* # 0 for every i € N, hence (z')* = (2*)’ and
deg(z") = ideg(z) for every i € N.
Let

Vi={a=(a,...,a,) | ay,...,a, € R, 2" +a;2""' +--- +a, =0}
Obviously V is not empty. For every a = (a4,...,a,) € V we define
V(a) = max-<{deg(ai) - Zdeg(z) | Q; 7é 072 € {07 ]-7 s 7p}} S F)

s(a) :=min{i € {0,...,p} | a; # 0,deg(a;) —ideg(z) =~y(a)} € {0,...,p}

[we define ag := 1]. Then we have y(a) = 0 [since ag = 1 € Ry]. Suppose
that there exists a = (a1,...,a,) € V with y(a) = 0. Then we have for
every i € {1,...,p} with a;2P~" # 0

deg(a;2""") < deg(a;) + deg(2""") = deg(a;) + (p — i) deg(2)
= pdeg(z) +v(a) = pdeg(2).

In 27 + a;27"' + -+ 4+ a, = 0 we consider the homogeneous component of
degree pdeg(z) = deg(z?). Then we get (2*)”+a/(2*)P~' +---+a], = 0 with

a; = forie {1,...,p}.

{a;‘ if ;2P # 0 and deg(a;2’~") = pdeg(2),

0 else

But this would imply that z* € R, in contradiction with our observation
above.

Therefore we have y(a) > 0 for every a € V. This implies that s(a) > 0;
moreover, we have s(a) < p — 1 since otherwise a;, = 0.

Let

7o = min_{y(a) |a € V}, V= {a €V |4(a) = 1o},
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Then we have vy > 0. We choose a = (ay,...,a,) € V, with s(b) < s(a) for
every b € V. We define

* ifa; #0,d ) —jd =

[ a’] 1 a’] 7£ ) eg(a]) J eg(Z) "o, fOl"j c {1’ o 7p}

0 else

By the choice of s we have a}| =--- =a.,_; =0, a, = a # 0, and
a (P a4, =0 (+)

[consider in 27+ a;2P~ ' +- - -+ a, = 0 the homogeneous component of degree
Yo + pdeg(z)]. We multiply (%) by @’?~*~" and obtain

S

(alz*)P~* +al (a2 )P 4 4 a;,a'sp_s_l =0.
Therefore the homogeneous element alz* is integral over R, hence lies in
R. Since a,z — alz* is integral over R, and since either a,z = az* or
#(Supp(al,z — alz*)) < #(Supp(alz)), we have a’z — a,z* € R by the choice
of z, hence a2z € R. We define

a; ifi#s,s4+1,
a; = 4 as — al, if i = s, for i € {1,...,p}.

asy1 +alz ifi=s+1

Then we have @ = (ay,...,a,) € RF, and since 2P +a;2P ' 4+ -+ @, = 0,
we have a € V. We show that we even have a € V,. We have a;, = 0 or
deg(as — a) — sdeg(z) < deg(as) — sdeg(z) = v, and we have @z = 0
or deg(asy1 + alz) — (s + 1) deg(z) < v, and therefore we have (@) = .
Obviously we have s(a) > s+ 1, in contradiction with the choice of a.
Therefore we have R = R.

(2) Now we consider the general case. Let R’ := R[¥] where ¥ is the
set of homogeneous elements of S which are integral over R; then R’ is a
I'-graded subring of S. We have R C R’ C R, hence R = R'. Since R’ = R’
by (1), we have R = R/ |

Corollary 7 Let R be a I'-graded ring, and let a be a I'-homogeneous ideal
of R. Then the integral closure of a in R is a I'-homogeneous ideal of R,
again.

Proof: We equip the polynomial ring R[T'| in a natural way with a I x No-
grading; then we can consider the Rees ring R(a, R) as a I' x Ny-graded
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subring of R[T']. The integral closure of R(a, R) in R[T']is a I' x Ny-graded
subring by Prop. 5, and w € R is integral over a iff wT € R[T'] lies in

R(a,R) =P 17

p=>0

[cf. Remark 6]. [ |

Notation 6 For the rest of this section let k be a ring, and let A =
k[z1,...,xq] be the polynomial ring over k in d variables z1,...,x4. Then
(x1,...,24) is a regular sequence in A which satisfies (a)-(c) above; let M
be the set of monomials x! = z!---2% i € N¢. Every non-zero z € A
has a unique representation z = ¢ymy + - - - + ¢,m,. with non-zero elements
c1,...,¢. € k and pairwise distinct monomials mq,...,m, € M; we call this
the monomial representation of z.

An ideal 2 of A is called a monomial ideal if it is generated by a set of
monomials. Let 2 be a monomial ideal in A; then 2 is generated by a finite
set of monomials [ Dickson’s Lemma, cf. [1], Ch. 4, Cor. 4.48 and Th. 5.2 or
[5], Ch. II, § 4, in particular Exercise 7] and a monomial m € M belongs
to 2 iff it is a multiple of a monomial in 2A. Moreover, if cm € 2 with
ce k\ {0} and m € M, then m € 2.

Corollary 8 Let 2 be a monomial ideal in A. Then we have
A = rad,(0)A + 2.

Proof: Clearly we have radi(0) C A and A C A Let 2 € A z # 0;
since A is an Ng-homogeneous ideal of A [cf. Cor. 7], there exist s € N,
non-zero elements cy,...,c; € k and monomials nq,...,ny € M with z =
cing + -+ + ¢gng and such that ¢;n; is integral over A for ¢ € {1,...,s}.
Let i € {1,...,s}. Then there exist p € N, elements d;,...,d, € k and
monomials m; € A, ..., m, € AP such that

(cini)? + dymy (ein)P™H + -+ + dymy, = 0.

If di =---=d, =0, then we have ¢/ = 0, hence ¢; € radg(0). Otherwise,
there exists [ € {1,...,p} with n? = m;n?"', hence n} = m; € A, hence
n; € A. Therefore we have z € rad(0)A + 2. |

Corollary 9 The following statements are equivalent:

(1) k is a reduced ring.
(2) There exists a monomial ideal A in A such that %A = 2.

(3) For every monomial ideal 2 of A we have % = 2.



502 K. KIYEK AND J. STUCKRAD

6. The Main Theorem

We keep the notations and assumptions introduced in section 2.

Notation 7 (1) A monomial ordering < of N¢ is said to be degree-compat-
ible if it satisfies the following condition: for any i, j € N¢ with deg(i) <
deg(j) we have i < j.

(2) Let < be a degree-compatible ordering on N. Then every subset of
N¢ which is bounded above is finite.

(3) Let < be a monomial ordering on N¢. Let i # j be in N¢. We define
i <, jif deg(i) < deg(j) or if deg(i) = deg(j) and i < j. Then <, is a
degree-compatible monomial ordering on Ng.

(4) If < is the lexicographical ordering lex on N¢, then <, is the degree-
lexicographical ordering deglex on N¢.

(5) Every monomial ordering < on N¢ induces an ordering on M which
will be denoted by <, again.

Proposition 6 We assume that R/q is a reduced ring. Let a be a monomial
ideal of R; then gr(a) is the integral closure of the monomial ideal gr(a)
in gr(R).

Proof: Since a is integral over a, obviously gr(a) = gr(a) [cf. Cor. 9(2)] is
integral over gr(a). Let m € M be a monomial, and assume that In(m) =m
is integral over gr(a). Then there exists h € N with In(m)" € (gr(a))* =
gr(a”) [cf. Cor. 9], hence we see that m”" € a® N ghdee(™ c a” hence m € a,
and therefore we obtain that In(m) € gr(a). |

Remark 7 We assume that R is complete, and that g is a prime ideal which
is contained in the Jacobson radical of R. Let < be a degree-compatible
monomial ordering on M, and let z € R\ {0}; we define

Im(z) := min_{Tm(z)}.

Let
z=emi+- - +em,

be a monomial representation of z, then we have lm(z) < m; for every j €
{1,...,7r} [cf. Lemma 4 and note that < is a degree-compatible ordering],
hence we even have

Im(z) = min {m; | i € {1,...,r}}.
For z, w € R\ {0} we obviously have

Im(zw) = Im(z)lm(w).
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Proposition 7 We assume that R is complete, and that q is a prime ideal
which is contained in the Jacobson radical of R. For every monomial ideal
a of R we have @ = a.

Proof: (1) We have a C @ for every monomial ideal a of R [cf. (1) in
Notation 4]. Suppose that the proposition does not hold. Then the family

7 := {a| a monomial ideal of R, a G @}

is not empty. For every a € Z we define r(a) € N in the following way:
If y ea\a and if y = e;my + -+ + e,m, is a monomial representation
of y [cf. Prop. 2], then we have r > r(a). Now we choose a € Z in such a
way that r(a) < r(b) for every b € Z. We define r := r(a), and we choose
y € a\a such that y admits a monomial representation y = eymi+- - -+e,.m,
having r terms. By Prop. 4 we have r > 2. By (5) in Notation 4 there exist

peNand q; € a fori e {1,...,p} with
Y+ a4 +a, =0.

(2) Let < be a degree-compatible monomial ordering on M. Without
loss of generality we may assume that in the monomial representation of y
we have my; < mg < -+ < m,, hence that Im(y) = my, and that deg(m;) <
deg(mgy) < -+ < deg(m,). We choose t € {1,...,r} with deg(m;) =

deg(msg) = - - - = deg(my) < deg(my41), and we define y; := eymy+- - -+emy;
then we have In(y) = In(y,).
(3) Let

S:={b=(by,....by) | b;€aforic{l,....p} yP+by’ "+ -+b, =0}
The set S is not empty [cf. (1)]; we define for b € S
p(b) = min_{lm(by”~) | i € {1,....p}, b 0} € M,
s(b) :=min{i € {1,...,p} | b; # 0, Im(by*") = p(b)} € {1,...,p}.
(4) There exists b € S with
p(b) = Im(y").
Proof: Let us suppose, on the contrary, that

p(b) < lm(y”) for every b € S.
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This implies that s(b) < p — 1 for every b € S. The set {p(b) | b € S} is
bounded above, hence finite; we define
p:=max-{p(b) | be S} € M.
Furthermore, we define
S ={beS|pb)=nr}

We choose b" = (by,...,b,) € S’ in such a way that s(b) < s(b’) for every
b € &', and we define s := s(b’); note that 1 < s <p—1.
Let i € {1,...,p} with b, # 0. We consider a monomial representation

/
b, = e + -+ €My,

Since ai is a monomial ideal, we have myy,...,m;,, € ai [cf. Prop. 3].
Without loss of generality we may assume that m;; < m; < -+ < m,,,. We
choose t; € {1,..., 7} with deg(my) = --- = deg(myy,) < deg(miy,41), and

we define b} := e;;my1 + - - -+ €;4,mi,; then we have In(b)) = In(b}) in gr(R).
For i € {1,...,p} we define

o if o =0orif b} # 0 and Im(by"~") > p,
ST bY it b # 0 and lm(bjyP) = p.

Then we have d; € ai for every i € {1,...,p}.
We consider the equation

yp_Fb’lyP*l_{_..._Fb;:O_ (%)

For i € {1,...,p} we replace b; by d;, and we replace y by y;; using the
inequality p < Im(y?), we obtain the following equation in gr(R)

In(d,)In(y? ) + In(dey1)In(y ") + - - - + In(d,) = 0. (s5)

We multiply (**) with In(d?~*~1), and we obtain

(In(dsy1))? = +In(dgs1) (In(dsy1) )P~ '+ In(dsrads) (In(dsyr))P %+
o In(dyd? 1) = 0.

We have

drogd ! €@ CAT for e L p )
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Therefore we have In(d,;dt) € gr(at+Dl) = (gr(ast!)!) [cf. Cor. 6(2)
and (4) in Remark 4] for [ € {1,...,p — s}, hence In(dsy;) is integral over
(gr(a))*** [cf. (5) in Notation 4], In(mgs m,) is integral over (gr(a))**!, also
[cf. Cor. 9], and therefore ese;mgmy is an element of ast1. We multiply
(*) with (es3ms1)? and we obtain

(esims1y)? + breaima (esimay)’™" + -+« + b (eamg )P = 0.

Note that

b(eams)' € a(a®) C (ast1) for I € {1,...,p},

and therefore e,;mgy is integral over a**! [cf. (5) in Notation 4]. Let ¢/ :=
y—eymy; then egmgy’ is integral over a**! and egmgay’ = Y i, e;esimgm;
admits a monomial representation having only » — 1 terms.

We have e,;mg iy € s+l [this is clear if asTT = afs\:l, and if a1 2 c:"’rl,
then a**! lies in Z, and by the choice of r [cf. (1)] we get eqymqy’ € a1
in this case, also]. Since egmgy’ and ejegmimyg lie in c;;/l, the element

es1Mg1y lies in astl, also.
We define [note that s <p— 1]

b ifi £s,541,
by ==V, —essmg if i = s, forie {1,...,p}.
Vg +eamay ifi=s+1

We have b’ € S, e;ym,1 € @° and e,mgy € asT1, hence we have b; € ai for
ie{l,...,p}. Clearly we have

yp+’51yp_1+...+bp:07

and therefore b := (by, . .. ,by) lies in S, and this implies that p(b) < p by
the choice of p. We show that b even lies in .

We have ES =0 or ES = €My + -+ + €5, My, and lm(gs) = Mgy >
mg = Im(b)) = p. We have Im(esymay?~*) = p, and if b, # 0, then we
have lm(b,, ;y?~*~') »= p. Therefore we have 1m(55+1yp’8’1) >= p, and since
p(b’) = p, we obtain p(E) %= p. This implies that p(g) = p, hence we get, in
fact, that bes.

Now we have b, = 0 or Im(b,) = p and b; = b, for i € {1,...,s— 1}, and

this implies s(b) > s(b’) = s, in contradiction with the choice of b’.



506 K. KIYEK AND J. STUCKRAD

(5) By (4) there exists b € S with Im(b;y?™") %= Im(yP) for every i €
{1,...,p} with b; # 0.

Leti € {1,...,p} with b; # 0, and let b; = e;ym; +- - - +€;,,m;r, € @' be
a monomial representation of b;; without loss of generality we may assume
that m; < msp < -+ < my,,, which implies that m;; = lm(b;). We choose
ti € {1,...,m;} with deg(mi;) = -+ = deg(miy,) < deg(m+1), and we
define

b, i=eamir + - + €1, Miy,;

note that In(b;) = In(b;). We have m;; € ai for j € {1,...,r;} [cf. Prop. 3],
hence, in particular, b, € a’.
Now let i € {1,...,p}; we define

0 if b; =0 orif b; # 0 and Im(b;y?~*) = Im(yP),
C; = .
b, if b; # 0 and lm(b;yP~") = lm(y?).

Clearly we have ¢; € ai. From y? 4+ biyP™t + .-+ b, = 0 we obtain the
following equation in gr(R)

In(y;)? + In(c))In(y, )P~ + - - + In(c,) = 0.

Now we have In(¢;) € gr(a?) for every ¢ € {1,...,p}. Just as in (4) we see
that In(y;) is integral over gr(a) and that therefore In(m,) is integral over
gr(a), hence we have m; € @, hence eym; € a. Now y = y — eymy lies
in @, and therefore 3 lies in @ by the choice of r. From this we get that
y =1 + eymy lies in @, in contradiction with the choice of . [ |

Theorem 1 Let R be a noetherian ring, let x = (x1,...,2q) be a reqular
sequence in R, and assume that q := XR is contained in the Jacobson radical
of R and that R/q is a reduced ring. For every monomial ideal a of R we
have @ = a; in particular, @ is a monomial ideal, also.

Proof: (1) Firstly, let q be a prime ideal. Let y € @. We have aR C (aR)
and aR = AR [cf. Cor. 6], hence y € aR = aRk = aR [cf. Prop. 7], and since
aRN R = a we obtain y € a. Thus, we have shown that a@ = a.

(2) Now we consider the case that R/q is reduced.

(a) Let p € Ass(R/q). Then qR, is the maximal ideal of R, hence we
have aR, = aR, by (1). Obviously we have aR, = aR, and aR, C aR,.
Therefore we have aR, C aR,.

(b) For every p € Ass(R/q) there exists, by (a), an element s, € R\ p
with @ C a : sp,. Let b be the ideal generated by the elements s,; then we
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have @ C a: b. Let p’ € Ass(R/a). Since a is a monomial ideal, there exists
Uc{l,...,d} with p’ € Ass(R/qu) [cf. Lemma 1]. Repeated application
of Lemma 1 in [13], vol. II, Appendix 6, shows that there exists a prime
ideal p € Ass(R/q) with p’ C p. Therefore b is not contained in any prime
ideal in Ass(R/a), hence a : b = a, hence @ C a. The inclusion a C @ was
noticed in (1) of Notation 4, and therefore we have @ = a. |

Example 1 Let R be a regular local two-dimensional ring, and let {x,y}
be a regular system of parameters of R. Let m > n > 1 be coprime integers,
and write m = syn +n; with 1 < n; <n. Let a be the ideal of R generated
by 2™ and y"™. Then a is a monomial ideal. It can be shown [cf. [7]] that
the integral closure p of a has a minimal system of generators {2 7mn(yt |
i €40,...,n}} where 0y,,,: {0,...,n} — {0,...,m} is a strictly increasing
function; in particular, one has

Omn(0) =0,0mn(1) = s1,0mn(n —1) =m — (s1 +1),0mn(n) =m,
and
Omn(i+J) = Omn(l) + omn(j) fori,j€{0,...,n} with i+ j <n.
Moreover, the polar ideal P, of p has
{gm=omn @Dyt |y e L0, n —1}}

as minimal set of generators.
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