Integral Closure of Monomial Ideals on Regular Sequences ### Karlheinz Kiyek and Jürgen Stückrad #### Abstract It is well known that the integral closure of a monomial ideal in a polynomial ring in a finite number of indeterminates over a field is a monomial ideal, again. Let R be a noetherian ring, and let (x_1, \ldots, x_d) be a regular sequence in R which is contained in the Jacobson radical of R. An ideal \mathfrak{a} of R is called a monomial ideal with respect to (x_1, \ldots, x_d) if it can be generated by monomials $x_1^{i_1} \cdots x_d^{i_d}$. If $x_1R + \cdots + x_dR$ is a radical ideal of R, then we show that the integral closure of a monomial ideal of R is monomial, again. This result holds, in particular, for a regular local ring if (x_1, \ldots, x_d) is a regular system of parameters of R. #### 1. Introduction Let A be a polynomial ring over a field in a finite number of indeterminates. It is well known that the integral closure $\overline{\mathfrak{A}}$ of a monomial ideal \mathfrak{A} of A is a monomial ideal, again: $\overline{\mathfrak{A}}$ is generated by all monomials m with $m^l \in \mathfrak{A}^l$ for some $l \in \mathbb{N}$ [cf. [12], section 6.6, Example 6.6.1]. While studying a particular class of ideals in two-dimensional regular local rings [cf. the example at the end of this paper], the following question arose naturally: Let R be a noetherian ring, and let (x_1, \ldots, x_d) be a regular sequence in R such that $\mathfrak{q} := x_1R + \cdots + x_dR$ is contained in the Jacobson radical of R. Let \mathfrak{a} be an ideal of R that is generated by monomials in x_1, \ldots, x_d ; such ideals shall be called monomial ideals. Is the integral closure $\overline{\mathfrak{a}}$ of \mathfrak{a} a monomial ideal, again? In this paper the question is answered in the positive under the assumption that R/\mathfrak{q} is a reduced ring. 2000 Mathematics Subject Classification: Primary 13B22; Secondary 13B25. Keywords: Regular sequences, monomial ideals, integral closure of monomial ideals. In section 2 we collect some useful results on monomial ideals; in particular, we show that the usual ideal-theoretic operations, applied to monomial ideals, lead again to monomial ideals. It is also shown that for a monomial ideal \mathfrak{a} the ideal $\operatorname{gr}(\mathfrak{a})$ in the associated graded ring $\operatorname{gr}_{\mathfrak{q}}(R)$ which is a polynomial ring over R/\mathfrak{q} is a monomial ideal. In section 3 we introduce the notion of a monomial representation of an element of R and we show that, if R is complete, every element of R admits a monomial representation. In section 4 we associate with a monomial ideal \mathfrak{a} the ideal $\widetilde{\mathfrak{a}}$ which is generated by all monomials m in R with $m^l \in \mathfrak{a}^l$ for some $l \in \mathbb{N}$. In section 5 we study monomial ideals in a polynomial ring over a reduced ring, and we show that for a monomial ideal \mathfrak{A} we have $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$ where $\overline{\mathfrak{A}}$ denotes the integral closure of \mathfrak{A} . Let \mathfrak{a} be a monomial ideal in R. Using the results of section 5 we show in section 6 that $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$ if R is complete and \mathfrak{q} is a prime ideal. As a last step we show that this equality holds also if R is not necessarily complete, and if R/\mathfrak{q} is a reduced ring. ### 2. Monomial Ideals #### 2.1. Basic Definitions **Notation 1** Let R be a ring. A sequence $\mathbf{x} := (x_1, \dots, x_d)$ in R is called a weak regular sequence in R if (a) x_i is regular for $R/(x_1, \ldots, x_{i-1})$ [i.e., the image of x_i in $R/(x_1, \ldots, x_{i-1})$ is a non-zero divisor] for every $i \in \{1, \ldots, d\}$, and it is called a regular sequence in R if, in addition, (b) $R \neq \mathbf{x}R$. In the sequel, we consider regular sequences \mathbf{x} in R with the following additional property: (c) every permutation $(x_{\pi(1)}, \ldots, x_{\pi(d)})$ of **x** is a regular sequence in R. Then every subsequence of \mathbf{x} satisfies (a)-(c). If R is noetherian, and if a regular sequence \mathbf{x} in R is contained in the Jacobson radical [i.e., in the intersection of all maximal ideals] of R, then (a) implies (c) [cf. [2], Ch. X, § 9, no. 7, Th. 1 and Cor. 1], and for the ideal \mathfrak{q} generated by x_1, \ldots, x_d we have $\bigcap \mathfrak{q}^p = (0)$ [cf. [3], Ch. III, § 3, no. 3, Prop. 6]. If $\varphi \colon R \to S$ is a flat homomorphism of rings, and if $\varphi(\mathbf{x})S \neq S$, then the sequence $\varphi(\mathbf{x})$ in S satisfies (a)-(c) [cf. [4], Ch. I, Prop. 1.1.1]. $$\mathbf{x}^{\mathbf{i}} := x_1^{i_1} \cdots x_d^{i_d}$$. Since \mathbf{x} is a regular sequence, we have, for \mathbf{i} , $\mathbf{j} \in \mathbb{N}_0^d$, $\mathbf{x}^{\mathbf{i}} = \mathbf{x}^{\mathbf{j}}$ iff $\mathbf{i} = \mathbf{j}$. - (2) An element $m \in R$ is called a monomial with respect to \mathbf{x} if there exists $\mathbf{i} \in \mathbb{N}_0^d$ with $m = \mathbf{x}^{\mathbf{i}}$; \mathbf{i} is determined uniquely by m. We call $\deg(m) := \deg(\mathbf{i})$ the degree of m. - (3) Let $\mathbf{x}^{\mathbf{i}} = x_1^{i_1} \cdots x_d^{i_d}$ be a monomial with respect to \mathbf{x} . The set $$\text{Supp}(\mathbf{x}^{\mathbf{i}}) := \{ j \mid j \in \{1, \dots, d\}, i_j \neq 0 \}$$ is called the support of $\mathbf{x}^{\mathbf{i}}$. - (4) Let $M(\mathbf{x})$ be the set of all monomials of R with respect to \mathbf{x} . Clearly $M(\mathbf{x})$ is a commutative monoid with cancellation law, and deg: $M(\mathbf{x}) \to \mathbb{N}_0$ is a surjective homomorphism of monoids. - (5) An ideal \mathfrak{a} of R is called monomial with respect to \mathbf{x} if it is generated by elements in $M(\mathbf{x})$. In particular, the zero ideal and R itself are monomial ideals. **Remark 1** Let $\mathbf{i} = (i_1, \dots, i_d), \mathbf{j} = (j_1, \dots, j_d) \in \mathbb{N}_0^d$ - (1) If $\mathbf{x}^{\mathbf{i}} \in \mathbf{x}^{\mathbf{j}} R$, then we have $i_1 \geqslant j_1, \dots, i_d \geq j_d$ and $\mathbf{x}^{\mathbf{i}} = \mathbf{x}^{\mathbf{j}} \mathbf{x}^{\mathbf{i} \mathbf{j}}$. In this case we say that $\mathbf{x}^{\mathbf{j}}$ divides $\mathbf{x}^{\mathbf{i}}$, and we write $\mathbf{x}^{\mathbf{j}} \mid \mathbf{x}^{\mathbf{i}}$. - (2) We define $$k_{\tau} := \min\{i_{\tau}, j_{\tau}\}, \ l_{\tau} := \max\{i_{\tau}, j_{\tau}\} \text{ for } \tau \in \{1, \dots, d\}$$ and $$\mathbf{k} := (k_1, \dots, k_d), \ \mathbf{l} := (l_1, \dots, l_d);$$ then $$gcd(\mathbf{x}^i, \mathbf{x}^j) := \mathbf{x}^k, \ lcm(\mathbf{x}^i, \mathbf{x}^j) := \mathbf{x}^l$$ is the greatest common divisor resp. the least common multiple of $\mathbf{x}^{\mathbf{i}}$ and $\mathbf{x}^{\mathbf{j}}$. In particular, for monomials m, n we have $mR : nR = (\text{lcm}(m,n)/n)R = (m/\gcd(m,n))R$. **Notation 2** For the rest of this paper let R be a noetherian ring, and let $\mathbf{x} = (x_1, \dots, x_d)$ be a fixed sequence in R which satisfies (a)-(c) above; all monomials of R are monomials with respect to \mathbf{x} , and all monomial ideals of R are monomial ideals with respect to \mathbf{x} . The set of all monomials of R shall be denoted by M. **Definition 1** Let U be a subset of $\{1, \ldots, d\}$; we define $$\mathfrak{q}_U := \sum_{i \in U} x_i R, \ \mathcal{P}_U := \mathrm{Ass}(R/\mathfrak{q}_U).$$ If $U = \{1, \ldots, d\}$, then we write $$\mathfrak{q} := \mathfrak{q}_U = \sum_{i=1}^d x_i R, \ \mathcal{P} := \mathrm{Ass}(R/\mathfrak{q}).$$ **Remark 2** (1) Note that $Ass(R) = \mathcal{P}_{\emptyset}$. (2) Let $U \subset \{1, \ldots, d\}$, $i \in \{1, \ldots, d\} \setminus U$. Then x_i is regular for R/\mathfrak{q}_U , hence, in particular, $x_i \notin \mathfrak{p}$ for every $\mathfrak{p} \in \mathcal{P}_U$. **Lemma 1** Let \mathfrak{a} be a monomial ideal of R, and let $\{m_1, \ldots, m_r\}$ be a system of generators of $\mathfrak a$ consisting of monomials. Then we have $$\operatorname{Ass}(R/\mathfrak{a}) \subset \bigcup_{U \subset \operatorname{Supp}(m_1) \cup \cdots \cup \operatorname{Supp}(m_r)} \mathcal{P}_U.$$ **Proof:** There is nothing to prove if $\mathfrak{a} = (0)$. We consider the case that $\mathfrak{a} \neq (0)$. We define $V := \operatorname{Supp}(m_1) \cup \cdots \cup \operatorname{Supp}(m_r)$. We prove the assertion by induction on $s := \deg(m_1) + \cdots + \deg(m_r) - r$. If s = 0, then we have $\mathfrak{a} = \mathfrak{q}_V$; in this case the assertion holds. Let s > 0, and assume that the assertion holds for all monomial ideals of R which admit a system of monomial generators $m'_1, \ldots, m'_{r'}$ with $\deg(m'_1) + \cdots + \deg(m'_{r'}) - r' < s$. Now let \mathfrak{a} be a monomial ideal of R having a system of monomial generators m_1, \ldots, m_r with $\deg(m_1) + \cdots + \deg(m_r) - r = s$. Then there exists $j \in$ $\{1,\ldots,r\}$ with $\deg(m_i)\geq 2$; by relabelling, we may assume that j=1. Let $i \in \text{Supp}(m_1)$; let us label the monomials m_1, \ldots, m_r in such a way that $i \in \text{Supp}(m_j)$ for $j \in \{1, \dots, t\}$ and $i \notin \text{Supp}(m_j)$ for $j \in \{t+1, \dots, r\}$; here we have $t \in \{1, ..., r\}$. For $j \in \{1, ..., t\}$ we have $m_j = x_i m'_j$ where m'_1, \ldots, m'_t are monomials. We put $$\mathfrak{a}_1 := m_1' R + \dots + m_t' R, \ \mathfrak{a}_2 = m_{t+1} R + \dots + m_r R, \ \mathfrak{b} := \mathfrak{a}_1 + \mathfrak{a}_2,$$ $$V_1 := \bigcup_{j=1}^t \operatorname{Supp}(m_j'), \quad V_2 := \bigcup_{j=t+1}^r \operatorname{Supp}(m_j).$$ If $\mathfrak{a}_2 = (0)$, then we have $\mathfrak{a}: x_i = \mathfrak{b}$. This is also true if $\mathfrak{a}_2 \neq (0)$. In fact, by our induction assumption we get $\mathrm{Ass}(R/\mathfrak{a}_2) \subset \bigcup_{U \subset V_2} \mathcal{P}_U$. Using $i \notin V_2$, we see that $V_2 \subset \{1,\ldots,d\} \setminus \{i\}$. From Remark 2 we get the following: If $U \subset V_2$, then $x_i \notin \mathfrak{p}$ for every prime ideal $\mathfrak{p} \in \mathcal{P}_U$, hence $x_i \notin \mathfrak{p}$ for every $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{a}_2)$, hence x_i is regular for R/\mathfrak{a}_2 . This implies that $\mathfrak{a}: x_i = \mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{b}$ since $\mathfrak{a} = x_i \mathfrak{a}_1 + \mathfrak{a}_2$. Therefore the sequence $$0 \longrightarrow R/\mathfrak{b} \xrightarrow{x_i} R/\mathfrak{a} \longrightarrow R/(\mathfrak{a} + x_i R) \longrightarrow 0$$ is exact; note that $$\operatorname{Ass}(R/\mathfrak{a}) \subset \operatorname{Ass}(R/\mathfrak{b}) \cup \operatorname{Ass}(R/(\mathfrak{a} + x_i R)). \tag{*}$$ We have $\mathfrak{a} + x_i R = x_i R + m_{t+1} R + \cdots + m_r R$. Applying our induction assumption to \mathfrak{b} and to $\mathfrak{a} + x_i R$ we obtain $$\operatorname{Ass}(R/\mathfrak{b}) \subset \bigcup_{U \subset V_1 \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U,$$ $$\operatorname{Ass}(R/(\mathfrak{a}+x_iR)) \subset \bigcup_{U \subset \{i\} \cup V_2} \mathcal{P}_U \subset \bigcup_{U \subset V} \mathcal{P}_U.$$ Therefore we get, using (*), that $\operatorname{Ass}(R/\mathfrak{a}) \subset \bigcup_{U \subset V} \mathcal{P}_U$. Corollary 1 If $i \notin \bigcup_{j=1}^r \operatorname{Supp}(m_j)$, then we have $\mathfrak{a} : x_i = \mathfrak{a}$. **Proof:** The element x_i is not contained in any of the prime ideals in $Ass(R/\mathfrak{a})$ [cf. Lemma 1]. #### 2.2. Operations on Monomial Ideals **Lemma 2** Let $\mathfrak{a} = m_1R + \cdots + m_rR$ with $m_1, \ldots, m_r \in M$ be a monomial ideal in R. For every $m \in M$ the ideal $\mathfrak{a} : m$ is monomial, again. More precisely, we have $$\mathfrak{a}: m = \sum_{j=1}^{r} \frac{\operatorname{lcm}(m_j, m)}{m} R.$$ **Proof:** We may assume that $\mathfrak{a} \neq (0)$. We prove the assertion by induction on $\deg(m)$. The case $\deg(m) = 0$, i.e., m = 1, is clear. Let $\deg(m) > 0$; then there exists $i \in \{1, \ldots, d\}$ with $x_i \mid m$, and we write $m = x_i m'$ with $m' \in M$. As in the proof of Lemma 1 we label the monomials m_1, \ldots, m_r in such a way that $x_i \mid m_j$ for $j \in \{1, \ldots, t\}$, $x_i \nmid m_j$ for $j \in \{t+1, \ldots, r\}$ with $t \in \{0, ..., r\}$, and we write, for $j \in \{1, ..., t\}$, $m_j = x_i m'_j$ with monomials $m'_1, ..., m'_j$. Then we have, as above, $$\mathfrak{a}: m = (\mathfrak{a}: x_i): m' = \left(\sum_{j=1}^t m'_j R + \sum_{j=t+1}^r m_j R\right): m'$$ $$= \sum_{j=1}^t \frac{\text{lcm}(m'_j, m')}{m'} R + \sum_{j=t+1}^r \frac{\text{lcm}(m_j, m')}{m'} R = \sum_{j=1}^r \frac{\text{lcm}(m_j, m)}{m} R.$$ Corollary 2 Let $\mathfrak{a} = m_1R + \cdots + m_rR$ with $m_1, \ldots, m_r \in M$ be a monomial ideal in R. Let $m \in M$; then we have $$\mathfrak{a} \cap mR = \sum_{j=1}^{r} \operatorname{lcm}(m_j, m)R.$$ **Proof:** We have $\mathfrak{a} \cap mR = (\mathfrak{a} : m)m$. **Lemma 3** Let $\mathfrak{a} = m_1 R + \cdots + m_r R$, $\mathfrak{b} = n_1 R + \cdots + n_s R$ with $m_1, \ldots, n_s \in M$ be monomial ideals in R. Then $\mathfrak{a} \cap \mathfrak{b}$ is a monomial ideal; more precisely, we have $$\mathfrak{a} \cap \mathfrak{b} = \sum_{i=1}^{r} \sum_{j=1}^{s} \operatorname{lcm}(m_i, n_j) R. \tag{*}$$ **Proof:** It is clear that the right-hand side of (*) is contained in the left-hand side. We prove that the left-hand side of (*) is contained in the right hand side by induction on s. For s=0 the assertion is clear, and for s=1 the assertion follows from Cor. 2. Now we assume that $s\geq 2$, and we define $\mathfrak{b}'=n_1R+\cdots+n_{s-1}R$. Let $z\in\mathfrak{a}\cap\mathfrak{b}$. We write $z=a_1m_1+\cdots+a_rm_r=b_1n_1+\cdots+b_sn_s$ with $a_1,\ldots,b_s\in R$. Since $b_sn_s=a_1m_1+\cdots+a_rm_r-(b_1n_1+\cdots+b_{s-1}n_{s-1})$, we have $b_sn_s\in(\mathfrak{a}+\mathfrak{b}')\cap n_sR$, hence we can write [cf. Cor. 2] $$b_s n_s = \sum_{i=1}^r c_i \operatorname{lcm}(m_i, n_s) + \sum_{j=1}^{s-1} d_j \operatorname{lcm}(n_j, n_s)$$ with $c_1, \dots, d_{s-1} \in R$. We define $$w := \sum_{j=1}^{s-1} (b_j n_j + d_j \operatorname{lcm}(n_j, n_s)).$$ Then we have $w \in \mathfrak{b}'$, and since $w = z - (c_1 \text{lcm}(m_1, n_s) + \cdots + c_r \text{lcm}(m_r, n_s)) \in \mathfrak{a}$, we have $$w \in \mathfrak{a} \cap \mathfrak{b}' = \sum_{i=1}^r \sum_{j=1}^{s-1} \operatorname{lcm}(m_i, n_j) R$$ by our induction assumption. Then we get $$z = w + \sum_{i=1}^{r} c_i \text{lcm}(m_i, n_s) \in \sum_{i=1}^{r} \sum_{j=1}^{s} \text{lcm}(m_i, n_j) R,$$ and therefore the left-hand side of (*) lies in the right hand side. Collection our results, we have **Proposition 1** Let \mathfrak{a} , \mathfrak{b} be monomial ideals in R. Then $\mathfrak{a} \cap \mathfrak{b}$, $\mathfrak{a} \cdot \mathfrak{b}$, $\mathfrak{a} : \mathfrak{b}$ are monomial ideals, again. More precisely, if $\mathfrak{a} = m_1 R + \cdots + m_r R$ and $\mathfrak{b} = n_1 R + \cdots + n_s R$ with monomials $m_1, \ldots, n_s \in M$, then we have (2.1) $$\mathfrak{a} \cap \mathfrak{b} = \sum_{i=1}^{r} \sum_{j=1}^{s} \operatorname{lcm}(m_i, n_j) R,$$ (2.2) $$\mathfrak{a}:\mathfrak{b}=\bigcap_{j=1}^{s}\sum_{i=1}^{r}\frac{\mathrm{lcm}(m_{i},n_{j})}{n_{j}}R.$$ If \mathfrak{c} is another monomial ideal, then we have $$(\mathfrak{a}+\mathfrak{b})\cap\mathfrak{c}=(\mathfrak{a}\cap\mathfrak{c})+(\mathfrak{b}\cap\mathfrak{c}).$$ **Proof:** (2.3) follows from (2.1), and (2.2) is a consequence of Lemma 2 since $$\mathfrak{a}:\mathfrak{b}=\bigcap_{j=1}^s(\mathfrak{a}:n_j).$$ Corollary 3 Let $\mathfrak{a} = m_1 R + \cdots + m_r R$ with $m_1, \ldots, m_r \in M$ be a monomial ideal in R, and let $m \in M$. Then we have $m \in \mathfrak{a}$ iff $m_i \mid m$ for some $i \in \{1, \ldots, r\}$. **Proof:** We have $m \in \mathfrak{a}$ iff $$1 \in \mathfrak{a} : m = (\operatorname{lcm}(m_1, m)/m)R + \cdots + (\operatorname{lcm}(m_r, m)/m)R$$ hence iff $lcm(m_i, m)/m = 1$ for some $i \in \{1, ..., r\}$, and this is the case iff $m_i \mid m$ for some $i \in \{1, ..., r\}$. **Corollary 4** Let \mathfrak{a} be a monomial ideal in R, and let $m_1, \ldots, m_r, n_1, \ldots, n_s$ be monomials with $$\mathfrak{a} = \sum_{i=1}^{r} m_i R = \sum_{j=1}^{s} n_j R.$$ - (1) We assume that $m_i \nmid m_k$ for all $i, k \in \{1, ..., r\}$ with $i \neq k$. Then we have $\{m_1, ..., m_r\} \subset \{n_1, ..., n_s\}$. - (2) We assume, furthermore, that $n_j \nmid n_l$ for all $j, l \in \{1, ..., s\}$ with $j \neq l$. Then we have r = s and $\{m_1, ..., m_r\} = \{n_1, ..., n_s\}$. **Proof:** (1) Note that $\#\{m_1,\ldots,m_r\}=r$. Let $i\in\{1,\ldots,r\}$. Then, by Cor. 3, there exist $j\in\{1,\ldots,s\}$ and $k\in\{1,\ldots,r\}$ with $m_i\mid n_j$ and $n_j\mid m_k$, hence we have $m_i\mid m_k$. Therefore we have i=k and $m_i=n_j\in\{n_1,\ldots,n_s\}$. This implies that $\{m_1,\ldots,m_r\}\subset\{n_1,\ldots,n_s\}$. **Remark 3** The result of Cor. 4 implies the following: Every monomial ideal of R admits a uniquely determined minimal set of monomial generators where "minimal" can be understood as "minimal with respect to number" or as "irredundant". We denote this number by $\nu(\mathfrak{a})$. But we can even say more: Corollary 5 Let \mathfrak{a} be a monomial ideal in R, let $r := \nu(\mathfrak{a})$, and let $\{m_1, \ldots, m_r\} \subset M$ be a minimal set of monomial generators of \mathfrak{a} . Then we have $$\mu_{R_{\mathfrak{p}}}(\mathfrak{a}R_{\mathfrak{p}}) = r \quad \text{for all } \mathfrak{p} \in V((x_1, \dots, x_r)).$$ Moreover, every set of generators which generates \mathfrak{a} contains at least r elements. (In a local ring A we denote by $\mu_A(M)$ the minimal number of generators of a finitely generated A-module M.) **Proof:** The second statement follows from the first one, and the first statement is obtained from Cor. 4 by replacing R by $R_{\mathfrak{p}}$. #### 2.3. The Associated Graded Ring Remark 4 The associated graded ring $$\operatorname{gr}(R) := \operatorname{gr}_{\mathfrak{q}}(R) = \bigoplus_{p \geq 0} \mathfrak{q}^p / \mathfrak{q}^{p+1} = R/\mathfrak{q}[\,\overline{x}_1, \dots, \overline{x}_d\,]$$ is a polynomial ring over R/\mathfrak{q} in $\overline{x}_1 := x_1 \mod \mathfrak{q}^2, \ldots, \overline{x}_d := x_d \mod \mathfrak{q}^2$ [cf. [2], Ch. X, § 9, no. 7, Th. 1]. Notice that the sequence $(\overline{x}_1, \ldots, \overline{x}_d)$ is a sequence in gr(R) which satisfies (a)-(c) above. - (1) Let $\overline{M} = \{\overline{\mathbf{x}}^{\mathbf{i}} := \overline{x}_1^{i_1} \cdots \overline{x}_d^{i_d} \mid \mathbf{i} \in \mathbb{N}_0^d\}$ be the set of monomials of the polynomial ring $R/\mathfrak{q}[\overline{x}_1, \dots, \overline{x}_d]$; the map $\mathbf{x}^{\mathbf{i}} \mapsto \overline{\mathbf{x}}^{\mathbf{i}} : M \to \overline{M}$ is an isomorphism of monoids. An ideal \mathfrak{A} of $\operatorname{gr}(R)$ is called a monomial ideal if it can be generated by elements in \overline{M} ; such an ideal is a homogeneous ideal of the graded ring $\operatorname{gr}(R)$. Every non-zero element $z \in \operatorname{gr}(R)$ has a unique representation $z = \overline{e}_1 \overline{m}_1 + \cdots + \overline{e}_r \overline{m}_r$ with pairwise distinct monomials $\overline{m}_1, \dots, \overline{m}_r \in \overline{M}$ and non-zero elements $\overline{e}_1, \dots, \overline{e}_r \in R/\mathfrak{q}$; we call this the monomial representation of z. - (2) For every $z \in R$ with $z \notin \bigcap \mathfrak{q}^p$ we define the order $\operatorname{ord}(z)$ to be the largest integer p with $z \in \mathfrak{q}^p$. Let $p := \operatorname{ord}(z)$; then we define the initial form of z as $\operatorname{In}(z) := z \mod \mathfrak{q}^{p+1} \in \operatorname{gr}(R)_p$; note that $\operatorname{In}(z)$ is a homogeneous nonzero polynomial of degree p. In particular, for a monomial $m \in M$ $\operatorname{ord}(m)$ is defined, and we have $\operatorname{ord}(m) = \deg(m)$ and $\operatorname{In}(m) = \overline{m}$. - (3) For every ideal \mathfrak{a} of R we define $$\operatorname{gr}(\mathfrak{a}) := \bigoplus_{p \geq 0} (\mathfrak{a} \cap \mathfrak{q}^p + \mathfrak{q}^{p+1})/\mathfrak{q}^{p+1} \subset \operatorname{gr}(R);$$ $\operatorname{gr}(\mathfrak{a})$ is a homogeneous ideal in $\operatorname{gr}(R)$. If \mathfrak{b} is another ideal in R, then we have $\operatorname{gr}(\mathfrak{a})\operatorname{gr}(\mathfrak{b})\subset\operatorname{gr}(\mathfrak{a}\mathfrak{b})$. (4) Let $\mathfrak{a} = m_1 R + \cdots + m_r R$ with $m_1, \dots, m_r \in M$ be a monomial ideal in R. Then we have $\operatorname{gr}(\mathfrak{a}) = \overline{m}_1 \operatorname{gr}(R) + \cdots + \overline{m}_r \operatorname{gr}(R)$, hence, in particular, $\operatorname{gr}(\mathfrak{a})$ is a monomial ideal in $\operatorname{gr}(R)$ [note that, for $p \in \mathbb{N}_0$, $\mathfrak{a} \cap \mathfrak{q}^p$ is generated by the elements $m_{ij} := \operatorname{lcm}(m_i, n_j)$ where $n_j \in M$ is of degree p by Lemma 3, and that $m_{ij} \in \mathfrak{q}^{p+1}$ if $\operatorname{deg}(m_{ij}) > p$]. In particular, for monomial ideals \mathfrak{a} , \mathfrak{b} in R we have $\operatorname{gr}(\mathfrak{a}\mathfrak{b}) = \operatorname{gr}(\mathfrak{a})\operatorname{gr}(\mathfrak{b})$ and $\operatorname{gr}(\mathfrak{a}^i) = (\operatorname{gr}(\mathfrak{a}))^i$ for every $i \in \mathbb{N}$. Remark 5 Now we assume that \mathfrak{q} is a prime ideal of R which is contained in the Jacobson radical of R and we equip R with the \mathfrak{q} -adic topology. Then $\bigcap \mathfrak{q}^p = (0)$ [cf. [3], Ch. III, § 3, no. 3, Prop. 6], gr(R) is a domain, hence R is a domain, also, and the order function is a valuation of the quotient field of R [cf. [13], vol. II, Ch. VIII, § 1, Th. 1]. Moreover, all the ideals \mathfrak{q}_U for every $U \subset \{1,\ldots,d\}$ are prime ideals as is easily seen by considering the sequence $(x_i \mod \mathfrak{q}_U)_{i\in\{1,\ldots,d\}\setminus U}$ in R/\mathfrak{q}_U . Therefore all the associated ideals of a monomial ideal \mathfrak{a} of R are of the form \mathfrak{q}_U for some $U \subset \{1,\ldots,d\}$ [cf. Lemma 1], and therefore, by considering a primary representation of \mathfrak{a} , we get: if $em \in \mathfrak{a}$ with $e \in R \setminus \mathfrak{q}$ and $m \in M$, then we have $m \in \mathfrak{a}$. Let \hat{R} be the \mathfrak{q} -adic completion of R. Then \mathbf{x} is a sequence in \hat{R} which satisfies (a)-(c), $\hat{\mathfrak{q}} = \mathfrak{q}\hat{R}$ is a prime ideal in \hat{R} , and \hat{R} is a faithfully flat R-module [cf. [3], Ch. III, § 3, no. 3, Prop. 6]. ## 3. Monomial Representations **Assumption 1** In this section we assume that \mathfrak{q} is a prime ideal of R which is contained in the Jacobson radical of R. **Notation 3** Let $w \in R$ be different from 0. Then $\operatorname{In}(w) \in \operatorname{gr}(R)$ is a homogeneous polynomial of degree $\operatorname{ord}(w)$; therefore there exist uniquely determined and pairwise distinct monomials $m_1, \ldots, m_r \in M$ having degree $\operatorname{ord}(w)$ and elements $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$ such that $\operatorname{In}(w) = \operatorname{In}(e_1 m_1 + \cdots + e_r m_r)$; we define the set of terms of w by $$Tm(w) := \{m_1, \dots, m_r\}.$$ For w = 0 we put In(w) = 0 and $Tm(w) = \emptyset$. **Definition 2** We say that $w \in R$, $w \neq 0$, admits a monomial representation (with respect to \mathbf{x}), if there exist monomials $m_1, \ldots, m_r \in M$ and elements $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$ such that $$w = e_1 m_1 + \dots + e_r m_r \text{ and } \nu(m_1 R + \dots + m_r R) = r.$$ (*) In (*) we have $m_i \nmid m_j$ for all $i, j \in \{1, ..., r\}$ with $i \neq j$; in particular, the monomials $m_1, ..., m_r$ are pairwise distinct. For every nonempty subset $U \subset \{1, ..., r\}$ clearly $\sum_{i \in U} e_i m_i =: z$ is a monomial representation of z. **Lemma 4** Let $w \in R \setminus \{0\}$. If w admits a monomial representation $w = e_1m_1 + \cdots + e_rm_r$, then we have $$\operatorname{In}(w) = \sum_{\substack{i=1\\ \deg(m_i) = \operatorname{ord}(w)}}^{r} \operatorname{In}(e_i) \operatorname{In}(m_i),$$ $$\operatorname{ord}(w) = \min\{\deg(m_i) \mid i \in \{1, \dots, r\}\},$$ $$\operatorname{Tm}(w) = \{m_i \mid i \in \{1, \dots, r\}, \deg(m_i) = \operatorname{ord}(w)\}.$$ **Proof:** Let $s := \min\{\deg(m_i) \mid i \in \{1, ..., r\}\}$. Then $$\operatorname{In}\left(\sum_{\substack{i=1\\\deg(m_i)=s}}^r e_i m_i\right) = \sum_{\substack{i=1\\\deg(m_i)=s}}^r \operatorname{In}(e_i) \operatorname{In}(m_i),$$ and since $In(e_i) \neq 0$ for $i \in \{1, ..., r\}$, we obtain $$\operatorname{ord}\left(\sum_{\substack{i=1\\\deg(m_i)=s}}^r e_i m_i\right) = s,$$ hence $\operatorname{ord}(w) = s$. Clearly we have $$\operatorname{In}\left(\sum_{i=1}^{r} e_{i} m_{i}\right) = \operatorname{In}\left(\sum_{\substack{i=1\\ \deg(m_{i})=s}}^{r} e_{i} m_{i}\right) = \operatorname{In}(w).$$ **Proposition 2** Let R be complete with respect to the \mathfrak{q} -adic topology. Every $w \in R$, $w \neq 0$, admits a monomial representation. **Proof:** (1) Let $w \in R$, $w \neq 0$. Let $Tm(w) = \{m_1, \ldots, m_r\}$. There exist elements $e_1, \ldots, e_r \in R \setminus \mathfrak{q}$ such that $$In(w) = In(e_1m_1 + \cdots + e_rm_r);$$ let us put $\iota(w) := e_1 m_1 + \dots + e_r m_r$. Then we have $\operatorname{ord}(w) = \operatorname{ord}(\iota(w))$ and $\operatorname{ord}(w - \iota(w)) > \operatorname{ord}(w)$. If w = 0, then we put $\iota(w) = 0$. (2) Let $w \in R$, $w \neq 0$. We define a sequence $(w_p)_{p \in \mathbb{N}_0}$ in R: Let $w_0 := w$; if $p \in \mathbb{N}_0$, and if w_p is defined, then we define $w_{p+1} := w_p - \iota(w_p)$. Note the following: If $w_p = 0$ for one $p \in \mathbb{N}_0$, then $w_q = 0$ for every $q \in \mathbb{N}_0$ with $q \geq p$, and if $w_p \neq 0$ for one $p \in \mathbb{N}_0$, then the elements w_0, \ldots, w_{p-1} are different from 0, and we have $$\operatorname{ord}(w) = \operatorname{ord}(w_0) < \operatorname{ord}(w_1) < \cdots < \operatorname{ord}(w_p);$$ in particular, we have $\operatorname{ord}(w_p) \geq p$. For every $p \in \mathbb{N}_0$ let \mathfrak{a}_p be that monomial ideal of R which is generated by the monomials in $\mathrm{Tm}(w_0), \ldots, \mathrm{Tm}(w_p)$. Then $(\mathfrak{a}_p)_{p \in \mathbb{N}_0}$ is an increasing sequence of ideals in R, and therefore it becomes stationary, i.e., there exists $q \in \mathbb{N}_0$ with $\mathfrak{a}_q = \mathfrak{a}_{q+1} = \cdots =: \mathfrak{a}$. We can write $\mathfrak{a} = m_1 R + \cdots + m_r R$ where $m_1, \ldots, m_r \in M$ and $r := \nu(\mathfrak{a})$. (3) We have $$w = w_{p+1} + \sum_{j=0}^{p} \iota(w_j)$$ for every $p \in \mathbb{N}_0$; note that $w_{p+1} = 0$ or $\operatorname{ord}(w_{p+1}) \ge p+1$, hence $w_{p+1} \in \mathfrak{q}^{p+1}$. Let $j \in \mathbb{N}_0$ with $w_i \neq 0$. Then we can write $\iota(w_i)$ as a sum $$\iota(w_j) = \sum_{i=1}^r a_{ji} m_i$$ where the elements $a_{ji} \in R$ for $i \in \{1, ..., r\}$ satisfy the following condition: If $\operatorname{ord}(w_j) < \operatorname{deg}(m_i)$, then $a_{ji} = 0$, and if $\operatorname{ord}(w_j) \ge \operatorname{deg}(m_i)$ and $a_{ji} \ne 0$, then a_{ji} is a linear combination of monomials of degree $\operatorname{ord}(w_j) - \operatorname{deg}(m_i)$ with coefficients which lie in $R \setminus \mathfrak{q}$ [note that the monomials in $\operatorname{Tm}(w_j)$ lie in \mathfrak{a}]. For $p \in \mathbb{N}_0$ we have $$\sum_{j=0}^{p} \iota(w_j) = \sum_{i=1}^{r} e_{pi} m_i$$ with $$e_{pi} := \sum_{j=0}^{p} a_{ji}$$ for every $i \in \{1, \dots, r\}$. Let $i \in \{1, ..., r\}$. There exists a unique $j_i \in \{0, ..., q\}$ with $\operatorname{ord}(w_{j_i}) = \operatorname{deg}(m_i)$ [cf. (2) and note that $\{m_1, ..., m_r\}$ is a minimal system of generators of \mathfrak{a}]. We consider any integer $p \geq q$. Then we have $a_{ji} = 0$ for $j \in \{0, \ldots, j_i - 1\}$, $a_{j_i i} \in R \setminus \mathfrak{q}$, and $a_{j i} \in \mathfrak{q}^{j - \deg(m_i)}$ for $j \in \{j_i + 1, \ldots, p\}$. In particular, $e_{p i} \in R \setminus \mathfrak{q}$. Furthermore, we have $$e_{p+1,i} - e_{pi} = a_{p+1,i} \in \mathfrak{q}^{p+1-\deg(m_i)};$$ therefore, the sequence $(e_{pi})_{p\geq 0}$ is a Cauchy sequence in $R\setminus \mathfrak{q}$. Since \mathfrak{q} is an open ideal in the \mathfrak{q} -adic topology, we have $$e_i := \lim_{p \to \infty} e_{pi} \in R \setminus \mathfrak{q}.$$ From $$\sum_{i=1}^{r} e_i m_i = \sum_{i=1}^{r} (\lim_{p \to \infty} e_{pi}) m_i = \lim_{p \to \infty} \left(\sum_{i=1}^{r} e_{pi} m_i \right)$$ $$= \lim_{p \to \infty} \left(\sum_{j=0}^{p} \iota(w_j) \right) = \lim_{p \to \infty} (w - w_{p+1})$$ and $w_{p+1} \in \mathfrak{q}^{p+1}$ for every $p \in \mathbb{N}_0$ we obtain $$w = \sum_{i=1}^{r} e_i m_i.$$ **Proposition 3** Let $\mathfrak{a} \neq (0)$ be an ideal in R. The following statements are equivalent: - (1) a is a monomial ideal. - (2) For every $w \in \mathfrak{a}$, $w \neq 0$, we have $Tm(w) \subset \mathfrak{a}$. Now we assume, in addition, that R is complete in the \mathfrak{q} -adic topology. Then the following statements are equivalent with (1) and (2): - (3) Every $w \in \mathfrak{a}$, $w \neq 0$, admits a monomial representation $w = e_1 m_1 + \cdots + e_r m_r$ with $m_1, \ldots, m_r \in \mathfrak{a}$. - (4) Let $w \in \mathfrak{a}$, $w \neq 0$, and let $w = e_1 m_1 + \cdots + e_r m_r$ be a monomial representation of w, then $m_1, \ldots, m_r \in \mathfrak{a}$. **Proof:** (1) \Rightarrow (2): Let $w \in \mathfrak{a}$, $w \neq 0$, and let $\operatorname{Tm}(w) = \{m_1, \dots, m_r\}$; let $s := \operatorname{ord}(w)$, hence we have $\operatorname{deg}(m_1) = \dots = \operatorname{deg}(m_r) = s$ [cf. Lemma 4]. There exist elements $e_1, \dots, e_r \in R \setminus \mathfrak{q}$ with $\operatorname{ord}(w - (e_1m_1 + \dots + e_rm_r)) > s$. Let $i \in \{1, \dots, r\}$, and define $$\mathfrak{b}_i := \mathfrak{a} + m_1 R + \dots + m_{i-1} R + m_{i+1} R + \dots + m_r R + \mathfrak{q}^{s+1};$$ \mathfrak{b}_i is a monomial ideal of R. Note that $e_i m_i \in \mathfrak{b}_i$, and therefore we have $m_i \in \mathfrak{b}_i$ [cf. Remark 5]. For no monomial $m \in \mathfrak{q}^{s+1}$ we have $m \mid m_i$ [since $\deg(m_i) = s < \deg(m)$], and we have $m_j \nmid m_i$ for $j \in \{1, \ldots, r\}, j \neq i$. Therefore, by Cor. 3, there exists a monomial $m \in \mathfrak{a}$ with $m \mid m_i$, hence we have $m_i \in \mathfrak{a}$, and therefore we have shown that $\mathrm{Tm}(w) \subset \mathfrak{a}$. (2) \Rightarrow (1): Suppose that \mathfrak{a} is not a monomial ideal. This means, in particular, that $\mathfrak{a} \neq R$. Let \mathfrak{a}' be the monomial ideal which is generated by all the monomials which lie in \mathfrak{a} ; then we have $\mathfrak{a}' \subsetneq \mathfrak{a}$. By assumption we have $\mathrm{Tm}(w) \subset \mathfrak{a}'$ for every $w \in \mathfrak{a}$, $w \neq 0$. The prime ideals in $\mathrm{Ass}(R/\mathfrak{a}')$ are of the form \mathfrak{q}_U for $U \subset \{1,\ldots,d\}$, hence are contained in \mathfrak{q} [cf. Remark 5]. By Krull's intersection theorem [cf. [13], Vol. I, Ch. 4, § 7, Th. 12'] we have $\bigcap_{n\geq 0}(\mathfrak{a}'+\mathfrak{q}^n)=\mathfrak{a}'$. Therefore there exists $n\in\mathbb{N}_0$ with $\mathfrak{a}\subset\mathfrak{a}'+\mathfrak{q}^n$, $\mathfrak{a}\not\subset\mathfrak{a}'+\mathfrak{q}^{n+1}$. We choose $w\in\mathfrak{a}$, $w\notin\mathfrak{a}'+\mathfrak{q}^{n+1}$; we can write $w=w_1+z$ with $w_1\in\mathfrak{a}'$, $z\in\mathfrak{q}^n$ and $z\notin\mathfrak{q}^{n+1}$. This implies that $z=w-w_1\in\mathfrak{a}$, $z\neq 0$, and, by assumption, we have $\mathrm{Tm}(z)\subset\mathfrak{a}$, hence $\mathrm{Tm}(z)\subset\mathfrak{a}'$. Let $\mathrm{Tm}(z)=\{m_1,\ldots,m_r\}$. Then there exist elements $e_1,\ldots,e_r\in R\setminus\mathfrak{q}$ such that, putting $z_1:=e_1m_1+\cdots+e_rm_r$, we have $z_1\in\mathfrak{a}'$ and $z-z_1\in\mathfrak{q}^{n+1}$. This implies that $w=w_1+z=w_1+z_1+(z-z_1)\in\mathfrak{a}'+\mathfrak{q}^{n+1}$, in contradiction with the choice of w. Now we assume that R is complete; then every $w \in R$, $w \neq 0$, admits a monomial representation [cf. Prop. 2]. $(2)\Rightarrow (4)$: Let $w\in\mathfrak{a}, w\neq 0$, and let $w=e_1m_1+\cdots+e_rm_r$ be a monomial representation of w. We show by induction on r that $\{m_1,\ldots,m_r\}\subset\mathfrak{a}$. Let r=1, hence $\mathrm{Tm}(w)=\{m_1\}\subset\mathfrak{a}$. Now let r>1. It is clear that $\mathrm{Tm}(w)\subset\{m_1,\ldots,m_r\}$. We label the elements m_1,\ldots,m_r in such a way that $\mathrm{Tm}(w)=\{m_1,\ldots,m_q\}$ with $q\leq r$. We put $w_1:=e_1m_1+\cdots+e_qm_q$. Now we have $w_1\in\mathfrak{a}$ by assumption. If q=r, then the elements m_1,\ldots,m_q lie in \mathfrak{a} . If q< r, then we have $w-w_1=e_{q+1}m_{q+1}+\cdots+e_rm_r$, and since $w-w_1\in\mathfrak{a}$, we get by our induction assumption that $m_{q+1},\ldots,m_r\in\mathfrak{a}$. $$(4) \Rightarrow (3)$$ and $(3) \Rightarrow (1)$ are trivial. ## 4. Integral Elements **Remark 6** Let S be a ring, and let \mathfrak{a} be an ideal in S. The integral closure of the Rees ring $$\mathcal{R}(\mathfrak{a}, S) = \bigoplus_{p \ge 0} \mathfrak{a}^p T^p \subset S[T]$$ in the polynomial ring S[T] is the graded ring $\bigoplus_{p\geq 0} \overline{\mathfrak{a}^p} T^p$ where, for every $p\in \mathbb{N}$, $\overline{\mathfrak{a}^p}$ is the integral closure of \mathfrak{a}^p in S [cf. [10], Ch. II, § 5]. In particular, an element $z\in S$ is integral over \mathfrak{a} iff $zT\in S[T]$ is integral over $\bigoplus_{p>0} \mathfrak{a}^p T^p$. **Notation 4** Let \mathfrak{a} , \mathfrak{b} be monomial ideals in R. (1) We define $$\widetilde{\mathfrak{a}} := (\{m \in M \mid \text{ there exists } l \in \mathbb{N} \text{ with } m^l \in \mathfrak{a}^l\});$$ $\widetilde{\mathfrak{a}}$ is a monomial ideal of R. Since the monomials which generate $\widetilde{\mathfrak{a}}$ are integral over \mathfrak{a} , $\widetilde{\mathfrak{a}}$ is an ideal which is integral over \mathfrak{a} , and therefore $\widetilde{\mathfrak{a}}$ is contained in the integral closure $\overline{\mathfrak{a}}$ of \mathfrak{a} in R, and we have $$\mathfrak{a} \subset \widetilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$$. It is clear that $\widetilde{\mathfrak{a}}$ $\widetilde{\mathfrak{b}} \subset \widetilde{\mathfrak{ab}}$, and if $\mathfrak{a} \subset \mathfrak{b}$, then we have $\widetilde{\mathfrak{a}} \subset \widetilde{\mathfrak{b}}$. (2) We show that $$\widetilde{\widetilde{\mathfrak{a}}} = \widetilde{\mathfrak{a}}.$$ In fact, let $\widetilde{\mathfrak{a}}=m_1R+\cdots+m_rR$. For every $i\in\{1,\ldots,r\}$ there exists $l_i\in\mathbb{N}$ with $m_i^{l_i}\in\mathfrak{a}^{l_i}$. Let m be a monomial in $\widetilde{\widetilde{\mathfrak{a}}}$. Then there exists $l\in\mathbb{N}$ with $m^l\in\widetilde{\mathfrak{a}}^l$. This implies that there exist $(i_1,\ldots,i_r)\in\mathbb{N}_0^r$ with $i_1+\cdots+i_r=l$ and such that $m_1^{i_1}\cdots m_r^{i_r}$ divides m^l [cf. Cor. 3]. Since $(m_1^{i_1}\cdots m_r^{i_r})^{l_1\cdots l_r}$ lies in $\mathfrak{a}^{ll_1\cdots l_r}$, we see that $m^{ll_1\cdots l_r}$ lies in $\mathfrak{a}^{ll_1\cdots l_r}$, also, and this means that $m\in\widetilde{\mathfrak{a}}$. (3) By (1) we get $\widetilde{\mathfrak{a}}^p \widetilde{\mathfrak{a}}^q \subset \widetilde{\mathfrak{a}}^{p+q}$ for all $p, q \in \mathbb{N}_0$. Therefore $$\widetilde{\mathcal{R}(\mathfrak{a},R)} := \bigoplus_{p>0} \widetilde{\mathfrak{a}^p} T^p \subset R[T]$$ is a graded R-algebra and a graded R-subalgebra of R[T], and it contains the Rees ring $\mathcal{R}(\mathfrak{a},R):=\bigoplus_{p>0}\mathfrak{a}^pT^p$ of \mathfrak{a} as a graded R-subalgebra. - (4) Since $\widetilde{\mathfrak{a}^p} \subset \overline{\mathfrak{a}^p}$ for every $p \in \mathbb{N}$, the integral closure of $\widetilde{\mathcal{R}(\mathfrak{a},R)}$ in R[T] is the ring $\bigoplus_{p>0} \overline{\mathfrak{a}^p} T^p$ [cf. Remark 6]. - (5) Just as in [8], Prop. 4.6, one may prove, using (4): For $z \in R$ we have $z \in \overline{\mathfrak{a}}$ iff there exist $p \in \mathbb{N}$ and elements $a_i \in \widetilde{\mathfrak{a}}^i$, $i \in \{1, \ldots, p\}$, such that $$z^p + a_1 z^{p-1} + \dots + a_p = 0.$$ **Assumption 2** For the rest of this section we again assume that \mathfrak{q} is a prime ideal of R which is contained in the Jacobson radical of R. The \mathfrak{q} -adic completion of R shall be denoted by \hat{R} . **Proposition 4** Let \mathfrak{a} be a monomial ideal of R, and let $m = x_1^{j_1} \cdots x_d^{j_d} \in M$. The following statements are equivalent: - (1) m is integral over \mathfrak{a} . - (2) m is integral over $a\hat{R}$. - (3) There exists $l \in \mathbb{N}$ with $m^l \in \mathfrak{a}^l$. - (4) (j_1, \ldots, j_d) lies in the convex hull of $\Gamma + \mathbb{R}^d_{\geq 0}$ where $\Gamma \subset \mathbb{N}^d_0$ is the set of exponents of monomials appearing in \mathfrak{a} . In particular, every monomial in $\overline{\mathfrak{a}}$ lies in $\widetilde{\mathfrak{a}}$. **Proof:** $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ hold trivially. $(2) \Rightarrow (3)$: Let $T^p + a_1 T^{p-1} + \dots + a_p \in \hat{R}[T]$ with $a_i \in (\mathfrak{a}\hat{R})^i = \mathfrak{a}^i \hat{R}$ for $i \in \{1, \dots, p\}$ be an equation of integral dependence for m over $\mathfrak{a}\hat{R}$. Let $i \in \{1, \dots, p\}$. Since \mathfrak{a}^i is a monomial ideal of R, the ideal $\mathfrak{a}^i \hat{R}$ is a monomial ideal of \hat{R} , and, by Prop. 2, there exist elements $e_{i1}, \dots, e_{ir_i} \in \hat{R} \setminus \mathfrak{q}\hat{R}$ and monomials $m_{i1}, \dots, m_{ir_i} \in M$ with $$a_i = \sum_{j=1}^{r_i} e_{ij} m_{ij}.$$ From Prop. 3 we obtain $m_{ij} \in \mathfrak{a}^i \hat{R} \cap R = \mathfrak{a}^i$ for $i \in \{1, \dots, p\}, j \in \{1, \dots, r_i\}$ [note that \hat{R} is a faithfully flat extension of R]. Therefore the monomial m^p lies in the \hat{R} -ideal which is generated by the set $\{m_{ij}m^{p-i} \mid i \in \{1,\ldots,p\}, j \in \{1,\ldots,r_i\}\}$. Using Cor. 3 we find $i \in \{1,\ldots,p\}$ and $j \in \{1,\ldots,r_i\}$ with $m_{ij}m^{p-i} \mid m^p$, hence $m_{ij} \mid m^i$. Thus, we have shown that $m^i \in m_{ij}R \subset \mathfrak{a}^i$. $(3) \iff (4)$ This is an easy consequence of Cor. 3 and Carathéodory's theorem [for Carathéodory's theorem cf. [11], Th. 17.1]. Corollary 6 Let \mathfrak{a} be a monomial ideal of R. - (1) We have $\widetilde{\mathfrak{a}}\widehat{R} = \widehat{\mathfrak{a}}\widehat{R}$ and $\overline{\mathfrak{a}}\widehat{R} \subset \overline{\mathfrak{a}}\widehat{R}$. - (2) We have $\widetilde{\operatorname{gr}(\mathfrak{a})} = \operatorname{gr}(\widetilde{\mathfrak{a}})$. **Proof:** (1) The first assertion is an easy consequence of Prop. 4, and the second assertion is clear. (2) Let $\widetilde{\mathfrak{a}}$ be generated by the monomials m_1, \ldots, m_r . Then $\operatorname{gr}(\widetilde{\mathfrak{a}})$ is generated by the monomials $\overline{m}_1, \ldots, \overline{m}_r$ [cf. (4) in Remark 4]. For every $i \in \{1, \ldots, r\}$ there exists $l_i \in \mathbb{N}$ with $m_i^{l_i} \in \mathfrak{a}^{l_i}$, hence $\overline{m}_i^{l_i} \in \operatorname{gr}(\mathfrak{a}^{l_i}) = \operatorname{gr}(\mathfrak{a})^{l_i}$, and therefore we have $\overline{m}_i \in \operatorname{gr}(\mathfrak{a})$. Conversely, let $m \in M$ be a monomial with $\overline{m} \in \operatorname{gr}(\mathfrak{a})$. Then there exists $l \in \mathbb{N}$ with $\overline{m}^l \in (\operatorname{gr}(\mathfrak{a}))^l = \operatorname{gr}(\mathfrak{a}^l)$, hence $m^l \in \mathfrak{a}^l$, and therefore $m \in \widetilde{\mathfrak{a}}$, hence $\overline{m} \in \operatorname{gr}(\widetilde{\mathfrak{a}})$. ## 5. Monomial Ideals in Polynomial Rings The following result in Prop. 5 should be known, but we could not find a source for it. **Notation 5** Let (Γ, \prec) be a totally ordered commutative monoid with neutral element 0 satisfying the following condition: Every non-empty subset of Γ has a smallest element. This condition is satisfied if \prec is a well-ordering; in particular, a monomial ordering on \mathbb{N}_0^d satisfies this condition. Let $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$ be a Γ -graded ring. For $z \in R$ let $z_{\gamma} \in R_{\gamma}$ be the homogeneous component of z of degree γ , and if $z \neq 0$, then define $$\operatorname{Supp}(z) := \{ \gamma \in \Gamma \mid z_{\gamma} \neq 0 \}, \ \deg(z) := \max_{\prec} \{ \gamma \mid \gamma \in \operatorname{Supp}(z) \}, \ z^* := z_{\deg(z)}.$$ Let $z, w \in R \setminus \{0\}$; then we have $\deg(zw) \leq \deg(z) + \deg(w)$ if $zw \neq 0$ and $\deg(z+w) \leq \max_{\prec} \{\deg(z), \deg(w)\}$ if $z+w \neq 0$. Notice that, if z is not homogeneous, then we have $\deg(z-z^*) \prec \deg(z)$. **Proposition 5** Let S be a Γ -graded ring, and let R be a Γ -graded subring of S. Then the integral closure \overline{R} of R in S is a Γ -graded subring of S. **Proof:** (1) Firstly, we consider the case that every homogeneous element of S which is integral over R already lies in R. Then we have to show that $\overline{R} = R$. Suppose that $R \subsetneq \overline{R}$, and choose $z \in \overline{R} \setminus R$ in such a way that $\#(\operatorname{Supp}(z)) \leq \#(\operatorname{Supp}(w))$ for every $w \in \overline{R} \setminus R$. Now z is not homogeneous by our assumption on R. If $z^* \in \overline{R}$, then we would have $z^* \in R$ since z^* is homogeneous, hence $z - z^* \in \overline{R}$, and therefore $z - z^* \in R$ by the choice of z [note that $\#(\operatorname{Supp}(z - z^*)) < \#(\operatorname{Supp}(z))$]. Therefore we have $z^* \notin \overline{R}$. In particular, we have $(z^*)^i \neq 0$ for every $i \in \mathbb{N}$, hence $(z^i)^* = (z^*)^i$ and $\deg(z^i) = i \deg(z)$ for every $i \in \mathbb{N}$. Let $$\mathcal{V} := \{ \mathbf{a} = (a_1, \dots, a_p) \mid a_1, \dots, a_p \in R, z^p + a_1 z^{p-1} + \dots + a_p = 0 \}.$$ Obviously \mathcal{V} is not empty. For every $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}$ we define $$\gamma(\mathbf{a}) := \max_{\prec} \{ \deg(a_i) - i \deg(z) \mid a_i \neq 0, i \in \{0, 1, \dots, p\} \} \in \Gamma,$$ $$s(\mathbf{a}) := \min\{i \in \{0, \dots, p\} \mid a_i \neq 0, \deg(a_i) - i \deg(z) = \gamma(\mathbf{a})\} \in \{0, \dots, p\}$$ [we define $a_0 := 1$]. Then we have $\gamma(\mathbf{a}) \succeq 0$ [since $a_0 = 1 \in R_0$]. Suppose that there exists $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}$ with $\gamma(\mathbf{a}) = 0$. Then we have for every $i \in \{1, \dots, p\}$ with $a_i z^{p-i} \neq 0$ $$\deg(a_i z^{p-i}) \leq \deg(a_i) + \deg(z^{p-i}) = \deg(a_i) + (p-i)\deg(z)$$ $$\leq p \deg(z) + \gamma(\mathbf{a}) = p \deg(z).$$ In $z^p + a_1 z^{p-1} + \cdots + a_p = 0$ we consider the homogeneous component of degree $p \deg(z) = \deg(z^p)$. Then we get $(z^*)^p + a_1'(z^*)^{p-1} + \cdots + a_p' = 0$ with $$a_i' := \begin{cases} a_i^* & \text{if } a_i z^{p-i} \neq 0 \text{ and } \deg(a_i z^{p-i}) = p \deg(z), \\ 0 & \text{else} \end{cases}$$ for $i \in \{1, \dots, p\}.$ But this would imply that $z^* \in \overline{R}$, in contradiction with our observation above. Therefore we have $\gamma(\mathbf{a}) \succ 0$ for every $\mathbf{a} \in \mathcal{V}$. This implies that $s(\mathbf{a}) > 0$; moreover, we have $s(\mathbf{a}) \leq p-1$ since otherwise $a_p^* = 0$. Let $$\gamma_0 := \min_{\prec} \{ \gamma(\mathbf{a}) \mid \mathbf{a} \in \mathcal{V} \}, \ \mathcal{V}_0 := \{ \mathbf{a} \in \mathcal{V} \mid \gamma(\mathbf{a}) = \gamma_0 \}.$$ Then we have $\gamma_0 \succ 0$. We choose $\mathbf{a} = (a_1, \dots, a_p) \in \mathcal{V}_0$ with $s(\mathbf{b}) \leq s(\mathbf{a})$ for every $\mathbf{b} \in \mathcal{V}_0$. We define $$a'_{j} := \begin{cases} a_{j}^{*} & \text{if } a_{j} \neq 0, \deg(a_{j}) - j \deg(z) = \gamma_{0}, \\ 0 & \text{else} \end{cases}$$ for $j \in \{1, \dots, p\}.$ By the choice of s we have $a'_1 = \cdots = a'_{s-1} = 0$, $a'_s = a^*_s \neq 0$, and $$a'_s(z^*)^{p-s} + a'_{s+1}(z^*)^{p-s-1} + \dots + a'_p = 0$$ (*) [consider in $z^p + a_1 z^{p-1} + \cdots + a_p = 0$ the homogeneous component of degree $\gamma_0 + p \deg(z)$]. We multiply (*) by $a_s'^{p-s-1}$ and obtain $$(a'_s z^*)^{p-s} + a'_{s+1} (a'_s z^*)^{p-s-1} + \dots + a'_p a'_s^{p-s-1} = 0.$$ Therefore the homogeneous element $a_s'z^*$ is integral over R, hence lies in R. Since $a_s'z - a_s'z^*$ is integral over R, and since either $a_s'z = a_s'z^*$ or $\#(\operatorname{Supp}(a_s'z - a_s'z^*)) < \#(\operatorname{Supp}(a_s'z))$, we have $a_s'z - a_s'z^* \in R$ by the choice of z, hence $a_s'z \in R$. We define $$\overline{a}_i := \begin{cases} a_i & \text{if } i \neq s, s+1, \\ a_s - a'_s & \text{if } i = s, \\ a_{s+1} + a'_s z & \text{if } i = s+1 \end{cases}$$ for $i \in \{1, \dots, p\}$. Then we have $\overline{\mathbf{a}} = (\overline{a}_1, \dots, \overline{a}_p) \in R^p$, and since $z^p + \overline{a}_1 z^{p-1} + \dots + \overline{a}_p = 0$, we have $\overline{\mathbf{a}} \in \mathcal{V}$. We show that we even have $\overline{\mathbf{a}} \in \mathcal{V}_0$. We have $\overline{a}_s = 0$ or $\deg(a_s - a'_s) - s \deg(z) \prec \deg(a_s) - s \deg(z) \preceq \gamma_0$, and we have $\overline{a}_{s+1} = 0$ or $\deg(a_{s+1} + a'_s z) - (s+1) \deg(z) \preceq \gamma_0$, and therefore we have $\gamma(\overline{\mathbf{a}}) = \gamma_0$. Obviously we have $s(\overline{\mathbf{a}}) \geq s+1$, in contradiction with the choice of $\overline{\mathbf{a}}$. Therefore we have $\overline{R} = R$. (2) Now we consider the general case. Let $R' := R[\Sigma]$ where Σ is the set of homogeneous elements of S which are integral over R; then R' is a Γ -graded subring of S. We have $R \subset R' \subset \overline{R}$, hence $\overline{R} = \overline{R'}$. Since $\overline{R'} = R'$ by (1), we have $\overline{R} = R'$. Corollary 7 Let R be a Γ -graded ring, and let \mathfrak{a} be a Γ -homogeneous ideal of R. Then the integral closure of \mathfrak{a} in R is a Γ -homogeneous ideal of R, again. **Proof:** We equip the polynomial ring R[T] in a natural way with a $\Gamma \times \mathbb{N}_0$ -grading; then we can consider the Rees ring $\mathcal{R}(\mathfrak{a}, R)$ as a $\Gamma \times \mathbb{N}_0$ -graded subring of R[T]. The integral closure of $\mathcal{R}(\mathfrak{a}, R)$ in R[T] is a $\Gamma \times \mathbb{N}_0$ -graded subring by Prop. 5, and $w \in R$ is integral over \mathfrak{a} iff $wT \in R[T]$ lies in $$\overline{\mathcal{R}(\mathfrak{a},R)} = \bigoplus_{p \ge 0} \overline{\mathfrak{a}^p} \, T^p$$ [cf. Remark 6]. **Notation 6** For the rest of this section let k be a ring, and let $A = k[x_1, \ldots, x_d]$ be the polynomial ring over k in d variables x_1, \ldots, x_d . Then (x_1, \ldots, x_d) is a regular sequence in A which satisfies (a)-(c) above; let M be the set of monomials $\mathbf{x}^{\mathbf{i}} = x_1^{i_1} \cdots x_d^{i_d}$, $\mathbf{i} \in \mathbb{N}_0^d$. Every non-zero $z \in A$ has a unique representation $z = c_1 m_1 + \cdots + c_r m_r$ with non-zero elements $c_1, \ldots, c_r \in k$ and pairwise distinct monomials $m_1, \ldots, m_r \in M$; we call this the monomial representation of z. An ideal $\mathfrak A$ of A is called a monomial ideal if it is generated by a set of monomials. Let $\mathfrak A$ be a monomial ideal in A; then $\mathfrak A$ is generated by a finite set of monomials [Dickson's Lemma, cf. [1], Ch. 4, Cor. 4.48 and Th. 5.2 or [5], Ch. II, § 4, in particular Exercise 7] and a monomial $m \in M$ belongs to $\mathfrak A$ iff it is a multiple of a monomial in $\mathfrak A$. Moreover, if $cm \in \mathfrak A$ with $c \in k \setminus \{0\}$ and $m \in M$, then $m \in \mathfrak A$. Corollary 8 Let A be a monomial ideal in A. Then we have $$\overline{\mathfrak{A}} = \operatorname{rad}_k(0)A + \widetilde{\mathfrak{A}}.$$ **Proof:** Clearly we have $\operatorname{rad}_k(0) \subset \overline{\mathfrak{A}}$ and $\mathfrak{A} \subset \overline{\mathfrak{A}}$. Let $z \in \overline{\mathfrak{A}}$, $z \neq 0$; since $\overline{\mathfrak{A}}$ is an \mathbb{N}_0^d -homogeneous ideal of A [cf. Cor. 7], there exist $s \in \mathbb{N}$, non-zero elements $c_1, \ldots, c_s \in k$ and monomials $n_1, \ldots, n_s \in M$ with $z = c_1 n_1 + \cdots + c_s n_s$ and such that $c_i n_i$ is integral over \mathfrak{A} for $i \in \{1, \ldots, s\}$. Let $i \in \{1, \ldots, s\}$. Then there exist $p \in \mathbb{N}$, elements $d_1, \ldots, d_p \in k$ and monomials $m_1 \in \mathfrak{A}, \ldots, m_p \in \mathfrak{A}^p$ such that $$(c_i n_i)^p + d_1 m_1 (c_i n_i)^{p-1} + \dots + d_p m_p = 0.$$ If $d_1 = \cdots = d_p = 0$, then we have $c_i^p = 0$, hence $c_i \in \operatorname{rad}_k(0)$. Otherwise, there exists $l \in \{1, \ldots, p\}$ with $n_i^p = m_l n_i^{p-l}$, hence $n_i^l = m_l \in \mathfrak{A}^l$, hence $n_i \in \widetilde{\mathfrak{A}}$. Therefore we have $z \in \operatorname{rad}_k(0)A + \widetilde{\mathfrak{A}}$. **Corollary 9** The following statements are equivalent: - (1) k is a reduced ring. - (2) There exists a monomial ideal \mathfrak{A} in A such that $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$. - (3) For every monomial ideal \mathfrak{A} of A we have $\overline{\mathfrak{A}} = \widetilde{\mathfrak{A}}$. ## 6. The Main Theorem We keep the notations and assumptions introduced in section 2. **Notation 7** (1) A monomial ordering \prec of \mathbb{N}_0^d is said to be degree-compatible if it satisfies the following condition: for any \mathbf{i} , $\mathbf{j} \in \mathbb{N}_0^d$ with $\deg(\mathbf{i}) < \deg(\mathbf{j})$ we have $\mathbf{i} \prec \mathbf{j}$. - (2) Let \prec be a degree-compatible ordering on \mathbb{N}_0^d . Then every subset of \mathbb{N}_0^d which is bounded above is finite. - (3) Let \prec be a monomial ordering on \mathbb{N}_0^d . Let $\mathbf{i} \neq \mathbf{j}$ be in \mathbb{N}_0^d . We define $\mathbf{i} \prec_g \mathbf{j}$ if $\deg(\mathbf{i}) < \deg(\mathbf{j})$ or if $\deg(\mathbf{i}) = \deg(\mathbf{j})$ and $\mathbf{i} \prec \mathbf{j}$. Then \prec_g is a degree-compatible monomial ordering on \mathbb{N}_0^d . - (4) If \prec is the lexicographical ordering lex on \mathbb{N}_0^d , then \prec_g is the degree-lexicographical ordering deglex on \mathbb{N}_0^d . - (5) Every monomial ordering \prec on \mathbb{N}_0^d induces an ordering on M which will be denoted by \prec , again. **Proposition 6** We assume that R/\mathfrak{q} is a reduced ring. Let \mathfrak{a} be a monomial ideal of R; then $\operatorname{gr}(\widetilde{\mathfrak{a}})$ is the integral closure of the monomial ideal $\operatorname{gr}(\mathfrak{a})$ in $\operatorname{gr}(R)$. **Proof:** Since $\widetilde{\mathfrak{a}}$ is integral over \mathfrak{a} , obviously $\widetilde{\operatorname{gr}(\mathfrak{a})} = \operatorname{gr}(\widetilde{\mathfrak{a}})$ [cf. Cor. 9(2)] is integral over $\operatorname{gr}(\mathfrak{a})$. Let $m \in M$ be a monomial, and assume that $\operatorname{In}(m) = \overline{m}$ is integral over $\operatorname{gr}(\mathfrak{a})$. Then there exists $h \in \mathbb{N}$ with $\operatorname{In}(m)^h \in (\operatorname{gr}(\mathfrak{a}))^h = \operatorname{gr}(\mathfrak{a}^h)$ [cf. Cor. 9], hence we see that $m^h \in \mathfrak{a}^h \cap \mathfrak{q}^{h \operatorname{deg}(m)} \subset \mathfrak{a}^h$, hence $m \in \widetilde{\mathfrak{a}}$, and therefore we obtain that $\operatorname{In}(m) \in \operatorname{gr}(\widetilde{\mathfrak{a}})$. Remark 7 We assume that R is complete, and that \mathfrak{q} is a prime ideal which is contained in the Jacobson radical of R. Let \prec be a degree-compatible monomial ordering on M, and let $z \in R \setminus \{0\}$; we define $$lm(z) := \min_{\prec} \{ Tm(z) \}.$$ Let $$z = e_1 m_1 + \dots + e_r m_r$$ be a monomial representation of z, then we have $\text{Im}(z) \leq m_j$ for every $j \in \{1, \ldots, r\}$ [cf. Lemma 4 and note that \prec is a degree-compatible ordering], hence we even have $$lm(z) = min_{\prec} \{ m_i \mid i \in \{1, \dots, r\} \}.$$ For $z, w \in R \setminus \{0\}$ we obviously have $$lm(zw) = lm(z)lm(w).$$ **Proposition 7** We assume that R is complete, and that \mathfrak{q} is a prime ideal which is contained in the Jacobson radical of R. For every monomial ideal \mathfrak{a} of R we have $\overline{\mathfrak{q}} = \widetilde{\mathfrak{a}}$. **Proof:** (1) We have $\tilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$ for every monomial ideal \mathfrak{a} of R [cf. (1) in Notation 4]. Suppose that the proposition does not hold. Then the family $$\mathcal{I} := \{\mathfrak{a} \mid \mathfrak{a} \text{ monomial ideal of } R, \, \widetilde{\mathfrak{a}} \subsetneqq \overline{\mathfrak{a}}\}$$ is not empty. For every $\mathfrak{a} \in \mathcal{I}$ we define $r(\mathfrak{a}) \in \mathbb{N}$ in the following way: If $y \in \overline{\mathfrak{a}} \setminus \widetilde{\mathfrak{a}}$, and if $y = e_1 m_1 + \cdots + e_r m_r$ is a monomial representation of y [cf. Prop. 2], then we have $r \geq r(\mathfrak{a})$. Now we choose $\mathfrak{a} \in \mathcal{I}$ in such a way that $r(\mathfrak{a}) \leq r(\mathfrak{b})$ for every $\mathfrak{b} \in \mathcal{I}$. We define $r := r(\mathfrak{a})$, and we choose $y \in \overline{\mathfrak{a}} \setminus \widetilde{\mathfrak{a}}$ such that y admits a monomial representation $y = e_1 m_1 + \cdots + e_r m_r$ having r terms. By Prop. 4 we have $r \geq 2$. By (5) in Notation 4 there exist $p \in \mathbb{N}$ and $a_i \in \widetilde{\mathfrak{a}}^i$ for $i \in \{1, \ldots, p\}$ with $$y^p + a_1 y^{p-1} + \dots + a_p = 0.$$ (2) Let \prec be a degree-compatible monomial ordering on M. Without loss of generality we may assume that in the monomial representation of y we have $m_1 \prec m_2 \prec \cdots \prec m_r$, hence that $\operatorname{Im}(y) = m_1$, and that $\deg(m_1) \leq \deg(m_2) \leq \cdots \leq \deg(m_r)$. We choose $t \in \{1, \ldots, r\}$ with $\deg(m_1) = \deg(m_2) = \cdots = \deg(m_t) < \deg(m_{t+1})$, and we define $y_1 := e_1 m_1 + \cdots + e_t m_t$; then we have $\operatorname{In}(y) = \operatorname{In}(y_1)$. (3) Let $$S := \{ \mathbf{b} = (b_1, \dots, b_p) \mid b_i \in \widetilde{\mathfrak{a}}^i \text{ for } i \in \{1, \dots, p\}, \ y^p + b_1 y^{p-1} + \dots + b_p = 0 \}.$$ The set S is not empty [cf. (1)]; we define for $\mathbf{b} \in S$ $$\rho(\mathbf{b}) := \min_{\prec} \{ \ln(b_i y^{p-i}) \mid i \in \{1, \dots, p\}, \ b_i \neq 0 \} \in M,$$ $$s(\mathbf{b}) := \min\{i \in \{1, \dots, p\} \mid b_i \neq 0, \ \lim(b_i y^{p-i}) = \rho(\mathbf{b})\} \in \{1, \dots, p\}.$$ (4) There exists $\mathbf{b} \in \mathcal{S}$ with $$\rho(\mathbf{b}) \succcurlyeq \operatorname{lm}(y^p).$$ Proof: Let us suppose, on the contrary, that $$\rho(\mathbf{b}) \prec \operatorname{lm}(y^p)$$ for every $\mathbf{b} \in \mathcal{S}$. This implies that $s(\mathbf{b}) \leq p-1$ for every $\mathbf{b} \in \mathcal{S}$. The set $\{\rho(\mathbf{b}) \mid \mathbf{b} \in \mathcal{S}\}$ is bounded above, hence finite; we define $$\rho := \max_{\prec} \{ \rho(\mathbf{b}) \mid \mathbf{b} \in \mathcal{S} \} \in M.$$ Furthermore, we define $$\mathcal{S}' := \{ \mathbf{b} \in \mathcal{S} \mid \rho(\mathbf{b}) = \rho \}.$$ We choose $\mathbf{b}' = (b'_1, \dots, b'_p) \in \mathcal{S}'$ in such a way that $s(\mathbf{b}) \leq s(\mathbf{b}')$ for every $\mathbf{b} \in \mathcal{S}'$, and we define $s := s(\mathbf{b}')$; note that $1 \leq s \leq p-1$. Let $i \in \{1, ..., p\}$ with $b'_i \neq 0$. We consider a monomial representation $$b'_i = e_{i1}m_{i1} + \dots + e_{i,r_i}m_{i,r_i}.$$ Since $\widetilde{\mathfrak{a}}^i$ is a monomial ideal, we have $m_{i1}, \ldots, m_{i,r_i} \in \widetilde{\mathfrak{a}}^i$ [cf. Prop. 3]. Without loss of generality we may assume that $m_{i1} \prec m_{i2} \prec \cdots \prec m_{i,r_i}$. We choose $t_i \in \{1, \ldots, r_i\}$ with $\deg(m_{i1}) = \cdots = \deg(m_{i,t_i}) < \deg(m_{i,t_i+1})$, and we define $b_i'' := e_{i1}m_{i1} + \cdots + e_{i,t_i}m_{i,t_i}$; then we have $\operatorname{In}(b_i') = \operatorname{In}(b_i'')$ in $\operatorname{gr}(R)$. For $i \in \{1, \ldots, p\}$ we define $$d_i := \begin{cases} 0 & \text{if } b'_i = 0 \text{ or if } b'_i \neq 0 \text{ and } \lim(b'_i y^{p-i}) \succ \rho, \\ b''_i & \text{if } b'_i \neq 0 \text{ and } \lim(b'_i y^{p-i}) = \rho. \end{cases}$$ Then we have $d_i \in \widetilde{\mathfrak{a}}^i$ for every $i \in \{1, \dots, p\}$. We consider the equation $$y^p + b_1' y^{p-1} + \dots + b_p' = 0. \tag{*}$$ For $i \in \{1, ..., p\}$ we replace b'_i by d_i , and we replace y by y_1 ; using the inequality $\rho \prec \text{lm}(y^p)$, we obtain the following equation in gr(R) $$In(d_s)In(y_1^{p-s}) + In(d_{s+1})In(y_1^{p-s-1}) + \dots + In(d_p) = 0.$$ (**) We multiply (**) with $In(d_s^{p-s-1})$, and we obtain $$(\operatorname{In}(d_s y_1))^{p-s} + \operatorname{In}(d_{s+1})(\operatorname{In}(d_s y_1))^{p-s-1} + \operatorname{In}(d_{s+2} d_s)(\operatorname{In}(d_s y_1))^{p-s-2} + \cdots + \operatorname{In}(d_p d_s^{p-s-1}) = 0.$$ We have $$d_{s+l} d_s^{l-1} \in \widetilde{\mathfrak{a}^{s+l}}(\widetilde{\mathfrak{a}^s})^{l-1} \subset \widetilde{\mathfrak{a}^{(s+1)l}} \quad \text{for } l \in \{1, \dots, p-s\}.$$ Therefore we have $\operatorname{In}(d_{s+l}d_s^{l-1}) \in \operatorname{gr}(\widehat{\mathfrak{a}^{(s+1)l}}) = (\operatorname{gr}(\widehat{\mathfrak{a}^{s+1}})^l)$ [cf. Cor. 6(2) and (4) in Remark 4] for $l \in \{1, \ldots, p-s\}$, hence $\operatorname{In}(d_s y_1)$ is integral over $(\operatorname{gr}(\mathfrak{a}))^{s+1}$ [cf. (5) in Notation 4], $\operatorname{In}(m_{s1}m_1)$ is integral over $(\operatorname{gr}(\mathfrak{a}))^{s+1}$, also [cf. Cor. 9], and therefore $e_{s1}e_1m_{s1}m_1$ is an element of $\widehat{\mathfrak{a}^{s+1}}$. We multiply (*) with $(e_{s1}m_{s1})^p$ and we obtain $$(e_{s1}m_{s1}y)^p + b_1'e_{s1}m_{s1}(e_{s1}m_{s1}y)^{p-1} + \dots + b_p'(e_{s1}m_{s1})^p = 0.$$ Note that $$b'_l(e_{s1}m_{s1})^l \in \widetilde{\mathfrak{a}}^l(\widetilde{\mathfrak{a}}^s)^l \subset (\widetilde{\mathfrak{a}}^{s+1})^l \quad \text{for } l \in \{1, \dots, p\},$$ and therefore $e_{s1}m_{s1}y$ is integral over \mathfrak{a}^{s+1} [cf. (5) in Notation 4]. Let $y' := y - e_1m_1$; then $e_{s1}m_{s1}y'$ is integral over \mathfrak{a}^{s+1} , and $e_{s1}m_{s1}y' = \sum_{i=2}^r e_i e_{s1}m_{s1}m_i$ admits a monomial representation having only r-1 terms. We have $e_{s1}m_{s1}y' \in \widetilde{\mathfrak{a}^{s+1}}$ [this is clear if $\overline{\mathfrak{a}^{s+1}} = \widetilde{\mathfrak{a}^{s+1}}$, and if $\overline{\mathfrak{a}^{s+1}} \supseteq \widetilde{\mathfrak{a}^{s+1}}$, then \mathfrak{a}^{s+1} lies in \mathcal{I} , and by the choice of r [cf. (1)] we get $e_{s1}m_{s1}y' \in \widetilde{\mathfrak{a}^{s+1}}$ in this case, also]. Since $e_{s1}m_{s1}y'$ and $e_1e_{s1}m_1m_{s1}$ lie in $\widetilde{\mathfrak{a}^{s+1}}$, the element $e_{s1}m_{s1}y$ lies in $\widetilde{\mathfrak{a}^{s+1}}$, also. We define [note that $s \leq p-1$] $$\widetilde{b}_i := \begin{cases} b'_i & \text{if } i \neq s, s+1, \\ b'_s - e_{s1} m_{s1} & \text{if } i = s, \\ b'_{s+1} + e_{s1} m_{s1} y & \text{if } i = s+1 \end{cases}$$ for $i \in \{1, \dots, p\}$. We have $\mathbf{b}' \in \mathcal{S}$, $e_{s1}m_{s1} \in \widetilde{\mathfrak{a}}^s$ and $e_{s1}m_{s1}y \in \widetilde{\mathfrak{a}}^{s+1}$, hence we have $\widetilde{b}_i \in \widetilde{\mathfrak{a}}^i$ for $i \in \{1, \dots, p\}$. Clearly we have $$y^p + \widetilde{b}_1 y^{p-1} + \dots + \widetilde{b}_p = 0,$$ and therefore $\widetilde{\mathbf{b}} := (\widetilde{b}_1, \dots, \widetilde{b}_p)$ lies in \mathcal{S} , and this implies that $\rho(\widetilde{\mathbf{b}}) \leq \rho$ by the choice of ρ . We show that $\widetilde{\mathbf{b}}$ even lies in \mathcal{S}' . We have $\widetilde{b}_s = 0$ or $\widetilde{b}_s = e_{s2}m_{s2} + \cdots + e_{s,r_s}m_{s,r_s}$ and $\operatorname{Im}(\widetilde{b}_s) = m_{s2} \succ m_{s1} = \operatorname{Im}(b'_s) = \rho$. We have $\operatorname{Im}(e_{s1}m_{s1}y^{p-s}) = \rho$, and if $b'_{s+1} \neq 0$, then we have $\operatorname{Im}(b'_{s+1}y^{p-s-1}) \succcurlyeq \rho$. Therefore we have $\operatorname{Im}(\widetilde{b}_{s+1}y^{p-s-1}) \succcurlyeq \rho$, and since $\rho(\mathbf{b}') = \rho$, we obtain $\rho(\widetilde{\mathbf{b}}) \succcurlyeq \rho$. This implies that $\rho(\widetilde{\mathbf{b}}) = \rho$, hence we get, in fact, that $\widetilde{\mathbf{b}} \in \mathcal{S}'$. Now we have $\widetilde{b}_s = 0$ or $\operatorname{Im}(\widetilde{b}_s) > \rho$ and $\widetilde{b}_i = b'_i$ for $i \in \{1, \dots, s-1\}$, and this implies $s(\widetilde{\mathbf{b}}) > s(\mathbf{b}') = s$, in contradiction with the choice of \mathbf{b}' . (5) By (4) there exists $\mathbf{b} \in \mathcal{S}$ with $\text{lm}(b_i y^{p-i}) \geq \text{lm}(y^p)$ for every $i \in \{1, \ldots, p\}$ with $b_i \neq 0$. Let $i \in \{1, \ldots, p\}$ with $b_i \neq 0$, and let $b_i = e_{i1}m_{i1} + \cdots + e_{i,r_i}m_{i,r_i} \in \widetilde{\mathfrak{a}}^i$ be a monomial representation of b_i ; without loss of generality we may assume that $m_{i1} \prec m_{i2} \prec \cdots \prec m_{i,r_i}$, which implies that $m_{i1} = \operatorname{lm}(b_i)$. We choose $t_i \in \{1, \ldots, r_i\}$ with $\operatorname{deg}(m_{i1}) = \cdots = \operatorname{deg}(m_{i,t_i}) < \operatorname{deg}(m_{i,t_{i+1}})$, and we define $$b'_i := e_{i1}m_{i1} + \cdots + e_{i,t_i}m_{i,t_i};$$ note that $\operatorname{In}(b_i) = \operatorname{In}(b'_i)$. We have $m_{ij} \in \widetilde{\mathfrak{a}}^i$ for $j \in \{1, \dots, r_i\}$ [cf. Prop. 3], hence, in particular, $b'_i \in \widetilde{\mathfrak{a}}^i$. Now let $i \in \{1, \dots, p\}$; we define $$c_i := \begin{cases} 0 & \text{if } b_i = 0 \text{ or if } b_i \neq 0 \text{ and } \operatorname{lm}(b_i y^{p-i}) \succ \operatorname{lm}(y^p), \\ b'_i & \text{if } b_i \neq 0 \text{ and } \operatorname{lm}(b_i y^{p-i}) = \operatorname{lm}(y^p). \end{cases}$$ Clearly we have $c_i \in \widetilde{\mathfrak{a}}^i$. From $y^p + b_1 y^{p-1} + \cdots + b_p = 0$ we obtain the following equation in $\operatorname{gr}(R)$ $$\operatorname{In}(y_1)^p + \operatorname{In}(c_1)\operatorname{In}(y_1)^{p-1} + \dots + \operatorname{In}(c_p) = 0.$$ Now we have $\operatorname{In}(c_i) \in \operatorname{gr}(\widetilde{\mathfrak{a}}^i)$ for every $i \in \{1, \dots, p\}$. Just as in (4) we see that $\operatorname{In}(y_1)$ is integral over $\operatorname{gr}(\mathfrak{a})$ and that therefore $\operatorname{In}(m_1)$ is integral over $\operatorname{gr}(\mathfrak{a})$, hence we have $m_1 \in \widetilde{\mathfrak{a}}$, hence $e_1m_1 \in \widetilde{\mathfrak{a}}$. Now $y' := y - e_1m_1$ lies in $\overline{\mathfrak{a}}$, and therefore y' lies in $\widetilde{\mathfrak{a}}$ by the choice of r. From this we get that $y = y' + e_1m_1$ lies in $\widetilde{\mathfrak{a}}$, in contradiction with the choice of y. **Theorem 1** Let R be a noetherian ring, let $\mathbf{x} = (x_1, \dots, x_d)$ be a regular sequence in R, and assume that $\mathfrak{q} := \mathbf{x}R$ is contained in the Jacobson radical of R and that R/\mathfrak{q} is a reduced ring. For every monomial ideal \mathfrak{q} of R we have $\overline{\mathfrak{q}} = \widetilde{\mathfrak{q}}$; in particular, $\overline{\mathfrak{q}}$ is a monomial ideal, also. **Proof:** (1) Firstly, let \mathfrak{q} be a prime ideal. Let $y \in \overline{\mathfrak{a}}$. We have $\overline{\mathfrak{a}}\hat{R} \subset \overline{(\mathfrak{a}\hat{R})}$ and $\widetilde{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R}$ [cf. Cor. 6], hence $y \in \overline{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R} = \widetilde{\mathfrak{a}}\hat{R}$ [cf. Prop. 7], and since $\widetilde{\mathfrak{a}}\hat{R} \cap R = \widetilde{\mathfrak{a}}$ we obtain $y \in \widetilde{\mathfrak{a}}$. Thus, we have shown that $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$. - (2) Now we consider the case that R/\mathfrak{q} is reduced. - (a) Let $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$. Then $\mathfrak{q}R_{\mathfrak{p}}$ is the maximal ideal of $R_{\mathfrak{p}}$, hence we have $\widetilde{\mathfrak{a}R_{\mathfrak{p}}} = \overline{\mathfrak{a}R_{\mathfrak{p}}}$ by (1). Obviously we have $\widetilde{\mathfrak{a}R_{\mathfrak{p}}} = \widetilde{\mathfrak{a}}R_{\mathfrak{p}}$ and $\overline{\mathfrak{a}}R_{\mathfrak{p}} \subset \overline{\mathfrak{a}}R_{\mathfrak{p}}$. Therefore we have $\overline{\mathfrak{a}}R_{\mathfrak{p}} \subset \widetilde{\mathfrak{a}}R_{\mathfrak{p}}$. - (b) For every $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$ there exists, by (a), an element $s_{\mathfrak{p}} \in R \setminus \mathfrak{p}$ with $\overline{\mathfrak{q}} \subset \widetilde{\mathfrak{q}} : s_{\mathfrak{p}}$. Let \mathfrak{b} be the ideal generated by the elements $s_{\mathfrak{p}}$; then we have $\overline{\mathfrak{a}} \subset \widetilde{\mathfrak{a}} : \mathfrak{b}$. Let $\mathfrak{p}' \in \mathrm{Ass}(R/\widetilde{\mathfrak{a}})$. Since $\widetilde{\mathfrak{a}}$ is a monomial ideal, there exists $U \subset \{1,\ldots,d\}$ with $\mathfrak{p}' \in \mathrm{Ass}(R/\mathfrak{q}_U)$ [cf. Lemma 1]. Repeated application of Lemma 1 in [13], vol. II, Appendix 6, shows that there exists a prime ideal $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$ with $\mathfrak{p}' \subset \mathfrak{p}$. Therefore \mathfrak{b} is not contained in any prime ideal in $\mathrm{Ass}(R/\widetilde{\mathfrak{a}})$, hence $\widetilde{\mathfrak{a}} : \mathfrak{b} = \widetilde{\mathfrak{a}}$, hence $\overline{\mathfrak{a}} \subset \widetilde{\mathfrak{a}}$. The inclusion $\widetilde{\mathfrak{a}} \subset \overline{\mathfrak{a}}$ was noticed in (1) of Notation 4, and therefore we have $\overline{\mathfrak{a}} = \widetilde{\mathfrak{a}}$. **Example 1** Let R be a regular local two-dimensional ring, and let $\{x,y\}$ be a regular system of parameters of R. Let m > n > 1 be coprime integers, and write $m = s_1 n + n_1$ with $1 \le n_1 < n$. Let \mathfrak{a} be the ideal of R generated by x^m and y^n . Then \mathfrak{a} is a monomial ideal. It can be shown [cf. [7]] that the integral closure \wp of \mathfrak{a} has a minimal system of generators $\{x^{m-\sigma_{m,n}(i)}y^i \mid i \in \{0,\ldots,n\}\}$ where $\sigma_{m,n} \colon \{0,\ldots,n\} \to \{0,\ldots,m\}$ is a strictly increasing function; in particular, one has $$\sigma_{m,n}(0) = 0, \sigma_{m,n}(1) = s_1, \sigma_{m,n}(n-1) = m - (s_1 + 1), \sigma_{m,n}(n) = m,$$ and $$\sigma_{m,n}(i+j) \ge \sigma_{m,n}(i) + \sigma_{m,n}(j)$$ for $i, j \in \{0, \dots, n\}$ with $i+j \le n$. Moreover, the polar ideal \mathfrak{P}_{\wp} of \wp has $$\{x^{m-\sigma_{m,n}(i+1)}y^i \mid i \in \{0,\dots,n-1\}\}$$ as minimal set of generators. ### References - [1] Becker, Th. and Weispfenning, V.: *Gröbner Bases*. Graduate Texts in Mathematics **141**. Springer, New York, 1993. - [2] Bourbaki, N.: Algèbre. Masson, Paris, 1980. - [3] Bourbaki, N.: Algèbre Commutative. Masson, Paris, 1983. - [4] Bruns, W. and Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge, 1993. - [5] COX, D., LITTLE, J. AND O'SHEA, D.: Ideals, Varieties, and Algorithms. An introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics, Springer, New York, 1992. - [6] Fröberg, R.: An Introduction to Gröbner Bases. Wiley, New York, 1997. - [7] Greco, S. and Kiyek, K.: The polar ideal of a simple complete ideal having one characteristic pair. Preprint, Politecnico di Torino, Rapporto interno N. 32. - [8] HERRMANN, M., IKEDA, S. AND ORBANZ, U.: Equimultiplicity and Blowing up. Springer, Berlin, 1988. - [9] KEMPF, G., KNUDSEN, F., MUMFORD, D. AND SAINT-DONAT, B.: *Toroidal embeddings I.* Lecture notes in Mathematics **339**: Springer-Verlag, Berlin, 1973. - [10] LIPMAN, J.: Rational singularities with applications to algebraic surfaces and unique factorization. *Inst. Hautes Études Sci. Publ. Math.* **36** (1969), 195-279. - [11] ROCKAFELLAR, R. T.: Convex Analysis. Princeton Landmarks in Mathematics, Princeton University Press, 10th printing, Princeton, 1997. - [12] VASCONCELOS, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer-Verlag, Berlin, 1998. - [13] Zariski, O., and Samuel, P.: Commutative Algebra. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. Recibido: 20 de febrero de 2002 Revisado: 23 de octubre de 2002 Karlheinz Kiyek Institut für Mathematik Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn 33098 Paderborn, Deutschland karlh@uni-paderborn.de Jürgen Stückrad Mathematisches Institut Universität Leipzig Augustusplatz 10-11 04109 Leipzig, Deutschland stueckrad@mathematik.uni-leipzig.de