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The Denef-Loeser series for toric
surface singularities

Monique Lejeune-Jalabert and Ana J. Reguera

Abstract
Let H denote the set of formal arcs going through a singular point

of an algebraic variety V defined over an algebraically closed field k
of characteristic zero. In the late sixties, J. Nash has observed that
for any nonnegative integer s, the set js(H) of s-jets of arcs in H is a
constructible subset of some affine space. Recently (1999), J. Denef
and F. Loeser have proved that the Poincaré series associated with
the image of js(H) in some suitable localization of the Grothendieck
ring of algebraic varieties over k is a rational function. We compute
this function for normal toric surface singularities.

1. Introduction

Let V be an algebraic variety defined over an algebraically closed field of
characteristic zero. Recently, J. Denef and F. Loeser have attached canonical
rational functions to the set H of formal arcs on V going through a given
singular point O of V (see [D-L1], [D-L2]). The existence of such functions
is a finiteness property of the family {js(H)}s∈N of s-jets of arcs in H,
analogous to the rationality of the p-adic Poincaré series associated to the
p-adic points on a variety, and it fits with Nash’s expectation in [N].

Denef and Loeser have computed these functions for analytically irre-
ducible plane curve singularities in [D-L2]. As far as we know, it is the
only concrete example available so far. In this paper, we compute the series
Pgeom(T ) for toric surface singularities (the definition is given in section 2).
The final formula shown in theorem 4.5 is given in terms of a natural con-
tinued fraction expansion of the quotient q/p of relatively prime integers
satisfying 0 < p < q, characterizing the singularity in the dictionary be-
tween toric varieties and convex cones.
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Moreover, as a consequence of our proof, which only involves the blowing-
up with center O and the normalized Nash blowing-up of the surface, we get
geometric interpretations. For a toric surface singularity (V,O), Pgeom(T )
has only simple poles. Except for 1 − L2T , which occurs for any surface
germ, singular or not, these poles are in one to one correspondence with the
divisorial valuations of the function field k(V ) whose center on the normal-
ized Nash blowing-up (resp. the blowing-up with center O) is an irreducible
exceptional curve (resp. a closed point). The tangent lines whose direction
is one of these points appear in [GS3] and they are named “exceptional
tangents” in [L-T]. In particular, we prove that Pgeom(T ) = 1

1−L2T
as in

the nonsingular case, if and only if the toric surface V has no exceptional
tangent at O.

The paper is divided into three sections followed by an appendix. In sec-
tion 2, we recall the definition of Pgeom(T ) and of its ingredients: arcs, jets
(or truncations) of arcs, Grothendieck ring of k-varieties, and we state Denef-
Loeser’s rationality theorem. The geometric analysis of the space of arcs and
of its jets is carried out in section 3. For each s ≥ 0, we get a finite partition
of the set of s-jets of arcs by constructible subsets isomorphic to the product
of a 1 or 2-dimensional torus by an affine space of suitable dimension. These
dimensions are controlled by piecewise linear functions, which turn out to
be linear on the cones of the fan corresponding to the minimal modifica-
tion of the surface factoring through its blowing-up with center O and its
Nash blowing-up. We compute the series thus obtained in section 4. Here,
its rationality follows from the rationality of the series

∑
m∈σ∩Z2 xm for any

convex rational polyhedral cone σ in R2. Several characterizations of toric
surface singularities with the same Pgeom(T ) are given. We close this section
with four questions.

The reader is expected to have some familiarity with the basic elements
of the dictionary given in [TE] or [O, chap. I]. We limit ourselves to recall
the geometric significance of the strongly convex rational polyhedral cone
classically attached to an affine normal toric variety (see (3.1)), and the
description of the normalized blowing-up with respect to a monomial ideal
via its Newton fan (see (3.7)). On the contrary, we have found it useful
to give details on the Nash blowing-up of toric varieties. For these vari-
eties, González-Sprinberg has exhibited an ideal whose blowing-up is a Nash
blowing-up. In the appendix, we show that this ideal has a nice interpreta-
tion via differential forms with logarithmic poles. The idea of the proof and
the terminology introduced originate in [P, section 4].

We denote by Vσ (resp. VΣ) the toric variety which corresponds to the
cone σ (resp. the fan Σ).
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2. Arcs, jets and the series Pgeom(T )

In this preliminary section, we introduce our notation, and we recall the
statement of Denef-Loeser’s fundamental theorem 1.1. in [D-L1].

Let V be an algebraic variety over an algebraically closed field k, and
let O be a closed point on V . Let D := Spec k[[t]] and let 0 denote its closed
point. A (formal) arc on V going through O is a k-morphism h : (D, 0) −→
(V,O), (or equivalently a k-local homomorphism h∗ : OV,O −→ k[[t]]).
The set H of arcs on V going through O is naturally endowed with a re-
duced scheme structure. Indeed, since the question is local and k is assumed
to be algebraically closed, we may assume that V is a closed subvariety of
some affine space Ad

k := Spec k[X1, . . . , Xd] and that O = (0, . . . , 0). An arc
h ∈ H is given by power series expansions

Xi(t) =
∑
j≥1

xi,jt
j ∈ k[[t]] , 1 ≤ i ≤ d ,

such that f(X1(t), . . . , Xd(t)) ≡ 0 for every f in the defining ideal I(V ) of V
in Ad

k. For l ≥ 1, set xl := (x1,l, . . . , xd,l) (resp. X l := (X1,l, . . . , Xd,l) where
the Xi,j ’s are indeterminates). Observe that

f(X1(t), . . . , Xd(t)) =
∑
j≥1

fj(x1, . . . xj) tj

where fj is a quasi-homogeneous polynomial of weight j in the polynomial
ring k[X1, . . . , Xj ] graded by giving the weight l to X1,l, . . . , Xd,l for every l,
1 ≤ l ≤ j. Therefore, H is the zero set of all fj for f ∈ I(V ) and j ≥ 1. In
particular, H is an affine subscheme of Spec k[X1, . . . , Xj , . . .].

For any integer s ≥ 0, the canonical projection

es : k[[t]] −→ k[[t]]/(t)s+1

induces a map js : H −→ Hs where Hs denotes the set of k-local homomor-
phisms OV,O −→ k[[t]]/(t)s+1. Similarly, Hs is the zero set of all fj for f ∈
I(V ) and 1 ≤ j ≤ s, hence an affine subscheme of Asd

k = Spec [X1, . . . , Xs].
The image js(h) of h ∈ H is called the s-jet (or s-truncation in [N]) of h.
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As a consequence of a theorem of Greenberg (a particular case of Artin’s
approximation theorem), js(H) is a constructible subset (i.e. a finite union
of locally closed subvarieties) of Hs, for every s ≥ 0. Such a space has an
image in the Grothendieck ring, K0(Vk), of k-varieties (i.e. reduced sepa-
rated schemes of finite type over k). Recall that, by definition, K0(Vk) is
the ring generated by symbols [X], for X a k-variety, modulo the relations
[X] = [X ′] if X is k-isomorphic to X ′, [X] = [X \ Y ] + [Y ] for Y closed
in X, and [X]× [X ′] = [X×k X ′]. As usual, we denote the class of the affine
line A1

k by L. Following Looijenga [Lo], we set Mk := K0(Vk)[L
−1].

Theorem (Denef-Loeser [D-L1]) Suppose that the ground field k is of char-
acteristic zero. Then the power series

Pgeom(T ) :=
∑
s≥0

[js(H)] T s

considered as a power series in Mk[[T ]] is rational. More precisely, there
exist a polynomial N(T ) ∈ Mk[T ] and finitely many integers ai ∈ Z, bi, di ∈
Z≥1, such that

Pgeom(T ) =
N(T )∏

i (1 − LaiT bi)di
.

3. Arcs on a toric surface singularity and their jets

(3.1) Consider now an affine normal toric surface V over an algebraically
closed field k. Let T ∼= (k∗)2 be the 2-dimensional torus seating inside V .
The ring of regular functions k[T ] on T is isomorphic to the ring of Laurent
polynomials in 2 variables k[X1, X

−1
1 , X2, X

−1
2 ]. Recall that a one-parameter

subgroup on T is an homomorphism λ from the multiplicative group k∗ to T ,
and that there exists n=(n1, n2)∈Z2 such that λ=λn where λn is defined by

Xm ◦ λn(t) = t〈m,n〉

for any m = (m1,m2) ∈ Z2, with 〈m,n〉 =
∑

i=1,2 mini.

In other words, the group of one-parameter subgroups on T is a lattice
N ∼= Z2 dual to the lattice M ∼= Z2 of exponents of monomials on T . Here
is a list of basic facts of the theory of torus embeddings which we will use
further. (See [TE] or [O]).

i) There exists a strongly convex rational polyhedral cone σ in NR :=
N⊗ZR ∼= R2 such that limt→0 λn(t) exists in V if and only if n ∈ σ∩N .
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ii) The ring of regular functions k[V ] on V is the k-algebra k[σ∨ ∩M ] of
the semigroup σ∨ ∩ M where σ∨ = {m ∈ MR := M ⊗Z R | m|σ ≥ 0}.

iii) Let n, n′ ∈ σ ∩ N ; then λn and λn′ tend to the same limit for t → 0,

if and only if n and n′ lie in the relative interior
◦
τ of a face τ of σ

(i. e. its topological interior in the R-vector space Eτ spanned by τ).

As a consequence, the map τ �→ Oτ := T.λn(0), for any n ∈ ◦
τ ∩N , is

a 1-1 correspondence from the set of faces of σ to the set of T -orbits
on V .

The orbit Oτ is isomorphic to a torus of dimension 2− rkR Eτ . Since our
surface V is normal, its singular locus (if nonempty) consists of 0-dimensional
closed orbits. Therefore, V contains such an orbit if and only if dim σ :=
dim Eσ = 2 and, if this condition holds, then Oσ is the only 0-dimensional
orbit on V .

In the sequel, we will assume that dim σ = 2.

(3.2) An arc h on V going through O := Oσ is a k-homomorphism of rings

k[V ] = k[σ∨ ∩ M ] −→ k[[t]]

sending the maximal ideal M =
⊕

m∈σ∨∩M\0 kXm defining O into (t)k[[t]].

Suppose that the image of h meets the torus. Then the map

σ∨ ∩ M −→ Z≥0 m �→ ordt Xm ◦ h(t)

is well defined. Indeed, for any such m, the zero set of Xm is contained
in V \ T . Since T is dense in V , the Z-module generated by σ∨ ∩ M is M .
So the above map extends to a linear form νh : M −→ Z, that is νh ∈ N .
We have νh|σ∨ ≥ 0, hence νh ∈ σ∨∨ = σ. Moreover, for any m 
= 0 in σ∨∩M ,

we have νh(m) > 0, hence νh ∈ ◦
σ.

Now, for any m ∈ σ∨∩M , set uh(m) = Xm ◦h(t) t−νh(m). It follows from
the definition of νh that uh(m) is a unit in k[[t]]. As above, the homomor-
phism from σ∨ ∩ M to the multiplicative group U of units in k[[t]] extends
to a group homomorphism from M to U , and uh is nothing but an arc on T .

Conversely, we can recover an arc h on V going through O whose image

meets the torus from any pair (ν, u) with ν ∈ ◦
σ ∩N and u in the set of arcs

on T , by setting, for any m ∈ σ∨ ∩ M ,

Xm ◦ h(t) = t〈m,ν〉u(m).

Indeed, since ν ∈ ◦
σ, we have 〈m, ν〉 ≥ 0 and 〈m, ν〉 > 0 if m 
= 0. We also

have Xm ◦ h(t) 
≡ 0, hence the image of h is not contained in V \ T , whose
defining ideal is generated by monomials.
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To sum up, we have the following identification:

Proposition 3.3 Let V be an affine normal toric surface with a 0-dimensio-
nal closed orbit O, and let H∗ denote the set of arcs on V going through O
whose image meets the torus. Let N be the lattice of one-parameter subgroups
on T , σ the 2-dimensional strongly convex rational polyhedral cone in NR =

N ⊗Z R2 enjoying property i) in (3.1), and
◦
σ its relative interior. Let HT

denote the set of arcs on T .
Then, the map (σ0 ∩ N) × HT −→ H∗ sending (ν, u) to h given by

(3.3.1) Xm ◦ h(t) = t〈m,ν〉u(m)

for any monomial Xm in k[V ] is a one-to-one correspondence.

In the sequel, we will denote the pair coding h ∈ H∗ via (3.3.1) by (νh, uh)
and we will call νh the order form of h.

We can rephrase proposition 3.3 by saying that the family

H∗
ν := {h ∈ H∗ | νh =ν} = {h ∈ H∗ | ordtX

m◦h(t)=〈m, ν〉,∀m ∈ σ∨∩M} ,

for ν running over
◦
σ ∩N , is a partition of H∗ by subsets isomorphic to HT .

Note that HT = T × Spec k[{X1,s, X2,s}s≥1] with X1,s, X2,s indeterminates.

(3.4) Our aim is to compute the image of js(H) in Mk, for any inte-
ger s ≥ 0. To do so, we have to exhibit a finite partition of js(H) by
constructible subsets whose image in Mk is easily computed. The first ele-
mentary observation is that js(H) = js(H∗) (see lemma 3.5 below). We will
extract a finite partition of js(H∗) from the infinite family {js(H∗

ν )}
ν∈◦

σ∩N
.

We immediately see that js(H∗
ν ) = {0} if min {〈m, ν〉 | m ∈ σ∨∩M \0} > s.

We will prove that otherwise, js(H∗
ν ) is isomorphic to the product of a 1 or

2-dimensional torus by an affine space (see lemmas 3.6, 3.8 and 3.9 below).

Lemma 3.5 For any integer s ≥ 0, we have js(H) = js(H∗).

Proof: We may assume that σ = R≥0ε1 + R≥0(pε1 + qε2) where (ε1, ε2)
is the canonical basis of N ∼= Z2 and p, q are relatively prime integers with
0 ≤ p < q. All we have to prove is that, given h ∈ H whose image lies in
V \ T , we can find h′ ∈ H∗ with the same s-jet. Here V \ T is the union of
O := Oσ and of two 1-dimensional orbits corresponding to the 1-dimensional
faces of σ. We may assume that h factors through Y := OR≥0ε1 . The ideal
defining Y in V is ⊕m∈(σ∨\τ⊥)∩MkXm with τ := R≥0ε1. Hence, for any
m ∈ (σ∨ \ τ⊥) ∩ M , we have Xm ◦ h(t) = 0.
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Let (e1, e2) be the dual basis of (ε1, ε2). We have σ∨ = R≥0(qe1 − pe2) +

R≥0e2 and τ⊥ = Re2. By proposition 3.3, we have to find ν ∈ ◦
σ ∩N and

u ∈ HT such that

〈m, ν〉 > s, ∀m ∈ (σ∨ \ τ⊥) ∩ M

and
t〈e2,ν〉u(e2) − Xe2 ◦ h(t) ∈ (t)s+1.

Set ν2 := ordt Xe2 ◦ h(t). If s < ν2 (or ν2 = +∞), then js(h) = 0, and
we have js(h′) = 0 for any h′ ∈ H∗

ν with minm∈σ∨∩M\0 〈m, ν〉 > s. If
1 ≤ ν2 ≤ s, choose an integer ν1 > s + p

q
ν2 and set ν := ν1e1 + ν2e2.

For any m = m1e1 + m2e2 ∈ (σ∨ \ τ⊥) ∩ M , we have pm1 + qm2 ≥ 0
and m1 ≥ 1, hence 〈m, ν〉 = m1ν1 + m2ν2 ≥ m1

q
(qν1 − pν2) > s. Besides,

since ν2 ≥ 1 and qν1 − pν2 > s ≥ 0, we have ν ∈ ◦
σ. Now, Xe2 ◦ h(t)t−ν2

is a unit u2 in k[[t]]. Let u ∈ HT mapping m ∈ M to u
〈m,ε2〉
2 . Then we

have t〈e2,ν〉u(e2) = tν2u2 = Xe2 ◦ h(t), therefore the pair (ν, u) satisfies our
requirements. �

We analyze arc and jet spaces through computations involving coordi-
nates on V . Here, the T -action on V provides us with a natural system of

coordinates on V vanishing at O, namely (Xµ)
µ∈∨

G
where

∨
G is the minimal

system of generators of the semigroup σ∨ ∩ M \ 0. Recall that
∨
G consists

of the integral points on the compact edges of the boundary polygon, ∂P ,

of the convex hull P of σ∨ ∩M \ 0, and that, given µ1, µ2 in
∨
G, (µ1, µ2) is a

Z-basis of M if and only if the segment [µ1, µ2] lies in ∂P and contains no
points in M other than the vertices (see [GS1] or [O]).

The following lemma is preliminary.

Lemma 3.6 Fix ν ∈ ◦
σ ∩N and let H∗

ν := {h ∈ H∗ | νh = ν}. Suppose that

there exists µ1, µ2 in
∨
G such that (µ1, µ2) is a Z-basis of M and that, for

any µ ∈ ∨
G distinct from µ1, µ2, the inequality

(3.6.1) 〈µ, ν〉 ≥ sup
i=1,2

〈µi, ν〉

holds. Then js(H∗
ν ) is isomorphic to

{0} if s < infi=1,2〈µi, ν〉 ;

k∗ × A
s−infi=1,2〈µi,ν〉
k if 〈µ1, ν〉 
= 〈µ2, ν〉 and

infi=1,2〈µi, ν〉 ≤ s < supi=1,2〈µi, ν〉 ;

k∗2 × A
2s−〈µ1+µ2,ν〉
k if supi=1,2〈µi, ν〉 ≤ s .



588 M. Lejeune-Jalabert and A. J. Reguera

Proof: By proposition 3.3, the map HT −→ H∗
ν sending u to h given by

Xµ ◦ h(t) = t〈µ,ν〉u(µ) ∀µ ∈ ∨
G

is an isomorphism. Now, any µ ∈ ∨
G is a linear combination µ = a1µ1 + a2µ2

with ai ∈ Z. We have u(µ) =
∏

i=1,2 u(µi)
ai .

Set u(µ) =
∑

r≥0 u(µ; r)tr, u(µi) =
∑

r≥0 u(µi; r)t
r, i = 1, 2. Since

u(µ), u(µi), i = 1, 2, are units in k[[t]], for any integer r ≥ 0, u(µ; r) is
a polynomial function of u(µi; 0)−1, u(µi; 0), u(µi; 1), · · · , u(µi; r), i = 1, 2.

We have

(1) Xµ ◦ h(t) =
∑

r≥0 u(µ; r)t〈µ,ν〉+r ;

(2) Xµi ◦ h(t) =
∑

r≥0 u(µi; r)t
〈µi,ν〉+r i = 1, 2 .

For simplicity, assume that 〈µ1, ν〉 ≤ 〈µ2, ν〉. By assumption, for any

µ 
= µ1, µ2 in
∨
G, we have 〈µ2, ν〉 ≤ 〈µ, ν〉. Therefore, if 0 ≤ s < 〈µ1, ν〉, we

have js(h) = 0, while, if 〈µ1, ν〉 ≤ s < 〈µ2, ν〉, then Xµ1 ◦ h(t) is the only
component of h having a nonzero s-jet. In view of (2), this proves the first
two isomorphisms stated in the lemma.

Now, suppose that 〈µ2, ν〉 ≤ s. By (1), for 0 ≤ r ≤ s, the coefficient of tr

in Xµ◦h(t) is 0 if r < 〈µ, ν〉 and u(µ; r−〈µ, ν〉) if 〈µ, ν〉 ≤ r. In both cases, it
is a polynomial function of u(µi; 0)−1, u(µi; 0), . . . , u(µi; r − 〈µ, ν〉), i = 1, 2.
Since 〈µi, ν〉 ≤ 〈µ, ν〉, i = 1, 2, these functions give the last isomorphism in
the lemma, in view of (2). �

The next step will be to prove that Z-basis of M enjoying the inequal-

ity (3.6.1) do exist for any ν ∈ ◦
σ ∩N , and to control how they depend on ν.

To begin with, given ν ∈ ◦
σ ∩N , we are looking for the two smallest integers

occuring in the family
∨
G(ν) :={〈µ, ν〉}

µ∈∨
G
.

Note that two integers in
∨
G(ν) may coincide. We will show that the re-

sulting numerical functions on
◦
σ ∩N are piecewise linear functions, i.e. linear

functions on the cones of a fan Σ̂ which is a subdivision of σ, and that, for
each σ̂ ∈ Σ̂, the pair of linear functions on N thus obtained is a Z-basis of M
which satisfies the hypothesis of lemma 3.6 with respect to any ν ∈ σ̂ ∩ N .
We will show that, if the characteristic of k is zero, the corresponding equiv-
ariant modification π : V̂ −→ V is the minimal one which dominates the
blowing-up with center O and the Nash blowing-up1 of V .

1See appendix.
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To prove this, we first need to recall some elementary facts about blowing-
ups of monomial ideals.

(3.7) Consider an ideal A in k[V ] = k[σ∨ ∩ M ] generated by monomials
(Xm)m∈A. It is easily verified that, for any n ∈ σ, we have

ord A(n) := inf
m∈A

〈m,n〉 = inf
m∈NA

〈m,n〉 =: hNA(n)

where NA is the convex hull of ∪m∈A(m + σ∨) and hNA denotes its support
function defined by the right hand side equality.

For any nonempty face F of NA, σF := {n ∈ σ | 〈m,n〉 = hNA(n) for
any m ∈ F} is a strongly convex cone in σ, and the resulting family {σF} is
a fan ΣA which subdivides σ. The corresponding equivariant modification
πA : VA −→ V is the blowing-up with center A followed by normalization.
(See [TE, chap. I, sec. 2]). In the sequel, we will call NA (resp. ΣA) the
Newton polygon (resp. Newton fan) of A.

Note that, for any m ∈ F ∩ M , the ideal Ak[VσF
] is generated by Xm,

and that hNA coincides with the linear function m on σF . Here VσF
denotes

the affine chart of VA whose ring of functions k[VσF
] is k[σ∨

F ∩ M ]. For any
n ∈ σF , we thus have:

(3.7.1) ord A(n) := inf
m∈A

〈m,n〉 = 〈m,n〉 ∀m ∈ F ∩ M.

The above equality applied to the maximal ideal M = (Xµ)
µ∈∨

G
defining O

expresses that min
µ∈∨

G
〈µ, ν〉 is a piecewise linear function. More precisely,

we get:

Lemma 3.8 In the above notation, the following holds:

i) The Newton polygon of M is the convex hull P of σ∨ ∩ M \ 0.

ii) Let Σ′ be the Newton fan of M and let σS ∈ Σ′ as defined in (3.7)
from a vertex S of P. For any ν ∈ σS, we have

ord M(ν) := inf
µ∈∨

G

〈µ, ν〉 = 〈S, ν〉.

iii) Let π′ : V ′ −→ V be the equivariant modification corresponding to the
fan Σ′ subdivision of σ. Then π′ is the blowing-up with center O.

Note that there is no need to normalize after blowing-up here. Singular-
ities of toric surfaces are rational surface singularities and this fact follows
from [L, proposition 8.1].
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G. González-Sprinberg ([GS1]) has proved that, if k is a field of charac-
teristic 0, the Nash blowing-up of V is the blowing-up with respect to the
ideal Jl in k[V ] = k[σ∨ ∩ M ] generated by Xµ+µ′

, where µ, µ′ is running

over the set of pairs of R-linearly independent elements in
∨
G. (See appendix

for an alternative proof). In this paper, we call this ideal the logarithmic-
jacobian ideal. Note that we have ord Jl ≥ 2 ord M. By applying (3.7.1)
to JlM−1k[VσS

], we will get that the restriction of min
µ∈∨

G\S〈µ, ν〉 to σS is

a piecewise linear function. This goes as follows:

Lemma 3.9 Order the points µ0, . . . , µe+1 in the minimal generating system
∨
G in such a way that, for any i, 0 ≤ i ≤ e, the segment [µi, µi+1] lies in ∂P
and contains no points in M other that its vertices. For a vertex S labelled
µi, set S− := µi−1 if i 
= 0 and S+ := µi+1 if i 
= e + 1. Then:

i) The Newton polygon of JlM−1k[VσS
] is the convex hull PS of [S−S+]+

σ∨
S (resp. S+ +σ∨

S , S− +σ∨
S ) if S 
= µ0, µe+1 (resp. S = µ0, S = µe+1).

ii) Let ΣS be the Newton fan of JlM−1k[VσS
], and let σS∗ ∈ ΣS with

∗ = + or − as defined in (3.7). For any ν ∈ σS∗, we have

ord Jl(ν) − ord M(ν) = inf
µ∈∨

G\S
〈µ, ν〉 = 〈S∗, ν〉.

iii) Let Σ̂ be the fan subdivision of Σ′ obtained by removing σS from Σ′ and

adjoining the cones in ΣS for every vertex S of P. Let π : V̂ −→ V
be the composition of the blowing-up π′ : V ′ −→ V with center O with
the equivariant modification V̂ −→ V ′ corresponding to the subdivision
Σ̂ of Σ′. Then π is the minimal modification with V̂ normal factoring
through the blowing-up with center O and the Nash blowing-up of V .

Proof: We have Mk[VσS
] = (XS). Therefore JlM−1k[VσS

] is generated by
(Xµj+µl−S)0≤j,l≤e+1,j 
=l. Hence the ideal IS generated by (Xµ)

µ∈∨
G\S in k[VσS

]

is contained in JlM−1k[VσS
], the Newton polygon Ñ of IS is contained in

the Newton polygon N of JlM−1k[VσS
] and, for any ν ∈ σS, we have by

lemma 3.8,

inf
µ∈∨

G\S
〈µ, ν〉 ≥ inf

j 
=l
〈µj + µl − S, ν〉 = ord Jl(ν) − ord M(ν).

On the other hand, for j 
= l, either µj or µl is distinct from S = µi. Assume
j 
= i, then, by lemma 3.8 again, we get that

〈µj + µl, ν〉 ≥ 〈µj, ν〉 + 〈S, ν〉 ≥ inf
µ∈∨

G\S
〈µ, ν〉 + 〈S, ν〉.
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So, for ν ∈ σS, we have

(3.9.1) ord Jl(ν) − ord M(ν) = inf
µ∈∨

G\S
〈µ, ν〉.

By (3.7), equality (3.9.1) means that the support functions of the Newton

polygons N and Ñ coincide. Therefore, the supporting lines in the direc-
tion n to N and Ñ respectively

Ln,N (resp. Ñ ) = {m ∈ MR | 〈m,n〉 = hN (resp. Ñ )(n)}

coincide. Let Ln denote this line. To get N = Ñ , it is enough to prove that
N ⊆ Ñ . Consider a vertex Q of N and choose n in the relative interior of
σQ ∈ ΣS. We have N ∩ Ln = {Q}. But, since Ñ ⊆ N , the nonempty face

Ñ ∩ Ln of Ñ is contained in {Q}, hence it is {Q}. Therefore Q is a vertex

of Ñ and we get N ⊆ Ñ .

It remains to prove that

(3.9.2) Ñ := Conv
⋃

µ∈∨
G\S

(µ + σ∨
S ) = PS.

Assume first that S 
= µ0 and µe+1. The inclusion Ñ ⊇ PS is clear

because S−, S+ ∈ ∨
G and PS = Conv[∪∗=+,−(S∗ + σ∨

S )]. To get the opposite

inclusion, it is enough to prove that any µ ∈ ∨
G \S lies in PS. Any such µ

is a point of ∂P , hence of P . But we have P ⊆ S + σ∨
S (in fact, P is the

intersection of the family of R + σ∨
R for R running over the set of vertices

of P). Since S+σ∨
S is the union of [S−S+]+σ∨

S and the triangle with vertices

S, S−, S+, and the only points of
∨
G in this triangle are its vertices, we get

the conclusion.

Assume now that S = µ0. The inclusion Ñ ⊇ PS is again clear. As
above, we have P ⊆ S +σ∨

S . Here S +σ∨
S is the union of S+ +σ∨

S and of the
Minkowsky sum θ of the segment [S, S+] = [µ0, µ1] and of R≥0µ0. The only

points of
∨
G in θ are S and S+, hence

∨
G \S is a subset of S+ + σ∨

S = PS.
This completes the proof of i).

Now, in view of i), assertion ii) is an immediate consequence of (3.9.1),
(3.9.2) and (3.7.1) applied to the ideal IS := (Xµ)

µ∈∨
G\S in k[VσS

].

As for iii), we know by lemma 3.8, that π′ : V ′ −→ V is the blowing-
up with center M. Now, it follows from (3.7) applied to JlM−1k[VσS

]
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for every vertex S of P , that the modification V̂ −→ V ′ is the blowing-
up of V ′ with center JlM−1OV , followed by normalization. Hence, the
composition π : V̂ −→ V is the blowing-up of V with center JlM followed
by normalization, i.e. the minimal modification with V̂ normal factoring
through the blowing-up with center O and the Nash blowing-up of V in
characteristic 0. �

Since, for any vertex S of P , the pair (S, S∗) with S∗ = S− or S+ is a
Z-basis of M , and σ is covered by the family of σS∗ , lemma 3.6 combined
with lemmas 3.8 and 3.9 computes the isomorphism class of js(H∗

ν ) for every

ν ∈ ◦
σ ∩N . The last step is to exhibit the partition of js(H) by finitely many

js(H∗
ν ) that we have announced in (3.4).

This requires to introduce some additional notation.

Lemma-Definition 3.10 For any integer s ≥ 0, let

σ0(s) := {n ∈ ◦
σ| ord M(n) > s}

σ1(s) := {n ∈ ◦
σ| ord M(n) ≤ s < ord Jl(n) − ord M(n)}

σ2(s) := {n ∈ ◦
σ| ord Jl(n) − ord M(n) ≤ s}.

Then we have,

i) The family {σi(s)}0≤i≤2 is a partition of
◦
σ.

ii) σ2(s) ∩ N is a finite set (empty if s = 0).

iii) For s ≥ 1, σ1(s) is the disjoint union of σ1(s)∩ ◦
σS for S running over

the set of vertices of P.

Proof: By the definition of the logarithmic-jacobian ideal Jl, we have
ord Jl ≥ 2 ord M, hence i). The set σ2(s) is relatively compact, hence ii).

The 1-dimensional cones in Σ′ intersecting
◦
σ are the cones σF for F running

over the set of 1-dimensional compact edges of P . Pick any such F and
choose a pair (S, S+) on it. By (3.7.1), for any n ∈ σF , we have (S, n) =
(S+, n). Now σF is a face of both σS and σS+ . By lemmas 3.8 and 3.9, this
equality is equivalent to saying that ord M(n) = ord Jl(n)− ord M(n) and
implies that σF ∩ σ1(s) = ∅, hence iii). �

Note that, for s ≥ 1 and S 
= µ0, µe+1, σ1(s)∩ ◦
σS is relatively compact,

hence σ1(s)∩ ◦
σS ∩N is a finite set. This does not hold for S = µ0 or µe+1.
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Now, we may state the main result of this section.

Proposition 3.11 Let H (resp. H∗) denote the set of arcs on V going
through O (resp. whose image meets the torus).

For each h ∈ H∗, let νh denote its order form (see (3.3)). For each
integer s ≥ 0, set H∗

i (s) = {h ∈ H∗ | νh ∈ σi(s)}, 0 ≤ i ≤ 2, and for each

ν ∈ ◦
σ ∩N , set H∗

ν = {h ∈ H∗ | νh = ν}. Then,

i) For each s ≥ 0, the family {js(H∗
i (s))}0≤i≤2 is a partition of js(H).

ii) a) We have js(H∗
0 (s)) = {0}.

b) The family {js(H∗
ν )}ν∈σ1(s) is a covering of js(H∗

1 (s)) by con-
structible sets. Given ν, ν ′ ∈ σ1(s), we have js(H∗

ν )∩ js(H∗
ν′) 
= ∅

if and only if there exists a vertex S of P such that ν, ν ′ ∈ ◦
σS and

ord M(ν) = ord M(ν ′). And if this holds, then we have

js(H∗
ν ) = js(H∗

ν′) ∼= k∗ × A
s−ordM(ν)
k .

c) The family {js(H∗
ν )}ν∈σ2(s) is a partition of js(H∗

2 (s)) by con-
structible sets and, for any ν ∈ σ2(s), we have

js(H∗
ν ) ∼= k∗2 × A

2s−ord Jl(ν)
k .

Proof: By lemma 3.5, we have js(H) = js(H∗) for any s ≥ 0. Now

{σi(s)}0≤i≤2 is a covering of
◦
σ, therefore the 1-1 correspondence between H∗

and (
◦
σ ∩N) × HT shown in proposition 3.3, implies that {js(H∗

i (s))}0≤i≤2

is a covering of js(H∗).

For every h ∈ H∗, let

∨
G (h; s) := {µ ∈ ∨

G | js(Xµ ◦ h(t)) 
= 0} = {µ ∈ ∨
G | 〈µ, νh〉 ≤ s}.

Note that, if the s-jets of h, h′ ∈ H∗ coincide, then
∨
G (h; s) =

∨
G (h′; s).

Now, since the maximal ideal M defining O is generated by (Xµ)
µ∈∨

G
and

by definition ord M(ν) := inf
µ∈∨

G
〈µ, ν〉, for any h ∈ H∗, we have the five

equivalences below:

∨
G (h; s) = ∅ ⇔ js(h) = 0 ⇔ ord M(νh) > s ⇔ νh ∈ σ0(s) ⇔ h ∈ H∗

0 (s).

This proves a) in ii).
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Now suppose that
∨
G (h; s) contains a single element, say µi, with 0 ≤

i ≤ e + 1 (see lemma 3.9). We have

ord M(νh) := inf
µ∈∨

G

〈µ, νh〉 = inf
µ∈∨

G(h;s)

〈µ, νh〉 ≤ s.

By (3.7) and lemma 3.8 i), ord M is nothing but the support function hP
of the convex hull P of σ∨ ∩ M \ 0. Hence our assumption implies that the
face of P contained in the supporting line

Lνh
:= {m ∈ MR | 〈m, νh〉 = hP(νh)}

in the direction νh is the singleton {µi}. So µi is a vertex S of P and νh ∈ ◦
σS.

Moreover, by lemma 3.9 ii), we conclude that

ord Jl(νh) − ord M(νh) = inf
µ∈∨

G\S
〈µ, νh〉 > s.

Therefore, νh ∈ σ1(s) and h ∈ H∗
1 (s).

Now, consider h′ ∈ H∗ such that js(h) = js(h′). It follows from the equal-

ity
∨
G (h; s) =

∨
G (h′; s) = {S} and the above argument that νh′ ∈ ◦

σS ∩ σ1(s)
and that

js(XS ◦ h(t)) = js(XS ◦ h′(t)) 
= 0

thus
ordtX

S ◦ h(t) = 〈S, νh〉 = ordtX
S ◦ h′(t) = 〈S, νh′〉

or equivalently, by lemma 3.8, ord M(νh) = ord M(νh′).

Next suppose that
∨
G (h; s) contains at least two elements. Since νh ∈ ◦

σ,
the face F of P contained in the supporting line Lνh

is either a vertex or
a 1-dimensional compact edge of P . For any m ∈ F , we have

hP(νh) = 〈m, νh〉 = inf
µ∈∨

G

〈µ, νh〉 = inf
µ∈∨

G(h;s)

〈µ, νh〉 ≤ s.

Hence F ∩M ⊆ ∨
G (h; s) and νh ∈ σF . Choose a vertex S of F ; in particular

S ∈ ∨
G (h; s). Now our assumption implies that inf

µ∈∨
G\S〈µ, νh〉 ≤ s. Since

σF ⊆ σS, by lemma 3.9 ii) again, we have

ord Jl(νh) − ord M(νh) = inf
µ∈∨

G\S
〈µ, νh〉 = 〈S∗, νh〉 ≤ s

for a suitable value − or + of ∗. Hence νh ∈ σ2(s), i.e. h ∈ H∗
2 (s) and

S, S∗ ∈ ∨
G (h; s).
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As above, for h′ ∈ H∗ such that js(h) = js(h′), we deduce from the

equality
∨
G (h; s) =

∨
G (h′; s) that νh′ ∈ σ2(s). Moreover

∨
G (h; s) contains a

Z-basis (S, S∗) of M . For µ = S or S∗, we have

js(Xµ ◦ h(t)) = js(Xµ ◦ h′(t)) 
= 0

thus
ordt Xµ ◦ h(t) = 〈µ, νh〉 = ordtX

µ ◦ h′(t) = 〈µ, νh′〉
from which we conclude that νh = νh′ . Here the basis enjoying the hypothesis
of lemma 3.6 with respect to νh = νh′ = ν is (S, S∗). We have

〈S + S∗, ν〉 = ord M(ν) + (ord Jl(ν) − ord M(ν)) = ord Jl(ν).

In addition, since {σi(s)}0≤i≤2 is a partition of
◦
σ, the above discussion shows

that, for i = 0, 1 (resp. 2), we have νh ∈ σi(s) if and only if the set
∨
G (h; s)

has i (resp. at least i) elements. This completes the proof of i), and b), c)
in ii), except for the constructibility property of js(H∗

ν ).

By definition (see lemma 3.9) (Xµi)0≤i≤e+1 is a system of coordinates
on V which vanish at O. Recall that the set Hs of k-local homomorphisms
OV,O −→ k[[t]]/(t)s+1 is an affine subscheme of A

s(e+2)
k and that js(H) =

js(H∗) is a constructible subset of Hs. Consider ν ∈ σi(s) ∩ N , with i = 1
or 2. For any h ∈ H∗, we have js(h) ∈ js(Hν) if and only if, for i =
0, . . . , e + 1,

ordt Xµi ◦ h(t) =

{ 〈µi, ν〉 if 〈µi, ν〉 ≤ s
> s otherwise.

These conditions define a constructible subset in A
s(e+2)
k . Hence js(H∗

ν ) is
constructible. �

Corollary 3.12 Let M (resp. Jl) be the maximal ideal defining O in V
(resp. the logarithmic-jacobian ideal) and let ord M (resp. ord Jl): σ −→
Z≥0 denote the corresponding order functions as defined in (3.7).

For any integer s ≥ 0, let σi(s), i = 1, 2, be the subset of
◦
σ defined

in lemma-definition 3.10. Denote by [σ1(s) ∩ N ] (resp. [ν]) the image of
σ1(s) ∩ N (resp. ν ∈ σ1(s) ∩ N) in the quotient of σ1(s) by the equivalence

relation: n ∼ n′ if there exists a vertex S of P such that n, n′ ∈ ◦
σS and

ord M(n) = ord M(n′). Then we have

[js(H)] = 1 + (L − 1)
∑

[ν]∈[σ1(s)∩N ]

Ls−ord M(ν) + (L − 1)2
∑

ν∈σ2(s)∩N

L2s−ord Jl(ν)

in the Grothendieck group of k-varieties K0(Vk).
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4. The series

(4.1) We keep the notation of section 3. In this section, we will give an
explicit formula for

Pgeom,V(T ) :=
∑
s≥0

[js(H)]T s

in terms of the cone σ attached to V (see (3.1)). It follows from corollary 3.12
that

Pgeom,V(T ) := P0(T ) + P1(T ) + P2(T )

where

P0(T ) :=
∑
s≥0

T s =
1

1 − T

P1(T ) := (L − 1)
∑
s≥0

T s
∑

[ν]∈[σ1(s)∩N ]

Ls−ord M(ν)

P2(T ) := (L − 1)2
∑
s≥0

T s
∑

ν∈σ2(s)∩N

L2s−ord Jl(ν).

We first proceed to compute P2(T ). Recall that

σ2(s) = {ν ∈ ◦
σ | ord Jl(ν) − ord M(ν) ≤ s}.

Therefore

P2(T ) = (L − 1)2
∑

ν∈◦
σ∩N

∑
s≥ord Jl(ν)−ord M(ν)

L2s−ord Jl(ν) T s

= (L − 1)2
∑

ν∈◦
σ∩N

LordJl(ν)−2ordM(ν) T ordJl(ν)−ordM(ν)

(∑
s≥0

L2sT s

)

=
(L − 1)2

1 − L2T
N2(T )

with
N2(T ) :=

∑
ν∈◦

σ∩N

Lord Jl(ν)−2ord M(ν) T ord Jl(ν)−ord M(ν).

Let Σ̂ be the fan subdivision of Σ introduced in lemma 3.9. By the inclusion-
exclusion principle, we have

N2(T ) =
∑
σ̂∈Σ̂

(−1)dim σ̂N2,σ̂(T )

with
N2,σ̂(T ) :=

∑
ν∈σ̂∩◦

σ∩N

Lord Jl(ν)−2ord M(ν) T ord Jl(ν)−ord M(ν).
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We know by lemmas 3.8 and 3.9 that the functions ord M and ord Jl −
ord M coincide with linear forms on each σ̂ ∈ Σ̂. More precisely, for σ̂ = σS∗

as in lemma 3.9, we have

ord M(ν) = 〈S, ν〉 and ord Jl(ν) − ord M(ν) = 〈S∗, ν〉 ∀ν ∈ σS∗.

Thus, for any face τ of σS∗ , we have

N2,τ (T ) =
∑

ν∈τ∩◦
σ∩N

L〈S∗−S,ν〉 T 〈S∗,ν〉.

Since (S, S∗) is a Z-basis of M = HomZ(N, Z), the map ϕ : N −→ Z × Z

sending ν to (〈S∗ − S, ν〉, 〈S∗, ν〉) is an isomorphism.

For a vertex S of P in the relative interior of σ∨ (i. e. S 
= µ0, µe+1), we
have by definition (see again lemma 3.9)

σS∗ = {n ∈ NR | 〈S∗ − S, n〉 ≥ 0 and ∗ 〈S− − S+, n〉 ≥ 0}.
There exists an integer cS ≥ 1 such that S+ + S− = (cS + 2)S. So the cone
σS∗ is mapped by ϕ to the cone

ρS = {(α1, α2) ∈ R × R / α1 ≥ 0, cSα2 − (cS + 2)α1 ≥ 0}
= R≥0(cS, cS + 2) + R≥0(0, 1)

and
N2,σS∗ (T ) =

∑
(α1,α2)∈ρS∩Z2

Lα1T α2 − 1.

The primitive vector on R≥0(cS, cS + 2) is (qS, qS + pS) with qS = cS, pS = 2
if cS is odd, qS = cS

2
, pS = 1 if cS is even. It is easily verified that

N2,σS∗ (T ) =
PS(L, T )

(1 − T )(1 − LqST qS+pS)
− 1

where
PS(L, T ) :=

∑
ΠS∩Z2

Lα1T α2

and
ΠS := {λ1(qS, qS + pS) + λ2(0, 1) | 0 ≤ λi < 1, i = 1, 2}

i. e.

PS(L, T ) =
∑

0≤α<qS

LαT
�α(qS+pS)

qS
�

where �α(qS+pS)
qS

� denotes the least integer greater than or equal to α(qS+pS)
qS

.
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We also get that

N2,τ (T ) =
LqST qS+pS

(1 − LqST qS+pS )

(
resp.

T

(1 − T )

)

if τ is the 1-dimensional face of σS∗ in Σ̂ \ Σ′ (resp. in Σ′).
For S = µ0, µe+1, we have:

σS∗ = {n ∈ NR | 〈S∗ − S, n〉 ≥ 0 and 〈S, n〉 ≥ 0}.
Here the cone σS∗ is mapped by ϕ onto the cone

ρ = {(α1, α2) ∈ R × R | α1 ≥ 0, α2 − α1 ≥ 0}
= R≥0(1, 1) + R≥0(0, 1)

and

N2,σS∗ (T ) =
∑

(α1,α2)∈ρ∩Z2

Lα1T α2 −
∑

(α1,α2)∈R≥0(1,1)∩Z2

Lα1T α2

=
1

(1 − T )(1 − LT )
− 1

(1 − LT )
=

T

(1 − T )(1 − LT )
.

Summing up, this gives

N2(T ) =
T (1 + LT )

(1 − T )(1 − LT )

+
∑
S∈S

(
2 PS(L, T )

(1 − T )(1 − LqST qS+pS)
− 1

1 − T
− 1

1 − LqST qS+pS

)

where S is the set of vertices of the convex hull P of σ∨∩M \0 in the relative
interior of σ∨.

We now compute P1(T ). Recall that σ1(0) = ∅ and that, for s ≥ 1,

σ1(s) is the disjoint union of σ1(s)∩ ◦
σS for S running over the set of ver-

tices of P . Moreover, the quotient space [σ1(s) ∩ N ] is the disjoint union of[
σ1(s)∩ ◦

σS ∩N
]

for S ∈ S, and, for n, n′ ∈ σ1(s)∩ ◦
σS, we have [n] = [n′] if

and only if ord M(n) = 〈S, n〉 = ord M(n′) = 〈S, n′〉.

Lemma 4.2 Let (r, s) be a pair of nonnegative integers. For S ∈ S (resp.
S ∈ ∂σ∨), the following conditions are equivalent:

i) There exists ν ∈ σ1(s)∩ ◦
σS ∩N such that 〈S, ν〉 = s − r.

ii) (r + 1, s + 1) ∈ ρS = R≥0(qs, qS + pS) + R≥0(0, 1) (resp. (r, s) ∈
ρ \ R≥0(1, 1) = R>0(1, 1) + R≥0(0, 1)).
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Proof: Assume that S ∈ S. It follows from the definition of Σ̂ (see
lemma 3.9), from lemma-definition 3.10 and from the explicit description of
σS∗ by inequalities given above that

σ1(s) ∩ ◦
σS=

⋃
∗∈{+,−}

(σ1(s) ∩ σ∗
S)

=
⋃

∗=+,−
{n ∈ NR | 〈S, n〉 ≤ s < 〈S∗, n〉, ∗〈S− − S+, n〉 ≥ 0}

=
⋃

∗=+,−
{n ∈ NR | 〈S, n〉 ≤ s < 〈S∗, n〉, (cS + 2)〈S, n〉 ≥ 2〈S∗, n〉}.

Since (S, S∗) is a Z-basis of M = HomZ(N, Z), condition i) holds if and only
if there exists q ∈ Z such that

s < q and (cS + 2)(s − r) − 2q ≥ 0

or equivalently
2(s + 1) ≤ (cS + 2)(s − r)

i.e.
cS(s + 1) − (cS + 2)(r + 1) ≥ 0

or
qS(s + 1) − (qS + pS)(r + 1) ≥ 0.

Since r ≥ 0, the above inequality is equivalent to condition ii).

For S on ∂σ∨, we have σS = σ∗
S with ∗ = + (resp. −) if S = µ0 (resp.

µe+1) (see again lemma 3.9). Hence

σ1(s)∩ ◦
σS= {n ∈ NR | 〈S, n〉 ≤ s < 〈S∗, n〉, 〈S, n〉 > 0}.

For (r, s) ∈ Z≥0 × Z≥0, condition i) holds if and only if s > r, i.e. (r, s) ∈
ρ \ R≥0(1, 1). �

It follows immediately from lemma 4.2 that

P1(T ) = (L − 1)

(
2P1,ρ +

∑
S∈S

P1,ρS

)

with

P1,ρ :=
∑

(r,s)∈ρ∩Z2

LrT s −
∑

(r,s)∈Z≥0(1,1)

LrT s

=
1

(1 − T )(1 − LT )
− 1

1 − LT
=

T

1 − LT
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and

P1,ρS
:= L−1T−1

( ∑
(r,s)∈ρS∩Z2

LrT s −
∑

s∈Z≥0

T s

)

=
L−1T−1

1 − T

(
PS(L, T )

1 − LqST qS+pS
− 1

)
.

To eliminate artificial poles in L, T we use the identity:

(4.2.1)
PS(L, T )

(1 − T )(1 − LqST qS+pS)
+

QS(L, T )

(1 − L)(1 − LqST qS+pS )
=

=
1

(1 − T )(1 − L)
+

1

(1 − LqST qS+pS)

where
QS(L, T ) :=

∑
(r,s)∈ΞS∩Z2

LrT s

and
ΞS := {λ1(qS, qS + pS) + λ2(1, 0) | 0 ≤ λi < 1, i = 1, 2}

i.e.
QS(L, T ) =

∑
0≤r<qS+pS

L
� rqS

qS+pS
�

T r.

We get that

(L − 1)P1,ρS
=

L−1T−1(QS − 1 + LqS+1T qS+pS )

1 − LqST qS+pS
− 1

1 − T
.

Note that

(4.2.2) Q′
S := QS − 1 + LqS+1T qS+pS =

∑
(r,s)∈Ξ′

S∩Z2

LrT s

with
Ξ′

S = {λ1(qS, qS + pS) + λ2(1, 0) | 0 < λi ≤ 1, i = 1, 2}
and that

(4.2.3) RS := L−1T−1Q′
S =

∑
0≤r<pS+qS

L
� (r+1)qS

qS+pS
�
T r

where � (r+1)qS

qS+pS
� denotes the greatest integer less than or equal to (r+1)qS

qS+pS
.

Finally, we get

P1(T ) =
2(L − 1)T

(1 − T )(1 − LT )
+

∑
S∈S

(
RS(L, T )

1 − LqST qS+pS
− 1

1 − T

)
.
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Now, it is easily checked from the above computations that

Pgeom (T ) = P0(T ) + P1(T ) + P2(T ) =
1

1 − L2T

+
(L − 1)2

1 − L2T

∑
S∈S

(
2PS(L, T )

(1 − T )(1 − LqST qs+pS)
− 1

1 − T
− 1

1 − LqST qS+pS

)

+
∑
S∈S

(
RS(L, T )

1 − LqST qS+pS
− 1

1 − T

)
.

(4.3) A natural question arises: What are the actual poles of Pgeom(T )? Let
us consider 1 − T first. We have

Pgeom(T ) =
1

1 − L2T
− (L − 1)2

1 − L2T

∑
S∈S

1

1 − LqST qS+pS
+

∑
S∈S

RS

1 − LqST qs+pS

+
1

(1−T )(1−L2T )

∑
S∈S

(
2(L − 1) [(L − 1)PS + 1 − LqST qS+pS ]

1 − LqST qS+pS
− L2(1−T )

)

But the identity (4.2.1) is equivalent to

(4.2.1)′ (L − 1)PS + 1 − LqST qS+pS = (1 − T )(QS + L − 1) .

Therefore 1 − T is not a pole of Pgeom(T ).

More precisely, we get

Pgeom(T ) =
1

1 − L2T
+

∑
S∈S

2(L − 1)QS + (L − 1)2 − L2(1 − LqST qS+pS)

(1 − L2T )(1 − LqST qS+pS )

+
∑
S∈S

RS

1 − LqST qS+pS
.

Finally, using (4.2.2) and (4.2.3), we obtain

(4.3.1) Pgeom(T ) =
1

1 − L2T
+

∑
S∈S

(L − 1)(QS − 1) + (RS − QS)

(1 − L2T )(1 − LqST qS+pS)
.

Note that

(4.3.2) QS = RS =
∑

0≤r≤qS

LrT r if pS = 1

and

(4.3.3)

QS =
∑

0≤r≤� qS
2
�
LrT r +

∑
� qS

2
�<r≤qS+1

Lr−1T r

RS =
∑

0≤r<� qS
2
�
LrT r +

∑
� qS

2
�≤r≤qS+1

Lr−1T r if pS = 2,
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hence

(4.3.4) RS − QS = −(L − 1)L� qS
2
�T � qS

2
� if pS = 2.

In both cases L − 1 factors RS − QS.

It is immediately seen on the expression (4.3.1) that 1 − LqST qS+pS is a
pole of Pgeom(T ) for every S ∈ S. Indeed, Z[L, T ] is a unique factorization
domain and, since qS and qS + pS are relatively prime, 1 − LqST qS+pS is
irreducible. This polynomial of degree qS + pS with respect to T may not
be a divisor of (L − 1)(QS − 1) + (RS − QS), which has degree qS + pS − 1
with respect to T .

As for 1 − L2T , it follows from [D-L1, theorem 7.1], that Pgeom(T )(1 −
L2T ) evaluated at T = L−2 is the motivic volume µ(H) which is nonzero.
So, 1 − L2T is a simple pole. Here these facts are easily verified as follows:
In view of [D-L1, (3.2.2)-(3.2.3)], we have

µ(H) = µ(H∗) =
∑

ν∈◦
σ∩N

µ(H∗
ν )

by proposition 3.3. Proposition 3.11 ii) c) expresses that H∗
ν is stable at

level ord Jl(ν) − ord M(ν) and that

µ(H∗
ν ) = (L − 1)2L−ord Jl(ν)

(definitions are given in [D-L1, (2.4), (2.7) and (3.1)]). Note that here
we adopt Loojenga’s definition ([Lo, p. 04]), i. e. we multiply Denef-Loeser
measure by L2. Now 1 − L2T does not appear among the poles of P1(T )
and P0(T ). Hence, using the notation of (4.1) we have

Pgeom(T )(1 − L2T )|T=L−2 = (L − 1)2N2(L
−2)

= (L − 1)2
∑

ν∈◦
σ∩N

L−ord Jl(ν) = µ(H).

We conclude from (4.3.1), (4.3.2) and (4.3.3) that

(4.3.5) µ(H) = 1 + (L − 1)
∑
S∈S

MS(L)

LqS+2pS − 1

with

(4.3.6) MS(L) =

{
L2 + · · · + LqS+1 if pS = 1

L2 + · · · + LqS+3 − 2L2+
qS+1

2 if pS = 2.



The Denef-Loeser series for toric surface singularities 603

(4.4) The set S and the integers pS, pS + qS, for S ∈ S, introduced in (4.1),
which occur in the formulas (4.3.1) and (4.3.5) for Pgeom(T ) and µ(H)
respectively have the following geometric significance: It follows from (3.7),
lemma 3.8 and (3.1) iii), that the 0-dimensional orbits on the blowing-up
V ′ of V with center O are the points OσS

=: OS for S running over the
set of vertices of P . It also follows from the same arguments that the
1-dimensional orbits on V ′ contracted to O are the OσF

for F running over
the set of compact 1-dimensional edges of P . Hence the point OS lies on two
irreducible components of the exceptional curve E on V ′ if and only if S lies
in the relative interior of σ∨, i.e. S ∈ S. Therefore, the map from S to the
singular locus Sing E of E which sends S to OS is a 1-1 correspondence.

Now, for S∈S, V ′ has a rational double point of type AcS−1 with cS = 2qS

pS

(resp. is non singular) at OS if (pS, qS) 
= (2, 1) (resp. (pS, qS) = (2, 1)).
To see that, it is enough to verify that, in a suitable basis of N , σS =
R≥0(1, 0) + R≥0(1, cS). Recall that, by definition,

σS = {n ∈ NR | 〈S∗ − S, n〉 ≥ 0 for ∗ = +,−}
and that S+ + S− = (cS + 2)S. Thus

σS = {n ∈ NR | cS〈S, n〉 − 〈S+ − S, n〉 ≥ 0, 〈S+ − S, n〉 ≥ 0}
and the dual basis of the Z-basis (S, S+−S) of M enjoys the desired property.
Note that the set {cS}S∈S , or equivalently the set of pairs {(pS, qS)}S∈S ,

endowed with the order induced by the order on
∨
G defined in lemma 3.9,

may be computed directly from the cone σ attached to V as follows: We may
assume that σ = R≥0(1, 0)+R≥0(p, q) where p, q are relatively prime integers
satisfying 0 < p < q. Consider the continued fraction expansion

q

p
= c̃1 − 1

c̃2 − 1
. . . − 1

c̃e

with c̃i ≥ 2 for 1 ≤ i ≤ e. Then, the {cS} is the sequence obtained by remov-
ing the zeros in the sequence {c̃i − 2}1≤i≤e by a result of Riemenschneider
(see [O, lemma 1.22, corollary 1.23]).

The Nash blowing-up of V has played a crucial rôle in the analysis of
[js(H)] in section 3. Here is another consequence of lemma 3.9 that we

have not yet written down explicitly: Let V̂ denote the normal surface
which dominates minimally the blowing-up V ′ of V with center O and its
Nash blowing-up, as in lemma 3.9. For every S ∈ S, the inverse image of



604 M. Lejeune-Jalabert and A. J. Reguera

OS ∈ V ′ on V̂ is an irreducible curve ÊS = Oσ[S−S+]
and no other curve

on V̂ than the ÊS, S ∈ S, is contracted to a point of V ′. In particular,
Sing E coincides with the set of base points of JlOV ′ (i.e. the points of V ′

at which JlOV ′ is not invertible). We will now show that the integers qS,

qS + pS are the vanishing orders of suitable ideal sheaves on V̂ along ÊS.
We have seen in (4.1) that the isomorphism ϕ : N −→ Z × Z sending n to
(〈S∗ − S, n〉, 〈S∗, n〉) maps σ[S−S+] to R≥0(qS, qS + pS). This means that the
primitive vector νS on σ[S−S+] satisfies the linear system

qS = 〈S∗ − S, νS〉, qS + pS = 〈S∗, νS〉.

Now, for any m ∈ M , the order of the zero or of the pole of Xm along ÊS is
〈m, νS〉. Since by (3.7) and lemmas 3.8 and 3.9, MOV̂ (resp. Jl.M−1OV̂ )

is generated by XS (resp. XS∗
) on the affine open set V̂σS∗ of V̂ , which

contains ÊS \ (OS+ ∪ OS−), we have

〈S, νS〉 = ordÊS
MOV̂ = pS

〈S∗, νS〉 = ordÊS
JlOV̂ − ordÊS

MOV̂ = qS + pS

〈S∗ + S, νS〉 = ordÊS
JlOV̂ = qS + 2pS

〈S∗ − S, νS〉 = 2
(
ordÊS

JlOV̂ − ordÊS
MOV̂

)
− ordÊS

JlOV̂ = qS

Also note that h ∈ H∗
νS

if and only if its strict transform on V̂ is smooth

and intersects transversally ÊS at a point distinct from OS+ and OS−, and
that qS + pS is the minimal level of stability of H∗

νS
.

We now bring together and summarize the results in section 4.

Theorem 4.5 Let V be an affine normal toric surface with a 0-dimensional
closed orbit O, and let H denote the set of arcs on V going through O.
Let N be the lattice of one-parameter subgroups on the torus T , and let σ be
the 2-dimensional strongly convex cone in NR := N ⊗Z R generated by the
one-parameter subgroups on T having a limit in V for t → 0.

Choose a Z-basis ε1, ε2 of N such that σ = R≥0ε1 + R≥0(pε1 + qε2) for
relatively prime integers p, q with 0 ≤ p < q, and, if p 
= 0, write the
continued fraction expansion

q

p
= c̃1 − 1

c̃2 − 1
. . . − 1

c̃e
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with c̃i ≥ 2, 1 ≤ i ≤ e. Denote by S the set of those i, 1 ≤ i ≤ e, such that
ci := c̃i − 2 
= 0 (resp. ∅) for p 
= 0 (resp. p = 0) and, for each i ∈ S, let
pi, qi be relatively prime integers such that ci/2 = qi/pi. Then

Pgeom(T ) :=
∑
s≥0

[js(H)]T s =

=
1

1 − L2T
+ (L − 1)

∑
i∈S

◦
Qi −

(
� qi

pi
� − � qi

pi
�
)

L
� qi

pi
�
T

� qi
pi

�

(1 − L2T )(1 − LqiT qi+pi)

where

◦
Qi:=

∑
(a,b)∈◦

Ξi∩Z2

LaT b with
◦
Ξi= {λ1(qi, qi + pi) + λ2(1, 0) | 0 < λi < 1}

Let π′ : V ′ −→ V be the blowing-up with center O, and let E = π−1(O)
be the exceptional curve on V ′. Then, there is a one to one correspondence
i �→ Oi from S to Sing E such that V ′ has a rational double point of type
Aci−1 (resp. is non singular) at Oi for (pi, qi) 
= (2, 1) (resp. = (2, 1)).

Let Jl denote the logarithmic-jacobian ideal in k[V ] (see appendix), and

let π̂ : V̂ −→ V ′ be the blowing-up with center JlOV ′ followed by normaliza-
tion. Then Sing E coincides with the set of base points of JlOV ′. Moreover,
for each i ∈ S, π̂−1(Oi) is an irreducible curve Êi

∼= P1
k, and we have

ordÊi
MOV̂ = pi, νi := ordÊi

JlOV̂ = qi + 2pi

Remark: The above formula for Pgeom(T ) holds in K0(Vk)[[T ]].

Corollary 4.6 For normal toric surface singularities as above, Pgeom(T )
has only simple poles.

Corollary 4.7 Assume k = C and let Mk denote the image of Mk in

the Kontsevich’s completion M̂k. Let χ : Mk

[(
L−1
Lj−1

)
j≥1

]
−→ Q be the

extension of the topological Euler characteristic (see [D-L1] sections 1 and
6). In the notation of theorem 4.5, we have

χ(µ(H)) = 1 +
∑
i∈S

qi

qi + 2pi

Proof: Recall that, by definition, χ
(

L−1
Lj−1

)
= 1

j
. The assertion follows

immediately from formula (4.3.5) for the motivic volume. �
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Corollary 4.8 Let V (j), j = 1, 2, be affine normal toric surfaces with
0-dimensional closed orbits and let P

(j)
geom(T ), j = 1, 2 be the correspond-

ing series. The following conditions are equivalent:

i) P
(1)
geom(T ) = P

(2)
geom(T ).

ii) Let S(j) −→ Z≥1, i �→ c
(j)
i , j = 1, 2, be the sequence of positive integers

obtained from the continued fraction expansion process as explained in
theorem 4.5. There exists a bijective map ω : S(1) −→ S(2) such that
c
(1)
i = c

(2)
ω(i) for any i ∈ S(1).

iii) Let V (j)′ −→ V (j) be the blowing-up with center the maximal ideal M(j)

defining the closed orbit on V (j), and let E(j) denote the exceptional
curve on V (j)′, j = 1, 2. There exists a bijective map from the singular
locus of E(1) to the singular locus of E(2), O

(1)
i �→ O

(2)
ω(i), such that,

for any O
(1)
i ∈ Sing E(1), the germs (V (1)′, O(1)

i ) and (V (2)′, O(2)
ω(i)) are

analytically isomorphic.

iv) Let J (j)
l denote the logarithmic-jacobian ideal on V (j), and let Ê(j) de-

note the exceptional curve of the blowing-up V̂ (j) −→ V (j)′ with center
J (j)

l OV (j)′, j = 1, 2. There exists a bijective map from the set of irre-

ducible components of Ê(1) to the set of irreducible components of Ê(2),
Ê

(1)
i �→ Ê

(2)
ω(i), such that, for any irreducible component Ê

(1)
i of Ê(1),

ord
Ê

(1)
i

(M(1)O
V̂ (1)) = ord

Ê
(2)
ω(i)

(M(2)O
V̂ (2))

and
ord

Ê
(1)
i

(J (1)
l O

V̂ (2)) = ord
Ê

(1)
ω(i)

(J (1)
l O

V̂ (1)).

Proof: The equivalences ii) ⇐⇒ iii) ⇐⇒ iv) follow from the discussion
in (4.4) and they imply i) by theorem 4.5.

Now suppose that i) holds. The poles of P
(j)
geom(T ) are in 1-1 correspon-

dence with the image of S(j) in Z≥1, namely the set {c(j)
i | i ∈ S(j)}. Let

Bi = 1 − LqiT qi+pi , 1 ≤ i ≤ τ , be the poles of P = P
(j)
geom(T ), j = 1, 2. Since

every Bi is irreducible, there is only one way to write [(1 − L2T )P − 1] (L−
1)−1 as a sum

∑
1≤i≤τ Ai/Bi with Ai ∈ Z[L, T ] of degree < pi + qi with

respect to T . Hence the multiplicity of ci = 2qi/pi in the image of S(j),
j = 1, 2, is Ai(1, 1)/qi and ii) holds. �
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Here is another immediate consequence of theorem 4.5.

Corollary 4.9 In the notation of theorem 4.5, the following conditions are
equivalent:

i) Pgeom(T ) = 1
1−L2T

.

ii) There exists an integer q ≥ 1 and a Z-basis ε1, ε2 of N such that
σ = R≥0ε1 + R≥0((q − 1)ε1 + qε2).

iii) The exceptional curve E of V ′ is irreducible (equivalently nonsingular).

iv) JlOV ′ has no base points.

If these conditions hold, then V ′ is nonsingular and −E2 (or equivalently,
the multiplicity of V at O) is the integer q of ii).

Therefore, toric surface singularities may share the same Pgeom(T ) with-
out being analytically isomorphic. Here is another example.

Example: Let (ε1, ε2) be the canonical basis of N ∼= Z2, and let σ1 =
R≥0ε1 + R≥0(ε1 + 3ε2). The continued fraction expansion of 3/1 as in the-
orem 4.5 is reduced to c̃1 = 3, hence c1 = 1, p1 = 2 and q1 = 1. Let now
σ2 = R≥0ε1 + R≥0(3ε1 + 5ε2). The continued fraction expansion of 5/3 is
5/3 = 2 − 1/3. Here we have c̃1 = 2, c̃2 = 3, hence c1 = 0 and c2 = 1.

By theorem 4.5, we have

Pgeom(T ) =
1

1 − L2T
+ (L − 1)

[(L − 1)T + LT 2]

(1 − L2T )(1 − LT 3)

for the surface V (1) given by σ1 as well as for V (2) given by σ2. The minimal
desingularization of both surfaces is obtained by blowing up the singular
point, and the exceptional curve consists of 2 projective lines intersecting at
a base point of the inverse image of the logarithmic-jacobian. The singularity
of V (1) is a rational double point of type A2, whose weighted dual graph is
shown in Fig. 1. The singularity of V (2) is a rational triple point whose
weighted dual graph is shown in Fig. 2.

�

−2
�

−2

Fig. 1

�

−2
�

−3

Fig. 2

Remark: These examples show that neither the weighted dual graph nor
the multiplicity of a normal surface singularity can be read off Pgeom(T ).
However, the argument in the proof of corollary 4.8 shows that, if O is
a singular point of a normal toric surface singularity, one can recover the
number of irreducible exceptional curves on its minimal desingularization
(or equivalently here, the dual graph) from Pgeom(T ).
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(4.10) Theorem 4.5 and its corollaries suggest several questions:

Question 1: The singularities of toric varieties are rational singularities (see
[TE, chap. I.3], [O, cor. 3.9]). Following Abhyankar, a surface singularity is
called quasirational if “only rational curves can come out of the singularity
of the surface, no matter how we blow it up birationally” ([A, p. 267]).
A rational surface singularity is quasirational. Is it true that, for any rational
(resp. quasirational) surface singularity, the series Pgeom(T ) is a rational
function with numerator (and denominator) in Z[L][T ]? If the answer is
yes, does this property characterize rational (resp. quasirational) surface
singularities?

Question 2: The series Pgeom(T ), hence the motivic volume µ(H), for a
toric surface singularity (V,O) only depend on the blowing-up with center O
and the Nash blowing-up of V . This shows in particular that not every
exceptional irreducible curve on a desingularization of V dominating its
Nash blowing-up as in [D-L1, proposition 6.3.2], gives rise to an actual pole
of µ(H). Does the same hold for normal surface singularities, for isolated
singularities of normal algebraic varieties of any dimension?

Question 3: Denef and Loeser have introduced another series Par(T ) in
[D-L2]. Is it true that Pgeom(T ) = Par(T ) for toric surface singularities?
It would also be interesting to compare these series with J(T ) =

∑
s≥0[Hs]T

s

where Hs is the set of k-local homomorphisms OV,O −→ k[[t]]/(t)s+1 and
[Hs] denotes the image of its reduced underlying variety in Mk.

Question 4: Compute Pgeom(T ) for a normal toric variety of dimension ≥ 3.

A. Appendix. Toric varieties and Nash blowing-up

Let V be an affine normal toric variety over an algebraically closed field
k of characteristic zero. González-Sprinberg has exhibited an ideal of its
ring of regular functions k[V ] whose blowing-up is the Nash blowing-up
of V ([GS1]). We give an alternative proof of his result using differential
forms with logarithmic poles along the lines of [P, section 4].

Let X be an algebraic variety, reduced and irreducible over the alge-
braically closed field k of characteristic zero. Recall that a proper birational
map π : X̃ −→ X is called a Nash blowing-up of X if π∗Ω1

X/torsion is
a locally free OX̃-module and if it has the following universal property:

if π′ : X̃ ′ −→ X is a proper birational map such that π′∗Ω1
X/torsion is a

locally free OX̃′-module, then there exists a unique morphism π̃ : X̃ ′ −→ X̃
with π ◦ π̃ = π′. Here Ω1

X is the sheaf of Kähler differentials of X over k.
The universal property characterizes the Nash blowing-up of X up to iso-
morphism.
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On our affine toric variety V as above, there exists a distinguished
T -stable Weil divisor D, namely the sum of all codimension one T -orbit
closures. Let M denote the lattice of exponents of monomials on the torus
T ∼= (k∗)d inside V . The Kähler module of differentials Ω1

k[T ]/k is canonically

isomorphic to k[T ] ⊗Z M via the map dxm

xm �→ 1 ⊗ m, for any m ∈ M . For
p = 0, . . . , d, the sheaf of germs of p-forms with logarithmic poles along D,
denoted Ωp

V (log D), is canonically isomorphic to OV ⊗Z ∧pM , and there
exists a canonical OV -homomorphism

(A.1) Ωp
V −→ Ωp

V (log D) = OV ⊗Z ∧pM

which maps XmdXm1 ∧ . . .∧ dXmp to Xm+m1+...+mp ⊗ (m1 ∧ . . .∧mp). Here
Xm, Xm1 , . . . , Xmp are global sections of OV , or equivalently m,m1, . . . ,mp∈
σ∨ ∩ M with V = Vσ (see [O, chapter 3]).

We define the logarithmic-jacobian ideal Jl of V to be the image of the
Kähler module of differentials Ωd

k[V ]/k in k[V ], identified with k[V ]⊗Z ∧dM .

In view of (1), Jl is the ideal generated by Xµi1
+...+µid , i1 < . . . < id,

where µi1 , . . . , µid is running over the set of d-uples of R-linearly independent

elements in the minimal generating system
∨
G= (µi)i∈I of σ∨ ∩ M . This is

precisely the ideal introduced in [GS1, section 2].

Proposition A.1 Let V be an affine normal toric variety over an alge-
braically closed field k of characteristic zero. The blowing-up of V with
center its logarithmic-jacobian is the Nash blowing-up of V .

The proof of the proposition uses the following observation:

Lemma A.2 Let p be a positive integer. Let A be an integral domain with
quotient field K, let M be an A-module and let ϕ : M −→ Ap be an A-linear
map such that ϕ⊗ 1 : M ⊗A K −→ Kp is an isomorphism. Then ϕ induces
an isomorphism from M/torsion to the image of ϕ.

Proof: The claim is equivalent to saying that the torsion submodule of M ,
namely the set of those m ∈ M with a nonzero annihilator f ∈ A is the
kernel of ϕ, which is obvious. �
Proof of the proposition: Let π : Ṽ −→ V denote the blowing-up with
center Jl. It follows from the above lemma applied locally at each point of Ṽ
that π∗Ω1

V /torsion is isomorphic to the image Ω̃1 of π∗Ω1
V by the canonical

map
π∗Ω1

V −→ π∗Ω1
V (log D) = OṼ ⊗Z M

induced by (1).
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Let Ṽi1,...,id denote the affine open set of Ṽ on which the restriction of
JlOṼ is generated by Xµi1

+...+µid . Since µi1 , . . . , µid are R-linearly indepen-

dent elements in Zd, for any µ ∈ ∨
G, there exist aij ∈ Z, 1 ≤ j ≤ d, such

that

det(µi1 , . . . , µid) µ =
d∑

j=1

aijµij

Moreover, since aij is equal to µ ∧ µi1 ∧ . . . ∧ µ̂ij ∧ . . . ∧ µid up to sign, we
have aij 
= 0 if and only if µ, µi1 , . . . , µ̂ij , . . . , µid are R-linearly independent.
Here µ̂ij means that µij is omitted in the list.

By definition, the image of dXµ is Xµ ⊗ µ. Since δ := det(µi1 , . . . , µid)
is a nonzero integer, and k is a field of characteristic zero, we have

Xµ ⊗ µ = 1
δ
Xµ ⊗ δµ =

1

δ
Xµ ⊗

∑
j

aijµij

=
∑

j

aij

δ
Xµ ⊗ µij =

∑
j

aij

δ
Xµ−µij (Xµij ⊗ µij)

Now, if aij 
= 0, the monomial Xµ+µi1
+...+µ̂ij

+...+µid belongs to Jl. This

monomial is equal to Xµ−µij Xµi1
+...+µid , therefore Xµ−µij is a section of OṼ

on Ṽi1,...,id . This shows that, for any x ∈ Ṽi1,...,id (closed or not), the stalk Ω̃1
x

is the image of the OṼ ,x-homomorphism

ϕi1,...,id : OṼ ,x ⊗Z M −→ OṼ ,x ⊗Z M

which maps 1⊗ ej to Xµij ⊗ µij , 1 ≤ j ≤ d. Here e1, . . . , ed is the canonical
basis of M ∼= Zd.

Taking the d-th exterior power, we get a commutative diagram

OṼ ,x ⊗Z ∧dM OṼ ,x ⊗Z ∧dM

∧dΩ̃1
x

��������������

�

By definition, we have

∧dϕi1,...,id(1 ⊗ (e1 ∧ . . . ∧ ed)) = Xµi1
+...+µid ⊗ (µi1 ∧ . . . ∧ µid)

so ∧dϕi1,...,id induces an isomorphism of OṼ ,x ⊗Z ∧dM with its image

JlOṼ ,x ⊗Z ∧dM .

In addition, this shows that the map OṼ ,x ⊗Z ∧dM −→ ∧dΩ̃1
x is injective.

Since it is also surjective, we conclude that ∧dΩ̃1 is an invertible OṼ -module
canonically isomorphic to JlOṼ ⊗Z ∧dM .
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This implies that Ω̃1 is a locally free OṼ -module of rank d. Indeed, for

any x ∈ Ṽ , we have dimk(x) ∧d
(
Ω̃1

x ⊗ k(x)
)

= dimk(x)

(
∧dΩ̃1

x

)
⊗ k(x) = 1,

where k(x) denotes the residue field of Ṽ at x. Therefore, for any x ∈ Ṽ , we

have dimk(x)

(
Ω̃1

x ⊗ k(x)
)

= d which is known to be equivalent to the claim.

Also note that

(2) ∧d
(
π∗Ω1

V /torsion
)

= π∗Ωd
V /torsion

Indeed, we already know that the OṼ -modules ∧d (π∗Ω1
V /torsion), ∧dΩ̃1 and

JlOṼ ⊗ ∧dM are canonically isomorphic. Now recall that, by definition,
Jl ⊗Z ∧dM is the image of the map Ωd

V −→ OV ⊗Z ∧dM in (1). Therefore
JlOṼ ⊗∧dM is the image of the induced map π∗Ωd

V −→ OṼ ⊗Z ∧dM . But,
by lemma A.2 again, this map induces an isomorphism of π∗Ωd

V /torsion with
its image JlOṼ ⊗ ∧dM . The canonical isomorphism between the modules
in (2) thus obtained coincides with the identity over the inverse image of the
regular locus of V , hence equality (2).

It only remains to prove that π satisfies the universal property. Suppose
that ϕ : W −→ V is a proper birational map such that ϕ∗Ω1

V /torsion is
locally free. Since Ω1

V is generically locally free of rank d, our hypothesis
implies that ∧d (ϕ∗Ω1

V /torsion) is invertible. Now the map

ϕ∗Ωd
V −→ ∧d

(
ϕ∗Ω1

V /torsion
)

is surjective, so we deduce from lemma A.2 that ϕ∗Ωd
V /torsion is invertible.

On the other hand, Jl ⊗Z ∧dM is the image of the map Ωd
V −→ OV ⊗Z

∧dM , thus JlOW ⊗Z ∧dM is the image of the map ϕ∗Ωd
V −→ OW ⊗Z ∧dM ,

hence this module is canonically isomorphic to ϕ∗Ωd
V /torsion. This shows

that JlOW is invertible and we get our factorization by the universal prop-
erty of blowing-up. �
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