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Noncommutative algebraic geometry

Olav A. Laudal

Abstract

The need for a noncommutative algebraic geometry is apparent
in classical invariant and moduli theory. It is, in general, impossible
to find commuting parameters parametrizing all orbits of a Lie group
acting on a scheme. When one orbit is contained in the closure of
another, the orbit space cannot, in a natural way, be given a scheme
structure.

In this paper we shall show that one may overcome these diffi-
culties by introducing a noncommutative algebraic geometry, where
affine “schemes” are modeled on associative algebras. The points of
such an affine scheme are the simple modules of the algebra, and the
local structure of the scheme at a finite family of points, is expressed
in terms of a noncommutative deformation theory proposed by the
author in [10].

More generally, the geometry in the theory is represented by a
swarm, i.e. a diagram (finite or infinite) of objects (and if one wants,
arrows) in a given k-linear Abelian category (k a field), satisfying
some reasonable conditions. The noncommutative deformation the-
ory refered to above, permits the construction of a presheaf of asso-
ciative k-algebras, locally parametrizing the diagram. It is shown that
this theory, in a natural way, generalizes the classical scheme theory.
Moreover it provides a promising framework for treating problems
of invariant theory and moduli problems. In particular it is shown
that many moduli spaces in classical algebraic geometry are commu-
tativizations of noncommutative schemes containing additional infor-
mation.
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Introduction

In this paper I shall first, sketch, or recall from [10] a noncommutative
deformation theory for modules on some k-algebra A, k a field. Then, in §3-4
I shall apply it to construct a noncommutative algebraic geometry. The final
paragraphs of the paper are concerned with the application to invariant and
moduli theory, and to some examples.

The basic idea of noncommutative deformation theory is very simple.
Let ar denote the category of r-pointed not necessarily commutative k-
algebras R. The objects are the diagrams of k-algebras,

kr ι→ R
ρ→ kr

such that the composition of ι and ρ is the identity. Any such r-pointed k-
algebra R is isomorphic to a k-algebra of r × r-matrices (Ri,j). The radical
of R is the bilateral ideal Rad(R) := ker ρ. The dual k-vector space of
Rad(R)/Rad(R)2 is called the tangent space of R.

For r = 1, there is an obvious inclusion of categories

l ⊆ a1

where l, as usual, denotes the category of commutative local artinian k-
algebras with residue field k.

Fix a not necessarily commutative k-algebra A and consider a right A-
module M . The classical deformation functor

DefM : l → Sets

is then defined. Assuming Exti
A(M,M) has finite k-dimension for i = 1, 2, it

is well known, see [17] or [8], that DefM has a noetherian prorepresenting hull
H, the formal moduli of M . Moreover, the tangent space of H is isomorphic
to Ext1

A(M,M), and H can be computed in terms of Exti
A(M,M), i = 1, 2

and their matric Massey products, see [7], [8].
In the general case, consider a finite family V = {Vi}r

i=1 of A-modules
and define a deformation functor,

DefV : ar → Sets

generalizing the functor DefM above. Given an object ρ : R = (Ri,j) → kr

of ar, consider the k-vector space and R-left module (Ri,j ⊗k Vj). ρ defines
a k-linear and left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).
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The right A-module structure on the Vi’s is defined by a homomorphism
of k-algebras, η0 : A → ⊕r

i=1Endk(Vi). Let DefV(R) ∈ Sets be the set of
isoclasses of homomorphisms of k-algebras,

η′ : A → (Ri,j ⊗k Homk(Vi, Vj))

such that, ρ̃(R) ◦ η′ = η0, where the equivalence relation is defined by inner
automorphisms in the k-algebra (Ri,j ⊗k Homk(Vi, Vj)). Assume that for all
0 ≤ i, j ≤ r we have

dimk Ext1
A(Vi, Vj) < ∞.

Then it is easy to see that DefV has the same properties as the ordinary
deformation functor:

Theorem 2.3 The functor DefV has a prorepresentable hull, i.e. an object
H(V) of the procategory âr, together with a formal versal family,

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n≥1

DefV(H/mn)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV

is smooth, and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products of the form

Ext1(Vi, Vj1) ⊗ · · · ⊗ Ext1(Vjn−1 , Vj) · · · → Ext2(Vi, Vj).

Finite families of A-modules, V satisfying,

dimk Ext1
A(Vi, Vj) < ∞,

and for which there exists a natural right action of A on Ṽ will be called
swarms, see (2.4). Any swarm defines a homomorphism of k-algebras,

η : A −→ O(V) := EndH(Ṽ ) = (Hi,j ⊗ Homk(Vi, Vj)),

and the k-algebra O(V) acts on the family of A-modules V = {Vi}, extending
the action of A. If dimk Vi < ∞, for all i = 1, . . . , r, the operation of
associating (O(V),V) to (A,V) turns out to be a closure operation.

An important result, needed for the construction of the structure sheaf
in noncommutative algebraic geometry, is the following,

Theorem 2.6 (A generalized Burnside theorem) Let A be a finite
dimensional k-algebra, k an algebraically closed field. Consider the family
V = {Vi}r

i=1 of simple A-modules, then

A 
 O(V) = (Hi,j ⊗ Homk(Vi, Vj)) .
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Based on this notion of noncommutative deformations, we propose a
general definition of an affine noncommutative prescheme, and scheme, gen-
eralizing the classical notion of an affine algebraic scheme in the commuta-
tive case.

The construction is dependent upon the choice of a reasonable abelian
category of objects C, the universe. Since the process of generalizing will
be clear, I shall assume that we are given an algebraically closed field k, a
k-algebra A, and that we pick as our universe C, the category A-mod of
right A-modules.

As a model we shall take the classical construction of the structure
sheaf OX , of the scheme X := Spec(A), when A is a commutative finite
type k-algebra. A point of X is a prime ideal p of A, or rather the right (or
left) A-module A/p. A closed point x ∈ X is a simple module k(x) = A/mx

corresponding to a maximal ideal mx ⊂ A. Moreover, X is obviously the
moduli space of its closed points, implying that the hull H(k(x)) of the
deformation functor Defk(x) : a1 → Sets, is the completion Âmx of the lo-
cal ring OX,x at the point x ∈ X. The regular functions f of X, i.e. the
sections of the structure sheaf OX , are analytically determined by the fam-
ily of Taylor series f̂x ∈ Âmx at the different points x ∈ X, therefore by
their (right multiplicative) actions on the hull of the different deformation
functors Defk(x).

This completion process, and the corresponding identification of a regular
function f on X as a (multiplicative) operator in the k-vector space A as
well as in Âx, for every x ∈ X, is going to replace the localization process of
classical scheme theory.

Recall that to recover the affine ring A from the scheme,

(i) (X,OX)

we are dependent upon the Zariski topology of X and upon the sheaf prop-
erty of OX , both stemming from the process of localization in commutative
rings. We find,

(ii) A = H0(X,OX).

Recall also that for noncommutative rings, the localization process func-
tions only for Ore-sets, which are scarce. To obtain a good noncommutative
theory we shall therefore have to change the notion of space, conserving
the notion of points and incidences, but (for the moment) leaving out the
topology. The notion of structure sheaf must therefore be modified.

Let c be any reasonable diagram of objects and morphisms in C, and let
|c| be the family of objects. We shall assume, for the rest of this paper, that
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for any Vi, Vj ∈ |c|,
dimk Ext1

A(Vi, Vj) < ∞.

Let

π : C → k-mod.

be the obvious forgetful functor.
Assume first that |c| = {Vi}r

i=1 is a finite swarm. Let H(|c|) = (Hi,j)
be the hull of the noncommutative deformation functor of this family of
A-modules. To the diagram c we now associate, see §3, a subalgebra,

OA(c, π) ⊆ (Hi,j(|c|) ⊗k Homk(Vi, Vj))

of preobservables, together with a restriction of the canonical homomor-
phism η,

η(c) : A −→ OA(c, π),

such that OA(c, π) acts on c, extending the action of A. Moreover, if for
all i, dimk Vi < ∞, the O-construction is a closure operator, i.e.

(iii) OA(c, π) 
 OO(c, π).

Notice that we shall, abusing the notations, write ⊗ where one should
have written ⊗̂, i.e. when H(Vi) ∈ âr but H(Vi) /∈ ar and where we therefore
have to work with complete tensor products.

To extend this O-construction to infinite swarms, we have to “sheafify”
the O-construction, obtaining for every finite swarm c a smaller k-algebra,
O(c, π) containing the image of η(c). This new k-algebra of observables has
good functorial properties and may be extended to the permissible infinite
swarms, see (3.15). The final noncommutative structure sheaf Oπ, a certain
quotient of this O(−, π), see §3, is a presheaf of k-algebras on the ordered
set of sub-swarms of a given swarm c. We then proclaim,

Definitions 3.8 and 3.17 A permissible swarm c of C will be called a
prescheme for A, if

η(c) : A −→ O(c, π)

is an isomorphism. If this is the case, (c, A) is called an affine prescheme
and we shall refer to A as the affine ring of this prescheme. The swarm c
will be called a scheme for A, if

η(c) : A −→ Oπ(c)

is an isomorphism. If this is the case, (c, A) is called an affine scheme and
we shall refer to A as the affine ring of this scheme.
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In particular, if c is a finite swarm of A-modules, the pair,

(iv) (c,OA(c, π))

is, by (3.7), an affine (noncommutative) prescheme. Thus, (ii) in the com-
mutative scheme theory, is replaced by (iii) in the general case.

Notice that we are now talking about a scheme for A, not about the
scheme for A. In fact it is easily seen that there may be several useful
schemes for a given algebra A, depending upon what kind of properties of
the algebra one would like to study.

The noncommutative algebraic geometry we propose, is concerned with
these affine schemes, and their globalizations. The categorical properties of
our universe C replace the topology, and the classical structure sheaf OX is
replaced by the Oπ-construction.

As an example, let us consider the 0-dimensional case. If A is a com-
mutative k-algebra of finite k-dimension, then A = ⊕r

i=1OX,xi
where X =

Spec(A) = {x1, . . . , xr}. In general, let A be a finite dimensional k-algebra,
k algebraically closed, and V = {Vi} the (finite) family of all simple mod-
ules. We shall consider each module of this family as a point, and we shall
consider the obvious forgetful functor π : A-mod → k-mod. The local ring
(or the infinitesimal neighbourhood) of a point Vi of V, the analogue of the
completion ÔX,x of the local ring OX,x of a closed point x ∈ X = Spec(A),
is the algebra

(v) H(Vi) ⊗k Endk(Vi)

where H(Vi) is the hull of the deformation functor DefVi
. The affine ring A

is, however, no longer isomorphic to the sum of these local algebras.
Here is where the notion of noncommutative deformation enters. Let

H(V) = (Hi,j) be the hull of the noncommutative deformation functor of
the family V = {Vi}, see [10], then the infinitesimal interactions of the
points of V, translates into the components,

(vi) Hi,j(V) ⊗k Homk(Vi, Vj), i �= j

of the ring of observables O(V) := O(V, π). Hi,j(V) is, as a Hi,i(V)−Hj,j(V)
bi-module generated by a dual base of the tangent space Ext1

A(Vi, Vj) of the
point Vi into the point Vj . There is a natural morphism of k-algebras,

η : A −→ O(V) := (Hi,j(V) ⊗k Homk(Vi, Vj))

which, according to the Generalized Burnside Theorem is an isomorphism.
This is the Serre theorem, i.e. the analogue of (ii), in the 0-dimensional

noncommutative algebraic geometry. The discrete swarm,

(V := {Vi}r
i=1, A)

is a scheme for A.
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Notice that in the construction of H(V) we only use the structure of the
abelian category C (of A-modules) in which we consider our family of ob-
jects V. H(V) is therefore an invariant of the Morita equivalence class of A.
To recover A, i.e. in the construction of the ring of observables, we must
also know the dimensions of the different points Vi of the noncommutative
scheme c := V, i.e. we must know the values of the forgetful functor π on V.
However, as one easily shows, H(V) is Morita equivalent to A.

– Now, to call something a geometry, one should certainly have the pos-
sibility of defining some kind of hierarchy among the geometrical subobjects,
something like a quiver of incidences. Given a geometrical subobject we
should at least be able to decide which points sit on the subvariety. In our
case, if c is an affine scheme for A, the morphisms of c correspond to inci-
dences among the points. Moreover, as we have seen in the 0-dimensional
case discussed above, there may also be some infinitesimal incidences be-
tween the points Vi and Vj , corresponding to a k-basis of Ext1

A(Vi, Vj). And
these are essential in the (re)construction of the affine ring of observables.

– To qualify as a geometry, a model should include a dynamical element,
i.e. either a topology and a differential structure, including vectorfields, or
something taking its place. This is, in our case, provided by a differen-
tial calculus induced by the deformation theory, see (3.32), where the basic
notions are introduced.

– To be taken seriously, a noncommutative algebraic geometry must cer-
tainly include the classical algebraic geometry as a special case. To see that
our model satisfies this condition, let A be a commutative k-algebra of fi-
nite type. The points of the affine scheme Spec(A) may be identified with
the members of the family of indecomposable modules V = {A/p}p∈Spec(A).
We shall consider this family of A-modules together with the obvious canoni-
cal morphisms, obtaining a (usually infinite) diagram (really an ordered set)
c = Spec(A), of A-mod. Notice that Spec(A) as a set, contains the set
of closed points, Simp(A), the simple A-modules, together with all the ir-
reducible subvarieties of Spec(A), considered both as points in their own
right, and as defining subschemes, with the corresponding points as their
generic points. This induces a notion of incidence among different points in
the geometry, just as we have done above. Recall, however, that in classical
scheme theory, a scheme is the moduli space of its closed points, but not
necessarily of the non-closed points. There is, in fact, a dichotomy between
the set of closed points and the set of non-closed points, between the scheme
and its Hilbert schemes.

In our noncommutative geometry, the general notion of scheme is an
intermediate version, providing us with a set of points and incidences, such
that all points are on equal footing, see section §3.
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These considerations lead us to the swarm of A-modules, Simp∗(A), con-
sisting of A, the projective generator, and all the simple A-modules, together
with the obvious incidences.

The embedding of the classical algebraic geometry (defined on an alge-
braically closed field k), into the proposed noncommutative algebraic geom-
etry, is then taken care of by the following results,

Proposition 3.20 Let A be any k-algebra of finite type, k algebraically
closed. Assume the natural homomorphism,

η(Simp(A), π) : A → O(Simp(A), π)

is injective, then the canonical morphism of k-algebras

η(Simp∗(A), π) : A → Oπ(Simp∗(A))

is an isomorphism, i.e. Simp∗(A) is a scheme for A.

Theorem 4.1 Let A be any commutative k-algebra of finite type, k alge-
braically closed. Then Simp∗(A) is a permissible swarm, and the canonical
morphism of k-algebras

η(Simp∗(A), π) : A → Oπ(Simp∗(A))

is an isomorphism, i.e. Simp∗(A) is a scheme for A.
Here topology and localizations comes back in. Using the Jacobson topol-

ogy on Simp(A), we shall see that there is a natural way of localizing in
noncommutative k-algebras, obtaining a structure presheaf Oπ defined on
this Jacobson topology, generalizing the commutative case.

We shall look at invariant theory, in this general setting and, in particu-
lar, we shall see that many problems of moduli in algebra, which cannot be
treated in the classical framework of schemes, or of ringed spaces, have very
satisfactory solutions expressible in the language of this generalized scheme
theory, see section §8.

Now, a noncommutative version of differential geometry has been around
for decades, spured by the needs of quantum mechanics and by the needs of
invariant theory. In fact, there is a flora of proposed noncommutative ge-
ometries. The first ones were based on the notion of operator algebras. Von
Neumann’s work on quantum mechanics created a geometry where points,
in some sense, were replaced by states or pure states in C*-algebras. Work-
ing on foliations, Connes has, in a most convincing way, developed a theory
of quotient spaces, or orbit spaces, related to the theory of moduli, which
transcends the classical geometry. However, the basic notion of space as a
set of points with a topology and a structure defined by a structure sheaf,
disappears in this model, see [3].
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There are also purely algebraic attempts at the construction of a non-
commutative geometry see e.g. [1], [14], [20], [2], [13], and [16]. The
common aspect of these models have been that they do not include non-
reduced schemes, and therefore cannot treat 0-dimensional schemes, and
subsequently contain no infinitesimal theory. However, noncommutative ge-
ometry is a field in progress, and there are hopes for a future convergence
of views, and a common ground for noncommutative algebraic geometry.

Earlier versions of this paper has appeared in the preprints [11, 12] and
reference [10].

1. Homological preparations

Exts and Hochschild cohomology

Let k be a (usually algebraically closed) field, and let A be a k-algebra.
Denote by A-mod the category of right A-modules and consider the exact
forgetful functor

π : A-mod −→ k-mod

Given two A-modules M and N, we shall always use the identification

σi : Exti
A(M,N) 
 HH i(A,Homk(M,N)) for i = 0, 1, 2,

where Homk(M,N) is provided with the obvious left and right A-module
structures. If L∗ and F∗ are A-free resolutions of M and N respectively, and
if an element

ξ ∈ Ext1
A(M,N)

is represented by the Yoneda cocycle,

ξ̂ = {ξn} ∈
∏
n

HomA(Ln, Fn−1)

then σ1(ξ) is gotten as follows. Let σ be a k-linear section of the augmenta-
tion morphism

ρ : L0 −→ M

and let for every a ∈ A and m ∈ M , σ(ma) − σ(m)a = d0(x). Put,

σ1(ξ̂)(a,m) = −µ(ξ1(x))

where
µ : F0 −→ N

is the augmentation morphism of F∗. Then,

σ1(ξ̂) ∈ Derk(A,Homk(M,N))

and its class in HH1(A,Homk(M,N)) equals σ1(ξ).
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Recall the spectral sequence associated to a change of rings. If π : A → B
is a surjective homomorphism of commutative k-algebras, M a B-module
and N an A-module, then Ext∗A(M,N) is the abuttment of the spectral
sequence given by,

Ep,q
2 = Extp

B(M,Extq
A(B,N)).

There is an exact sequence,

0 −→ E1,0
2 −→ Ext1

A(M,N) −→ E0,1
2 −→ E2,0

2 ,

which, for a B-module N , considered as an A-module, implies the exact-
ness of

0 −→ Ext1
B(M,N) −→ Ext1

A(M,N)

−→ HomB(M,HomB(I/I2, N)) −→ Ext2
B(M,N)

where I = kerπ. The corresponding exact sequence,

0 −→ HH1(B,Homk(M,N)) −→ HH1(A,Homk(M,N))

−→ HomA⊗Aop(I,Homk(M,N))

in the noncommutative case is induced by the sequence

0 −→ Derk(B,Homk(M,N)) −→ Derk(A,Homk(M,N))

−→ HomA⊗Aop(I,Homk(M,N)).

Notice that in general we do not know that the last morphism is surjec-
tive. This, however, is true if B = A/Rad(A), where Rad(A) is the radical
of A, and A is a finite dimensional, i.e. an artinian, k-algebra. In this case,
B is semisimple and the surjectivity above follows from the Wedderburn-
Malcev theorem. Notice also that in the commutative case,

HomA⊗Aop(I,Homk(M,N)) 
 HomB(I/I2,HomB(M,N))

as it must, since for φ ∈ HomA⊗Aop(I,Homk(M,N)), a ∈ A, and i ∈ I,
ai = ia, and therefore

aφ(i) = φ(ai) = φ(ia) = φ(i)a, i.e. φ(i) ∈ HomB(M,N).

This implies that for B = A/p, M = A/p, N = A/q, where p ⊆ q are
(prime) ideals of A,

Ext1
A(A/p, A/q) 
 HomA(p/p2, A/q)

and, in particular

Ext1
A(A/q, A/q) 
 HomA(q/q2, A/q) = Nq,

the normal bundle of V (q) in Spec(A). If q ⊂ p and q �= p we find,

Ext1
A(A/p, A/q) 
 Ext1

A/q(A/p, A/q).
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In [7, chapter 1], we considered the cohomology of a category c with
values in a bifunctor, i.e. in a functor defined on the category mor c of
morphisms of c. Recall that a morphism between the objects ψ and ψ′ is a
commutative diagram,

c1
ψ �� c2

��
c′1

��

ψ′
�� c′2

It is easy to see that this cohomology is an immediate generalization of
the projective limit functor and its derivatives, or if one likes it better, the
obvious generalization of the Hochschild cohomology of a ring. In fact, for
every small category c and for every bifunctor,

G : c × c −→ Ab

contravariant in the first variable, and covariant in the second, one obtains
a covariant functor

G : mor c −→ Ab.

Consider now the complex
D∗(c,G) ,

where
Dp(c,G) =

∏
c0→c1···→cp

G(c0, cp) ,

where the indices are strings of morphisms ψi : ci → ci+1 in c, and the
differential,

dp : Dp(c,G) −→ Dp+1(c,G)

is defined as usual,

(dpξ)(ψ1, . . . , ψi, ψi+1, . . . , ψp+1) = ψ1ξ(ψ2, . . . , ψp+1)

+

p∑
i=1

(−1)iξ(ψ1, . . . , ψi ◦ ψi+1, . . . , ψp+1) + (−1)p+1ξ(ψ1, . . . , ψp)ψp+1.

As shown in [7], the cohomology of this complex is the higher derivatives
of the projective limit functor lim←−

(∗)
mor c

applied to the covariant functor

G : mor c −→ Ab.

This is the “Hochschild” cohomology of the category c, denoted

H∗(c,G) := H∗(D∗(c,G)).
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Example 1.1 Let c be a multiplicative subset of a ring R, considered as a
category with one object, and let R̃ : c × c −→ Ab be the functor, defined
for ψ, ψ′ ∈ c, by R̃(ψ, ψ′) = ψ∗ψ′

∗, where ψ∗ is left multiplication on R by ψ,
and where ψ′

∗ is right multiplication on R by ψ′, then

H0(c, R̃) = {φ ∈ R| φψ = ψφ for all ψ ∈ c },
i.e. the commutant of c in R.

Given a k-algebra A, and consider a subcategory c of the category of
right A-modules. Let, as above π : c → k-mod be the forgetful-functor, and
consider the bifunctor,

Homπ : c × c −→ k-mod

defined by
Homπ(Vi, Vj) = Homk(Vi, Vj).

Put,
O0(c, π) := H0(c,Homπ).

It is clear that O0(c, π) is a k-algebra, and that there is a canonical homo-
morphism of k-algebras,

η0(c, π) : A −→ O0(c, π),

see §3.

Example 1.2 Let A be a commutative k-algebra of finite type, k alge-
braically closed, and let Spec(A) be the subcategory of A-mod consisting of
the modules A/p, where p runs through Spec(A), the morphisms being only
the obvious ones. It is easy to see that the homomorphism

η0(Spec(A), π) : A −→ O0(Spec(A), π)

identifies A/Rad(A) with O0(Spec(A), π). If Rad(A) = 0, we even find an
isomorphism,

η0(Simp∗(A), π) : A 
 O0(Simp∗(A), π).

Here Simp∗(A) is the subcategory of A-mod where the objects are A and the
simple A-modules, A/m, i.e. the closed points of Spec(A), and where the
morphisms are the obvious quotient morphisms A → A/m. η0(Simp∗(A), π)
is, however not, in general, an isomorphism. This is easily seen when A is a
local k-algebra. To remedy this situation we shall in §3. introduce and study
a generalization O(c, π) of O0(c, π) defined in terms of the noncommutative
deformation theory, see [10].
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2. Noncommutative deformations

The category ar and liftings of modules

Let ar be the category of “r-pointed” artinian k-algebras. Recall that an
object R of ar is a diagram of morphism of artinian k-algebras,

kr

=
����

��
��

��
ι �� R

ρ

��
kr

such that Rad(R) := ker ρ is nilpotent, and such that,

R/Rad(R) 

r∏

j=1

kj , kj 
 k.

A morphism φ : R → S of ar is a morphism of such diagrams inducing the
identity on kr, implying that the induced map,

kr 
 R/Rad(R) → S/Rad(S) 
 kr

is the identity. Pick idempotents ei ∈ kr ⊆ R such that

r∑
i=1

ei = 1, eiej = 0 if i �= j.

For every (i, j), we shall consider the subspace Rij := eiRej ⊆ R, and the
pairing

Rij ⊗k Rjk → Rik

given in terms of the multiplication in R.

Let R′ = (Rij) be the matrix algebra, the elements of which are matri-
ces of the form (αij) with αij ∈ Rij , i, j = 1, . . . , r. There is an obvious
isomorphism of k-algebras

φ : R → R′

defined by

φ(α) = (eiαej).

identifying the sub k-algebra kr of R with the algebra of diagonal r × r-
matrices.
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The noncommutative deformation functor

We are now ready to start the study of noncommutative deformations of the
family V = {Vi}r

i=1. We shall assume,

dimk Ext1
A(Vi, Vj) < ∞.

Notice that the right A-module structure on the Vi’s is defined by a homo-
morphism of k-algebras,

η0 : A → ⊕r
i=1Endk(Vi).

Given an object ρ : R = (Ri,j) → kr of ar, consider the left R-module
(Ri,j ⊗k Vj). ρ defines a k-linear and left R-linear map,

ρ(R) : (Ri,j ⊗k Vj) → ⊕r
i=1Vi,

inducing a homomorphism of R-endomorphism rings,

ρ̃(R) : (Ri,j ⊗k Homk(Vi, Vj)) → ⊕r
i=1Endk(Vi).

Definition 2.1 The deformation functor

DefV : ar → Sets

is defined for every R ∈ ar, as the set DefV(R) ∈ Sets of isoclasses of
homomorphisms of k-algebras,

{η′ : A → (Ri,j ⊗k Homk(Vi, Vj))}/ ∼
such that,

ρ̃(R) ◦ η′ = η0,

where the equivalence relation ∼ is defined by inner automorphisms in the
k-algebra

EndR((Ri,j ⊗k Vj)) = (Ri,j ⊗k Homk(Vi, Vj)).

Any such isoclass η̃′ will be called a deformation or a lifting of V to R, and
usually denoted VR.

One easily proves that DefV has the same properties as the ordinary
deformation functor.

Let π : R → S be a morphism of ar, such that Rad(R) · ker π = 0.
Morphisms like this will be called small. If VR ∈ DefV (R) it is easy to see
that VS := S⊗RVR ∈ DefV (S) and that V = ker{VR → S⊗RVR} is, as a left
R-module, an R/Rad(R) = kr-module. Put kerπ = (Kij), then V = (V ij)
where V ij = Kij ⊗k Vj.
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Consider now the k-vector spaces

Ed
ij = Extd

A(Vi, Vj)
∗

i.e. the dual k-vector spaces of Extd
A(Vi, Vj), and consider the k-algebra of

matrices,

T d
2 =

 k 0
. . .

0 k

 + (εijE
d
ij)

where we assume all products of the εij’s are equal to zero. Now let for every
i, j = 1, . . . , r, and d = 1, 2, {

tdij(�)
}ed

ij

�=1

be a basis of Ed
ij, and let {ψd

ij(�)}
ed
ij

�=1 be the dual basis. Thus ed
ij = dimk Ed

ij.
Consider the k-algebra

T d =

 k 0
. . .

0 k

 + (Ẽd
ij)

freely generated as matrix algebra by the generators
{
tdij(�)

}ed
ij

�=1
. An element

of Ẽd
ij is then a matrix where the elements are linear combinations of elements

of the form:

τij = tdij1(l1) ⊗ tdj1j2
(l2) ⊗ · · · ⊗ td

jm−1jm
(lm) ,

j = jm, 1 ≤ ls ≤ ed
js−1js

, 1 ≤ js ≤ r, m ≥ 1

of Ed
ij1

⊗ Ed
j1j2

⊗ · · · ⊗ Ed
jm−1j. Obviously

T d
2 = T d/Rad(T d)2.

where Rad(T d) is the two-sided ideal of T d generated by (Ẽd
ij).

Definition 2.2 For every object R of ar, put

TR = (Rad(R)/Rad(R)2)∗

and call it the tangent space of R.
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Theorem 2.3 The functor DefV has a prorepresentable hull, or a formal
moduli of V , H(V) =: H ∈ âr, together with a formal versal family

Ṽ = (Hi,j ⊗ Vj) ∈ lim←−
n≥1

DefV(H/Rad(H)n)

such that the corresponding morphism of functors on ar,

ρ : Mor(H,−) → DefV

is smooth and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products defined on subspaces,

Dn ⊂
n⊕

p=2

Ext1(Vi, Vj1) ⊗ · · · ⊗ Ext1(Vjp−1 , Vj),

with values in Ext2(Vi, Vj).

Proof: See [10]. The proof of the existence of a prorepresentable hull
for DefV can, of course, also be modeled on the classical proof of M. Sch-
lessinger [17]. This has been carried out by Runar Ile, see [5]. �

This result may also be phrased as follows, see [7, §4],

Theorem 2.4 There is a morphism of proobjects of âr,

o : T 2 −→ T 1

determined by a sequence of well defined Massey products in Ext∗A(Vi, Vj),
such that

H = T 1 ⊗T 2 k

is the prorepresenting hull of the deformation functor DefV .

The O-construction

For every deformation VR ∈ DefV(R) there exists, by definition an, up to
inner automorphisms, unique homomorphism of k-algebras,

ηVR
: A → EndR(VR) = (Rij ⊗ Homk(Vi, Vj)).

Let H := H(V) be the formal moduli for V, and let Ṽ the formal versal
family.
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Definition 2.5 The finite family of V = {Vi}r
i=1 will be called a swarm of

A-modules if,
dimk Ext1

A(Vi, Vj) < ∞.

and if there exist a natural A-module structure on the formal versal family,
i.e. a natural homomorphism,

η : A → EndH(Ṽ ),

inducing all ηVR
. The k-algebra,

O(V) := EndH(Ṽ ) = (Hij ⊗ Homk(Vi, Vj)),

will then be called the algebra of observables of the family of A-modules V.

The following result, proved in [10], plays an important role in the con-
struction of a noncommutative algebraic geometry in §3.

Theorem 2.6 (A generalized Burnside theorem) Let A be a finite di-
mensional k-algebra, k an algebraically closed field. Consider the family
V = {Vi}r

i=1 of simple A-modules, then

η(V) : A → O(V) = (Hi,j ⊗ Homk(Vi, Vj)),

is an isomorphism.

Noncommutative modular deformations

Let V be any right A-module such that dimk Ext1
A(V, V ) < ∞. Consider

the formal moduli HA =: H, the formal versal family Ṽ = H ⊗ V , and the
corresponding morphism of functors,

ρ : Morar
(H,−) → DefV .

We know that ρ is not, in general, injective. However, V is also a right
A ⊗ EndA(V )-module. As such it has a formal moduli HA,End, and there is
a natural k-algebra homomorphism, HA → HA,End. Let HA

0 be the unique
maximal common quotient of HA and HA,End. Using the same construction
as in [9, §2], we prove that the composition,

ρ0 : Morar
(H0,−) → Morar

(H,−) → DefV

is injective.
At the tangent level, the homomorphisms,

HA → HA,End ← HEnd,

looks like the canonical homomorphisms,

Ext1
A(V, V ) ← Ext1

A⊗kEnd(V, V ) → Ext1
End(V, V ).
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Representing elements of the Ext-groups as derivations, it is easy to see
that the two images are contained in the subspace Ext1

A(V, V )End, respec-
tively Ext1

End(V, V )A. Therefore the tangent space of H0 must be contained
in the subspace of invariants under EndA(V ) of the tangent space of H,
Ext1

A(V, V )End.

Example 2.7 Given any scheme H = Spec(H), say the 2-dimensional affine
space given by H = k[x1, x2]. We shall be interested in the (noncommuta-
tive) moduli space parametrizing subschemes of length 2 of H. We may
do this by simply considering a point in the space Spec(H) together with a
tangent direction, i.e. the right H-module of the form,

V = k[x1, x2]/(x
2
1, x2),

and compute the formal moduli of V .

Lemma 2.8 The formal moduli, H(V ) of the H-module H/(x2
1, x2), is given

as the completion of the k-algebra,

Ω = k < t1, t2, ω1, ω2 > /(y1, y2)

where

y1 = [t1, t2] − t1[ω1, ω2] y2 = [t1, ω2] − [t2, ω1] − ω1[ω1, ω2],

and where the family of left Ω- and right H-modules,

Ω ⊗k k2

is defined by the actions of x1 and x2, given by,

x1 =

(
0 t1
1 ω1

)
, x2 =

(
t2 t1ω2

ω2 t2 + ω1ω2

)
Proof: See [10]. Consider the obvious free resolution of V := H/(x2

1, x2)
as an H-module,

V Hρ
�� H2

d0

�� H
d1

�� 0
d2

��

where we have,

d0 = (x2
1, x2), d1 =

(
x2

−x2
1

)
.

Consider the Yoneda complex, and pick a basis

{t̂1, t̂2; ω̂1, ω̂2, }
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of Ext1
H(V, V ) represented by the morphisms of the diagram,

V H
ρ�� H2

ω̂j

t̂i����
��

��
��

d0�� H
ω̂2

j

t̂2i����
��

��
��

d1��

V H
ρ�� H2

ω̂j

t̂i����
��

��
��

d0�� H
ω̂2

j

t̂2i����
��

��
��

d1�� H
d2�� 0��

V Hρ
�� H3

d0

�� H3
d1

�� H
d2

�� 0��

Here,
t̂1 = (1, 0), t̂2 = (0, 1);

ω̂1 = (x1, 0), ω̂2 = (0, x1)

and,

t̂21 =

(
0
1

)
, t̂22 =

(−1
0

)
,

and finally,

ω̂2
1 =

(
0
x1

)
, ω̂2

2 =

(−x1

0

)
.

Using this it is easy to see that

t̂i ∪ t̂i = 0, t̂1 ∪ t̂2 = −t̂2 ∪ t̂1 = ŷ1,

and that

t̂1ω̂
2
2 = ω̂1t

2
2 = −ŷ2, ω̂it̂

2
i = 0, ω̂iω̂

2
j = 0, t̂2ω̂

2
1 = ω̂2t̂

2
1 = ŷ2,

therefore

−y2 = t̂1 ∪ ω̂2 = ω̂1 ∪ t̂2 = −t̂2 ∪ ω̂1 = −ω̂2 ∪ t̂1, ω̂i ∪ ω̂j = t̂i ∪ t̂j = 0.

Now, consider the dual basis {t1, t2;ω1, ω2} generating the hull of the defor-
mation functor Defk[ε], we find after a simple computation of the third order
Massey products the formulas we want.

Notice that we just have to compute the tangent situation and check
that our formulas give us a lifting of the quadratic relations and of the
corresponding H-action, to know that our result holds. �

Recall that the (commutative) Hilb2A2 is the blow-up of (A2 × A2)/Z2

along the diagonal. By a simple computation one checks that the k-points
of Ω form an open dense part of Hilb2A2 containing V . However, there are
other simple representations of Ω. The homomorphism,

Ω → k|t1, t2, ∂

∂t1
,

∂

∂t2
]

mapping ωi to ∂/∂ti, shows that k|t1, t2] is a simple representation of Ω.
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Example 2.9 It is known that for any A-bimodule M,

HHp(A;M) = lim←−{F→A}

(p−1) Derk(F,M), p ≥ 2,

where {F → A} denotes the category of k-free algebras F above A. More-
over, the following sequence is exact,

0 → MA → M → Derk(A,M) → HH1(A,M) → 0.

Let A = k < x1, . . . , xd >, be the free k-algebra on d symbols, then we
deduce,

Extp
A(N,M) = 0, for p ≥ 2,

and for all right A-modules N,M . Given any simple n-dimensional A-
representation V we therefore find,

dimk Ext1
A(V, V ) = (d − 1)n2 + 1.

This shows that,

H(V ) = k{{t1, . . . , tr}}, r = (d − 1)n2 + 1.

This explains some results of [14], see [4], Theorem 23, Theorem 27 and
Theorem 28.

The fact that for any simple n-dimensional representation (i.e. right A-
module) V , H(V ) is the completion of a free k-algebra on (d − 1)n2 + 1
symbols, shows also that for all d ≥ 2, and all n ≥ 2, the natural homomor-
phism of k-algebras,

A → H(V ) ⊗ Endk(V )

is injective, a result we shall use in the next section, see (3.20).

3. Noncommutative schemes

Swarms, trivializations and observables

Let C be any abelian category with Massey products. The last proviso
is satisfied if C has enough projectives, but there are other cases where
Massey products exist even though projectives are scarce. See [8] and [18]
for an exposition of the Massey product structure in the category of all
OX-modules, for X a scheme defined on some field k.

Let c ⊆ C be a diagram, i.e. a family of objects V = {Vi}i and morphisms
between them. Put |c| := V. We shall assume that all finite subfamilies of
|c| := V are swarms, see (2.5). Assume moreover that there exists an exact
and faithful functor,

π : c −→ k-mod.
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Definition 3.1 Any such c will be called a swarm, and the functor π will
be called a trivialization of c.

Example 3.2 The obvious example of this set up is the following: Let A
be any k-algebra, k a field, put C = A-mod and let

π : A-mod −→ k-mod

be the forgetful functor. Then π will be a trivialization for any diagram

c ⊆ C = A-mod

Unless we specifically mention another choice of trivialization, this is the
one we shall use in the sequel.

Fix the trivialization π of c ⊆ C, and consider the functor,

Homπ : mor c −→ k-mod

defined for ψ : c1 → c2 in c, by

Homπ(ψ) = Homk(π(c1), π(c2)),

and refer to §1.

Definition 3.3 O0 := O0(c, π) := H0(c,Homπ) is the k-algebra of immedi-
ate observables of c.

It is clear that O0 acts on each object π(c) ∈ k-mod, c ∈ ob c, in the
sense that there is a canonical k-algebra homomorphism

O0 −→ Endk(π(c))

such that the image diagram

π(c) ⊆ k-mod

becomes a diagram of O0-representations.
In the example above, we obtain for every diagram c ⊆ A-mod, a k-

algebra O0(c, π) acting on every A-module in c such that c becomes a dia-
gram of O0(c, π)-modules. Moreover there is a canonical homomorphism of
k-algebras

η0 : A −→ O0(c, π)

which is, in an obvious sense, a universal “extension” of the algebra A, by
an algebra acting on the diagram c.
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Since we have
c ⊆ O0-mod

and since the trivialization π induces a trivialization,

π0 : O0-mod −→ k-mod

we may repeat the construction of trivial observables. We obtain,

O0(c, π0) = O0(c, π) = O0

This implies that the operation of constructing trivial observables, is a clo-
sure operation.

Example 3.4 Consider any reduced commutative k-algebra A of finite type.
Recall from (1.2) that if c = Spec(A), then

η0 : A −→ O0(c, π)

is an isomorphism, provided k is algebraically closed.

Now, let A be any associative k-algebra. Assume that k is algebraically
closed. Let Simpn(A) be the set of simple A-modules of k-dimension n.
Put, for any n, Simp≤n(A) := ∪s≤nSimps(A), and put Simp<∞(A) :=
∪0≤sSimps(A). Let Simp∗(A) be the diagram consisting of the object A and
all the simples, Simp(A), together with all morphisms of right A-modules
between A and the simple modules.

Denote also by Ind(A) the full subcategory of A-mod defined by the
indecomposable modules. It is easy to see that the canonical homomorphism

η0 : A −→ O0(Ind(A), π)

is an isomorphism when A is right Noetherian. However, there is in general
no isomorphism

η0 : A −→ O0(Simp∗(A), π).

Notice that there is a generalized Zariski topology both on Simp(A) and
Ind(A), due to Jacobson, defined as follows. Let s ∈ A and consider the
subset D(s) of Simp(A) defined by the objects V for which s is not a zero
divisor. Obviously D(s) ∩ D(s′) = D(ss′), so {D(s)}s∈A is a basis for a
topology.

The problem with Ind(A) is that it is too big, that the topology is too
coarse, and that it has some unsatisfactory functorial properties. On the
other hand, Simp∗(A) seem to be too small since, even for finite type
k-algebras, the natural homomorphism η0 : A → O0(Simp∗(A), π) is far
from an isomorphism.
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These problems stem from the trivial nature of the trivial observables.
In the construction of O0, we use only the trivial categorical structure of
A-mod, restricted to c. To get to the goal, we have to take into account the
infinitesimal structure of the category A-mod, i.e. the abelian structure of
A-mod and, in particular, the family of iterated extensions of the objects
of c.

The goal is to construct, for every diagram c, an extension of O0(c, π),
which we shall denote Oπ(c), and a factorization,

A
η→ Oπ(c)

ρ→ O0(c, π)

of η0. We shall show that Oπ, has good functorial properties, mimicking the
notion of structure sheaf in commutative algebra, and providing us with a
generalized, noncommutative, algebraic geometry. We shall be guided by
the principles of the Introduction.

So consider a swarm c in C = A-mod, together with the trivialization π.
Assume first that c is finite. Let |c| = {Vi}r

i=1, be the family of objects, and
construct the noncommutative formal moduli H(|c|) = (Hi,j) as in §3. Let
Ṽ = (Hi,j ⊗ Vj) be the versal family and consider the k-algebra

O(|c|, π) := EndH(Ṽ ) = (Hi,j ⊗ Homk(Vi, Vj))

and the k-algebra homomorphism,

η(|c|) : A −→ O(|c|, π)

defined by the action of A on Ṽ .
Recall that the noncommutative formal moduli is unique up to isomor-

phisms, and that having fixed a versal family, as a deformation, the action
of A on Ṽ is unique up to isomorphisms. This means that for any other
homomorphism

η(|c|)′ : A −→ O(|c|, π)

defining the same deformation, there exists an automorphism

ω ∈ O(|c|, π)

such that

η(|c|)′ = ω η(|c|) ω−1.

Notice that ω, as an element of O(|c|, π), is a unit.
Recall also that, for an artinian algebra A, the morphism η(Simp(A)) is

an isomorphism.
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Notice that, by definition of the terms, there is a canonical morphism of
k-algebras,

ρ0 : O(|c|, π) −→ O0(|c|, π)

which, together with η and η0 form a commutative diagram. Therefore
|c| is, in an obvious sense, a family of O(|c|, π)-modules. Notice also that
if c1 ⊆ c2 is an inclusion of swarms, there exist an, up to automorphisms,
unique surjective homomorphism,

h(c1 ⊆ c2) : H(|c2|) −→ H(|c1|)

induced by the natural imbedding, ar1
→ ar2

, where ri, i = 1, 2 is the
number of objects in ci. At the tangent level this morphism corresponds to
the inclusion,

(Ext1
A(Vi, Vj))i,j=1,...,r1 ⊆ (Ext1

A(Vi, Vj))i,j=1,...,r2 .

Beware, this k-algebra homomorphism does not necessarily admit a section!
The morphism h(c1 ⊆ c2) induces a unique homomorphism of k-algebras,

o(c1 ⊆ c2) : O(|c2|, π) → O(|c1|, π).

If c is infinite we shall later put,

O(|c|, π) = lim←−
c0⊆c

O(|c0|, π),

where c0 runs through all finite subdiagrams of c. (This is possible, since
c0 being fixed, we may choose bases {ti,j(�)}� for each Ext1

A(Vi, Vj), for all
Vi, Vj ∈ |c|, and construct in one sweep all the cup and Massey products
defining all H(|c0|)). However, there is a problem related to the A-action,
see (3.14) and the definition (3.15).

The k-algebra we are heading for is now a subquotient of O(|c|, π), singled
out by the incidences of our geometry, i.e. by the morphisms,

φi,j : Vi → Vj ,

of our diagram.
Let Γ(c) be the quiver corresponding to the swarm c, i.e. a quiver with

set of nodes equal to the set of objects of c, and with arrows corresponding
to the morphisms φi,j of c. Notice that c is a diagram of C not a subcategory,
therefore we do not require that the identities of the objects be morphisms
of c. Assume first that c is finite, and assume, for simplicity, that Γ(c) (or c)
is connected.
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Corresponding to Γ(c) there is the universal k-algebra k[Γ(c)]. Consider
the obvious representation of k[Γ(c)] on V := ⊕r

i=1Vi mapping k[Γ(c)] to the
k-algebra end(c), generated by the morphisms of c, in EndA(V ). Now V is a
A⊗ k[Γ(c)]- module, and as such an A-module, as well as a k[Γ(c)]-module.
We may consider the ordinary (noncommutative) deformation functors of
this module, as A ⊗ k[Γ(c)]- module, as A-module, and as k[Γ(c)]-module.
Let the formal moduli of these functors be, HA,Γ(V ), H(V) and HΓ(V ),
respectively. There are natural (non unique) morphisms,

HΓ(V ) → HA,Γ(V ) ← H(V ).

Recall from §2 that the modular, or prorepresentable, substratum HA,Γ(V )0

of HA,Γ(V ) is the unique maximal quotient of HA,Γ(V ) such that the com-
position,

Mor(HA,Γ(V )0,−) → Mor(HA,Γ(V ),−) → DefA⊗k[Γ]V

is injective. There is a universal deformation of V to HA,Γ(V )0, i.e. an
action of A ⊗ k[Γ] on HA,Γ(V )0 ⊗ V , uniquely inducing all other modular
deformations. Finally, let H(c) be the unique common quotient of HA,Γ(V )0

and H(V ) defined by the induced morphism,

HA,Γ(V )0 ← H(V ).

Now, given any deformation ξS of V to some k-algebra S ∈ â1, denote
by m the maximal ideal of S. Let S̃ be the r-pointed matrix k-algebra (S̃i,j)
where S̃i,i = S, on the diagonal, and S̃i,j = m at the other places, i.e. for
i �= j. Clearly S̃ is in âr, and the i-th row of the matrix (S̃i,j ⊗ Vj) is

(m ⊗ V1) ⊕ · · · ⊕ (S ⊗ Vi) ⊕ · · · ⊕ (m ⊗ Vr) ⊆ H(V ) ⊗ V.

Let vi ∈ Vi, and a ∈ A. The component of (1 ⊗ vi)a in S ⊗ Vj for i �= j sits
in m ⊗ Vj . This shows that A acts on each line of the matrix (S̃i,j ⊗ Vj),
commuting with the left action of (S̃i,j), implying that (S̃i,j ⊗ Vj) is, in
a natural way, a noncommutative deformation of the family of right A-
modules |c|, to S̃. Therefore there is a morphism,

ιS : H(|c|) −→ S̃

compatible with the specified deformations of right A-modules. This induces
a morphism of k-algebras,

(Hi,j ⊗ Homk(Vi, Vj)) −→ (S̃i,j ⊗ Homk(Vi, Vj)).
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Since the right hand side k-algebra is a subalgebra of

EndS(S ⊗ (⊕r
i=1Vi)) = (S ⊗ Homk(Vi, Vj)),

we obtain a (non-unique) homomorphism of k-algebras,

κS : (Hi,j ⊗ Homk(Vi, Vj)) −→ (S ⊗ Homk(Vi, Vj))

such that the action η(|c|) is mapped to the A-action on S⊗(⊕r
i=1Vi) defining

the deformation ξS. In particular, for the versal deformation of V to H(V ),
and for the versal A-action on H(V ) ⊗ (⊕r

i=1Vi), there is a homomorphism
of k-algebras,

κH(V ) : (Hi,j ⊗ Homk(Vi, Vj)) −→ (H(V ) ⊗ Homk(Vi, Vj))

compatible with the actions. Notice that by construction of the terms in-
volved, it is clear that κH(V ) is injective, and that H(V ) is generated by the
images of the components ιi,j : Hi,j → H(V ) of ιH(V ). Therefore we have
the adjunction relation,

Morar
(H(|c|), S̃) 
 Mora1

(H(V ), S).

Now, compose κH(V ) with the homomorphism induced by the quotient
map H(V ) → H(c) and get a k-algebra homomorphism,

κH(c) : (Hi,j ⊗ Homk(Vi, Vj)) −→ (H(c) ⊗ Homk(Vi, Vj))

Definition 3.5 The k-algebra of preobservables O(c, π) of the finite swarm c,
is the subalgebra of

(Hi,j(|c|) ⊗ Homπ(Vi, Vj))

commuting, via the morphism,

κS : (Hi,j(|c|) ⊗ Homπ(Vi, Vj)) → (S ⊗ Homk(Vi, Vj)),

induced by any surjective k-algebra homomorphism

H(c) −→ S,

with the corresponding representation of k[Γ] in (S ⊗ Homk(Vi, Vj)).

It is clear that O(c, π) is uniquely defined, up to isomorphisms, and that
η(|c|) induces a homomorphism of k-algebras,

η(c) : A −→ O(c, π)
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Remark 3.6 Let A be a finite type k-algebra, and let {φ} be the diagram
defined by the canonical homomorphism,

φ : A → k(x)

of A onto its closed point k(x). The tangent space of H := H(|{φ}|) is,

(RadH/Rad2H)∗ =

(
0 0

Ext1
A(k,A) Ext1

A(k, k)

)
and the tangent space of H({φ}) looks like

(RadH({φ})/Rad2H({φ}))∗ =

(
0 0

Ext1
A(k,A)φ Ext1

A(k, k)

)
,

where Ext1
A(k,A)φ is the kernel of φ∗ : Ext1

A(k,A) → Ext1
A(k, k). The mor-

phism

O(|{φ}|, π) →
(

H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)
H({φ}) ⊗k Homk(k,A) H({φ})

)
maps an element

α =

(
α1,1 0
α2,1 α2,2

)
∈ O(|{φ}|, π)

to an element of the same form,

α̃ =

(
α1,1 0
α̃2,1 α2,2

)
∈

(
H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)

H({φ}) ⊗k Homk(k,A) H({φ})
)

.

Moreover a versal lifting of φ1,2 has the form,

Φ =

(
0 Φ1,2

Φ2,1 Φ2,2

)
∈

(
H({φ}) ⊗k Endk(A) H({φ}) ⊗k Homk(A, k)

H({φ}) ⊗k Homk(k,A) H({φ})
)

.

Suppose now that,
Φα̃ = α̃Φ

then, in particular,
Φ1,2 α̃2,1 = 0,

which implies that α̃2,1 = 0, and then

Φ1,2 α2,2 = α1,1 Φ1,2.

Since α2,2 =: αx ∈ H2,2 = Â{x} is the obvious multiplication endomorphism,

and since Φ1,2 reduces to the obvious completion map, ρx : A → H2,2 = Â{x}
we find that α ∈ O({φ}, π) if

α̃2,1 = 0, α1,1 ρx = ρxαx

for some αx ∈ Â{x}, and,

Φ2,1 α1,1 = αx Φ2,1.
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O is a closure operation

The most important property of the O-construction is a kind of functoriality
(up to isomorphisms) and the closure property, given by the following result:

Theorem 3.7 Let ψ : A → B be a k-algebra homomorphism, and let c be
a finite swarm of A − B-modules. Consider the O-constructions, OA(c, π),
resp. OB(c, π).

a) Assume the natural morphism,

ψ∗ : HA,Γ(V ) → HB,Γ(V )0

induces a surjective homomorphism

ψ∗ : HA(c) → HB(c).

Then there exists an, up to isomorphisms, unique extension of ψ, i.e. a
commutative diagram,

A
ψ ��

ηA

��

B

ηB

��
OA(c, π)

O(ψ)
�� OB(c, π)

b) There is a natural isomorphism,

O(ηA) : OA(c, π) → OOA

(c, π)

implying that the O-construction is a closure operation.

Proof: Let the noncommutative formal moduli of the family of B-modules
{Vi} = |c|, considered as A- and B-modules be HA resp. HB. Since the
versal family of B-modules (HB

i,j ⊗ Vj) is also a family of A-modules, there
is a morphism, HA → HB inducing the morphism of families of A-modules,
(HA

i,j ⊗ Vj) → (HB
i,j ⊗ Vj) consistent with the induced A-module structure

on the latter. In the same way we find that there exists a morphism of the
formal moduli

HA,Γ(V ) −→ HB,Γ(V )

of V = ⊕r
i=1Vi as a A⊗ k[Γ(c)]-module, resp. a B ⊗ k[Γ(c)]-module, consis-

tent with the families. By assumption, the above homomorphism induces a
surjection

ψ∗
p : HA(c) −→ HB(c).
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By definition of O, we have a commutative diagram,

A

ψ

��

�� OA(c, π)

O(ψ)
�
�
�

� � �� EndHA(HA
i,j ⊗ Vj)

��

�� (HA(c) ⊗ Homk(Vi, Vj))

��

B �� OB(c, π) � � �� EndHB(HB
i,j ⊗ Vj) �� (HB(c) ⊗ Homk(Vi, Vj)).

where, OA(c, π) and OB(c, π) are the commutants of the actions of k[Γ(c)]
in (S ⊗ Homk(Vi, Vj)), for all quotients S of HA(c), respectively of HB(c).
The surjectivity of ψ∗, together with the commutativity of the diagram de-
fines the morphism O(ψ), and proves (a).

To prove (b), we just have to observe that OA acts on the HA-family
(HA

i,j ⊗ Vj), consistent with the action of Avia ηA, and that O ⊗ k[Γ(c)]
acts on the HA(c)-family (HA(c) ⊗ V ) consistent with the A-action via the
obvious composition,

η(V ) : A −→ (HA(c) ⊗ Homk(Vi, Vj)).

Therefore there must exist morphisms,(
HOA

i,j

)
µ−→ (

HA
i,j

)
HOA,Γ(V )

µ(c)−→ HA,Γ(V )

consistent with the obvious families. Moreover the composed morphisms(
HA

i,j

) −→
(
HOA

i,j

)
µ−→ (

HA
i,j

)
HA,Γ(V ) −→ HOA,Γ(V )

µp−→ HA,Γ(V )

must be surjections inducing injections on the tangent spaces. Let us show
that µ(c) induces a surjective homomorphism,

HOA

(c)
µ0→ HA(c).

Consider the diagram,

Mor(HA(c),−)

α

�����������������

��

�� Mor(HO,Γ(V ),−)

��

�� Mor(HA,Γ(V ),−)

��

DefA−Γ
V

��������� DefO−Γ
V β

�� DefA−Γ
V

Define α by the composition, i.e. by considering the canonical O ⊗ k[Γ]-
structure on HA(c) ⊗ V , and tensorization. Since the composition of α and
β is injective, α is injective.
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But this implies, by definition, and by the the unicity of the modular
substratum, that the surjective homomorphism

µ0 : HO,Γ(V ) −→ HA(c)

induces a surjective homomorphism,

µ0(c) : HO,Γ(V )0 −→ HA(c)

and therefore also a surjection,

µ0 : HO(c) −→ HA(c).

Consider now the commutative diagram,

A

η

��

�� (HA
i,j ⊗ Homk(Vi, Vj)) �� (HA(c) ⊗ Homk(Vi, Vj))

O(c, π) �� (HO
i,j ⊗ Homk(Vi, Vj)) ��

µ

��

(HO(c) ⊗ Homk(Vi, Vj)).

µ0

��

Since µ0 is consistent with the actions of k[Γ], we obtain a cosection,

µ : OO(c, π) −→ OA(c, π)

of the morphism,

η1 : OA(c, π) −→ OO(c, π).

Now use (a) for the case ψ = µ. Let us put A′ = OO(c, π), B′ = OA(c, π).
Since the composition of µ ◦ η1 is the identity, the homomorphism,

HA′
(c) → HB′

(c)

must be surjective. We therefore obtain a commutative diagram,

OO(c, π)
µ ��

η2

��

OA(c, π)

η1

��
OOO

(c, π)
O(µ)

�� OO(c, π).

Since, by construction, the composition η2 ◦O(µ) is an isomorphism, µ must
be injective, therefore an isomorphism, proving (b). �
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Noncommutative preschemes

Definition 3.8 Let A be any k-algebra. A finite swarm c of A-modules is
called a prescheme for A, if the morphism

η(c, π) : A −→ O(c, π)

is an isomorphism. In this case we shall refer to Aas the affine k-algebra
of c.

Corollary 3.9 Any finite swarm, c, of right A-modules is a prescheme for
OA(c, π). In particular, if c is a diagram of finite dimensional k-vector
spaces, then c is a swarm of right modules over A = Ok(c, π) = O0(c, π),
and, as such, a prescheme for A.

Proof: This follows from the isomorphism

O(ηA) : OA(c, π) → OOA

(c, π)

of (3.7). �

Example 3.10 According to the Generalized Burnside Theorem, if A is
any finite dimensional k-algebra, k algebraically closed, the family of simple
A-modules V form a (0-dimensional) prescheme for A. In particular, if Λ is
a finite partially ordered set, then the set of nodes of Λ, considered as the
set of simple k[Λ]-modules, is a scheme for k[Λ].

Example 3.11 Consider the following trivial example where A=k is a field,
V1 = k2 and V2 = k, and c is given by the diagram of right-modules,

V1
φ �� V2

where φ is the second projection. Obviously all Ext′s vanish, so that

H(|c|) =

(
k 0
0 k

)

(Hi,j ⊗ Vj) =

(
V1 0
0 V2

)
Moreover H(c) = k, and the maximal ideal m ⊂ H(c) is zero. Therefore,

H̄(c) =

(
k 0
0 k

)
and (H̄(c)i,j ⊗ Vj) =

(
V1 0
0 V2

)



540 O.A. Laudal

Therefore O(c, π) is the commutant algebra of the subalgebra,

end(c) ⊆
(

Homk(V1, V1) Homk(V1, V2)
Homk(V2, V1) Homk(V2, V2)

)
generated by φ, in the sub k-algebra,(

Homk(V1, V1) 0
0 Homk(V2, V2)

)
which is easily seen to be equal to,

O0(c, π) =

(
k 0
k k

)
.

Now it is equally easy to see that V1 identifies with the second line of

O(c, π) =

(
k 0
k k

)
as a right O(c, π)-module, and is therefore projective, and that V2 identifies
with the second simple module of O(c, π). Trivial calculation gives that

Ext1
O(Vi, Vj) = 0, ∀i, j.

Put O := O(c, π). If we consider c as a diagram of O-modules, and repeat
the O-construction, we therefore obtain OO =: O(2)(c, π) = O(c, π), implying
that the diagram c is a prescheme for O, as it must be, see (3.9). Since the
O(c, π) we have found above is the algebra of the (A1) diagram,

◦1 ◦2��

we find that as O-modules, the discrete diagram V = {k(1), k(2)} consisting
of the two simple O-modules is also a prescheme for O. Notice, however,
that as family of k-vector spaces V is a prescheme for k2.

Example 3.12 That the claim of the Corollary (3.9) is not obvious, is seen
by classifying the simple schemes of the form,

Γ =
◦
����

φ

��
��

Let c = {φ : V → V } be a diagram of k-vector spaces. Assume dimk V = 3,
then according to the Jordan decomposition of φ, we obtain the following
k-algebras A = O(c, π) with c as affine scheme,
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(1) φ has 3 different eigenvalues, then A = k3

(2) φ has only two different eigenvalues, then A = k × Endk(k
2) or A =

k × k[ε]

(3) φ has all eigenvalues equal, then A = Endk(k
3) or A = k[x]/(x3) or

A =

(
k k · ε1,2

k · ε2,1 k[ε2,2]

)
where we have the following relations,

ε1,2 · ε2,1 = 0, ε1,2 · ε2,2 = 0, ε2,2 · ε2,1 = 0, ε2,1 · ε1,2 = ε2,2

The last algebra is evidently artinian with two simple representations,
both of dimension 1. Therefore it has an affine scheme consisting of the
discrete diagram consisting of those two A-modules. As such, it has in-
finitesimal incidences given by the family {εi,j}. By (3.9) A is also the affine
algebra of the scheme c, with quiver Γ.

Warning. NB! According to Example (3.4) if A is any reduced finite type
commutative k-algebra, and if k is algebraically closed, A 
 Ok(Spec(A), π).
However Spec(A) is usually infinite. Therefore we cannot conclude from
Corollary (3.9), that Spec(A) is a prescheme for A. In fact, Spec(A) is, in
general, not a prescheme for A, since O(Spec(A), π) may well be noncom-
mutative.

Example 3.13 Consider the special case of Remark (3.6), where A is a
local k-algebra, and φ : A → k is the canonical homomorphism of A onto
its residue field. Since there is a surjective homomorphism,

H({φ}) −→ H2,2 = Â.

and since the completion map ρx defines a lifting,

Φ1,2 : Â ⊗ A → H0({φ}) ⊗ k = Â

of φ, we observe that α1,1 is the right multiplication by some element a =
α1,1(1) ∈ A. Moreover αx = ρx(a) and the condition

Φ2,1α1,1 = αxΦ2,1,

is automatically satisfied, since Φ1,2 is A-linear. Therefore,

O({φ}, π) =

{(
α 0

α2,1 αx

)
| α ∈ A,αx = ρx(α), α2,1 ∈ H2,1 ⊗ Homk(k,A)

}
.

In particular, the natural morphism

η : A → O({φ}, π)

is injective, and an isomorphism provided Ext1
A(k,A)φ = Ext1

A(k,A).
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Functoriality

The k-algebra of preobservables of a diagram of modules is not, however,
properly functorial with respect to inclusions between diagrams. The prob-
lem is the following: Let c0 ⊆ c be a finite subdiagram. There is a corre-
sponding inclusion of quivers, Γ1 := Γ(c1) ⊆ Γ(c) =: Γ, inducing a homo-
morphism of k-algebras,

k[Γ(c1)] −→ k[Γ(c)].

Consider the diagram,

(H(|c|)i,j ⊗ Homk(Vi, Vj))

��

o(c1⊆c)�� (H(|c1|)i,j ⊗ Homk(Vi, Vj))

��
(H0(c) ⊗ Homk(Vi, Vj)) (H0(c1) ⊗ Homk(Vi, Vj))

k[Γ]

��

k[Γ1].��

��

We would now like to conclude that this induces a natural morphism

O(c1 ⊆ c) : O(c, π) −→ O(c1, π)

since there are fewer conditions to be satisfied in the definition of the right
hand algebra. However, the diagram above shows that this is not obvi-
ous. An element in O(c, π) certainly commutes with the action of k[Γ1]
in (H0(c) ⊗ Homk(Vi, Vj)) but not necessarily with the action of k[Γ1] in
(H0(c1) ⊗ Homk(Vi, Vj)). But we are interested in the smallest k-algebra O
extending A, and preserving both the diagram and the system of iterated
extensions of the objects of the diagram. Therefore we define the refined
k-algebra of observables of the swarm c, as,

Definition 3.14 The k-algebra of observables of the finite swarm c, is the
subalgebra

O(c, π) =
⋂
c0⊆c

o(c0 ⊆ c)−1(O(c0, π)) ⊆ O(c, π),

where c0 runs through all subdiagrams of c.

Now there is a natural homomorphism,

O(c1 ⊆ c) : O(c, π) → O(c1, π),

and it is easy to see that the k-algebra of observables is a contravariant
functor on the ordered set of subdiagrams of a given finite diagram.
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We are now able to extend the definition of observables to certain infinite
swarms.

Definition 3.15 A swarm is called permissible, if there exist a k-algebra
homomorphism,

η(|c|, π) : A −→ O(|c|, π),

compatible with the morphisms η(|c0|, π) and o(c0 ⊆ c), where c0 runs
through all subdiagrams of c.

For any permissible swarm c, we define,

O(c, π) = lim←−
c0⊆c

O(c0, π)

where c0 runs through all finite subdiagrams of c.

Clearly
O(c, π) ⊆ O(|c|, π)

and η(|c|, π) induces a natural homomorphism of k-algebras,

η(c, π) : A −→ O(c, π)

the obvious limit of the family of morphisms η(c0, π), where c0 runs through
all finite subdiagrams of c.

Definition 3.16 The permissible swarm c will be called a prescheme for A,
if η(c, π) is an isomorphism.

Notice that if the finite swarm c is a prescheme in the sense of (2.8) then
it is also a prescheme in the sense of (3.16). Therefore, any finite swarm c
of A-modules is necessarily a prescheme for O(c, π). This is, however, not
the case for infinite swarms, see Warning above.

Noncommutative schemes

Finally, we arrive at the notion of structure sheaf Oπ. For every finite
subdiagram c0 of the swarm c, consider the natural morphism,

κ(c0) : O(c, π) → (H(c0) ⊗ Homk(Vi, Vj))

and consider the two-sided ideal n ⊂ O(c, π), defined by

n =
⋂
c0⊆c

kerκ(c0).

Here c0 runs through all finite subdiagrams of c.



544 O.A. Laudal

Definition 3.17 (i) In the above situation, put,

Oπ(c) = O(c, π)/n.

(ii) Oπ is a presheaf on the ordered set of subdiagrams of a given per-
missible swarm c.

Definition 3.18 (i) Let A be any k-algebra. A permissible swarm c of
A-modules is called a scheme for A, if the canonical morphism

η(c, π) : A −→ Oπ(c)

is an isomorphism. In this case we shall call A the affine k-algebra of c.
(ii) We shall consider the objects Vi of c as points, and the morphisms

as incidences in our geometry.
(iii) Let for a point Vi of c, H0(Vi) be the modular substratum of the

local moduli H(Vi) of Vi, as A-module. There exists a natural morphism,

Oπ(c) → H0(Vi) ⊗ Endk(Vi) = Oπ(Vi).

When c is a scheme we shall refer to Oπ(Vi) as the local ring of c at Vi.

This is in tune with the general setup, see the Introduction. In fact,
according to the Introduction, a space c should be the moduli space of its
points, subject only to the conditions imposed by the incidences, i.e. by
the morphisms of c, and this is exactly the property of a scheme c. The
k-algebra A = Oπ(c) is the universal k-algebra parametrizing the (modular)
deformations of its points, subject only to the conditions imposed by the
incidences.

Note that if a diagram c of A-modules is a prescheme for A, then it is
not necessarily a scheme for A. However, we have the following obvious,

Lemma 3.19 (i) The diagram,

O(c, π) �� �� Oπ(c)

��
A

��

�� Ok(c, π)

commutes.
(ii) If c is a prescheme for A and the homomorphism A → O0(c, π) =

Ok(c, π) is an isomorphism, then c is a scheme for A.
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Now, by (3.17) (ii), there exists for every finite family of objects {Vl}l

of c, considered as a discrete subdiagram of c, a natural morphism,

Oπ(c) → Oπ({Vl}l).

If all Vl’s are simple A-modules, we find that H0(Vl) = H(Vl), and,

Oπ({Vl}l) = (H({Vl}l)i,j ⊗ Homk(Vi, Vj))

We shall refer to Oπ({Vl}l) as the semilocal ring of c at the family {Vl}l.
Consider for any finite type k-algebra A, the discrete diagram, Simp(A),

consisting of all the simple A-modules. If A is finite dimensional, we know
that the morphism,

η(Simp(A)) : A −→ O(Simp(A), π)

is an isomorphism provided k is algebraically closed. In general η(Simp(A))
is, however, far from an isomorphism. In fact, when A is commutative, it is
easy to see that

O(Simp(A), π) 

∏
m

Âm

where m runs through all maximal ideals of A. To obtain a result analo-
gous to the General Burnside Theorem, see §2, we must add one or more
generic points to Simp(A), obtaining a diagram Simp∗(A) consisting of all
morphisms between the new generic A-modules and the simple ones. If we
add just the A-module A, as we have explained above, we may now prove
the following simple result,

Proposition 3.20 Suppose the natural homomorphism,

η(Simp(A)) : A −→ O(Simp(A), π)

is injective, then

η(Simp∗(A)) : A −→ O(Simp∗(A), π) = Oπ(Simp∗(A))

is an isomorphism, i.e. Simp∗(A) is a scheme for A.

Proof: Let us first prove this in the easiest case possible, i.e. where
A = Endk(V ), with V a finite dimensional k-vector space of dimension
n. Clearly there are n linearly independent right A-module homomor-
phisms pri : A → V, i = 1, . . . , n. If {vi} is a basis for V then for
a ∈ A, pri(a) = via =

∑
j hi,j(a)vj , hi,j(a) ∈ k. Moreover the morphism

η := η(Simp(A)) : A → O(Simp(A), π) = Endk(V ), is an isomorphism and
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is given by η(a) = (hi,j(a)). Now, if α ∈ Endk(A) sit in O(Simp∗(A), π)
then pri(α(a)) = α0(pri(a)) for α0 ∈ Endk(V ) and for all i = 1, . . . , n. This
means that η(α(a)) = α0(η(a)), therefore that η(α(1)) = α0, and therefore
η(α(a) − aα(1)) = 0, so by injectivity of η, α(a) = aα(1), for all a ∈ A.
But this is exactly what we want, α is the right multiplication by some
element α(1).

Now assume there are two simple modules, V1, V2, of k-dimensions, n1, n2.
Then there are n1n2 morphisms in Simp∗(A), inducing the A-module homo-
morphisms, of A into the versal family,

prr,s : A →
(

H1,1 ⊗ V1 H1,2 ⊗ V2

H2,1 ⊗ V1 H2,2 ⊗ V2

)
.

If {ur} and {vs} are bases of V1 and V2, we find as above,

prr,s(a) =

(∑
k h1,1

r,k(a) ⊗ uk

∑
k h1,2

r,k(a) ⊗ vk∑
l h

2,1
s,l (a) ⊗ ul

∑
l h

2,2
s,l (a) ⊗ vl

)
so, in particular,

η(a) =

(
(h1,1

i,j (a)) (h1,2
i,s (a))

(h2,1
r,j (a)) (h2,2

r,s (a))

)
.

Now, as above, the condition on α ∈ Endk(A) to sit in O(Simp∗(A), π) is
that there exist some α0 ∈ O(Simp∗(A), π) such that for all a ∈ A, η(α(a)) =
α0(η(a)). Therefore η(α(1)) = α0, and therefore η(α(a) − aα(1)) = 0, so
by injectivity of η, α(a) = aα(1), for all a ∈ A, such that α is the right
multiplication by the element α(1) ∈ A. This proof obviously generalizes to
the case of any finite or infinite set of simples {Vi}. �

For A = k < x1, x2, . . . , xd >, the free k-algebra on d symbols, the exam-
ple (2.9) shows that the condition of (3.20) is satisfied, therefore Simp∗

n(A),
for any n ≥ 2 is a scheme for A.

Notice that, so far we have defined a presheaf of observables on the family
of subdiagrams of a permissible diagram c of A-modules. Starting with the
geometry , i.e. the collection of points and incidences, we have defined, and
studied, the algebra Oπ(c) of operators parametrizing the geometry. When
c is finite, the fact that O(−, π) is a closure operator implies that the pair
(O := O(c, π), c) is a prescheme, such that η : O → OO(c, π) is an isomor-
phism. If also η0 : O → (H(c0) ⊗ Homk(Vi, Vj)) is an injection, it follows
from (3.17) that (O, c) is a scheme. Now, if we start with a k-algebra A, how
do we find its scheme? As we have seen in (3.11), there is no such thing,
in this field, as a unique scheme associated to a given k-algebra. However
as we have shown above, Simp∗(A) is a scheme in some interesting cases.
Consequently, we are interested in the geometry of Simp(A).
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The structure of Simpn(A)

Lemma 3.21 If the k-algebra A is finitely generated, then Simp<∞(A) is a
swarm.

Proof: If Vi ∈ Simpm(A) and Vj ∈ Simpn(A), then dimk Ext1
A(Vi, Vj) < ∞.

This follows from,

Ext1
A(Vi, Vj) = Derk(A,Homk(Vi, Vj))/Triv,

since A is generated by a finite number of generators as k-algebra. The rest
follows from the next lemma, or more clearly from the proof of (3.23). �

Lemma 3.22 Let A be a finitely generated k-algebra and let V ∈ Simpn(A),
then the natural morphism,

η(V ) : A → H(V ) ⊗k Endk(V ),

is topologically surjective.

Proof: We must prove that for any m ≥ 1 the map,

ηm : A → Hm ⊗k Endk(V )

is surjective, where Hm = H(V )/Rad(H(V ))m. But this is obviously a
consequence of the surjectivity of η2. Now, η1 : A → Endk(V ) is surjective,
by simplicity of V . Put m = ker η1, and consider the A-bi-module m/m2.
It is clearly an Endk(V )-bimodule, and as such a finite sum of r copies of
Endk(V ). Therefore Derk(A,Endk(V )), which is equal to the k-vector space
of k-algebra homomorphisms, Mork(A, k[ε] ⊗k Endk(V )) is identified with,

Derk(Endk(V ),Endk(V )) ⊕ HomA⊗Aop(m/m2, (ε)Endk(V )).

This, however is easily seen to be isomorphic to 
 Derk(Endk(V )) ⊕ kr.
Since the derivations of Endk(V ) are all inner, we find,

Ext1
A(V, V ) 
 kr.

But then, by construction, H2 
 k[kr], where k[kr] is the Nagata k-algebra
of the vector space kr, and the morphism η2 is the obvious surjection, of A
onto A/m2 
 k[kr] ⊗k Endk(V ) �

Another proof of a slightly more general result, is based on the general-
ized Burnside theorem, see §2.
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Lemma 3.23 Let V = {Vi}i=1,...,r be a finite subset of Simp<∞(A), then the
morphism of k-algebras,

A → O(V) = (Hi,j ⊗k Homk(Vi, Vj))

is topologically surjective.

Proof: Since the simple modules Vi, i = 1, . . . , r are distinct, there is
an obvious surjection, π : A → ∏

i=1,...,r Endk(Vi). Put r = ker π, and
consider for m ≥ 2 the finite-dimensional k-algebra, B := A/rm. Clearly
Simp(B) = V, so that by the generalized Burnside theorem, see §2, we find,
B 
 OB(V) := (HB

i,j ⊗k Homk(Vi, Vj)). Consider the commutative diagram,

A ��

��

(HA
i,j ⊗k Homk(Vi, Vj)) =: OA(V)

�� 		������������������

B �� (HB
i,j ⊗k Homk(Vi, Vj))

α �� OA(V)/Radm

where all morphisms are natural. In particular α exists since B = A/rm

maps into OA(V)/Radm, and therefore induces the morphism α commuting
with the rest of the morphisms. Consequently α has to be surjective, and
we have proved the contention. �

Recall that a standard n-commutator relation in a k-algebra A is a rela-
tion of the type,

[a1, a2, . . . , a2n] :=
∑

σ∈Σ2n

sign(σ) aσ(1)aσ(2) . . . aσ(2n) = 0

where {a1, a2, . . . , a2n} is a subset of A. Let I(n) be the two-sided ideal of
A generated by the subset,

{[a1, a2, . . . , a2n] | {a1, a2, . . . , a2n} ⊂ A}.

Consider the canonical homomorphism,

pn : A −→ A/I(n) =: A(n).

It is well known that any homomorphism of k-algebras,

ρ : A −→ Endk(k
n) =: Mn(k)

factors through pn, see [4].
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Corollary 3.24 (i) Let m ≥ 2, then for any Vi, Vj ∈ Simp≤n(A) we have,

Ext1
A(Vi, Vj) 
 Ext1

A/rm(Vi, Vj)

(ii) Let r = 1 above, and V := V1 ∈ Simpn(A). Then I(n) ⊂ r2, and
therefore,

Ext1
A(V, V ) 
 Ext1

A(n)(V, V )

Example 3.25 Notice that, for distinct Vi, Vj ∈ Simp≤n(A), we may well
have,

Ext1
A(Vi, Vj) �= Ext1

A(n)(Vi, Vj).

In fact, consider the matrix k-algebra,

A =

(
k[x] k[x]
0 k[x]

)
,

and let n = 1. Then A(1) = k[x] ⊕ k[x]. Put Vi = k[x]/(x) ⊕ (0), Vj =
(0) ⊕ k[x]/(x), then it is easy to see that,

Ext1
A(Vi, Vj) = k, Ext1

A(1)(Vi, Vj) = 0.

Lemma 3.26 Let B be a k-algebra, and let V a vector space of dimension n,
such that the k-algebra B ⊗ Endk(V ) satisfies the standard n-commutator-
condition, i.e. such that the ideal, In ⊂ B ⊗ Endk(V ) generated by the
standard commutators [x1, x2, . . . , x2n], xi ∈ B ⊗ Endk(V ) is zero. Then B
is commutative.

Proof: In fact if b1, b2 ∈ B is such that [b1, b2] �= 0, then the obvious
n-commutator,

b1e1,1b2e1,1e1,2e2,2 . . . en−1,n − b2e1,1b1e1,1e1,2e2,2 . . . en−1,n

is different from 0. �

Lemma 3.27 If A is a finite type k-algebra, then any V ∈ Simpn(A) is an
A(n) := A/In-module, and the corresponding formal moduli, HA(n)(V ) is
isomorphic to HA(V )com, the commutativization of HA(V ).

Proof: Consider the natural diagram of homomorphisms of k-algebras,

A

��

�� O(Simp∗(A), π)

��
Z(n)

��

�� A(n)

��

O(Simp∗
n(A), π)

��
H(V )com �� H(V )com ⊗k Endk(V ) (Hi,j ⊗k Homk(Vi, Vj))��
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where Z(n) is the center of A(n) := A/In, Vi, Vj ∈ Simpn(A), and H(V )com

is the commutativization of H(V ). Clearly there are natural morphisms of
formal moduli,

HA(V ) → HA(n)(V ) → HA(V )com → HA(n)(V )com.

Since moreover
A(n) → HA(n)(V ) ⊗ Endk(V )

is topologically surjective, we find using (Lemma 3.26), that HA(n)(V ) is
commutative. But then the composition,

HA(n)(V ) → HA(V )com → HA(n)(V )com,

is an isomorphism. Since by Corollary (3.24), the tangent spaces of HA(n)(V )
and HA(V ) are isomorphic, the lemma is proved. �

Corollary 3.28 Let A = k < x1, . . . , xd > be the free k-algebra on d sym-
bols, and let V ∈ Simpn(A). Then

HA(V )com 
 HA(n)(V ) 
 k[[t1, . . . , t(d−1)n2+1]]

This should be compared with the results of Procesi, see [14], or [4].
There are further examples, some based upon the calculation of Tord Rom-
stad, see [15], showing that HA(V ) is not commutative, even though V ∈
Simp(A) = Simp≤2(A).

In general we do not know that the natural morphism,

A(n) →
∏

V ∈Simpn(A)

HA(n)(V ) ⊗k Endk(V )

is an injection. Replace A by its quotient, O(n) := Oπ(Simpn(A(n)), then
for all V ∈ Simpn(A),

HO(V ) 
 HA(n)(V ).

and,

O(n) →
∏

V ∈Simpn(A)

HO(n)(V ) ⊗k Endk(V )

is injective. Put B =
∏

V ∈Simpn(A) HA(n)(V ). Let xi ∈ A, i = 1, . . . , d be

generators of A, and consider the images (xi
p,q) ∈ B ⊗k Endk(k

n) of xi via
the injective homomorphism of k-algebras,

O(n) → B ⊗ Endk(k
n),
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obtained by choosing bases in all V ∈ Simpn(A). Now, B is commutative,
so the k-subalgebra C ⊂ B generated by the elements {xi

p,q}i=1,...,d; p,q=1,...,n

is commutative. We have an injection,

O(n) → C ⊗k Endk(k
n).

and for all V ∈ Simpn(A) there is a natural projection,

C ⊗k Endk(k
n) → HA(n)(V ) ⊗k Endk(V ).

Since A(n) → HA(n)(V )⊗k Endk(V ) is topologically surjective, HA(n)(V )⊗k

Endk(V ) is generated by the images of xi. It follows that, if t(V ) is the
element of Simp(C) defined by V , we have a surjective homomorphism,

Ĉt(V ) → HA(n)(V ).

Categorical properties imply, as usual, that there is a natural morphism,

HA(n)(V ) → Ĉt(V ),

which composed with the former is an automorphism of HA(n)(V ). It follows
that HA(n)(V ) is a projection of the commutative k-algebra Ĉt(V ). Clearly
Simpn(A) ⊂ Simp(C). Let C(n) be the affine algebra of the closure of
Simpn(A) in Simp(C). Then it is clear that for every V ∈ Simpn(A) there
is an isomorphism HA(n)(V ) 
 Ĉt(V )(n), and so also,

O(n) ⊂ C(n) ⊗k Endk(k
n).

Recall the commutative diagram,

O(n) ��

��

C(n) ⊗k Endk(V )

��

HO(V ) ⊗k Endk(V ) 
 Ĉt(V )(n) ⊗k Endk(V )

Using Nakayama’s lemma, it is easy to see that locally, at a point V ∈
Simpn(A), C(n) and Z(O(n)) are isomorphic, which implies a result of
M. Artin, see [1], stating that if A does not have any simple modules of
dimension less than n, then A(n) is an Azumaya algebra over its center Z(n).

Moreover, Simp(C(n)) is, in a sense, a compactification of Simpn(A), and
we shall be able, using this imbedding to study the degeneration processes
that occur, at infinity in Simpn(A), see a forthcoming paper.
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Now, consider for s2 ≤ s1 ≤ n, V1 ∈ Simps1
(A), V2 ∈ Simps2

(A), the
commutative diagram,

Z(n)

ρ1

��

�� A(n)

��
Z(s1)

ρ

��

�� A(s1)

��

�� Endk(V1)

Z(s2) �� A(s2) �� Endk(V2).

Put ρ2 := ρρ1, and let t(Vi) ∈ Simp(Z(si)) be the points corresponding to
the simple modules Vi.

Lemma 3.29 In the situation above, if Ext1
A(n)(Vi, Vj) �= 0 then

ρi : Simp(Z(si)) → Simp(Z(n)), i = 1, 2,

maps t(V1) and t(V2) to the same point.

Proof: If ρ1(t(V1)) �= ρ2(t(V2)), the two corresponding maximal ideals
mi, i = 1, 2, of Z(n) will be distinct, the sum m1 + m2 is then Z(n). How-
ever, mi annihilates Vi, therefore the sum will annihilate Ext1

A(Vi, Vj), which
therefore must be zero. �

Localization and topology on Simp(A)

Let s ∈ A, and consider the open subset D(s) of Simp(A), defined above.
It is clear that the natural morphism,

η : A → Oπ(D(s))

maps s into an invertible element of Oπ(D(s)). Therefore we may define
the localization A{s} of A, as the k-algebra Oπ(D(s)) with the inverse η(s)
added. This furnishes a general method of localization with all the properties
one would wish.

Generic points

In the general case, given a diagram c, we should be prepared to include in c
a finite subset γ(c) of generic points, and modify the construction of Oπ(c),
such that the result,

Oπ(c, γ(c))

parametrizes the deformations of all points of c, subject to the conditions
imposed by the incidences and, moreover, keeping the generic points fixed.
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This construction also turns out to give us the right tool to define a
reasonable notion of noncommutative subscheme.

To obtain Oπ(c, γ(c)) we copy the construction of Oπ(c), replacing O(|c|, π)
by the subring

O(|c|, γ(c);π) = (H(|c|, γ(c))i,j ⊗ Homk(Vi, Vj))

where,
H(|c|, γ(c))i,j = H(|c|)i,j if Vi /∈ γ(c)
H(|c|, γ(c))i,j = 0 if i �= j, Vi ∈ γ(c)
H(|c|, γ(c))i,i = k if Vi ∈ γ(c),

and, for every finite subdiagram c0 of c, while insisting that c0 contain γ(c),
by replacing H(c0) by H(c0, γ(c)) given by the cocartesian diagram,

(Ext1
A(U, V )∗)

��

� � �� H(V ) �� H(c)

��
k ���� H(c0, γ(c)).

Here,

U = ⊕Vi∈γ(c)Vi ⊆ V = ⊕Vi∈|c|Vi

and (Ext1
A(U, V )∗) is the ideal of H(V ) generated by a dual basis of Ext1

A(U, V ),
considered as part of a dual basis of Ext1

A(V, V ) generating H(V ).

Examples 3.30 (i) Let A be any k-algebra, and let c := Ind(A) be the
diagram consisting of the essential (i.e. generating all others) morphisms
between (all) the indecomposable A-modules. Suppose A is a sum of a finite
number of indecomposibles. Using the fact that the only k-linear endomor-
phisms of A that are right A-linear, are the left multiplication by elements
of A, we easily prove that η0 : A → O0(Ind(A), π) is an isomorphism. Since
Ind(A) is, essentially, a finite diagram, we may use the closure property of O
and prove that Ind(A) is a prescheme for A and therefore, by (3.18), also a
scheme.

(ii) Consider a discrete diagram c = V of A-modules. There is, by
definition of Oπ, a homomorphism,

Oπ(V) −→ (H0(V ) ⊗ Homk(Vi, Vj)).

The tangent space of the image is (Ei,j ⊗ Homk(Vi, Vj)), where the Ei,j are
defined by,

(Ei,j) = (Ext1
A(Vi, Vj))

EndA(V ).
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(iii) In particular, if V is the family of all simple right modules of an
artinian k-algebra A, and k is algebraically closed, then EndA(V ) is trivial,
and we obtain,

A 
 Oπ(V)

so V is a scheme for A.
(iv) Going back to Example (3.13), where A was a local k-algebra with

φ : A → k as the residue map, we found that when φ∗ : Ext1
A(k,A) →

Ext1
A(k, k) is zero, the natural morphism,

η : A → O({φ}, π)

is an isomorphism. It is now clear that, in all cases,

η : A → Oπ({φ})
is an isomorphism, implying that {φ} is a scheme for A.

(v) The Hairy Line. Consider the k-algebra of matrices,

A =

(
k[y] k[y]
0 k[y]

)
.

The scheme Ind(A) contains the two projectives,

V1,2 =

(
k[y] k[y]
0 0

)
, V2 =

(
0 0
0 k[y]

)
such that A = V1,2 ⊕ V2. Therefore Ind(A) is a scheme for A. Notice that
there is an incidence, i.e. a morphism of (right) A-modules V2 → V1,2, the
cokernel of which is the indecomposible A-module,

V1 =

(
k[y] 0
0 0

)
.

Notice also that Ai := Vi, i = 1, 2 are quotient algebras of A both isomor-
phic to the polynomial k-algebra k[y]. The closed points of Ind(A) are the
different simple representations of A, that is, the different closed points of
Spec(Ai), for i = 1, 2. Thus we find that the closed points correspond to
the points of two different affine lines, L1 and L2, both (canonically) isomor-
phic to Spec(k[y]). However, while there are no ordinary incidences between
these points, there are infinitesimal incidences between pairs of equal points
(p, p) ∈ L1 × L2. In fact if p ∈ L1, q ∈ L2, then

Ext1
A(k(p), k(p)) = k

Ext1
A(k(q), k(q)) = k

Ext1
A(k(p), k(q)) = k if p = q

Ext1
A(k(p), k(q)) = 0 if p �= q

Ext1
A(k(q), k(p)) = 0 for all p ∈ L1, q ∈ L2.



Noncommutative algebraic geometry 555

The picture of this is is an ordinary line L2 with hairs, corresponding to
the points of the other line L1, stuck into the first line at the corresponding
point.

Let as above, Simp(A) be the discrete diagram of the simple A-modules,
and let Simp∗(A) be the diagram consisting of A and Simp(A) together
with the obvious morphisms. We claim that Simp∗(A) is a scheme for A.
In fact this follows from the following calculations: Let p = q, and let
ξ1,1 ∈ Ext1

A(k(p), k(p)), ξ2,2 ∈ Ext1
A(k(q), k(q)) and ξ1,2 ∈ Ext1

A(k(p), k(q)),
be generators. Then the cup products ξ1,1∪ξ1,2 ∈ Ext2

A(k(p), k(q)) and ξ1,2∪
ξ2,2 ∈ Ext2

A(k(p), k(q)) are equal and different from 0. Since Homk(k, k) = k
this implies,

Oπ({k(p), k(q)}) = H({k(p), k(q)}) =

(
k[[y]] k[[y]]

0 k[[y]]

)
.

and the natural morphism

η : A → Oπ({k(p), k(q)})

is the obvious completion. From this follows immediately,

Oπ(Simp∗(A)) =

(
k[y] k[y]
0 k[y]

)
.

Noncommutative subschemes

Let (c0, γ(c0)) be a swarm of A-modules and its subset of generic points.
Suppose first that γ(c0) = {V0}, i.e. is reduced to one single object. Let ρ :
V0 → V1 be any homomorphism of A-modules. Consider now the morphisms
φ : V1 → Vp of C = A-mod, for which the composition ρφ is a morphism
of c0. The resulting diagram c1 with generic point γ(c1)) = {V1} should be
considered as a closed subobject of (c0, γ(c0)) cut out by ρ. Notice that c1

deprived of its generic point, is a subdiagram of c0. It is clear how to
generalize this notion, but we shall leave that for later work. Consider the
following example.

Example 3.31 (i) The quantum plane. Let A = kq[x, y] := k{x, y}/(xy −
qyx), k algebraically closed, with q �= 1. The discrete diagram Simp(A) may
be identified with the union of the x- and the y-axes in the affine plane.
Consider points p1, p2 ∈ Simp(A), then we easily compute,

Ext1
A(k(p1), k(p2)) = k,
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if p1 = p2 �= 0 or if p1 and p2 sit on the x-axis and qp2 = p1.

Ext1
A(k(p1), k(p2)) = k

if p1 and p2 sit on the y-axis and qp1 = p2. In particular,

Ext1
A(k(0), k(0)) = k2

Ext2
A(k(0), k(0)) = k.

All other Ext’s are 0, and there exists a basis {ξ1, ξ2} of Ext1
A(k(0), k(0)),

such that
0 �= ξ1 ∪ ξ2 = qξ2 ∪ ξ1 ∈ Ext2

A(k(0), k(0)).

Therefore,
HA(k(0)) 
 Â(0),

and so A 
 Oπ(Simp∗(A)). Moreover, if V1 = A/(ax + by + c) is a line in
the quantum plane, and if we consider the corresponding closed subobject
(Simp∗(A), {V1}) of Simp∗(A), in the manner described above, we obtain,
Oπ(Simp∗(A), {V1}) 
 A/(ax + by + c), as we would expect.

(ii) Espaces quantiques de Connes, trivial case. Let A be a commutative
k-algebra, k algebraically closed. Consider an algebraic equivalence relation,
R = Spec(R) on the affine scheme X = Spec(A). It corresponds to the affine
diagram,

A
i1 ��

i2
�� A ⊗ A

ρ �� R �� A

with the obvious relations. Consider the morphisms τi = ii ◦ ρ, and let

Spec(A : R) = {R/τ1(p)R|p ∈ Spec(A)}
be the diagram consisting of the objects R/pR := R/τ1(p)R considered as
A-modules via τ2, and with the obvious morphisms. Let x ∈ X be a closed
point, corresponding to the maximal ideal mx of A, then the composition,

κx : A
i2◦ρ−→ R

πx−→ R/mxR

identifies Spec(R/mxR) with the equivalence class x̄ of x ∈ X = Spec(A).
In particular, if x ∼R y then

R/mxR = R/myR

as objects of Spec(A : R). Now compute

O0 := O0(Spec(A : R), π).

It is clear that α ∈ O0 is a family

α = {αp ∈ Endk(R/τ1(p)R)|πp
q ◦ αq = αp ◦ πp

q, ∀ p, q ∈ Spec(A)}
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where πp
q : R/τ1(p)R → R/τ1(q)R is the obvious morphism corresponding to

an inclusion p ⊆ q. Since each one of the πp
q is surjective, it is easy to see that

α is determined by α0 ∈ Endk(R) and the components αx ∈ Endk(R/mxR).
Moreover, since for x ∼ y, R/mxR = R/myR, as objects, it is clear that
αx depends only upon the equivalence class x̄ of x. Each αx̄ is a k-linear
endomorphism. Suppose the equivalence classes of R are finite reduced, i.e.
R/mxR 
 ⊕z∈x̄k(z), then αx̄ is a matrix

αx̄ = (α(z, z′)), z, z′ ∈ x̄, α(z, z′) ∈ k.

Moreover, in this case, given α, α′ ∈ O0 then α = α′ if and only if αx̄ = α′
x̄ for

all closed points x ∈ X. This follows immediately from the defining relations,
πx(α(a)) = αx̄(πx(a)). This means that α is determined as a function on
X × X with α(z, z′) = 0 unless z ∼ z′, and with addition defined as for
functions, but with multiplication defined by the matrix nature of each αx̄,
i.e. (αα′)(x, y) =

∑
z∈x̄=ȳ α(x, z)α′(z, y). But this is the way Connes defines

les espaces quantiques, see [3].

Infinitesimal structures on schemes

Let c be a swarm of A-mod, and consider a point x = Vi. We would like
to be able to talk about vector fields, their values at points, if possible also
about energy operators and time etc. as in quantum mechanics. We start
with the following,

Definition 3.32 Given a point x = Vi ∈ c, we put

Tx :=Ext1
A(Vi, Vi)

Γ :

={ξ ∈ Ext1
A(Vi, Vi)| ∀p∃ ξp ∈ Ext1

A(Vp, Vp) such that ∀φ := φi,p : Vi→Vp ,

φ∗(ξ) = φ∗(ξp) and ∀φ := φp,i : Vp → Vi, φ∗(ξp) = φ∗(ξ) }
and we shall call it the tangent space of c at x.

There is a canonical map

κx : Derk(A,A) −→ Tx

the compositions of the natural maps,

Derk(A,A) −→ Derk(A,Endk(V ))

the surjection

Derk(A,Endk(V )) −→ Ext1
A(V, V ) = ⊕i,jExt1

A(Vi, Vj)

and the projection onto Ext1
A(Vi, Vi).
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Recall that the tangent space T0 of H(c) is contained in,

T0 = (Ext1
A(V, V )Γ)Endk[Γ]⊗A(V )

and see that there are natural homomorphisms Derk(A,A) → T0.

For every δ ∈ Derk(A,A), let δ(x) ∈ Tx, be the image κx(δ) in Tx. Thus
Derk(A,A) is a k-vector space of vector fields defined on c. In particular if
E ∈ A is some element, then the k-linear map adE : A → A defined by
adE(a) = Ea− aE, is a k-derivation of A. Obviously, adE(x) = 0 for every
point x of c. Thus, operators of this type (like time evolutions), i.e. ad(E),
although they act on the observables, leave the points fixed.

Definition 3.33 Given a point x=Vi of c, we shall say that x is A-smooth
if the map κx is surjective. If this is true for all points of c, we shall say
that c is A-smooth.

Using the example (2.9) we observe that when A is a free k-algebra, the
scheme Simp∗(A) is smooth for A, and it clearly generalizes the classical
notion of smoothness in algebraic geometry.

There is also the non-commutative version of Grothendieck’s notion of
smoothness, the Quillen, or Q-smoothness. The k-algebra A is Q-smooth if
whenever R → S is a surjective small homomorphism of k-algebras, the map
Mor(A,R) → Mor(A,S) is surjective. The following result is easily proved.

Proposition 3.34 A is Q-smooth implies that for all finite dimensional
simple A-module V, all cup and Massey products,

Ext1
A(V, V ) ⊗ Ext1

A(V, V ) ⊗ · · · ⊗ Ext1
A(V, V ) → Ext2

A(V, V )

vanish.

From this we deduce the well known result,

Corollary 3.35 If a finite type commutative k-algebra A is Q-smooth then
either A 
 kn for some n, or A is a smooth curve.

4. The commutative case

The main Theorem

To show that the noncommutative algebraic geometry, introduced above, is
a good extension of classical algebraic geometry, one would be tempted to
prove that, for commutative k-algebras A,

(S) η(Spec(A), π) : A −→ Oπ(Spec(A))

is an isomorphism.
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This is, however, not reasonable, see the Introduction. The problem is
that Spec(A) contains too many points. The closed points are special since
Spec(A) is the moduli space for such. The non closed points are not treated
as bona fide points, but as generic points for subschemes. We would like
to include as few as possible such generic points, and therefore we add only
the projective generator A. We have already proved the essentials of the
following,

Theorem 4.1 Let A be any commutative k-algebra, essentially of finite
type, with k algebraically closed. Let, as above Simp∗(A) be the diagram
Simp(A) augmented by the generic point A. Then Simp∗(A) is a permissible
swarm, and the canonical morphism of k-algebras,

η(Simp∗(A), π) : A → Oπ(Simp∗(A))

is an isomorphism.

Proof: For every closed point x ∈ Simp(A) consider the corresponding
homomorphisms of A-modules,

φx : A → k(x)

and use the Remark (3.6) together with (3.20). Clearly the versal deforma-
tion of φx is the canonical morphism of k-algebras

Φx : A → H(k(x)) ⊗ Endk(k(x)) = Âx.

If α ∈ Endk(A) and αx ∈ EndHx,x(H(k(x)) ⊗ Endk(k(x))) commute via the
action of Φx, then the composition (α − Rα(1)) ◦ Φx = 0, where Rα(1) is
the right multiplication by α(1). Since this is true for all x ∈ Simp(A) we
obtain that α is the right multiplication of some element α(1), proving our
theorem. �

As a consequence of the functorial properties of Oπ the Oπ-construction
applies to the (open affine) subdiagrams of the category of OX-Mod, where
X is a k-scheme, and provides us with a globalization procedure. To see
how it works, let us consider the following example.

Example 4.2 Blowing-ups. Let A = k[x, y] and consider the A-module
V = (x, y), i.e. the maximal ideal of A. The diagram of A-modules,
Simp∗(A − V ) is, by definition, the diagram consisting of V together with
all simple quotients of V . These correspond to all points of A2 = Spec(A)
different from (0,0), together with all tangent lines through (0,0) in A2. Now
consider x ∈ V and let D(x) be the diagram obtained from Simp∗(A−V ) by
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localizing, i.e. removing the points where x becomes zero, and inverting the
multiplicative action by x. In particular, in D(x) we have all points of A2

minus the y-axis, but preserving all tangent lines through (0,0), except the
x-axis. We find,

O(Simp∗(A − V ), π) = A, O(D(x), π) = k[y, y/x]

as we should, proving that the scheme (Simp∗(A − V ),Oπ) is the blow up
of the origin in A2.

Notice that in this paragraph we have assumed that A is a commutative
k-algebra essentially of finite type on an algebraically closed field. The
extension of the theory to include schemes on general base rings, seems
difficult.

5. More homological preparations

The category of A − G-modules

Let A be any k-algebra and let g : A → A be an automorphism. Given an A-
module Mi, i = 1, 2, consider an automorphism of k-modules ∇i

g : Mi → Mi,
such that for mi ∈ Mi and a ∈ A we have,

∇i
g(mia) = ∇i

g(mi)g(a) for i = 1, 2

i.e. such that ∇i
g is g-linear. Then there is an automorphism,

θp
g := θp

g(∇1,∇2) : Extp
A(M1,M2) −→ Extp

A(M1,M2)

induced via the isomorphism,

Extp
A(M1,M2) 
 HHp(A,Homk(M1,M2))

by the g−1-linear automorphism of bi-modules,

ζg : Homk(M1,M2) −→ Homk(M1,M2)

defined by,
ψ �−→ ∇1

g ◦ ψ ◦ ∇2
g−1.

Notice that we compose morphisms in the natural order. For a ∈ A we
compute,

ζg(g(a)ψ) = ∇1
g ◦ g(a)ψ ◦ ∇2

g−1 = a(∇1
g ◦ ψ ◦ ∇2

g−1) = aζg(ψ)

ζg(ψg(a)) = ∇1
g ◦ ψg(a) ◦ ∇2

g−1 = (∇1
g ◦ ψ ◦ ∇2

g−1)a = ζg(ψ)a.
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This implies that there is an automorphism of Hochschild cohomology,

ζp
g : HHp(A,Homk(M1,M2)) −→ HHp(A,Homk(M1,M2))

defined on cochain form by,

ξp �−→ {(a1, a2, . . . , ap) �→ ∇1
g ◦ ξp(g(a1), . . . , g(ap)) ◦ ∇2

g−1}.
In particular the automorphism,

ζ1
g : Ext1

A(M1,M2) −→ Ext1
A(M1,M2)

is induced by the map

ζ1
g : Derk(A,Homk(M1,M2)) −→ Derk(A,Homk(M1,M2))

defined by
ζ1
g (δ)(a) = ∇1

g ◦ δ(g(a)) ◦ ∇2
g−1 .

When p ⊆ A is a g-invariant ideal of A contained in the annihilator of M2,
we know that the restriction of the derivations of Derk(A,Homk(M1,M2))
to p induces an isomorphism,

HomA(p/p2,HomA(A/p,M2)) 
 Ext1
A(A/p,M2)

such that the automorphism ζ1
g takes the form,

ζ1
g (ψ)(x) = ∇2

g−1(ψ(gx)) for x ∈ p/p2.

Suppose ξ ∈ Ext1
A(M1,M2) is represented by the exact sequence of A-

modules,

(∗) 0 −→ M2 −→ E −→ M1 −→ 0

Since the g-linear automorphisms ∇i
g : Mi → Mi correspond to an A-linear

isomorphism,
∇i

g : Mi → Mi ⊗g−1 A

we deduce from (∗) the exact sequence of A-modules,

(∗∗) 0 −→ M2 ⊗g−1 A −→ E ⊗g−1 A −→ M1 ⊗g−1 A −→ 0

which represents the element ζ1
g (ξ) ∈ Ext1

A(M1,M2). The ζ1
g -invariant el-

ements ξ of Ext1
A(M1,M2) therefore corresponds to the extensions (∗) for

which there exists an isomorphism

(∗ ∗ ∗) ∇g : E −→ E ⊗g−1 A

compatible with the ∇i
g, for i = 1, 2. Another way of viewing this is to look

at ζ1
g (ξ)− ξ as an obstruction for the existence of such an isomorphism (∗∗).
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Given one ∇g : E −→ E ⊗g−1 A compatible with the ∇i
g, another ∇g

′

will differ from the first one by the composition Γg of the homomorphism
E −→ M1 and some A-linear map α : M1 → M2 ⊗g−1 A, and any such Γg

added to (∗ ∗ ∗), will again be compatible with the ∇i
g, for i = 1, 2. In the

category of (A − g)-modules, we therefore find,

Ext1
A−g(M1,M2) 
 Ext1

A(M1,M2)
ζg ⊕ HomA(M1,M2 ⊗g−1 A)/ ∼

The equivalence ∼ identifies (E ′,∇g
′) and (E′′,∇g

′′) if there exists an iso-
morphism of extensions ζ : E 
 E′′ compatible with the ∇’s. Since

∇2
g : HomA(M1,M2) 
 HomA(M1,M2 ⊗g−1 A)

the equivalence relation ∼ is trivial.
Now, suppose G is a group acting on the k-algebra A, i.e. suppose there

exists a homomorphism of groups,

ρ : G −→ Autk(A).

Consider A-modules Mi, i = 1, 2, with G-actions compatible with ρ, i.e.
homomorphisms

∇i : G −→ Autk(Mi)

such that for g ∈ G , mi ∈ Mi, and a ∈ A,

∇i
g(mia) = ∇i

g(mi)g(a) for i = 1, 2

where we denote by g(a) the action of ρ(g) on a ∈ A.
Given an invariant ξ ∈ Ext1

A(M1,M2) under the action of the group G,
as explained above, there exists for every g ∈ G an isomorphism

∇g : E −→ E ⊗g−1 A

Since
(E ⊗g−1

1
A) ⊗g−1

2
A = E ⊗(g1g2)−1 A

we find an obstruction for the existence of a homomorphism of groups,

∇ : G −→ Autk(E)

compatible with the ∇i’s, which is a 2-cocycle of G with values in the G-
bimodule HomA(M1,M2),

(g1, g2) �−→ (∇g1 ◦ ∇g2 −∇g1g2).

When the corresponding 2-class,

σξ ∈ H2(G, HomA(M1,M2))

vanishes, there exists a ∇ and the set of such will be a torsor under

H1(G, HomA(M1,M2)).
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Proposition 5.1 Suppose H i(G, HomA(M1,M2)) = 0 for i = 1, 2. Then,

Ext1
A−G(M1,M2) 
 Ext1

A(M1,M2)
G.

Notice that a 1-coboundary of the form

g �−→ (gα − α)

corresponds to an automorphism θα : E −→ E inducing an automorphism
of (E,∇g).

The category of A − g-modules

Suppose
ρ : g −→ Derk(A)

is a k-Lie homomorphism, e.g. a Lie-Cartan pair. We shall treat this as the
tangent map of a Lie-group action ρ studied in the previous section. Let
Mi, i = 1, 2 be A-modules with g-integrable connections

∇i : g −→ Endk(Mi),

and consider for every δ ∈ g and every ψ ∈ Homk(M1,M2) the map

δ �−→ ∇1
δψ − ψ∇2

δ.

This defines a Lie algebra homomorphism,

ρ : g −→ Endk(Homk(M1,M2))

such that, if ρ is a Lie-Cartan pair, ρ(δa) = aρ(δ) − ρ(δ)a.
Let D ∈ Derk(A,Homk(M1,M2)), then the map

a �−→ ∇δ(D)(a) := D(δ(a)) + ∇1
δD(a) − D(a)∇2

δ

is a derivation, and we obtain a connection

∇ : g −→ Endk(Ext1
A(M1,M2)).

As above, every ξ ∈ Ext1
A(M1,M2)

g is associated to an obstruction,

σ(ξ) ∈ H2(g,Homk(M1,M2))

which vanishes if and only if there exists an integrable connection on the
middle term E of the exact sequence representing ξ,

0 −→ M2 −→ E −→ M1 −→ 0

compatible with the connections ∇i on Mi. The set of isomorphism classes
of such (ξ,∇) is then a torsor under

H1(g,HomA(M1,M2)).

Proposition 5.2 Suppose H i(g,HomA(M1,M2)) = 0 for i = 1, 2. Then,

Ext1
A−g(M1,M2) = Ext1

A(M1,M2)
g
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6. Invariant theory and moduli

Let k be an algebraically closed field, and consider a commutative finite type
k-algebra A. Let G be a finite group, acting on A, and let ρ : G → Autk(A),
be the action. Consider the category of A − G-modules, and let, as above,
Simp∗(A − G) be the swarm of orbits of G on Spec(A), together with A as
generic point. For any orbit V ∈ Simp(A − G), let v ∈ Spec(AG) be the
corresponding point. If G is reductive we know that the ideal a ⊂ A defining
a maximal orbit V , a regular point, is generated by the ideal a0 = aG ⊂ AG.
In fact, since the ideal a is generated by invariants, the relation-submodule
will also be generated by invariants, etc. Therefore there exist an A − G-
resolution of V , of the form,

0 V�� A�� An1�� An−2 · · ·��

where the action by G is the obvious product-action. Since G is reductive
we obtain the following resolution of the field k = V G = EndA−G(V ) as
AG-module,

0 k�� AG�� (AG)n1�� (AG)n−2 · · ·��

This implies that,
Extp

A−G(V, V ) = Extp
AG(k, k),

for all p ≥ 0 and the Massey-product structures also coincide. Therefore, by
construction H(V ) 
 ÂG

v . For all such maximal orbits V we have a natural
commutative diagram,

AG ��

��

A ��

��

O(Simp∗(A − G), π)



����������������
�� Endk(A)

H(V ) �� H(V ) ⊗k Endk(V )

showing that,
O(Simp∗(A − G), π) ⊂ EndAG(A).

Let I ⊂ G, be a subgroup. Put X(I) ⊆ {x ∈ X := Simp(A)|I = gI(x)g−1}
be the locally closed subscheme of X := Spec(A), corresponding to the orbits
with isotropy subgroups conjugate to I. Let a(I) ⊂ A be the G-invariant
ideal of A, defining the closure X̄(I) in X. Put A(I) := A/a(I). Consider
a simple A − G-module V (I), with isotropy subgroup class I. Assume that
the natural morphism of right A − G-module, A → H(V (I)) ⊗ V (I), is the
formalization of a morphism A → H(V (I))⊗V (I) with H(V (I)) a k-algebra
of finite type. Notice that since G is reductive, G acts on H(V (I)) ⊗ V (I)
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via its action on V (I), i.e. the action lifts trivially to H(V (I))⊗V (I). Then
there is a commutative diagram,

A

��

��

��															 H0(V (I)) ⊗ V (I)

V (I) A(I)

��

��

where H0(V (I)) = H(V (I))/Rad, is the reduced k-algebra. Here Rad is
the intersection of all two-sided maximal ideals with residual field k. Let
H0(V (I)) = Ĥ0(V (I)), the formalization of H0(V (I)) at the point corre-
sponding to V (I). This diagram, however, proves that there are natural
morphisms,

HA(I)−G(V (I)) → HA−G
0 (V (I)) → H

A(I)−G
0 (V (I)).

If V (I) is regular with respect to the G-action on X(I), we therefore have,

HA−G
0 (V (I)) 
 (Â(I))G

v red.

In the example (8.3), below, in characteristic 2, Tord Romstad has com-
puted the formal moduli HA−G(V (I)) for I = G, and come up with a non-
commutative k-algebra such that its reduction is isomorphic to

HA(I)−G(V (I)) 
 k[[t]],

see the end of §8, and [15].

Definition 6.1 The quotient Simp∗(A)/G, is the swarm of O(Simp∗(A −
G), π)-modules Simp∗(A − G).

Proposition 6.2 Simp∗(A −G) is a scheme for O := O(Simp∗(A− G), π)

Proof: This follows from (3.20) since, for each maximal orbit Vd, Avd
is

a free AG
vd

-module, and since the natural map O → O(Simp(O), π) decom-
poses via EndAG(A) → ∏

Vd
AG

vd
⊗Endk(Vd) which, since the maximal orbits

correspond to an open dense set in Spec(AG), is injective. �
Notice that in Simp∗(A − G) the point A is generic. See also that there

is a natural surjective homomorphism, HO(V ) → HA−G which, since

O →
∏
V

HA−G(V ) ⊗ Endk(V )

is injective, makes

O →
∏
V

HO(V ) ⊗ Endk(V )

also injective. By (3.20) this shows that also Simp∗(O) is a scheme for O.
Here O is the generic point.
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Example 6.3 Let G = Z/(2) = (τ) act on A = k[x, y] as τ(x) = x, τ (y) =
x − y. Then AG = k[x, xy − y2] =: k[u, v]. Then Simp∗(A − G) is a scheme
for the k-algebra,{ (

a1,1 a1,2

a2,1 a2,2

)
| ai,j ∈ AG, a1,1 − a2,2 ∈ (u2 − 4v), a1,2, a2,1 ∈ (u2 − 4v)

}
If G is a Lie group acting algebraically on the k-algebra A, we may copy

the definitions and the proofs above, and obtain the same results. However
since in this case the orbits, i.e. the points of Simp(A−G), are of infinite k-
dimension, we shall work with the trivialization functor, πG : A−G-mod →
k-mod defined by πG(V ) = V G = H0(G, V ). When G is reductive consider
the stratification {X(I)} of X = Simp(A), indexed by all conjugacy classes
of (isotropy) subgroups I ⊂ G. Consider the set of generic points {A(I)},
and let us construct O := OA−G(Simp∗(A − G); {A(I)}). G operates on
O, and the invariant ring maps to the k-algebra HA−G(Simp(A − G)) =:
(HA−G

i,j ). Let OA−G(Simp∗(A − G; {A(I)}, πG) be the image.

Definition 6.1 bis. The quotient Simp∗(A)/G, is the swarm Simp∗(O) of
O-modules, where,

O := OA−G(Simp∗(A − G), πG).

Notice that there is a natural identification Simp∗(A − G) 
 Simp∗(O),
but O is no longer an extension of A. However, we have the natural mor-
phism ηG : AG → O. We shall return to the properties of this construction.
See §8 for examples.

Now, let the Lie-algebra g of vectorfields (i.e. derivations), act on A.
Consider the category C := A − g-mod, of A-modules with integrable
g-covariant derivations. In this category we define the trivialization functor,

πg : C −→ k-mod

by πg(V ) = H0(g, V ).

Recall that when g is reductive π := πg is exact. Moreover, Ext in this
category, is then simply the g-invariants of the Ext in A-mod.

Given any permissible swarm c of C, we may construct a ring of preob-
servables OA−g(c, πg), in the same way as we constructed OA−G(Simp∗(A −
G), πG) in the case of a group action. In particular, let us consider the dia-
gram, Simp(A − g), of simple A − g-modules, and add to it A, as a generic
point, to obtain Simp∗(A − g).
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We propose, tentatively,

Definition 6.1 bis, bis. The quotient Simp∗(A)/g, is the swarm Simp∗(O),
of O-modules, where,

O := OA−g(Simp∗(A − g), πg).

Notice that we do not assert that Simp∗(A−g), as a diagram of A−g-mod,
is a scheme for O. This would be meaningless. In good cases we may,
however, hope that Simp∗(O) is a scheme for O, and that Simp(O) is, in a
natural way, isomorphic to Simp(A − g).

In many cases the simple A−g-modules occur in a finite number of fami-
lies, just as in the case of a group action, corresponding to quotients of some
Ul = A/al. In this case it is reasonable to add the Ul’s as generic points to
Simp(A− g) forming a new diagram Simp∗(A− g). We would then consider
Oπg(Simp∗(A−g), {Ul}) as a candidate for the affine ring of the orbit space.

That this invariant theory fits with the classical invariant theory, is shown
by the following result,

Theorem 6.4 Let A be any irreducible and reduced commutative k-algebra
of finite type, k algebraically closed, and g a reductive Lie-algebra of vector-
fields (i.e. derivations), acting on A. Assume that the geometric quotient of
Spec(A) with g exists and is affine. Then

OA−g(Simp∗(A − g), πg) = Ag.

Proof: By assumption, the diagram Simp∗(Ag) induces the diagram
Simp∗(A−g). Moreover the trivialization πg maps the diagram Simp∗(A−g)
onto the diagram Simp∗(Ag), or rather, to the image of this diagram un-
der the canonical trivialization π. But then the exactness of πg and the
smoothness of the morphism of the geometric quotient, proves that the for-
mal moduli of the family |Simp∗(A − g)| in the category of A − g-mod is
isomorphic to the corresponding formal moduli of the family |Simp∗(Ag)| in
the category of Ag-mod. Since the trivializations coincide, the Theorem (6.1)
shows that

O(Simp∗(A − g), πg) ∼= Ag

which is exactly what we wanted. �
Example 6.5 (The McKay correspondence) Let k be an algebraically
closed field of characteristic 0, and let U be a finite dimensional k-vector
space. Put n = dimk U . Let G be any group acting on U , and let {Vi}i=1,...,r

be the family of simple G-modules, such that

k(G) =
∏

i=1,...,r

V ni
i

as k(G)-modules.
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Let A = Symk(U
∗), and consider now a quotient module o of A which is

isomorphic to k(G) as G-module, i.e. an object of the diagram Simps.s(A−
G). There must exist a filtration of o with graded module consisting of
the different Vi strung out in some order, defined by an ordered graph Γ
of length r. If x ∈ o is a closed point, and Ix the corresponding isotropy
subgroup of G, we know that o has an A − G-quotient of the form,

A/m =
∏

g∈Ix/G

k(g(x))

which is an object of Simp∗(A − G). In this way we find a map,

κ : Simps.s(A − G) −→ Simp∗(A − G)

which is the McKay map. There are interesting cases in which

O(−, πG)

is a non singular presheaf of commutative k-algebras on the (open) subdia-
grams of Simps.s(A − G), with a canonical birational morphism,

κ∗ : O(Simp∗(A − G), πG) = AG → O(−, πG)

showing that κ is a desingularization of Spec(A)/G. Suppose G acts effec-
tively, such that Simps.s(A − G) ∩ Simp∗(A − G) is an open dense set of
Simp∗(A−G) ⊆ Spec(AG), in the Zariski topology. Then o is a non singular
point of Simps.s(A − G), if and only if,

χ(o, o) : =
∑

i=1,...,n

(−1)iexti
A−G(o, o)

=
∑

p=1,...,n,i,j=1,...,r

(−1)phomG(Vi, Vj ⊗ ∧pU) = 0.

Notice that for the scheme to be commutative we must have,

ext2
A−G(o, o) ≥ dimk(Ext1

A−G(o, o) ∧ Ext1
A−G(o, o)) ≥ 1/2n(n − 1).

Moreover, we always have,

homA−G(o, o) = 1.

If o is a non singular point of Simps.s(A − G), then the tangent space
Ext1

A−G(o, o) of o must be of dimension n = dimk U . This proves the only if
condition above. The if part, is a little more involved.
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Remark 6.6 If the Lie algebra g (or the Lie group G) is not reductive,

Ext1
A−g(Vi, Vj) = H0(g,Ext1

A(Vi, Vj)) ⊕ H1(g,HomA(Vi, Vj))

where the component H1(g,HomA(Vi, Vj)) may be non-zero. This compo-
nent of the tangent space of the deformation functor measures the num-
ber of different g-structures on the same deformation of the family of A-
modules {Vi}i. If we are not interested in the specific g-structures, but only
in isomorphism classes as A-modules, then we may suppress this component,
by taking an appropriate quotient of the resulting H, and of O(Simp(Ag, π),
and we obtain a k-algebra

Ored(Simp(A − g), π)

which is simpler, therefore contains less information, but for which the set of
simple modules is in one-to-one correspondence with the orbits of g. See §8
for examples.

7. Tensor products and quantum groups

Let c be a subcategory of A-mod, with a trivializing functor π. Suppose
given a tensor product on the category c, i.e. a bi-functor

⊗ : c × c −→ c

which is a faithful imbedding, consistent with π, with some extra structure.
In particular there should exist natural isomorphisms,

α−,−,− : ((−⊗−) ⊗−) 
 (−⊗ (−⊗−))

satisfying the Mac Lane pentagon condition,

idX⊗ αY,Z,W ◦ αX,Y ⊗Z,W ◦ αX,Y,Z ⊗ idW

= αX,Y,Z⊗W ◦ αX⊗Y,Z,W .

Consider the exact functor,

∆ : c → c × c,

defined by ∆(V ) = V × V . Then, since all of these functors are imbeddings,
there exist homomorphisms of k-algebras,

(1) O(c, π) → O(c ⊗ c, π) 
 O(c × c, π) → O(c, π)
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such that,

O(c × c, π) 
 O(c, π) ⊗O(c, π),

and such that the last morphism of (1) is the multiplication morphism of
the k-algebra O(c, π).

The Mac Lane pentagon condition guaranties that the first morphism
of (1) becomes an associative co-algebra structure on O(c, π). Clearly any
extra functorial symmetry one may want to consider on c, will show up in
the corresponding k-algebra O(c, π).

8. Examples

The noncommutative projective line

Let A = k[x0, x1], and consider the usual k∗-action. We shall compute
the space Spec(A)/k∗. The subcategory Simp(A − k∗) of A − k∗-modules
consists of the origin V3, the lines through the origin V2(l), and the generic
point V1 = A. The trivializing functor (see §3),

π : A − k∗-mod −→ k-mod

has the values,

π(V1) = k, π(V2(l)) = k, π(V3) = k.

The noncommutative orbit space is given by the hull of the deformation
functor, i.e. by (Hi,j). Since Hp(k∗,−) = 0 for p≥1, we may use the
Proposition (5.2), and we obtain,

ExtA−k∗(Vi, Vj) = ExtA(Vi, Vj)
k∗

.

It is easy to compute the different ext-groups, we find:

Ext1
A(Vi, Vj) = 0, for i = 1, j = 1, 2, 3.

Ext1
A(V2(l), V1) = V2(l) = A/(αx0 + βx1)

Ext1
A(V2(l), V2(l)) = V2(l)

Ext1
A(V2(l), V2(l

′)) = 0 if l �= l′

Ext1
A(V2(l), V3) = V3 = k

Ext1
A(V3, V1) = 0

Ext1
A(V3, V2(l)) = V3 = k

Ext1
A(V3, V3) = k2.
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Using the results of §5, we obtain for the invariants

Ext1
A(Vi, Vj)

k∗
= 0, for i = 1, j = 1, 2, 3.

Ext1
A(V2(l), V1)

k∗
= k represented by ξ = l

Ext1
A(V2(l), V2(l))

k∗
= k represented by ξ = l

Ext1
A(V2(l), V2(l

′))k∗
= 0 if l �= l′

Ext1
A(V2(l), V3)

k∗
= 0

Ext1
A(V3, V1)

k∗
= 0

Ext1
A(V3, V2(l))

k∗
= 0

Ext1
A(V3, V3)

k∗
= 0.

The corresponding quotient becomes the infinite matrix algebra of the form,

Spec(A)/k∗ := O(Simp(A − k∗), π) =

 k 0 0
k[t2(l)]t2,1 k[t2(l)] 0

0 0 k


where l runs through all the points in the ordinary projective line. We ob-
serve that the special point, corresponding to the isolated orbit, i.e. the
origin, stays isolated, even infinitesimally. There are, however, adjacencies
between the formal points corresponding to the lines through the origin,
and the generic point corresponding to the generic point of the ordinary
projective line.

Suppose that we localize, say in x0, i.e. that we restrict to the

Spec(A{x0} − k∗) = {V1 = A{x0}, V2(l) = A{x0}/(l)}
then we find,

π(V1) = k[x1/x0], π(V2(l)) = k,

for all l. The exts in the new category looks like,

Ext1
A{x0}

(Vi, Vj)
k∗

= 0, for i = 1, j = 1, 2.

Ext1
A{x0}

(V2(l), V1)
k∗

= k represented by ξ = l

Ext1
A{x0}

(V2(l), V2(l))
k∗

= k represented by ξ = l

Ext1
A{x0}

(V2(l), V2(l
′))k∗

= 0 if l �= l′

With this we find that Spec(A{x0})/k
∗ is the subalgebra,

O(Simp∗(A{x0} − k∗), π) =

{(
f(x1/x0) 0

ψ(f(x1/x0))t2,1 f(x1/x0)]

)}
,

of the algebra, (
Endk(k[x1/x0]) 0
k[[x1/x0]]t2,1 k[[t2(l)]]

)
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where ψ is some derivation of Derk(k[x1/x0]) and f runs through k[x1/x0],
as expected, see the Theorem (3.2).

It is therefore clear that the noncommutative version of the projective
line contains the geometric projective line.

If we consider, instead of the action by the group k∗, the action of the
Lie algebra g generated by the Euler vectorfield δ0 = x0 ∂/∂x0 + x1 ∂/∂x1,
we get a different picture stemming from the fact that g has cohomology.
The subcategory Spec(A − g) of A − g-modules consists of the origin V3,
the lines through the origin V2(l), and the generic point V1. The trivializing
functor

π : A − g-mod −→ k-mod

has the values,
π(V1) = k, π(V2(l)) = k, π(V3) = k

Since there are no π-incidences, the noncommutative orbit space Spec(A)/g
is given by the hull of the deformation functor, i.e. by (Hi,j), as above.
However, here we cannot use the result (6.2), since for most g-modules V,
H1(g, V ) = V/δ0V �= 0. In fact we get,

Ext1
A−g(Vi, Vj) = Ext1

A(Vi, Vj)
g ⊕ H1(g,HomA(Vi, Vj))

Ext2
A−g(Vi, Vj) = H1(g,Ext1

A(Vi, Vj))

This implies that

Ext1
A−g(V1, Vj) = H1(g,HomA(V1, Vj)) = k for j = 1, 2, 3.

Ext1
A−g(V2(l), Vj) = Ext1

A(V2, Vj)
g ⊕ H1(g,HomA(V2, Vj))

= k ⊕ 0 for j = 1

= k ⊕ k for Vj = V2(l)

= 0 ⊕ 0 for Vj = V2(l
′) l �= l′

= 0 ⊕ k for j = 3

Ext1
A−g(V3, Vj) = Ext1

A(V3, Vj)
g ⊕ H1(g,HomA(V3, Vj))

= 0 ⊕ 0 for j = 1

= 0 ⊕ 0 for j = 2

= 0 ⊕ k for j = 3

Ext2
A−g(Vi, Vj) = H1(g,Ext1

A(Vi, Vj))

= 0 for i = 1, j = 1, 2, 3

= k for i = 2, j = 1

= k forVi = V2(l), Vj = V2(l)

= 0 for Vi = V2(l), Vj = V2(l
′), l �= l′

= k for i = 3, j = 3.
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It follows that Spec(A)/g is given by the rather complicated looking k-algebra
generated by k[[t1]] t1,2(l) t1,3(l)

u2,1(l) k[[t2(l), u2(l)]] t2,3(l)
0 0 k[[t3]]


with some relations.

The moduli space of simple singularities, the A2 case

We shall consider the Weierstrass family F := F (t0, t1, x, y) = x3 − y2 +
t1x+ t0, parametrized by the k-algebra A := k[t0, t1], and the corresponding
Kodaira-Spencer kernel g ⊆ Derk(A) see [9], generated by,

δ0 = 3t0
∂

∂t0
+ 2t1

∂

∂t1

δ1 = 2t21
∂

∂t0
− 9t0

∂

∂t1

We claim that the moduli space consisting of the three singularities in the
family F , is given as the quotient space Spec(A)/g. We must therefore
consider the diagram Simp(A − g), consisting of the three A − g-modules,
V1 = k[t0, t1], V2 = k[t0, t1]/(∆), where ∆ = 27t20 + 4t31 is the discriminant
of F , and finally V3 = k corresponding to the origin.

As above we find that

π = H0(g,−) : A − g-mod −→ k-mod

defines three points,

π(V1) = k, π(V2) = k, π(V3) = k

with no incidences. Since it is easy to see that

H2(g,HomA(Vi, Vj)) = 0

we find,

Ext1
A−g(Vi, Vj) = H0(g,Ext1

A(Vi, Vj)) ⊕ H1(g,HomA(Vi, Vj))
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which implies,

Ext1
A−g(V1, Vj) = H1(g,HomA(V1, Vj)) = k for j = 1, 2, 3

Ext1
A−g(V2, Vj) = H0(g,Ext1

A(V2, Vj)) ⊕ H1(g,HomA(V2, Vj))

= 0 ⊕ 0 for j = 1

= 0 ⊕ k for j = 2

= 0 ⊕ k for j = 3

Ext1
A−g(V3, Vj) = Ext1

A(V3, Vj)
g ⊕ H1(g,HomA(V3, Vj))

= 0 ⊕ 0 for j = 1

= 0 ⊕ 0 for j = 2

= 0 ⊕ k for j = 3.

Moreover, for all i, j = 1, 2, 3,

Ext2
A−g(Vi, Vj) ⊆ H0(g,Ext2

A(Vi, Vj)) ⊕ H1(g,Ext1
A(Vi, Vj)) = 0.

The moduli space is therefore given by the k-algebra (freely generated by),

O(Simp(A − g), π) =

k[[t1,1]] t1,2 t1,3

0 k[[t2,2]] t2,3

0 0 k[[t3,3]]


which has a reduced quotient, given by the matrices of the form,k kt1,2 kt1,3 ⊕ kt1,2t2,3

0 k kt2,3

0 0 k


which is the k-algebra of the non-commuting adjacency diagram correspond-
ing to the Weierstrass family, see [9],

t2,3 : cusp → node

t1,2 : node → ellipt

t1,2t2,3 : cusp −→ ellipt

t1,3 : cusp → ellipt

Notice that g is a rank 2 A-module, such that we may expect to find
exact sequences of A − g-modules,

0 −→ A −→ g −→ A −→ 0

0 −→ A/(∆) −→ g ⊗A A/(∆) −→ A/(∆) −→ 0

0 −→ A/(t0, t1) −→ g ⊗A k(o) −→ A/(t0, t1) −→ 0
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explaining the diagonal tangent structure of the moduli space,k[[t1,1]] t1,2 t1,3

0 k[[t2,2]] t2,3

0 0 k[[t3,3]]

 .

The reduced moduli is, however, given by,

Ored(Simp(A − g), π) =

k 0 0
0 k 0
0 0 k

 ,

i.e. the obvious 3-point space.

The moduli of endomorphisms. The dimension 2 case

We shall compute the (noncommutative) space of invariants

Endk(k
n)/GLn(k)

for k = C and n = 2. (For n ≥ 3 see a forthcoming paper by Arvid
Siqveland [19]). Refering to §4, it suffices to compute the noncommutative
formal moduli for the longest chain of infinitesimal incidences, i.e. the family
of formal Jordan forms. Let

A = OEndk(k2)(Endk(k
2))

then
A = k[x1,1, x1,2, x2,1, x2,2]

The group G := GL2(k) acts on Endk(k
2) by conjugation, and there are two

Jordan forms of interest, (
λ 0
0 λ

)
and (

λ 1
0 λ

)
corresponding to orbits V2 of dimension 0 and V1 of dimension 2, respectively,
in Endk(k

2). According to §3, since

H0(G, Vi) = k, i = 1, 2

we should expect Endk(k
2)/GL2(k) to be an algebraization of the formal

moduli of the family of A − G-modules {Vi}i=1.2, i.e.

H := H({Vi}i=1.2)
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The orbits, as A-modules, are given by:

V1 = k[xi.j ]/(s1 − 2λ, s2 − λ2)

V2 = k[xi.j ]/(x1,1 − λ, x1,2, x2,1, x2,2 − λ).

Now it is clear that we may assume λ = 0. We find A-free resolutions,

V1 A�� A2
(s1,s2)��

ψ(2)1��











ψ(1)1

��













A

(
s2

−s1

)
��

ψ(2)2����
��

��
��ψ(1)2

����
��

��
��

0��

V1 A�� A2��

ψ1,2(2)1��











ψ1,2(1)1

��













A��

ψ1,2(2)2����
��

��
��ψ1,2(1)2

����
��

��
��

0��

V2 A�� A4
ρ

��

ψ1

��













A6
d1

��

ψ2

����
��

��
��

A4��

V2 A�� A4
ρ

�� A6
d1

�� A4.��

Here,

ψ(1)1 = (1, 0) ψ(2)1 = (0, 1)

ψ(1)2 =

(
0
1

)
ψ(2)2 =

(−1
0

)
ψ(1,2)(1)1 = (1, 0) ψ(1,2)(2)1 = (0, 1)

ψ(1,2)(1)2 =


x2,2

−x2,1

0
0

 ψ(1,2)(2)2 =


−1
0
0
−1


and

ρ =
(
x1,1 x1,2 x2,1 x2,2

)
d1 =


x1,2 x2,1 x2,2 0 0 0
−x1,1 0 0 x2,1 x2,2 0

0 −x1,1 0 −x1,2 0 x2,2

0 0 −x1,1 0 −x1,2 −x2,1


ψ1 =

(
1 0 0 1

)
ψ2 =


0 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 0 0


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From this diagram we easily compute Ext1
A(Vi, Vj), and since G is reduc-

tive, also Ext1
A−G(Vi, Vj) = Ext1

A(Vi, Vj)
G. We obtain,

Ext1
A−G(Vi, Vj) =


k2 for i = 1

k for i = j = 2

0 for i = 2, j = 1

which means that the tangent space of H is given by,(
k2 k2

0 k1

)
.

Now,
Ext2

A−G(V1, V1) = k · η1,1

Ext2
A−G(V1, V2) = k · η1,2

and we compute the cup products and the Massey products of the basis
elements of the Ext1

A−G(Vi, Vj) = Ext1
A(Vi, Vj)

G,

s∗1 ∪ s∗2 = −s∗2 ∪ s∗1 = η1,1, s
∗ ∪ s∗ = 0

t∗1 ∪ s∗ = 0, t∗2 ∪ s∗ = −2 · η1,2,

s∗1 ∪ t∗1 = 0, s∗1 ∪ t∗2 = η1,2, s
∗
2 ∪ t∗1 = −η1,2, s

∗
2 ∪ t∗2 = 0

< t∗1, s
∗, s∗ >= η1,2, < s∗1, t

∗
1, s

∗ >= 0.

This proves that in H there are relations of the form,

(rel) s1s2 = s2s1, t1s
2 − 2 · t2s + s1t2 − s2t1 = 0

It follows that,

H({Vi}) =

(
k[[s1, s2]] < t1, t2 >

0 k[[s]]

)
subject to the relation t1s

2 − s2t1 − 2 · t2s + s1t2 = 0. From this it is clear
that,

Endk(k
2)/GL2(k) = H̃({Vi}) =

(
k[s1, s2] < t1, t2 >

0 k[s]

)
subject to the relation t1s

2−s2t1−2 ·t2s+s1t2 = 0 in the upper right corner,
H1,2 = k[s1, s2] < t1, t2 > k[s].

The k-points of Endk(k
2)/GL2(k) are therefore stratified into two strata,

a plane parametrized by (s1, s2), corresponding to the semi-simple orbits,
and to the (maximal dimensional) orbits given by the Jordan form,(

λ 1
0 λ

)
,
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and a line parametrized by (s), corresponding to the orbits of dimension 0,
i.e. to the Jordan forms, (

s 0
0 s

)
.

There are two tangents from a point (s1, s2) in the plane to the point s
on the line if and only if he relation above is trivial, i.e. iff s1 = 2s and
s2 = s2 = 0.

The versal family, Ṽ , i.e. the action of A on Ṽ = H ⊗ V. This is easily
done by using the k-linear and GL(2)-invariant section of the morphism
A → V1 = A/(s1, s2), see §5, induced by fixing a k-basis,

{xn0
1,1x

n1
1,2x

n2
2,1 =: xn0

1,1v0}0≤n0≤1,0≤n1,n2

for V1, mapping, multiplicatively, x1,1 to 1/2(x1,1 − x2,2), and xi,j , i �= j to
xi,j . We obtain,

Ṽ = (H({Vi})i,j ⊗ Vj) =

(
k[s1, s2] ⊗ V1 < t1, t2 > ⊗V2

0 k[s] ⊗ V2

)
where V2 = k, subject to the relation in H1,2 = k[s1, s2] < t1, t2 > k[s],

t1s
2 − s2t1 − 2 · t2s + s1t2 = 0,

with the k[xi,j ]-action given by,(
1 ⊗ v1 0

0 1 ⊗ v2

)
xi,j =

(
1 ⊗ v1xi,j 0

0 0

)
if i �= j, and,(

1 ⊗ v0 0
0 1 ⊗ v2

)
x1,1 =

(
1 ⊗ v0x1,1 − 1/2s1 ⊗ v0 −1/2t1 ⊗ v′

0

0 −s ⊗ v2

)
(

1 ⊗ v0 0
0 1 ⊗ v2

)
x2,2 =

(−1 ⊗ v0x1,1 − 1/2s1 ⊗ v0 −1/2t1 ⊗ v′
0

0 −s ⊗ v2

)
Moreover, the first row of the matrix multiplied with xi,i, for v1 = v0x1,1,

looks like, for i = 1;

−1⊗v0x1,2x2,1 − 1/2s1 ⊗ v0x1,1 + s2 ⊗ v0 + t2 ⊗ v′
0 − 1/2t1s ⊗ v′

0

− (s/2)2/(1 − (s/2))t1 ⊗ v′
0,

and for i = 2,

1⊗v0x1,2x2,1 − 1/2s1 ⊗ v0x1,1 − s2 ⊗ v0 − t2 ⊗ v′
0 + 1/2t1s ⊗ v′

0

+ (s/2)2/(1 − (s/2))t1 ⊗ v′
0,

where v′
0 is the image in V2 of v0 ∈ V1.
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An example of Tord Romstad

Let A = k[x, y] and let the A-module V = A/(x − 2y). Let the group
G = Z/(2) be generated by τ , and let G act on A as,

τ(x) = x, τ (y) = x − y.

When char(k) �= 2, it is easy to show that,

Ext1
A(G)(V, V ) = k, Ext2

A(G)(V, V ) = 0.

When char(k) = 2, a more complicate calculation shows that,

Ext1
A(G)(V, V ) = k2, Ext2

A(G)(V, V ) = k2.

Computing the cup and third-order Massey products one shows that,

HA(G)(V ) = k{{t1, t2}}/(t22, t21t2 + t2t
2
1),

which should be compared with the introduction to §6, and to (6.3), see
also [15].
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1995.

[17] Schlessinger, M.: Functors of Artin rings. Trans. Amer. Math. Soc. 130
(1968), 208–222.

[18] Siqveland, A.: Matric Massey products and formal moduli. Thesis, In-
stitute of Mathematics, University of Oslo, 1995.

[19] Siqveland, A.: The Noncommutative Moduli of Rank 3 Endomorphisms.
Report Series No. 26, Buskerud College, Norway, 2001.

[20] Van Oystaeyen, F. and Verschoren A.: Non-commutative Algebraic
Geometry. An Introduction. Lecture Notes in Math. 887, Springer-Verlag,
1981.

Recibido: 20 de febrero de 2002
Revisado: 30 de marzo de 2003

Olav Arnfinn Laudal
Matematisk Institutt
Universitetet i Oslo
Boks 1053, Blindern

NO 0316, Oslo
arnfinnl@math.uio.no


