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Chains on the Eggers tree
and polar curves

C.T. C. Wall

Abstract

If B is a branch at O ∈ C
2 of a holomorphic curve, a Puiseux

parametrisation y = ψ(x) of B determines ‘pro-branches’ defined over
a sector |arg x−α| < ε. The exponent of contact of two pro-branches
is the (fractional) exponent of the first power of x where they differ.
We first show how to use exponents of contact to give simple proofs
of several well known results.

For C the germ at O of a curve in C
2, the Eggers tree TC of C is

defined. We also introduce combinatorial invariants (particularly, a
certain 1-chain) on TC . Any other germ Γ at O has contact with C
measured by a unique point XΓ ∈ TC , and this determines the set
of exponents of contact with C of any pro-branch of Γ. A simple
formula establishes the converse, and this leads to a short proof of
the theorem on decomposition of a transverse polar of C into parts Pi,
where both the multiplicity of Pi, and the order of contact with C of
each branch Q of Pi are explicitly given.

Introduction

We study germs at the origin in C2 of curves C defined by holomorphic
equations f(x, y) = 0. We define a polar curve of f = 0 to be a curve with
equation P ∂f

∂x
+ Q∂f

∂y
+ Rf = 0, where P and Q are functions, at least one

of which is non-vanishing at the point O. This definition is invariant under
multiplying the equation either of f or of the polar curve by a function non-
vanishing at O. One can show that in suitable new coordinates the same
curve is given by g(x, y) = 0 for a suitable g, and the same polar curve by
∂g/∂y = 0. Each polar curve is associated to a direction at the point O.
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In the general case this is Q(O)x = P (O) y; and for ∂f/∂y = 0 it is x = 0.
The polar is called a transverse polar if this line is transverse to C at O.

It is natural to ask to what extent the type of singularity of C at O
determines that of the polar curve P . The multiplicity of P is 1 less than
that of C if and only if we have a transverse polar, so from now on we will
restrict to this case.

It has long been known that the germ P is usually reducible. In 1976 a
general statement was obtained by Michel Merle [14], under the assumption
that C consists of a single branch: this result yields a (local) decomposition
P =

⋃
1≤i≤g Pi, where both the multiplicity of Pi, and the order of contact

with C of each branch Q of Pi are given. However, examples show that
the number of branches can vary for different transverse polars of the same
curve, and that Pi need not even be reduced.

Merle’s result raised the problem of finding a corresponding statement
for polars of curves with several branches. A general theorem is now known
(see e.g. [10]), but all known proofs involve messy combinatorial arguments.
In this paper we reduce these to easy calculations by introducing additional
structure on the Eggers tree.

The main tool used in our argument is the notion of exponent of contact.
We begin by presenting this notion, and using it to give simple proofs of
several well known results. This gives an introduction to our tools as well as
a basis for the arguments to follow. We refer to [2] and [7] for background
information in this area.

1. Preliminaries

Suppose the curve C given near O by a holomorphic equation f(x, y) = 0,
and that the y-axis is transverse to C at O. There is a factorisation (unique
up to units) f =

∏
fj with each fj irreducible; correspondingly, C is a union

of irreducible curve-germs Bj , its branches. We assume C reduced, so these
are mutually distinct.

For a single branch B, with equation f = 0, the Weierstrass preparation
theorem tells us that we may adjust f by a unit to be a monic polynomial
in y. The degree m of this polynomial is equal to the multiplicity m(B)
of B. By Puiseux’ theorem, we may solve the equation f = 0 to write y as
a fractional power series in x

(1.1) y =
∑
r≥m

arx
r
m, with xm

m = x.

The m roots of the equation are obtained by taking successively for xm

the mth roots of x.
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We want to distinguish a single such root. To do this it is necessary to
restrict x to lie in a sector |arg x− α| < ε of the plane of complex numbers.
Fixing a root gives what we will call a pro-branch defined over this sector.
If the sector contains the positive real axis, we can choose xm, for any m, to
take positive real values on the positive real axis, so we can write fractional
powers of x without ambiguity. Although the terminology ‘pro-branch’ is
new, making a choice of xm (in fixed coordinates) is standard procedure.

Suppose γ, γ′ are pro-branches of branches B,B′, defined over the same
sector. We may write their equations in the form y =

∑
s csx

s, y =
∑

s c′sx
s,

where the exponents s satisfy s ≥ 1 and m(B)s ∈ Z, m(B′)s ∈ Z respec-
tively. We define the exponent of contact to be O(γ, γ′) := min{s|cs �= c′s}.
This may also be expressed geometrically:

O(γ, γ′) = lim
P∈ γ, P→O

log(dist(P, γ′))
log(dist(P,O))

,

so is independent of coordinates. It will be convenient to make the conven-
tion that O(γ, γ) = ∞. If we have 3 pro-branches γ, γ′ and γ′′ then in all
cases

(1.2) O(γ′′, γ) ≥ min(O(γ, γ′),O(γ′, γ′′)),

so the two smaller of the three orders coincide.

Lemma 1.1 The set of m(B) numbers (counted with multiplicities) given
by the orders of contact of a pro-branch γ′ of B′ with all the pro-branches
of B over the same sector is independent of the choices of sector and of γ′.

Proof: The exponents of contact are not affected if we shrink the sector.
Each exponent of contact is also not changed if we rotate the sector round
the origin in C, using analytic continuation; hence the set as a whole is
unaltered. But a full rotation round O permutes the pro-branches of B′

transitively, so the set is also independent of the choice of γ′. �
This result allows us to use pro-branches without reference to choices. We

may fix a sector, and write pro(B) for the set of all pro-branches of B (over
that sector), so the set defined above may be written {O(γ′, γ) | γ ∈ pro(B)}.
We emphasise that although the set is unordered, we do count its elements
with multiplicities.

The exponent of contact of the branches is defined as

O(B,B′) = min{O(γ, γ′) | γ ∈ pro(B), γ′ ∈ pro(B′)}.
Here we may fix γ or γ′ (but not, of course, both). It follows again that
given three branches B,B′ and B′′, the two smaller of the three numbers
O(B,B′), O(B,B′′) and O(B′, B′′) coincide. We have O(B,B′) = ∞ if and
only if B = B′.
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Suppose the branch B with m(B) = m given as in (1.1). The Puiseux
characteristic is defined inductively by e0 := m and

βq := min{r | ar �= 0, ar NOT divisible by eq−1}, eq := hcf(eq−1, βq),

the procedure terminating when we arrive (as we must) at eg = 1 for
some g. It is well known that the Puiseux characteristic (m;β1, . . . , βg)
determines the topological type of B, and conversely. It will be convenient
to write βg+1 := ∞. To simplify our formulae, we also write αq := βq/m for
each q.

Proposition 1.2 Let γ′ ∈ pro(B′), let O(B,B′) = κ, and let αq < κ ≤
αq+1. Then

(i) {O(γ′, γ) : γ ∈ pro(B)} consists of:

αi, occurring (ei−1 − ei) times (1 ≤ i ≤ q);

κ, occurring eq times.

(ii) Let γ ∈ pro(B). Then {O(γ, γ′) : γ′ ∈ pro(B), γ′ �= γ} consists of:

αi, occurring (ei−1 − ei) times (1 ≤ i ≤ g).

(iii) The intersection number B.B′ is equal to the sum

∑
γ∈pro(B),γ′∈pro(B′)

O(γ, γ′) .

(iv) Let O(B,B′) = κ and αq < κ ≤ αq+1. Then

B.B′ =
m(B′)
m(B)

{(e0 − e1)β1 + . . . + (eq−1 − eq)βq + eqm(B)κ}.

Proof: (i) Suppose the pro-branch γ′ has exponent of contact κ with
the pro-branch γ given by (1.1). The remaining pro-branches γs of B in
the chosen sector are obtained by multiplying xm formally by e2πis/m for
0 < s < m. The result now follows by comparing the coefficients in the
resulting series.

In view of our conventions, assertion (ii) is a special case of (i).
(iii) Intersection numbers may be calculated by choosing a (reduced)

equation f(x, y) = 0 for B′, a parametrisation (x, y) = (a(t), b(t)) for B,
substituting, and taking the order of the result f(a(t), b(t)) as a function
of t.

Set f =
∏m(B′)

k=1 (y − b′k(x)), where the b′k are Puiseux series, and take the

parametrisation as (tm(B), b(t)). We thus obtain
∑m(B′)

k=1 ord t

(
b(t)−b′k(t

m(B))
)
.
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Since x = tm(B), ord t = m(B)ord x. The order in x of the difference is pre-
cisely the exponent of contact of the pro-branches. We thus obtain, for a
chosen pro-branch γ of B, m(B)

∑
γ′∈pro(B′) O(γ, γ′).

(iv) is now immediate. �
That, given the numerical data for the branch B, and m(B′), the expo-

nent of contact O(B,B′) and the intersection number B.B′ determine each
other, is not of course new; it goes back to M. Noether.

2. The Eggers tree

We next describe a convenient notation for orders of contact of a curve with
several branches. This was first given in in the thesis [9] of Harald Eggers.
We associate with it combinatorial information going beyond that of Eggers.

Begin with a single branch B. We define the tree TB to be a copy of the
compactified positive real axis, which we denote [0,∞], and write

vB : TB → [0,∞], πB : [0,∞] → TB

for inverse isomorphisms. The vertices of TB are A0 := πB(0), Aq :=
πB(αq) for 1 ≤ q ≤ g, and B∞ := πB(∞). Write νB for the function
defined on 1-simplices by νB[Aq−1Aq] := m/(eq−1), so in particular we have
νB[A0A1] = m/e0 = 1 and νB[AgB

∞] = m/eg = m. We also write νB for
the 1-chain on the simplicial complex TB with these coefficients.

Now suppose we have two branches B,B′; use the notation of Propo-
sition 1.2. We define TB∪B′ as obtained from TB

.∪ TB′ by identifying the
images of [0, κ] under πB and πB′ . Let us check that the identification is
compatible with the structures we have defined. Since the exponent of con-
tact is κ > αq−1, there are Puiseux series of B and B′ which agree up to (but
not including) the term in xκ. It follows from the definition of the Puiseux
characteristic that, for all i < q, αi = βi/m = β ′

i/m
′, and ei/m = e′i/m

′.
Hence the points Ai on the common interval [0, κ[ match up, as do the values
of ν for the common edges (including πB[αq−1, κ]). We introduce the branch
point πB(κ) as a vertex even if it coincides with neither of the points Aq.

In general, let the branches of C be {Bj | j ∈ J}, with κj,k := O(Bj, Bk),
and define TC to be the quotient of the disjoint union of the TBj

by the
identification, for any pair j, k, of the images of [0, κj,k] under πBj

and πBk
.

More precisely, define a relation on [0,∞] × J by (a, j) ∼ (a, k) if a ≤ κj,k.
This is clearly reflexive and symmetric; it is transitive since if (a, j) ∼ (a, k)
and (a, k) ∼ (a, l) then a ≤ min(κj,k, κk,l) ≤ κj,l, by (1.2), so (a, j) ∼ (a, l).
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We define TC to be the quotient of [0,∞]×J by this equivalence relation:
this is a tree. The inclusion of [0,∞]× j induces an injection πBj

: [0,∞] →
TC , whose image we may identify with TBj

. The first projection induces a
map v : TC → [0,∞], whose restriction to TBj

is vBj
.

We regard TC as a graph whose vertices are the images of those defined for
the separate branches, together with such branch points Ij,k := πBj

(κj,k) as
are not already included. The values of ν on edges (subdivided, as necessary,
by points Ij,k) agree as before, so the 1-chains νBj

fit together to give a single
1-chain ν on the 1-complex TC . We orient each edge of TC in the sense in
which v increases: thus all edges point away from the vertex A0. We may
regard the set of vertices of TC as a poset with this ordering. Then Ij,k =
inf(B∞

j , B∞
k ). We can identify TC with the Hasse diagram of the poset.

Lemma 2.1 For any branch Γ at O there is a unique point XΓ ∈ TC such
that for each j ∈ J , O(Γ, Bj) = v(inf(XΓ, B∞

j )).

Proof: Choose j to maximise O(Γ, Bj) —the value is O(Γ, C) = κ,
say— and define XΓ := πBj

(κ). Then by the triangle inequality for or-
ders of contact, for any k �= j we either have O(Γ, Bk) = κ ≤ O(Bj , Bk)
or O(Γ, Bk) = O(Bj, Bk) ≤ κ. In the former case, XΓ ≤ Ij,k < B∞

k ,
so v(inf(XΓ, B∞

j )) = v(XΓ) = κ = O(Γ, Bk). In the latter case, XΓ ∩ B∞
k =

Ij,k, so v(inf(XΓ, B∞
j )) = v(Ij,k) = O(Bj, Bk) = O(Γ, Bk). Uniqueness is

immediate. �
We measure the contact of Γ with C by the 0-chain [Γ] := m(Γ)XΓ.

(The point XΓ need not be a vertex of TC as we have defined it, so in
any given situation a finite amount of subdivision may be necessary.) In
particular, [Bj ] = m(Bj)B

∞
j . For a curve germ ∆ with several branches Γi,

the contact with C is measured by the 0-chain [∆] :=
∑

i[Γi]. Thus [C] =∑
j∈J m(Bj)B

∞
j .

Since TC is a tree, its chain groups (with Z coefficients) form a short

exact sequence 0 → C1
∂−→ C0

ε−→ Z → 0, which is split by the map from Z

to C0 taking 1 to A0. This induces a splitting map s : C0 → C1. The value
of s on a vertex X is the sum of the edges forming the path from A0 to X.

For any vertex X, write X̂ for the 1-cochain dual to the edge immediately
below X (and Â0 := 0). Now if ∆ is, as above, a germ with branches Γi,

we claim that 〈X̂, s[∆]〉 is the sum of the multiplicities of the branches Γ
of ∆ passing through X (i.e. with X ≤ XΓ). It suffices to check for a single
branch Γ. But then s[Γ] is the sum of the edges below XΓ, each with coeffi-

cient m(Γ), so has non-trivial product with X̂ if and only if X ≤ XΓ.
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Let us calculate the list of orders of contact with C of the pro-branches
of a general branch Γ. First consider the case when C has a single branch B.

By (1) of Proposition 1.2, if γ′ is a pro-branch of Γ, O(B,Γ) = κ, and
αq < κ ≤ αq+1, then {O(γ′, γ) | γ ∈ pro(B)} consists of αi, occurring
(ei−1 − ei) times (1 ≤ i ≤ q); and κ, occurring eq times. We may repre-
sent this list by the 0-chain

∑q
1(ei−1 − ei)Ai + eqXΓ on TB. Applying the

splitting map s to this 0-chain gives the 1-chain

ζB,Γ :=

q∑
1

er−1(Ar−1Ar) + er(AqXΓ),

and the 0-chain is then ∂ζB,Γ + m(B)A0. Observe that 〈M̂, ζB,Γ〉 vanishes
unless M ≤ XΓ, and is then er−1 if Ar−1 < M ≤ Ar.

If C has branches Bj, we define ζC,Γ :=
∑

j ζBj ,Γ. This is determined
by the list of orders of contact of a pro-branch of Γ with the pro-branches
of the several branches of C, so depends only on the point XΓ. We define
ηC(XΓ) := ζC,Γ, and extend to an additive homomorphism ηC : C0 → C1.
Thus if ∆ has branches Γi, we have ηC [∆] :=

∑
i m(Γi)ζC,Γi

.

For each point M �= A0, the highest point occurring with non-zero co-
efficient in ∂ηC(M) is M itself. Thus the matrix of ηC is triangular, and
ηC has kernel ZA0. Hence to recover the characteristic 0-cycle [∆] of the
curve-germ ∆ it is sufficient to know the information ηC [∆] determined by
the orders of contact. This remark applies not only to the tree TC but
also to any tree obtained by subdividing at a finite number of points: the
transitions ηC and its inverse do not require additional subdivision.

The explicit inversion of ηC is given by the following.

Lemma 2.2 With the above notation, we have

(2.1) 〈M̂, ν〉〈M̂, ηC [∆]〉 = 〈M̂, s[∆]〉〈M̂ , s[C]〉.

Proof: Since both sides are additive in [∆], we may assume ∆ = Γ
irreducible. Now calculate explicitly. For any point M , we have

(2.2) 〈M̂, ηC [Γ]〉 =
∑

j

m(Γ)〈M̂, ζBj ,Γ〉 =
∑

j

m(Γ)m(Bj)cj(M),

where cj(M) is zero unless M ≤ XΓ and M ∈ TBj
, while if M ≤ XΓ and

M ∈ πBj
]Ar−1, Ar], we have cj(M) = er−1/m(Bj) = 1/〈M̂, ν〉 —though the

definition of er−1 depends on the choice of branch, the quotient er−1/m is
determined by the point of TC .
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Hence the right hand side of (2.2) is 0 unless M ≤ XΓ, when it becomes

m(Γ)
∑

M≤B∞
j

m(Bj)/〈M̂, ν〉 = m(Γ)〈M̂, s[C]〉/〈M̂, ν〉.

Thus in all cases it is equal to 〈M̂, s[Γ]〉〈M̂ , s[C]〉/〈M̂, ν〉. �

3. Decomposition of polar curves

Merle’s decomposition theorem was extended to the case of curves C with
two branches by Delgado [8], who also showed that the method of proof did
not work for curves with more branches. A number of detailed results on
singularities of P were obtained by Casas [3], [4], [5], [6], particularly for
the case when C is a general member of its equisingularity class, but simple
examples show that the equisingularity class of P is not determined by that
of C. A result on decomposition in general was obtained by Lê, Michel
and Weber [13]. A full generalisation of Merle’s theorem was obtained in
the 1996 thesis of Garćıa Barroso [10], [11]. Another proof was found by
Assi [1]. However the problem was essentially already solved in 1983 by
Eggers [9].

We give a short proof which, like those cited, hinges on a result of Kuo
and Lu [12], which we may state as follows.

Proposition 3.1 [12, Lemma 3.3] Let C be a reduced curve germ, P a
transverse polar of C. Then for any pro-branch γ of C,

{O(γ, δ) | δ ∈ pro(P )} = {O(γ, γ′) | γ �= γ′ ∈ pro(C)}.
The proof depends on the use of Newton polygons.

Theorem 3.2 Let C be a reduced curve germ, P a transverse polar curve
of C. Then the contact of P with C is measured by the 0-chain [P ] =
[C]− ∂ν −A0. In particular, the points occurring with non-zero coefficients
in [P ] are the vertices of TC with values in ]0,∞[.

Proof: By Lemma 3.1, for any pro-branch γ of C,

{O(γ, δ) | δ ∈ pro(P )} = {O(γ, γ′) | γ �= γ′ ∈ pro(C)}.
Thus if γ ∈ pro(Bj), the 0-chains corresponding to {O(γ, δ) | δ ∈ pro(Γ)}
for Γ equal to P or C differ by B∞

j . Hence the 1-chains differ by s(B∞
j ), and

(3.1) ηC [P ] =
∑

j

m(Bj)(ηC [B∞
j ] − s[B∞

j ]) = ηC [C] − s[C].
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Now applying (2.1) to Γ = P , for any point M of the tree,

(3.2) 〈M̂, s[P ]〉〈M̂, s[C]〉=〈M̂ , ν〉〈M̂, ηC [P ]〉=〈M̂, ν〉〈M̂, (ηC [C]−s[C])〉,

while, applying (2.1) to Γ = C itself, we have

(3.3) 〈M̂, s[C]〉〈M̂, s[C]〉 = 〈M̂, ν〉〈M̂, ηC [C]〉.

Substituting (3.3) in the right hand side of (3.2), and cancelling the

factor 〈M̂, s[C]〉, now gives 〈M̂, s[P ]〉 = 〈M̂, s[C]〉 − 〈M̂, ν〉, and since

the 1-cochains M̂ span C1 we infer s[P ] = s[C] − ν.
Applying ∂ we see that [P ] differs from [C]−∂ν by a multiple of A0. We

determine this multiple by applying ε: ε[P ] = m(P ) = m(C) − 1, ε[C] =
m(C), and ε ◦ ∂ = 0, so [P ] = [C] − ∂ν − A0, as claimed.

By inspection, the coefficients of A0 and the B∞
j in this expression vanish

(as they must), and no point other than the original vertices of TC can
appear. To see that each of these has non-zero coefficient, observe that for
a single branch, the values of ν on the edges increase strictly at each Ai, so
each Ai occurs with strictly positive coefficient in −∂ν; while for a branch
point Ij,k the values of ν on each of the edges immediately above the point
are at least equal to the value on the edge immediately below, so again we
have a strictly positive coefficient. �
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