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Analysis of the free boundary for the
p-parabolic variational problem (p≥ 2)

Henrik Shahgholian

Abstract
Variational inequalities (free boundaries), governed by the p-para-

bolic equation (p ≥ 2), are the objects of investigation in this paper.
Using intrinsic scaling we establish the behavior of solutions near the
free boundary. A consequence of this is that the time levels of the free
boundary are porous (in N -dimension) and therefore its Hausdorff
dimension is less than N . In particular the N -Lebesgue measure of
the free boundary is zero for each t-level.

1. Preliminaries

In this paper we consider a variational inequality for the p-parabolic operator
(2 ≤ p < ∞)

div(|∇u(x)|p−2∇u(x)) − ∂tu,

giving rise to a free boundary. Our objective is to analyze the free boundary
in the context of regularity theory. To fix the idea, let us start with the
formulation of the problem in the weak sense. First some notations:

Ω is a bounded (smooth) domain in R
N ; ΩT = Ω × (0, T ); V 1,p(ΩT ) is

the parabolic space [D, page 7],

V 1,p(ΩT ) = L∞(0, T ; L1(Ω)) ∩ Lp(0, T ; W 1,p(Ω)),

f and θ are given bounded functions; the Steklov average vh of a function is
defined by

vh(x, t) =
1

h

∫ t+h

t

v(x, τ)dτ for t ∈ (0, T − h],

and vh = 0 for t > T − h.
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porosity.
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The variational problem is to find a function

u∈Kθ := Kθ(p) = {w : w∈V 1,p(ΩT ), ∀t w = θ on ∂pΩT , w ≥ 0 a.e. in ΩT},
such that (for h > 0, and 0 < t < t + h < T )

(1.1)

∫
Ω

∂tuh(w−u)dx+

∫
Ω

(|∇u|p−2∇u
)

h
·∇(w−u)dx+

∫
Ω

fh(w−u)dx ≥ 0,

a.e. in t ∈ (0, T ), and for all w ∈ Kθ. In (1.1) we have taken the Steklov
average since the time derivative of u may not exist as a function in V 1,p.

Under certain conditions on f , and θ (see below) we will show that the
free boundary of the solutions to the variational problem (1.1) is so-called
porous (for each t-level cut). We define the porosity below. A consequence
of porosity is that the t-cuts of the free boundary will have zero Lebesgue
measure.

It should also be remarked that the porosity of the free boundary follows
as a by-product of our main result, which states that the solution u to (1.1)
grows with a certain power away from the free boundary. The proof of the
latter, in turn, employs techniques that originate in the author’s work with
L. Karp [KS]. Cf. also [ASU], [CKS], [KS], [KKPS], [LS] for related results
and techniques.

The conditions to be imposed on f , and θ are the following.

Condition A: We assume f , and θ are bounded continuous functions on
the closure of ΩT ,

0 < λ0 ≤ f ≤ Λ0, in ΩT , θ(x, 0) = 0,

f(x, t), monotone non-increasing in t,

and
θ(x, t) monotone non-decreasing in t.

With these conditions one forces the solution u to the variational problem
to become monotone non-decreasing in t (see below), i.e., ∂tu ≥ 0 in the set
{u > 0}. For p = 2 this condition is replaced by ∂tu > 0 due to the
strong maximum/comparison principle. The latter is known to fail for the
p-parabolic equation, see [D, Chapter VI, Lemma 3.1 ].

An example, of the failure of the strong maximum principle, is given by
the Fundamental solution obtained by Barenblat [B], which is

Bp = t−n/λ

(
c1 − p − 2

p
λ−1/(p−1)

( |x|
t1/λ

)p/(p−1))(p−1)/(p−2)

+

(p > 2).

Here λ = n(p − 2) + p and the function is defined when t > 0 and x ∈ R
N .

Also c1 is a normalization constant chosen such that
∫ Bp(x, t)dx = 1, for

t > 0.
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It is noteworthy that above conditions on the functions f , and θ appear
naturally in the so-called Stefan problem (see [F], [KiSt]), which has been
studied extensively and there is a vast literature on the subject (see the
references in [F]). However, the assumptions, in this paper, which lead to
∂tu ≥ 0, are only adopted for technical reasons. Indeed it only enters into
the proof at one point, where it is mainly used to show that at every t
level there is a point where u takes a maximum value comparable with the
maximum values of the previous levels of t, by the monotonicity property
of u (∂tu ≥ 0) we will have that the maximum value at level t is larger than
that of level t − h for every h > 0.

The difficulty with the p-parabolic problem is the inhomogeneity of the
operator. In other words the operator is of order p in the spatial directions
and of order one in the time direction. This inhomogeneity forces us to use
intrinsic scaling of the solution, i.e. we consider

u(z + rx, s + rpS2−p
r t)

Sr

,

where Sr = supQ−
r (z,s) u, with Qr(z, s) = Br(z) × (−rq + s, rq + s) and

Q−
r (z, s) = Br(z) × (−rq + s, s) , with q = (p − 1)/p. This type of intrinsic

scaling already appears in Harnack’s inequality for the p-parabolic equation
(see [D; page 157]). Observe also that by the above definition

∆pur(x, t) − ∂tur(x, t) =
rp

Sp−1
r

(∆pu − ∂tu)(rx, rpS2−p
r t),

and thus the scaling leaves the solution invariant in the sense that if ∆pu−∂tu
is bounded then so is ∆pur − ∂tur, provided rp

Sp−1
r

is finite (see Lemma 2.1).

The above intrinsic scaling, in turn, may cause other type of difficulties,
one of which is that the scaling of u as above may converge (as r → 0) to a
function which vanishes identically, this we don’t want to happen since we
want to use the limit function in a certain contradictory argument, and we
need it to be nonzero.

Another, major obstacle in the analysis is the lack of strong maximum
principle, which becomes crucial in the final steps of the proof. We overcome
this difficulty by using Hölder’s estimate to reduce the final part of the
problem to the time independent situation.

Let us gather all properties (needed here) for the solution u to the varia-
tional inequality (1.1). For the sake of reference we formulate it as a theorem.
Although this theorem can be proven using classical techniques, we couldn’t
find an exact reference to it for the general case 1 < p < ∞. For readers’
convenience we sketch the proof in the Appendix.
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Classical Theorem. Let 1 < p < ∞. Let also f and θ satisfy Condition A.
Then there exists a unique solution u to the variational problem (1.1) in Kθ

with

0 ≤ u ≤ ‖θ‖∞,ΩT
in ΩT ,(1.2)

∂tu ≥ 0 in {u > 0}.
Moreover u satisfies

(1.3) div(|∇u|p−2∇u) − ∂tu = g

weakly in ΩT with g ∈ L∞(ΩT ) satisfying

(1.4) fχ{u>0} ≤ g ≤ fχ{u>0} a.e. in ΩT ,

In the sequel we will use the following notation

q =
p

p − 1
.

We also define the concept of porosity.

Porosity: A set E in R
N is called porous with porosity constant δ if there

is an r0 > 0 such that for each x ∈ E and 0 < r < r0 there is a point y
such that Bδr(y) ⊂ Br(x) \ E. A porous set has Hausdorff dimension not
exceeding N −CδN , where C = C(N) > 0 is some constant (see e.g. Martio
and Vuorinen [MV]). Consequently a porous set has Lebesgue measure zero.

Now we formulate the main theorem in this paper.

Main Theorem. Let 2 ≤ p < ∞, and u be a solution to problem (1.1) in
Kθ with f , θ satisfying Condition A. Then for every compact set K ⊂ ΩT

the following hold

(1.5) c0r
q ≤ sup

Br(x0)

u(·, t0) ≤ C0r
q (x0, t0) ∈ ∂{u > 0} ∩ K.

Consequently, the intersection ∂{u > 0} ∩ K ∩ {t = t0} is porous (in R
N)

with porosity constant

δ = δ(‖θ‖∞,Ω, λ0, Λ0, dist(K, ∂pΩT ), p,N) > 0.

Here c0, depends on N , p, λ0,, and C0 depends on N , p, λ0, ‖θ‖∞,ΩT
, and Λ0.

We prove this theorem in Section 3. The theorem can be generalized
to hold for a larger class of operators of type [D, (1.1)]. There is basically
minor (if any at all) modifications in the proofs.

Observe that the porosity of the t-sections follow from the upper bound
in (1.5) and the lower bound in (1.6) in the above theorem. The estimate
from below in (1.5) is not needed, and it is included only for the sake of com-
pleteness and future references. It also holds in a more general framework
and not only for solutions of problem (1.2), see Lemma 2.1 below.
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2. A class of functions invariant under intrinsic scaling

The proof of the main theorem is based on the study of the following class
of functions. We say that a function u is in W 1,p(Q1), where Q1 = B(0, 1)×
(−1, 1) is the unit cylinder in R

N+1, belongs to the class G = G(p,N, L, Λ0)
(2 ≤ p < ∞) if

‖div(|∇u|p−2∇u) − ∂tu‖∞,Q1 ≤ Λ0;(2.1)

0 ≤ u ≤ L a.e. in Q1;(2.2)

u(0, 0) = 0;(2.3)

∂tu ≥ 0 a.e. in Q1.(2.4)

Condition (2.1) is understood in the weak sense, i.e., div(|∇u|p−2∇u)−∂tu=h
weakly for h ∈ L∞(Q1) with ‖h‖∞ ≤ Λ0. Condition (2.3) makes sense
since (2.1) and (2.2) provide that u ∈ C1,α

x ∩C0,α
t (Q1/2) for some α ∈ (0, 1);

(see e.g. [D, § IX]).

If the problem is given in Q1(z, s), then by translation we may consider
the problem again in Q1(0, 0), without any change in the norms.

Lemma 2.1 Let u ∈ W 1,p (Q1) be a non-negative continuous function in
Q1(0, 0), satisfying

div(|∇u|p−2∇u) − ∂tu = f

weakly in U+ = {u > 0} with f satisfying the lower bound in (1.5). Then

for every (z, s) ∈ U
+

and r > 0 with Qr(z, s) ⊂ Q1

sup
(x,t)∈∂pQ−

r (z,s)

u(x, t) ≥ c0r
q + u(z, s),

where

c0 = min

(
λ0

2
,
1

q

(
λ0

2N

)1/(p−1))
.

Proof. First suppose that (z, s) ∈ U+, and for small ε > 0 set

wε(x, t) = u(x, t) − u(z, s)(1 − ε),

and

v(x, t) =

(
1

q

(
λ0

2N

)1/(p−1))
|x − z|q −

(
λ0

2

)
(t − s).

Then div(|∇v|p−2∇v) − ∂tv = λ0 and therefore

div(|∇wε|p−2∇wε) − ∂twε = div(|∇u|p−2∇u) − ∂tu ≥ div(|∇v|p−2∇v) − ∂tv

in U+ ∩ Q−
r (z, s), and wε ≤ v on ∂U+ ∩ Q−

r (z, s).
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If also wε ≤ v on ∂pQ
−
r (z, s) ∩ U+, then we may apply the comparison

principle to obtain wε ≤ v in Q−
r (z, s)∩U+, which contradicts the fact that

wε(z, s) = εu(z, s) > 0 = v(z, s). Hence for some point (y, τ) ∈ ∂pQ
−
r (z, s)

we must have
wε(y, τ) ≥ v(y, τ) = C0r

q.

Letting ε → 0, we obtain the desired result, for all (z, s) ∈ U+, and by

continuity for all (z, s) ∈ U
+
. The proof is completed. �

We bring the reader’s attention to the fact that if we use the assumption
∂tu ≥ 0, then the lemma can be proved by considering u as a subsolution
for the elliptic case, i.e., ∆pu ≥ f .

First we recall the following Hölder’s estimate for solutions of our problem
or even more general cases (see [D]). Let GT = G × (0, T ], where G is a
bounded domain in R

N . For every pair (x, t), (y, τ) ∈ K (a compact in GT )
there exist constants γ > 1 and α ∈ (0, 1) such that

|u(x, t) − u(y, τ)| ≤ γ‖u‖∞,GT

(
|x − y| + ‖u‖(p−2)/p

∞,GT
|t − τ |1/p

distp(K; ∂pGT ; p)

)α

p > 2

where

distp(K; ∂pGT ; p) = inf
(x,t)∈K,

(y,τ)∈∂pGT

(
|x − y| + ‖u‖(p−2)/p

∞,∂pGT
|t − τ |1/p

)
.

Observe that γ does not depend on ‖u‖∞,GT
in our case; see [D, page 41,

Theorem 1.1]. The basic reasoning in the proof of the main theorem will
be a contradictory argument which uses the intrinsic scaling, compactness
argument and Hölder’s inequality for functions in our class.

Now we define, the supremum norm of u over the cylinder Q−
r (z, s) =

B(z, r) × (s − rq, s) by setting

S(r, u, z, s) = sup
(x,t)∈Q−

r (z,s)

u(x, t).

When (z, s) is the origin we suppress the point dependent.
Next, for u ∈ G we define M(u, z, s) to be the set of all non-negative

integers j such that the following doubling condition holds

AS(2−j−1, u, z, s) ≥ S(2−j, u, z, s),

where

A = 2q max
(
1,

1

C0

)
,

with C0 as in Lemma 2.1.
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We first show that 0 ∈ M(u) for all u ∈ G. This actually follows by the
previous lemma in the following way

(2.5) S(1, u) ≤ 1 =

(
1

C02−q

)
C02

−q ≤
(

1

C02−q

)
S(2−1, u) = AS(2−1, u).

With some efforts, our main theorem will follow from the theorem below.

Theorem 2.2 There is a positive constant M0 = M0(p,N, L, Λ0) such that
for every u ∈ G, there holds

|u(x, t)| ≤ M0(d(x, t))q ∀(x, t) ∈ Q1/2,

where

d(x, t) = sup{r : Qr(x, t) ⊂ U+} for (x, t) ∈ U+,

and d(x, t) = 0 otherwise.

First we show a weaker version of Theorem 2.2.

Lemma 2.3 There exists a constant M1 = M1(p,N, Λ0) such that

S(2−j−1, u) ≤ M1

(
2−j
)q

,

for all u ∈ G, and j ∈ M(u).

Observe that the constant M1 here doesn’t depend on L (the supremum
value of u).

Proof. We argue by contradiction. Thus we assume that for every k ∈ N,
there are uk ∈ G and jk ∈ M(uk) such that

(2.6) S(2−jk−1, uk) ≥ k
(
2−jk

)q
.

Observe that by (2.5) we have 0 ∈ M(u) �= ∅.
Define now

(2.7) ũk(x, t) :=
uk(2

−jkx, 2−qjkαkt)

S(2−jk−1, uk)
,

where

(2.8) αk =

(
2−qjk

S(2−jk−1, uk)

)p−2

≤
(

1

k

)p−2

.
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The domain of the definition for functions ũk will be the unit cylinder.
However, for p < 2 this may cause problems. The reason for this is that
when p < 2, αk → ∞. This is why the present technique fails for p < 2.

From all the above, and the definitions of M and G it follows that

0 ≤ ũk ≤ A in Q−
1 (by doubling)(2.9)

sup Q−
(1/2)

ũk = 1 (by (2.4) and(2.7))(2.10)

ũk(0, 0) = 0 (by (2.3))(2.11)

∂tũk ≥ 0 in Q−
1 (by (2.4))(2.12)

Now by (2.1) and (2.6)

(2.13) ‖div(|∇ũk|p−2∇ũk) − ∂tũk‖∞,Q1 ≤ Λ0k
1−p.

Invoking compactness arguments (see [D, Lemma 14.1 page 75], we infer
that a subsequence of ũk converges locally uniformly in Q−

1 to a function u.
Moreover, the limit function u �≡ 0, by (2.10), and it satisfies, by (2.9),
(2.11)–(2.13)

div(|∇u|p−2∇u) − ∂tu = 0, u(0, 0) = 0, u ≥ 0, ∂tu ≥ 0,

in Q−
1 , i.e., u is a nonzero, nonnegative p-parabolic function in Q−

1 that
is non-decreasing in time. It also takes a local minimum at the origin.
For p = 2 this gives a contradiction to the strong minimum principle.
For p > 2 we need to study the problem further, due to the lack of the
strong minimum principle.

Going back to the analysis made above, we see that the supremum of u
on the zero time level is larger than or equal to that of the negative time
levels, since ∂tu ≥ 0. Hence using (2.10) we will have

sup
B(0,1/2)

u(x, 0) = 1.

Next we show that u is time independent, i.e.,

(2.14) ∂tu = 0, in Q−
1 .

Suppose this holds for the moment. Then u is nonzero, nonnegative
p-harmonic function in the unit ball and it vanishes at the origin.

Indeed, this is a contradiction to the minimum principle for p-harmonic
functions [HKM], and the proof will be finished in this case as soon as
we prove the time independence of u, i.e., (2.14). This follows simply by
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inspection. Indeed, choosing (x, t), (x, t′) ∈ Q−
1/2 and using, first the doubling

property and then Hölder’s inequality with GT = Q−
2−jk

and K = Q−
2−jk+1 ,

we will have

|ũk(x, t) − ũk(x, t′)| =
|uk(2

−jkx, 2−qjkαkt) − uk(2
−jkx, 2−qjkαkt

′)|
S(2−jk−1, uk)

≤

≤ A
|uk(2

−jkx, 2−qjkαkt) − uk(2
−jkx, 2−qjkαkt

′)|
S(2−jk , uk)

≤

(2.15) ≤ Aγ
‖uk‖Q

2−jk

S(2−jk , uk)

(‖uk‖(p−2)/p
Q

2−jk
(2−qjkαk)

1/p|t − t′|1/p

distp(K, ∂pGT )

)α

,

where 0 < α < 1 is as in Hölder’s inequality. Since here GT = Q−
2−jk

and

K = Q−
2−(jk+1) , we have

(2.16) distp(K, ∂pGT ) ≥ 2−(jk+1)q/p‖uk‖(p−2)/p

Q−
2−jk

.

It is noteworthy that in (2.16) we have used that p > 2. Next using (2.16)
we reduce the estimate (2.15) to

|ũk(x, t) − ũk(x, t′)| ≤ Aγ2q/p (αk|t − t′|)α/p

which tends to zero, for p > 2, and k → ∞. Hence u is t-independent, and
the proof is completed. �
Proof of Theorem 2.2. Let us take the first j for which

S(2−j, u) > 2qM12
−qj.

(If there is no such j then we are done.) It follows that

(2.17) S(2−j+1, u) ≤ 2qM12
−q(j−1) < 2qS(2−j, u) ≤ AS(2−j, u),

i.e. j − 1 ∈ M, so that Lemma 2.3 holds for j − 1. Now we arrive at the
following obvious contradiction to (2.17)

S(2−j, u) ≤ S(2−j+1, u) ≤ M12
−q(j−1) = 2qM12

−qj.

Therefore
S(2−j, u) ≤ 2qM12

−qj ∀j,

which implies
sup

Q−
r (0,0)

u ≤ 22qM1r
q ∀ r ≤ 1.
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To obtain a similar estimate for u over the whole cylinder (and not only
over the lower half part) we use a barrier from above. Here is how. Define
w = B1|x|q + B2t where B2 = N(qB1)

p−1 and B1 > 0. Let now Q+
1 =

B(0, 1) × (0, 1). Then

∆pw − ∂tw = 0 ≤ ∆pu − ∂tu in Q+
1 .

Since, by choosing B1 large, we will have w ≥ u on ∂pQ
+
1 , where for the

estimate on {t = 0} we have used the previous discussion, i.e., S(r, u) ≤ Crq.
Hence by the comparison principle we will have w ≥ u in Q+

1 . Therefore

sup
Qr(0,0)

u ≤ M2r
q.

From here the proof of Theorem 2.2 follows. �

3. Proof of the main theorem

Now we complete the proof of the main theorem. Having the estimates
from below and above for the function u, one can proceed as in [KKPS]. For
completeness we carry out the minor changes in the proof of [KKPS].

Proof of the main theorem. We assume, without loss of generality, that
the compact K in the main theorem is the closed unit cylinder Q1, and
moreover that Q2 ⊂ ΩT .

For (x, t) ∈ U+ ∩ Q1 let d(x, t) be defined as in Theorem 2.2 and take
(x0, t0) ∈ ∂U+ ∩ Q1 which realizes this distance. Next define

ũ(y) = u(x0 + y, t0 + s) for (y, s) ∈ Q1.

and apply Classical Theorem in Section 1 to arrive at

‖div(|∇ũ|p−2∇ũ) − ∂tũ‖∞ ≤ Λ0, 0 ≤ ũ ≤ ‖θ‖∞,Ω, ũ(0, 0) = 0.

Therefore if M = max{1, Λ1/(p−1)
0 , ‖θ‖∞,Ω}, then

ũ(y,M2−ps)

M
∈ G.

Since M ≥ 1 and p ≥ 2 we infer by Theorem 2.2 that

(3.1) u(x, t) = ũ(x − x0, t − t0) ≤ MM0 (d(x, t))q .

Next, let (z, τ) ∈ ∂U+ ∩ Q1. Then for 0 < r < 1, according to Lemma 2.1
and condition (2.4), there exists x1 ∈ ∂Br(z), such that

u(x1, τ) ≥ C0r
q.
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Now by (3.1)

C0r
q ≤ u(x1, τ) ≤ MM0 (d(x, τ))q ,

which implies that

d(x1, τ) ≥ δr, δ =

(
C0

MM0

)(p−1)/p

,

or equivalently,

Bδr(x
1) ∩ Br(z) ⊂ U+.

Note that δ ≤ 1. Since x1 ∈ ∂Br(z), there is a ball

B(δ/2)r(y) ⊂ Bδr(x) ∩ Br(z) ⊂ Br(z) \ ∂U+.

This shows that ∂U+∩{t = τ}∩B1 is porous with the porosity constant δ/2.
The theorem is proved. �

4. General Operators

The technique employed in this paper is quite flexible and can be applied
to general situations and to other operators. The mere requirement in the
technique is the compactness argument and the strong maximum principle
for the limit operator.

The main obstacle of applying the techniques in this paper to the case of
1 < p < 2 is that this case does not reduce to a time-independent situation
as that for p > 2.

There are plenty of operators where the above technique should work. we
will give some examples of such operators. One needs to interplay between
the homogeneity of the operator in its variables and the scaling chosen. Let
us give some examples.

Example 1. Consider the operator

∆pu − ∂t

(|u|p−2u
)
.

Then it is known that this operator has the Harnack inequality (see [T]). In
the paper of Peter Lindqvist [L] one can find some interesting discussions
concerning other variants of this operator. For this operator one needs to
define

Sr = sup
Br×[−rp,0]

u ,

then one gets the correct growth which is rp.
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Example 2. Another operator that is probably easy to handle is

div
(|u|m−1|∇u|p−2∇u

)− ∂tu,

where we need to take m + p ≥ 1, p > 1. Here one should consider a scaling
of the type

u(rx, rpSm+p−1
r t)

Sr

,

to obtain a growth of the form

Sr ≤ Crp/(p+m−1).

Recently this technique has been applied by the present author and K.
Lee to viscosity solutions for nonlinear operators [LS], where also the regu-
larity of the free boundary has been established.

An interesting question is whether one can relax the conditions u ≥ 0,
∂tu ≥ 0. For p = 2 this problem has been completely investigated by the
present author, L. Caffarelli and A. Petrosyan [CPS]. Similarly the situation
where the free boundary hits the fixed boundary is also treated by [ASU].

5. Appendix

In this part we will give a sketch of a proof of Classical Theorem presented
in the first section.

The existence of a unique solution to the above variational inequality can
be shown by using classical techniques such as penalization (see [F], [KiSt]
for p = 2). One introduces a family of functions βε(s) (0 < ε < 1) with
certain properties such as:

βε ∈ C∞(R),

β′
ε(s) ≥ 0,

βε(s) → −∞ if s < 0, ε → 0,

βε(s) = 0 if s > ε,

βε(s) ≤ Λ0, and βε(0) = −Λ0,

where Λ0 is the upper bound for f . The choice of Λ0 is for technical reasons,
that will be apparent in the below analysis.

Next we approximate the p-Laplacian with a second order smooth oper-
ator. We define, namely,

∆ε
pu = div

(
(|∇u|2 + ε)(p−2)/2∇u

)
.
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Then, the penalized problem is to find a solution uε to

(5.1) ∆ε
pu

ε − ∂tu
ε − βε(u

ε) = fε, in ΩT ,

and with the boundary value uε = θ on ∂pΩT . Here fε is a smooth enough
approximation of f . Next, by classical parabolic theory for uniformly elliptic
operators, for each ε there is a solution uε to (5.1).

As the reader have already noticed, the main result in this paper relies
heavily on a basic feature, carried by the solution(s) of the above prob-
lem, i.e.,

(5.2) ∂tu ≥ 0.

To see this let us first take (smooth) functions f1, f2, θ1, θ2 such that f1 ≤ f2,
θ1 ≥ θ2. Let also u1 and u2 denote their corresponding solutions to the
penalized problem (5.1). Suppose the relatively open set U = {u2 > u1}
is nonempty. Since on ∂pΩT , u1 = θ1 ≥ θ2 = u2 there must hold U ⊂ ΩT .
Next, in U , one has

∆ε
pu1 − ∂tu1 = βε(u1) + f1 ≤ βε(u2) + f2 = ∆ε

pu2 − ∂tu2,

where the inequality is a consequence of the monotonicity of β. Now ap-
plying the strong comparison principle (for uniformly elliptic operators) we
obtain a contradiction. It should be mentioned that the form of the strong
comparison principle, applied here, uses the fact that at the maximum point
of u2 − u1 we have ∇u1 = ∇u2, and hence the classical computations work
out as usual.

Next, for t > 0 and h > 0, set

f1(x, t) = f(x, t + h), θ1(x, t) = θ(x, t + h), u1(x, t) = u(x, t + h),
f2(x, t) = f(x, t), θ2(x, t) = θ(x, t), u2(x, t) = u(x, t),

and for t = 0 set

θ1(x, 0) = u(x, h), θ2(x, 0) = θ(x, 0).

To apply the above comparison argument we need only to verify that
θ1(x, t) ≥ θ2(x, t). However, to enforce this inequality we need to show that
uε ≥ 0. But this is a consequence of the strong maximum/minimum prin-
ciple. Indeed, in the set {uε < 0} we have βε(u

ε) + f ≤ 0 and therefore uε

becomes supersolution to ∆ε
p there. Hence the maximum/minimum principle

applies and we must have {uε < 0} is empty.

For p = 2 one can show that ∂tu
ε ≤ C, where C is independent of ε (see

[F, (9.14)], [KiSt, page 281]). The classical techniques in proving the upper
bound for the time derivative for the linear case p = 2 is not applicable to
the general case.
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Observe that the operator ∆ε
p satisfies all conditions of p-parabolicity

(see [D, page 16]). Hence uε ∈ C2,α(ΩT ) (in both variables, but not uniformly
in ε). Now by (5.2) and the boundary data we have uε ≥ 0 in ΩT . Hence by
the definition of βε we must have

|βε(u
ε)| ≤ Λ0.

From here we conclude that

(5.3) uε,∇uε ∈ Cα(ΩT ) uε ∈ V 1,p(ΩT )

(uniformly in ε); see [D, page 245, 291]. Obviously, from here, we conclude
that for a subsequence ε′ → 0 we must have a limit function u satisfying the
conditions in (5.3).

To verify the variational inequality for the limit function we replace
equation (5.1) with its Steklov average and multiply the new equation with
(uε − w), with w ≥ δ > 0, to arrive at

(5.4)
[−div

(
(|∇uε|2 + ε)(p−2)/2∇uε

)
h
+ ∂tu

ε
h+ (βε(u

ε))h + (fε)h

]
(uε−w) = 0

Letting ε < δ we see that βε(w) = 0, and therefore (using the monotonicity
of β) we can disregard from the term βε in (5.4) by changing the equality
sign to an inequality

(5.5)
[−div

(
(|∇uε|2 + ε)(p−2)/2∇uε

)
h

+ ∂tu
ε
h + (fε)h

]
(uε − w) ≤ 0.

To arrive at variational inequality (1.1) we set w = v + ε with v ∈ Kθ, and
integrate (5.5) over Ω for fixed t. Then integrating by parts the first term
we will end up at (1.1) for uε, and with an extra term involving boundary
integral

(5.6)

∫
∂Ω

(
(|∇uε|2 + ε)(p−2)/2∇uε · ν)

h
ε dσ,

where dσ denotes the boundary element and ν the unit normal vector to
∂Ω; it is here that we need smoothness for ∂Ω. If the boundary value θ is
smooth enough then (5.6) tends to zero, as ε does so, and we obtain (1.1).

The uniqueness of the solution also follows by employing similar tech-
niques as the one used in proving (5.2). Finally applying similar techniques
as that of [KKPS] we will obtain (1.3)–(1.4), we leave the obvious details to
the reader.
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