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An Application of Algebraic
Geometry to Encryption:

Tame Transformation Method

T. Moh

Abstract

Let K be a finite field of 2� elements. Let φ4, φ3, φ2, φ1 be tame
mappings of the n+ r-dimensional affine space Kn+r. Let the com-
position φ4φ3φ2φ1 be π. The mapping π and the φi’s will be hid-
den. Let the component expression of π be (π1(x1, . . . , xn+r), . . .
πn+r(x1, . . . , xn+r)). Let the restriction of π to a subspace be π̂ as π̂ =
(π1(x1, ..., xn, 0, ..., 0), . . . , πn+r(x1, . . . , xn, 0, . . . , 0))= (f1, . . . , fn+r) :
Kn �→ Kn+r. The field K and the polynomial map (f1, . . . , fn+r) will
be announced as the public key. Given a plaintext (x′

1, . . . , x
′
n) ∈ Kn,

let y′i = fi(x′
1, . . . , x

′
n), then the ciphertext will be (y′1, . . . , y′n+r) ∈

Kn+r. Given φi and (y′1, . . . , y′n+r), it is easy to find φ−1
i (y′1, . . . , y′n+r).

Therefore the plaintext can be recovered by (x′
1, . . . , x

′
n, 0, . . . , 0) =

φ−1
1 φ−1

2 φ−1
3 φ−1

4 π̂ (x′
1, . . . , x

′
n) = φ−1

1 φ−1
2 φ−1

3 φ−1
4 (y′1, . . . , y′n+r). The

private key will be the set of maps {φ1, φ2, φ3, φ4}. The security
of the system rests in part on the difficulty of finding the map π from
the partial informations provided by the map π̂ and the factorization
of the map π into a product (i.e., composition) of tame transforma-
tions φi’s.

1. Introduction

There is a long history of studying “automorphism groups” for affine spaces
Kn and “embedding theory” in mathematics. There are thousands of papers
on those subjects. There is a simple concept of Tame transformations, which
is defined as,

2000 Mathematics Subject Classification: 14Qxx, 68P25.
Keywords: Tame transformation, public key system, public key, private key, plaintext,
ciphertext, signature, master key, error-detect.



668 T. Moh

Definition: We define a tame transformation φi = (φi,1, . . . , φi,m) as either
a linear transformation, or of the following form in any order of variables
x1, . . . , xn with polynomials hi,j ,

(1) φi,1(x1, . . . , xn) = x1 + hi,1(x2, . . . , xn) = y1

(2) φi,2(x1, . . . , xn) = x2 + hi,2(x3, . . . , xn) = y2

...

(j) φi,j(x1, . . . , xn) = xj + hi,j(xj+1, . . . , xn) = yj

...

(n) φi,n(x1, . . . , xn) = xn = yn

If the tame transformation is invertible, then it is called a tame automor-
phism.

It is not hard to see that the inverse of a tame automorphism of Kn

is a tame automorphism, and the subgroup generated by all tame auto-
morphisms is called the tame automorphism group, Tame(Kn). Therefore,
for any affine space Kn, there are two groups, the automorphism group
Auto(Kn) and Tame(Kn). For the case that n = 2, the beautiful theory
of W. Van der Kulk in 1953 in [15] states that Auto(K2)=Tame(K2), i.e,
any automorphism of K2 can be written as a canonical product of tame
automorphisms.

There is an abyss between our knowledge of the automorphism group
of K2 and the automorphism group of Kn for n ≥ 3. Can the theory of
W. Van der Kulk be generalized to higher dimensional cases? We do not
know the answer. Even worse, we do not have a factorization theorem for
Tame(Kn) if n ≥ 3, i.e., for n ≥ 3, every element π in the tame automor-
phism group has a factorization π =

∏
i φi by its definition, however, there is

no known way to find the factorization. In [24], Nagata constructed an au-
tomorphism as follows; σ(x1, x2, x3) = (x1, x2 +x1(x1x3 +x2

2), x3−x2(x1x3 +
x2

2) − x1(x1x3 + x2
2)

2) for n = 3 and raised the question that if it is in the
tame automorphism group. Note that if we have a factorization theorem
for element in the tame automorphism group, then one may simply assume
that the above element is in the tame automorphism group, and do the fac-
torization, if one succeeds, then naturally it is in the tame automorphism
group, otherwise not. We can not answer Nagata’s question after some forty
years, simply because we do not know how to factor elements in the tame
automorphism group.

For embedding theory ([1], [19], [24]), the simplest case, i.e., the (alge-
braic) embedding of affine line to affine plane in characteristic 0, had been
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an open problem for forty years. It was solved in [1] using difficult and
long arguments. The result is that any embedding mapping is a composi-
tion of a trivial mapping of the affine line to x-axis and an element of the
tame automorphism group, or we should say that any embedding mapping
is a tame transformation. It is unknown about how to generalize the above
statement to either higher dimensional cases (i.e., affine lines to affine spaces
or affine planes to affine spaces, etc.) in characteristic zero or even affine
lines to affine planes in positive characteristics. There are some conjectures
and discussions about the later cases in [19].

The above is the Algebraic Geometry background of this talk. We should
discuss the background of Public-key Encryption theory in the below.

Let A be a set of data (or plaintexts, or signals) which one want to
be written as another set B of data (or ciphertexts, or scrambled signals)
to protect privacy or secrets. Mathematically, we have two sets A and B
and a mapping π from A to B. The mapping π is traditionally given by
a “code book”, maybe called as the “code” (nowaday, code largely means
“self-correcting code”, which is very different from what we are discussing.
We shall stick to the term “encryption”) or “key”. In 1970’s, motivated by
high-speed computers, a new theory of encryption, public-key encryption,
came to exist, The thinking is as follows. Although, given any one-one
mapping π, its inverse mapping π−1 is uniquely determined mathematically.
However, maybe computationally, the inverse mapping can not be found in a
reasonable time (say, 1010 years) using the most powerful computer without
the help of some extra informations (i.e., the “trap-door”). Then one may
announce the mapping π (the “public-key”) while keep the trap-door (the
“private-key”) secret. These are the essences of the public-key encryption
theory.

We shall use the example of RSA encryption system to illustrate the
point of public-key system. The mathematical foundation of it is some facts
in the elementary number theory. Let p, q be two prime numbers close to 2512

(which are easy to be found), n = pq, and d, e two positive integers such that

de = 1 mod (p − 1)(q − 1) .

For any positive integer x < n, let

y = xemod n and y < n .

It is not hard to see that
x = yd mod n .

For encryption, we let A = {x}, B = {y} and π the mapping defined by
raising to the power of e and then mod n. The inverse mapping is given by
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raising to the power of d and then mod n. For practical use, let us consider
the encryption of an e-mail. Every letter is giving by an eight bits number,
we may glue 128 symbols together to form a number of 1024 bits, thus we
chop the whole e-mail into many blocks of 1024 bits, and we treat each 1024
block as an element in A, and encrypt it to an element in B, and then send
the encrypted e-mail. In the RSA system, the number n is announced with
the public key e, while the private key d will be kept secret. The security of
this system rely on the computationally difficulty in finding the private key
from the public key e and the number n.

The other interesting system is the ElGamal system which is tied to
the problems of finite commutative groups (as represented in the number
theory); Find x, if exists, in the following equation gx = y where g is a given
element of the group and y is an arbitrary element of the group (“discrete
log problem”). This problem is surprisingly difficult computationally.

Let us consider the RSA system. To make the theory working, one has
to glue symbols together to form large numbers, and thus slow down the
arithmetical operations. To increase the security (i.e., to make it difficult
to find the number d from the number e), one has to increase the size of n.
Since we have

de = 1 mod (p − 1)(q − 1) ,

then most likely d > n. Since the ciphertext y has to be raised to the power
of d, one may image that the deciphering process being slow.

Note that in the past the most successful public-key encryption sys-
tems, as RSA and ElGamal systems, are one dimensional. Their speeds
might have to be accelerated by using hardwares, and their applications
become expensive. From mathematical point of view, it will be nature to
try higher dimension methods, i.e., multivariate public-key encryption sys-
tems. In Imai-Matsumoto theory ([14]), a polynomial of one variable (i.e.,
one dimensional) is expressed with respect to a field basis to achieve an
expression of several variables (i.e., higher dimensional). Their attempt is
noble, however, unsuccessful, since it had been broken by J. Patarin (cf [26]).
Note that J. Patarin had proposed several extensions and generalizations of
Imai-Matsumoto scheme which have not been broken.

We may use Algebraic Geometry of higher dimension to produce a public-
key encryption system. For this purpose let us consider a1, . . . , a128 being
128 characters with each an 8 bits number. The natural way is not to glue
them together. We shall treat them as a point a = (a1, . . . , a128) (a so called
“plaintext”) in 128 dimensional space. To scramble it, we simple apply a
map φ to the 128 dimensional space and get a new point b = (b1, . . . , b128) (a
so called “ciphertext”). For the convenience of computation, we require that
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(a) the maps π are non-linear to prevent an attack using linear algebra;

(b) both value π(a) and its inverse value π−1(b) can be computed easily;

(c) each map is a composition of “simple” maps (in the sense of item (b)
above) and shall be hard to be decomposed and its inverse hard to be
recovered;

(d) it should be user-friendly.

In this paper we will show that the higher dimensional affine spaces, their
“Tame Automorphism Group” (the group generated by all tame automor-
phisms) are tailored for this purposes.

2. Mathematical background

Since a mathematical theory, the theory of Tame Automorphisms, is applied
to provide a public key system. We shall explain every term used in this
lecture.

(a) Finite Field.

We shall discuss the concept of finite fields. The finite field GF (2m)
of 2m elements is the collection of the m bits numbers (a1, a2, . . . , am), where
ai’s are zeroes or ones, and the sum of m bits numbers is bitwise, while the
product depends on the defining irreducible polynomial, which can be carried
out by a LSR (linear shift register) or by looking up a table.

(b) Affine Space.

Let K be a field, say GF (2m). Let Kn+r be the affine space of dimension
n + r over K. Note that an “affine space” Kn+r is a vector space without
the algebraic structure and the origin, i.e., the “physical space”. We prefer
an affine space over a vector space because (1) we need to remove the origin,
(2) we shall consider non-linear maps such as polynomial maps.

(c) Tame Transformation.

A linear transformation ψ = (ψ1, . . . , ψn+r) is a map of the following
form,

ψi(x1, . . . , xn+r) =
∑

j

aijxj + bi ,

where aij and bi are elements in K. A linear transformation ψ is said to be
invertible if the coefficient matrix (aij) is invertible.

Definition. We define a tame transformation as in the Introduction.
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Example: Let K = GF (2), ψ(x1, x2, x3) = (x1 + x2x3, x2 + x2
3, x3) and

η(x1, x2, x3) = (x1, x2, x3 + x2
1) be two tame automorphisms. Then it is easy

to see that ψ2(x1, x2, x3) = (x1 +x3
3, x2, x3) and ψη(x1, x2, x3) = (x1 +x2x3 +

x2
1x2, x2 + x2

3 + x4
1, x3 + x2

1).

The group generated by all tame automorphisms is called the tame auto-
morphism group. Note that the group product is the composition of maps,
i.e., substitution, which is different from the product of polynomials. The
following proposition and its corollaries will be given without proofs.

Proposition 1 Let a nonlinear tame transformation φi be defined as in
the preceding paragraph. We have the inverse φ−1

i = (φ−1
i,1 , . . . , φ−1

i,n+r) with

xn+r = φ−1
i,n+r(y1, . . . , yn+r) = yn+r and xj = φ−1

i,j (y1, . . . , yn+r) = yj −
hi,j(φ

−1
i,j+1(y1, . . . , yn+r), . . . , φ

−1
i,n+r(y1, . . . , yn+r)), for j = n + r − 1, . . . , 1.

For instance, in the case of four variables, we have the inverse polynomial
map φ−1

i in the following abstract general form in term of variables,

φ−1
i,4 (y1, . . . , y4) = y4

φ−1
i,3 (y1, . . . , y4) = y3 − hi,3(y4)

φ−1
i,2 (y1, . . . , y4) = y2 − hi,2(y3 − hi,3(y4), y4)

φ−1
i,1 (y1, . . . , y4) = y1 − hi,1(y2 − hi,2(y3 − hi,3(y4), y4), y3 − hi,3(y4), y4)

In general, the total degree of φ−1
i,j (y1, . . . , yn+r) increases very fast and the

number of terms can be quite large as indicated by our later discussions.
As shown in section 8, the number of terms in π−1 in our scheme is greater
than 1092. Therefore it is impractical to actually write down the polynomials
φ−1

i,j (y1, . . . , yn+r). However, if a point (y′
1, . . . , y

′
n+r) is given, the value of

the inverse map can be readily computed in the following special form in
term of numbers.

Corollary 2 Given a set of values (y′
1, . . . , y

′
n+r) ∈Kn+r and a non-linear

tame transformation φi as in the Definition of this section, then the values
(x′

1, . . . , x
′
n+r) = (φ−1

i,1 (y′
1, . . . , y

′
n+r), . . . , φ−1

i,n+r(y
′
1, . . . , y

′
n+r)) ∈ Kn+r can be

found by induction; first, we have x′
n+r = φ−1

i,n+r(y
′
1, . . . , y′

n+r) = y′
n+r, induc-

tively we have x′
j+1, . . . , x

′
n+r ∈ K, then we have x′

j = φ−1
i,j (y′

1, . . . , y
′
n+r) =

y′
j − hi,j(x

′
j+1, . . . , x

′
n+r) for j = n + r − 1, . . . , 1.

Corollary 3 Given the decomposition π =
∏i=n

i=1 φi where φi are tame au-

tomorphisms, then we have π−1 =
∏i=1

i=n φ−1
i . Furthermore, if a set of values

{y′
j} is given, then we have π−1(y′

1, . . . , y
′
n+r) =

∏i=1
i=n φ−1

i (y′
1, . . . , y

′
n+r).
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3. Principle or Algorithm

Let q, n, r, s be positive integers. Let n + r ≥ 3, and K a field of 2q ele-
ments. Let the user select k tame transformations φk, . . . , φ2, φ1, such that
the product π = φk · · ·φ2φ1=(π1, . . . , πn+r) defined a mapping Kn �→ Kn+r.
Let

π̂ = (π1(x1, . . . , xn, 0, . . . , 0), . . . , πn+r(x1, . . . , xn, 0 . . . , 0))

and

fi(x1, . . . , xn) = πi(x1, . . . , xn, 0, . . . , 0) for i = 1, . . . , n + r.

The user will announce the map π̂ = (f1, . . . , fn+r) : Kn �→ Kn+r and the
field K of 2q elements as the public key. Given a plaintext (x′

1, . . . , x
′
n) ∈

Kn, the sender evaluates y′
i = fi(x

′
1, . . . , x

′
n). Then the ciphertext will be

(y′
1, . . . , y

′
n+r) ∈ Kn+r.

The legitimate receiver (the user) recovers the plaintext by (x′
1, . . . , x

′
n,

0, . . . , 0) = φ−1
1 · · ·φ−1

k (y′
1, . . . , y

′
n+r) (see Corollaries 2 and 3). The private

key is the set of maps {φ1, . . . , φk}.
Remark: We may select φ1 to be a linear embedding Kn �→ Kn+r and φi

elements in Tame(Kn+r) for i > 1.

4. Component

We will give a report of an implementation (for other implementations, see
http://www.usdsi.com/ttm.html). We use a Component Q8 (see below).
This component does not need to vary according to users. It can be made
as part of the hardware. The user will select some other functions (see
section 5) to make individual scheme non-traceable. The component in this
section is example by nature, it is selected due to the theoretical clearness.
Similar ones can be constructed.

The following definition will be used in the discussion of Component Q8.

Definition. Let q1, . . . , qs be polynomials in variables x1, . . . , xt. Let also
�(x1, . . . , xt) be a polynomial. If

Q(q1(x1, . . . , xt) . . . , qs(x1, . . . , xt)) = �(x1, . . . , xt)

then Q is called a generating polynomial of � (over q1, . . . , qs) . Furthermore,
if Q is of the minimal degree among all possible generating polynomials of
�, then it is called a minimal generating polynomial of �, and its degree is
called the generating degree of �, in symbol gendeg(�). If there is no such
polynomial Q, then we define gendeg(�)= ∞.
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Now, let us define the Component Q8 as follows: let the field K be of 28

elements, and ai �= 0 for i = 1, 2, 3. Let

q1(a1, a2, a3, x1, . . . , x11)= x4x2 + a1x5; q2(a1, a2, a3, x1, . . . , x11)= x3x4 + a1x6;
q3(a1, a2, a3, x1, . . . , x11)= x2x5 + a1x7; q4(a1, a2, a3, x1, . . . , x11)= x4x7 + a1x8;
q5(a1, a2, a3, x1, . . . , x11)= x1x5 + a1x9; q6(a1, a2, a3, x1, . . . , x11)= x1x2 + a2x10;
q7(a1, a2, a3, x1, . . . , x11)= x9x2 + a2x11; q8(a1, a2, a3, x1, . . . , x11)= x9x3 + a1x1;
q9(a1, a2, a3, x1, . . . , x11)= x1x3; q10(a1, a2, a3, x1, . . . , x11)= x1x7 + a1x9;
q11(a1, a2, a3, x1, . . . , x11)= x9x4 + a1x1; q12(a1, a2, a3, x1, . . . , x11)= x9x7 + a1x1;
q13(a1, a2, a3, x1, . . . , x11)= x3x11 + a1x10; q14(a1, a2, a3, x1, . . . , x11)= x10x5 + a1x11;
q15(a1, a2, a3, x1, . . . , x11)= x10x3; q16(a1, a2, a3, x1, . . . , x11)= x10x2;
q17(a1, a2, a3, x1, . . . , x11)= x7x8 + a1x7; q18(a1, a2, a3, x1, . . . , x11)= x7x5 + a1x2;
q19(a1, a2, a3, x1, . . . , x11)= x2x3 + a1x7; q20(a1, a2, a3, x1, . . . , x11)= x5x8 + a1x5;
q21(a1, a2, a3, x1, . . . , x11)= x5x4 + a1x6; q22(a1, a2, a3, x1, . . . , x11)= x3x8;
q23(a1, a2, a3, x1, . . . , x11)= x3x5 + a1x8; q24(a1, a2, a3, x1, . . . , x11)= x3x7;
q25(a1, a2, a3, x1, . . . , x11)= x6x8 + a3x5; q26(a1, a2, a3, x1, . . . , x11)= x6x2;
q27(a1, a2, a3, x1, . . . , x11)= x6x5; q28(a1, a2, a3, x1, . . . , x11)= x6x7 + a3x2;
q29(a1, a2, a3, x1, . . . , x11)= x2x11; q30(a1, a2, a3, x1, . . . , x12)= x11x4 + a1x10;
q31(a1, a2, a3, x1, . . . , x11)= x10x7+a1x11; q32(a1, a2, a3, x1, . . . , x11)= (x3+ x5)x6+a1x4;
q33(a1, a2, a3, x1, . . . , x11)= x11x8; q34(a1, a2, a3, x1, . . . , x11)= x10x8;
q35(a1, a2, a3, x1, . . . , x11)= x11x7 + a1x10.

Then the following Q8 is a minimal generating polynomial of a14
1 (x1x11 +

x10x9) with degree 8 in qi,

Q8 = (q5q13 + q8q14)(q19q32 + q2(q18 + q24))2(q20q19 + q23q18))

+ (q32q3 + (q18 + q24)q21)2(q22q19 + q23q24)(q9q13 + q8q15)

+ a8
1[(q25q26 + q27q28)(q6q29 + q7q16) + (q10q30 + q11q31)(q17q1 + q18q4)]

+a8
1a

4
2(q6q33 + q34q7 + q5q35 + q14q12)

= a14
1 (x1x11 + x10x9) .

For the convenience of discussion in the next section, let us define

Definition. An invertible linear transformation φ1 = (φ1,1, . . . , φ1,n+r) is
said to be of type A if

φ1,i =

n+r∑

j=1

ai,jxj + bi

then

(1) For i = 1, . . . , n, we always have bi �= 0, ai,j = 0, for j = n+1, . . . , n+r,
and at least half of the remaining ai,j are non-zero.

(2) For i = n + 1, . . . , n + r, we always have φ1,i = xi.
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Implementation

We will give an implementation of TTM cryptosystem based on the above
example. In this implementation, we will assume that ai = 1 for simplicity.

We shall use the notations of above Q8, qi. Let K = GF (28), n ≥ 30 and
m = n + 52. We have four maps, φ1, φ2, φ3, φ4 with the map π = φ4φ3φ2φ1

where φ1 is an affine linear map of Kn to the subspace of Km with the
last 52 coordinates zeroes, φ2, φ3 tame maps and φ4 an affine linear map of
Km to Km.

The rationalities of designing this encryption system are as follows. We
may call the compositions of two tame transformations φ3φ2 the kernel of
the system. It will play the role of trap-door of the system and it can be
individualized. The two other transformations on two sides are linear and
hide the whole system from an attacker.

For readers convenient, we define polynomials P1, P2, P3 as for j = 1, 2, 3.

Pj = Pj(ym−58, . . . , ym−55, ym+1−8j, . . . , ym+8−8j, ym−46, . . . , ym−24)

= Q8(ym−58, . . . , ym−55, ym+1−8j, . . . , ym+8−8j, ym−46, . . . , ym−24)

and P4 as P4 = P4(ym−58, . . . , ym−24) = Q8(ym−58, . . . , ym−24). Then we
select suitable βij �= 0 for i, j = 1, . . . , 4 such that Ri =

∑
j βijPj are linearly

independent.

We should look at the composition φ3φ2 which can be expressed as

y1 = x1 + R1

= x1 + β14(xm−62xm−52 + xm−53xm−54)

+

j=3∑

j=1

β1j(xm−62−2jxm−52 + xm−61−2jx53)

y2 = x2 + f2(x1) + R2

= x2 + f2(x1) + β24(xm−62xm−52 + xm−53xm−54)

+

j=3∑

j=1

β2j(xm−62−2jxm−52 + xm−61−2jx53)

y3 = x3 + f3(x1, x2) + R3

= x3 + f3(x1, x2) + β34(xm−62xm−52 + xm−53xm−54)

+

j=3∑

j=1

β3j(xm−62−2jxm−52 + xm−61−2jx53)
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y4 = x4 + f4(x1, x2, x3) + R4

= x4 + f4(x1, x2, x3) + β44(xm−62xm−52 + xm−53xm−54)

+

j=3∑

j=1

β4j(xm−62−2jxm−52 + xm−61−2jx53)

y5 = x5 + f5(x1, . . . , x4)
...

ym−59 = xm−59 + fm−59(x1, . . . , xm−60)

ym−58 = q1(xm−62, . . . , xm−52) = xm−58 + xm−59xm−61

...

ym−52 = q7(xm−62, . . . , xm−52) = xm−52 + xm−54xm−61

ym−51 = q8(xm−62, . . . , xm−52)
...

ym−24 = q35(xm−62, . . . , xm−52)

ym−23 = q5(xm−64, xm−61, . . . , xm−55, xm−63, xm−53, xm−52)
...

ym−16 = q12(xm−64, xm−61, . . . , xm−55, xm−63, xm−53, xm−52)

ym−15 = q5(xm−66, xm−61, . . . , xm−55, xm−65, xm−53, xm−52)
...

ym−8 = q12(xm−66, xm−61, . . . , xm−55, xm−65, xm−53, xm−52)

ym−7 = q5(xm−68, xm−61, . . . , xm−55, xm−67, xm−53, xm−52)
...

ym = q12(xm−68, xm−61, . . . , xm−55, xm−67, xm−53, xm−52)

where fi’s are random quadratic polynomials such that the vector space
dimension of all homogeneous degree 2 parts of the above system is m.

As usual we further require that π(0, . . . , 0) = (0, . . . , 0). Then π is the
public key, while {φ1, φ2, φ3, φ4} is the private key.

The user selects φ4 to be an invertible linear transformation satisfying
condition (∗∗) in the following way, where π = (π1, . . . , πm):

(∗∗) π = φ4φ3φ2φ1, and πi(0, . . . , 0) = 0.

The field K and polynomials fi(x1, . . . , xn) = πi(x1, . . . , xn, 0, . . . , 0) for
i = 1, . . . ,m will be announced as the public key. The private key is the
set of maps {φ1, φ2, φ3, φ4}.
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Let (x′
1, . . . , x

′
n) ∈ Kn be the plaintext. The sender evaluates y′

i =
fi(x

′
1, . . . , x′

n). Then the resulting (y′
1, . . . , y

′
m) ∈ Km will be the cipher-

text.

The legitimate receiver (the user) recovers the plaintext by (x′
1, . . . , x

′
n,

0, . . . , 0) = φ−1
1 . . . φ−1

4 (y′
1, . . . , y

′
m) which can be done easily according to

Corollaries 2 and 3.

5. Plaintexts, Users and Compactness

In this section let us assume that n = 48,m = 100 for numerical computa-
tions.

Let us count the possible number of plaintexts. Since the number of
plaintexts is the number of choices for x′

1, . . . , x
′
48, we see that there are 2382

such plaintexts.

Of equal importance to having a large number of possible plaintexts is
having lots of possible users. In order to allow for many such users, we
first get an expression for this number in terms of m and 48. This amounts
to counting the number of automorphisms π of the form π = φ1φ2φ3φ4.
Assuming that a negligible proportion of these automorphisms π have more
than one representation π = φ1φ2φ3φ4 = φ′

1φ
′
2φ

′
3φ

′
4, the number of users

is asymptotic to (choices for φ4) × (choices for φ3) × (choices for φ2) ×
(choices for φ1). The condition of type A for φ1 is not a big restriction. We
may use the possible numbers for the invertible linear transformations as
an estimation for φ1, φ4. The number of invertible linear transformations φ1

is
∏n−1

j=0 (28n − 28j) = 28n(n−1)/2
∏n

j=1(2
8j − 1). For our selection of n = 48,

n+r = 100, it is easy to see that the number for φ1 > 29024. A similar count
of terms of φ4 results in the total possible number of users > 261424.

Now let us look at the compactness of the scheme. The end results are
100 quadratic polynomials (f1, . . . , f100) in 48 variables x1, . . . , x48. It is easy
to see that the number of terms of polynomials of degree 2 is 51×48/2! and we
have 100 polynomials, therefore the total number of terms is 122, 400. This is
the size of the public key. The expense to the sender is mainly in evaluating
polynomials y′

i = fi(x
′
1, . . . , x

′
48). Note that our scheme can also be computed

in a parallel way. Thus the process can be sped up. On the receiver’s side,
the total number of terms for φ1, φ2, φ3, φ4 is 17, 000 (the corresponding size
of the private key for TTM 3.2 is 184 bytes). The legitimate receiver needs
to find (x′

1, . . . , x
′
48) from φ4φ3φ2φ1(x

′
1, . . . , x

′
48) (according to Corollaries 2

and 3) which is not expensive.
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6. Technique Report

Following the principle of this article, there are several software implemen-
tations. For the convenience of discussions, the method will be called “tame
transformation method” (TTM). There are versions TTM 1.9, TTM 2.1,
TTM 2.3, TTM 2.5, TTM 3.0, TTM 3.2, TTM 4.3 and TTM 4.5 available.
They use C Language. For GF (28), the rates of expansion of data are 1.4,
1.56, 1.63, 1.5, 2.66, 3.5, 2.2 and 3.2 respectively. They have been used on
various machines listed below,

266 Mhz PowerPC 750;
200 Mhz PowerPC 604e w/1024K cache;
225 Mhz PowerPC 603e w/256K cache;
167 Mhz Ultrasparc w/512K cache;
167 Mhz Pentium w/512K cache;
400 Mhz Power PC G4.

The software TTM 2.1, 2.3, and 2.5 are on 200 Mhz PowerPC 604e (w/1024K
cache: virtual memory off), the softwares TTM 3.0, TTM 3.2 are on 266
Mhz PowerPC 750 and the softwares TTM 4.3, TTM 4.5 are on 400 Mhz
PowerPC G4. Their speeds are listed in the following table:

speeds of software implementations
TTM 1.9 94,939 b/s
TTM 2.1 106,224 b/s
TTM 2.3 207,000 b/s
TTM 2.5, 300,000 b/s
TTM 2.8 658,323 bit/sec
TTM 3.0 1,001,774 bit/sec
TTM 3.2 1,626,944 bit/sec
TTM 4.3, 18,000,000 bit/sec
TTM 4.5 33,323,672 bit/sec

The implementation speed depends on the speed to compute a*b+c, where
a, b and c are in the 8-bits finite field. For TTM 3.2, every 66.5 repetitions of
this computation will process one bit of information, while each computation
requires 3.75 cycles.

The decrypting speed is in general faster than the encrypting speed (the
decrypting speed for TTM 3.2 is 8,271,298 bit/sec). For the user who knows
the private key, the speed of encoding can be increased to 8,271,298 bit/sec.
The PC software TTM 3.2 is faster than a possible hardware implementation
for RSA 1024. While the speed of TTM 4.5 is about 1/5 the speed of the
very fast secret key system AES.
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It is possible to encrypt voice communications(64,000 bit/sec) by those
softwares on an ordinary PC. Note that in comparison, RSA toolkit BSAFE
3.0 for 1024 is 7 K bit/sec.

Smart Card Applications: for an “untrustworthy” PC, the tentative
report of our Lab is that the requirement of RAM is 1k bytes for the program
and private key with a speed exceeding 50 k bit/sec. For a “trustworthy” PC,
one may simply put the set up numbers in the card for the machine to
generate the private key. Then it requires only 30–40 bytes memory in the
smart card and less than 1 second to set up.

7. Useful Properties of the Scheme

Error-Detect Function.

Upon receiving the ciphertext (y′
1, . . . , y

′
m), the user applies Corollaries 2

and 3 to decode it and get (x̄1, . . . , x̄m). If one of x̄n+1, . . . , x̄m is not zero,
then there must be an error.

Master Key Function.

Let a group of indices, S , be a few extra indices m+1,m+2, . . . added.
Select φ4 such that the corresponding subspace generated by xi with i ∈ S
and the subspace generated by xj with j /∈ S are both invariant. The original
public key scheme gives a master key. A subordinate key can be produced
by deleting all fi’s with i ∈ S.

A different way to produce a master key is to use the polynomials
q1, . . . , q35 of section 4, and extended it to q36, . . . , q35+s and to find a poly-
nomial Q′(q1, . . . , q35, . . . , q35+s), such that both Q′ and its specialization
Q′(q1, . . . , q35, 0, . . . , 0) can be used to construct a public key scheme. We
require that φ1 to keep space {(c1, . . . , cm, 0, . . . , 0) : ci ∈ K} =Km×0×· · ·×0
invariant and use the specialization xi �→ 0 for i = m+1, . . . ,m+s to create
a subordinate key from the original key (i.e., the master key).

The “master key-subordinate key” relation can be broken by alternating
any one of the linear transformations φ1, φ4 involved.

Signatures.

The map π̂ is not an onto map. However, we may restrict the map to a
suitable linear subspace V . Let us use the example of this article to illustrate
the method. Let V be a coordinate space which is {(d1, . . . , dn) : di ∈ K and
di = 0 if i = n− 5, n− 6, n− 8, n, n − 19, n− 20, n− 22, n− 14} ⊂ Kn with
j = dim( V ). Consider V as a subspace of Km by adding suitable many
zeroes for the last m−n coordinates. Let V̄ = φ−1

1 (V ). We will require that
φ4 induces a linear transformation on V . Let τ : Km �→ V be the projection.
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Clearly τ π̂ is a one to one and onto map from V̄ to the j-dimensional affine
space. Moreover, the map is tame, and its inverse at a point (y′

1, . . . , y
′
j) can

be found. The inverse at (y′
1, . . . , y

′
j) forms a signature.

8. Cryptanalysis for the Scheme

For the first four analysis, we take n = 64,m = 100.

I. Direct Methods

There is no known way to recover the private key {φ4, . . . , φ1} from the
public key π̂ and the field K. There are three other direct ways to attack
the scheme: (1) use ‘inverse formula’ for power series to find polynomial
expressions of π−1 ([10]). Note that only π̂ is given, since π̂−1 does not exist
theoretically, there is no way to find it. (2) Let xi be a polynomial, gi, of
{yj} with indeterminate coefficients for all i. Do enough experiments using
{xi} to determine {yj} and then solve the system of linear equations in
indeterminate coefficients to find polynomials gi. Or (3) using “resultant”
to the expression y′

i = fi(x
′
1, . . . , x

′
64) to eliminate all x′

i except one, say x′
j,

and recover the expressions of x′
j in terms of y′

1, . . . , y
′
100.

For the method (1), note that the form of the map π is not given to the
public, the attacker has to guess π correctly. Furthermore, it follows from
Corollary 2 and the explicit expression of φ2 in the scheme that we have

max{degy1 φ−1
2,j(y1, . . . , y100)} ≥ 28 .

Since φ1, φ4 are linear transformations, the theoretic total number of
terms in π−1 is 100(

∏100
i=1(2

8+i))/100! > 1092. It is too large to be practical.
To use the method (2), the attacker has to give an estimation of the degrees
of gi. According to our previous analysis, there are too many terms in
gi’s for the method to be useful. As for the method (3), the resultant is
only practical for polynomials of very few variables, it is impractical in our
scheme.

At this moment, the above three direct methods are ineffective. The only
possible way of attacking is to recover φi’s or their equivalent forms.

II. Search for Polynomial Relations

Although polynomials {f1, . . . , f100} are linearly independent, the at-
tacker may search for polynomial relations, which are linear relations of
monomials, among them. Knowing the recipe of the construction of the
public key scheme, the attacker may launch a “step by step search” to
search for useful polynomials in the ring K[f1, . . . , f100]. One can show
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that the attacker has to consider the vector space of all polynomials of de-
gree ≤ 8 in f1, . . . , f100. The number of those polynomials of degree ≤ 8
is C108

8 ≈ 3.52 × 1011 which is in a vector space of dimension 2.69 × 1016.
The dimension is too high to be handled by present technology. To store
these data, if we may mobilize the world population, then every human be-
ing, young or old, will use 2 billion gigabytes memory. In comparison, the
San Diego Supercomputer Center hosts the largest data-storage system of
86,000 gigabytes. The task is huge. We can select polynomials Q8 with
higher degrees to defend the scheme if necessary.

III. Identify the Highest Homogeneous Parts

The attacker may try to find φ−1
4 π̂ first. The very first step is to identify

the highest homogeneous part. After some deeper analysis of the problem,
it can be shown that just to do the very first step, it requires 82×10317 mips
(one million instruction per second) years.

IV. Brute Force Attack

The attacker may use linearly independent linear polynomials {v1, ..., v48}
to express {f1, . . . , f100}. Then the attacker assign random values from the
field K for the subsets of {v1, . . . , v48} to see if the assigned values are correct.
It is easy to see that the possibilities is 28×48 = 2384 = 10128. Assuming it
only take one clock cycle to test if a set of 48 random numbers is correct, the
attacker still need 3× 10114 mips years to crack the scheme. In comparison,
it requires 3 × 1020 mips years to cracked RSA 2048.

V. The Method of XL

In the article [8], Nicolas Courtois, Adi Shamir, Jacques Patarin and
Alexander Klimov propose a method named “XL” which gives an “efficient
algorithm for solving overdefined systems of multivariate polynomial equa-
tions”. In the abstract, they state “we then develop an improved algorithm
called XL which is both simpler and more powerful than relinearization”.

However, it is largely a misunderstanding of mathematics to make such
a claim. An analysis based on Hilbert-Serre theory on “Hilbert functions”
shows the inefficiency of the said method in [22].

VI. L. Goubin and N.T. Courtois’ Attack

In the paper [13] published in “Asiacrypt 2000”, L. Goubin and N.T.
Courtois propose an attack on TTM cryptosystem.

They established a formula of complexity of their attack q�
m
n
�r × m3 for

their own system TPM which is different from TTM, where q is the number
of elements in the ground field, m is the length of the ciphertext, n is the
length of plaintext and r is the number of variables used in the quadratic
forms of the first few polynomials. They mistakenly assume that r = 2,
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which is clearly false as can be computed to be r = 4 in the example of this
article (cf [23]). For the present example the complexity = 284 according
to their attack, which means the present example is much higher than the
complexity of a strong encryption system with a complexity of 280. The said
attack is very ineffective contrast to what they claimed.

We may consider a “MinRank(r)” attack on TTM system, and show that
it is ineffective [23].

9. Summary

The present implementation scheme can withstand all known attacks. By
its nature, the algorithm is less cumbersome to use than methods that are
number theory based. The drawbacks of this system are the huge size of the
keys and the rate of data expansion. However, for practical usage, both can
be reduced to manageable numbers. Furthermore, it has the novel functions
of error-detect and master key. We wish that this algorithm will provide a
new direction of research.

Appendix

Acknowledgement: We wish to express our thanks to J. M. Acken,
A. Odlyzko, H. Lenstra, P. Montgomery, E. Croot, C. Bajaj, S. Wagstaff,
F. Chao, R. Osawa, P. Huang for discussions.

After we sent out our original draft in 1995, P. Montgomery responded in
showing us a successive attack on the example of four variables in that draft.
We produced another version which defended against the ‘analysis of the
highest homogeneous parts’ to stand the attack proposed by P. Montgomery.

Then A. Sathaye launched a ‘step by step search’, i.e., searching for
relations among all monomials of {fi} with some fixed degree, which could
theoretically crack our second version. Only then did we understand that the
attack of P. Montgomery was the beginning of a ‘step by step search’. The
point is that the final polynomials (f1, . . . , fn+r) are of various degrees, and
they can be grouped and analyzed according to their degrees. In our previous
versions, for a particular degree, there are only a few polynomials (or it is
the same to say, a small dimensional vector space). Those polynomials can
be discovered by a ‘step by step search’ even though they were covered up
at the beginning by a linear transformation of the vector space generated
by {fi}. Therefore, the previous public key system would dissolve step by
step theoretically.
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Due to our intention of including a “master key function” (see section 7)
in the system, we had considered a specialization xn+r �→ xi. Independently,
from the point of view of embedding theory (cf [1], [24]), A. Sathaye suggested
that we should consider xn+r �→ 0.

These two approaches were identical up to a linear transformation. Very
soon we solved the technical problem involved (see section 7). In our present
public key scheme, the resulting polynomials are of degree two uniformly and
their degree two homogeneous parts are linearly independent (see the end
of section 4).

Applying “step by step search” to the present public key scheme, an
attacker will have to consider a set of 3.52×1011 elements in a vector spaces
of dimensions 2.69 × 1016 see section 8, II). The dimension is too high to
be handled by the present technology. Moreover, since the encoding scheme
uses ‘embedding maps’ without inverses, it is impossible to crack this scheme
by looking for inverses. The present scheme can withstand known attacks.
We are especially grateful to A. Sathaye for the enlightening discussions and
for checking our computations in section 5.
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