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Calderón-Zygmund theory for
non-integral operators and the H∞

functional calculus

Sönke Blunck and Peer Christian Kunstmann

Abstract
We modify Hörmander’s well-known weak type (1,1) condition for

integral operators (in a weakened version due to Duong and McIn-
tosh) and present a weak type (p, p) condition for arbitrary operators.

Given an operator A on L2 with a bounded H∞ calculus, we
show as an application the Lr-boundedness of the H∞ calculus for all
r ∈ (p, q), provided the semigroup (e−tA) satisfies suitable weighted
Lp → Lq-norm estimates with 2 ∈ (p, q) .

This generalizes results due to Duong, McIntosh and Robinson for
the special case (p, q) = (1,∞) where these weighted norm estimates
are equivalent to Poisson-type heat kernel bounds for the semigroup
(e−tA) . Their results fail to apply in many situations where our im-
provement is still applicable, e.g. if A is a Schrödinger operator with
a singular potential, an elliptic higher order operator with bounded
measurable coefficients or an elliptic second order operator with sin-
gular lower order terms.

1. Introduction and main results

The subject of this paper is an extension of Calderón-Zygmund operator
theory to non-integral operators. Assume that Ω is a measurable subset of
a space (Ω1, d, µ) of homogeneous type. It is classical (at least for the case
Ω = Ω1 ) that an integral operator T ∈ L(L2(Ω)) is of weak type (1, 1) if its
kernel k(x, y) satisfies the well-known Hörmander condition∫

B(y,cd(y,y′))c

|k(x, y)−k(x, y′)| dµ(x) ≤ C for all y, y′ ∈ Ω and some c > 0 .
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In practice, many integral operators satisfy the Hörmander condition, on
the other hand there are numerous important examples of operators who
do not but are still of weak type (1, 1) [F] [CR]. This motivated the fol-
lowing improvement due to Duong and McIntosh [DM] (see e.g. [H] , [S] for
other results in this direction): T is of weak type (1, 1) if there exist inte-
gral operators (St)t>0 satisfying suitable Poisson bounds (and playing the
role of approximations to the identity) such that the kernels kt(x, y) of the
composite operators T (I − St) satisfy the weakened Hörmander condition

(1.1)

∫
B(y,ct1/m)c

|kt(x, y)| dµ(x) ≤ C0 for all t > 0 , y ∈ Ω

and some c,m > 0 . In this paper we generalize this approach to non-integral
operators T . The hypothesis on the St to be integral operators satisfying
Poisson bounds is replaced by suitable weighted norm estimates. Instead of
the weakened Hörmander condition (1.1) we will suppose a suitable maximal
estimate in terms of the Hardy-Littlewood p-maximal operator

Mpf(x) := sup
r>0

Np,rf(x) , where Np,rf(x) := |BΩ1(x, r)|−1/p || f ||Lp(B(x,r))

with obvious modification for the case p = ∞. Finally, we shall replace the
first order approximation of the identity

I −DSt where DSt := I − St

[which underlies the result based on (1.1) ] by approximations of higher order
n ∈ N:

I −DnSt where DnSt :=
n∑

k=0

(
n

k

)
(−1)kSkt

(here we let S0 := I). Observe that we formally have Dnf(t)
tn

→ (−1)nf (n)(0)
for t→ 0 and an arbitrary function f . This leads to the first main result of
this paper which is the following weak type (p, p) criterion for non-integral
operators T .

Theorem 1.1 Let (Ω1, d, µ) be a space of homogeneous type and dimension
D ≥ 1:

|BΩ1(x, λr)| ≤ C λD |BΩ1(x, r)| for all x ∈ Ω1 , λ ≥ 1 , r > 0 .

Let Ω be a measurable subset of Ω1 , let 1 ≤ p < po < q ≤ ∞, qo ∈ (p,∞]
and (St)t≥0 a family in L(Lpo(Ω)) satisfying S0 = I and the weighted norm
estimate

(1.2) ||PA(x,t1/m,k) St PB(x,t1/m) ||p→q ≤ |BΩ1(x, t
1/m)| 1q− 1

p gt(k)
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for all x ∈ Ω1 , t > 0 , k ∈ N0 , for some m > 0 and functions gt : R≥0 → R+

such that
∑

k (k+1)D−1gt(k) ≤ C for all t > 0 . Let T ∈ L(Lpo(Ω), Lw
po

(Ω))
satisfy

(1.3) Np′,t1/m/2

(
(T DnSt)

∗ PB(z,4t1/m)cf
)
(z) ≤ C1 (Mq′of)(x)

for all t > 0 , f ∈ Lp′ , z ∈ Ω1 , x ∈ BΩ1(z, t
1/m/2) and some n ∈ N . Then

we have T ∈ L(Lp(Ω), Lw
p (Ω)) .

Here and for the rest of the paper we denote by ‖ · ‖p→q the Lp(Ω) →
Lq(Ω)−norm and by A(x, r, k) the annular region A(x, r, k) := B(x, (k +
1)r) \B(x, kr) in Ω . Moreover, we denote by Lw

p the weak Lp-spaces.

Some remarks on the comparison of the weakened Hörmander condi-
tion (1.1) and its substitute (1.3) are given in Section 2 where we also present
a variant of Theorem 1.1 which uses a different substitute (Theorem 2.1).

As our second main result and as an application of Theorem 1.1 we
will show that every sectorial operator A with a bounded H∞ calculus on
L2(Ω) also has a bounded H∞ functional calculus on Lr(Ω) for all r ∈ (p, q),
provided 2 ∈ (p, q) and the semigroup (e−tA) satisfies weighted Lp → Lq-
norm estimates of the type (1.2) .

For a sectorial operator A in a Banach space X we say that A has a
bounded H∞(Σν) calculus if

‖F (A)‖L(X) ≤ C ‖F‖H∞(Σν) for all F ∈ H∞(Σν) ,

where H∞(Σν) denotes the space of all bounded holomorphic functions on
the sector Σν := { z ; | arg(z)| < ν } . This notion was introduced by McIn-
tosh [M], details on the construction of F (A) may be found in Section 4
below. We will say that A has an H∞ calculus if A has a bounded H∞(Σν)
calculus for some ν > 0.

Since there are sectorial operators A which do not have an H∞ calculus,
there is an interest in manageable criteria to check for this property. Duong
and McIntosh show in [DM] (see also [DR]) as an application of the weakened
Hörmander condition (1.1) that every operator A with an H∞ functional
calculus on L2(Ω), which generates a semigroup of integral operators (e−tA)
satisfying Poisson bounds, also has an H∞ functional calculus on Lp(Ω) for
all p ∈ (1,∞) .

Since the validity of Poisson bounds implies that (e−tA) acts on Lp(Ω)
for all p ∈ (1,∞), this result cannot be applied in situations where the semi-
group (e−tA) does not act on Lp(Ω) for all p ∈ (1,∞). This happens, e.g., for
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Schrödinger operators with bad potentials [ScV], second order elliptic oper-
ators with bad lower order terms [LSV], or higher order elliptic operators
with bounded measurable coefficients [D2] [AT]. For other problems, e.g.
p-independence of the spectrum of A or maximal regularity of −A, Poisson
bounds have been successfully replaced by the assumption that the semi-
group (e−tA) satisfies weighted Lp → Lq-norm estimates of the type (1.2) ;
see, e.g., [ScV], [KV], [LSV], [BK1].

In this case, the second main result of this paper now allows to extend
an H∞ functional calculus of A from L2(Ω) to Lr(Ω) for all r ∈ (p, q),
provided 2 ∈ (p, q) .

Theorem 1.2 Let (Ω1, d, µ) be a space of homogeneous type and dimension
D ≥ 1:

|BΩ1(x, λr)| ≤ C λD |BΩ1(x, r)| for all x ∈ Ω1 , λ ≥ 1 , r > 0 .

Let Ω be a measurable subset of Ω1 , let 1 ≤ p < 2 < q ≤ ∞ and w ∈ [0, π
2
) .

Furthermore, let (e−tA) be a bounded analytic semigroup of angle π
2
− w on

L2(Ω) satisfying the weighted norm estimates

||PA(x,|z|1/m,k) e
−zAPB(x,|z|1/m) ||p→q ≤ Cθ |BΩ1(x, |z|1/m)| 1q− 1

p (1+k)−κθ(1.4)

||PB(x,|z|1/m) e
−zAPA(x,|z|1/m,k) ||p→q ≤ Cθ |BΩ1(x, |z|1/m)| 1q− 1

p (1+k)−κθ(1.5)

for all x ∈ Ω1, k ∈ N0, θ > w, z ∈ Σπ
2
−θ and some m > 0, κθ > D.

Furthermore, for all ν > w, let A have a bounded H∞(Σν) calculus on
L2(Ω) . Then, for all ν > w and r ∈ (p, q), A has a bounded H∞(Σν)
calculus on Lr(Ω).

For the verification of the L2-hypotheses of Theorem 1.2 we recall that
if (e−tA) is a contractive analytic semigroup of angle π

2
−w [with w ∈ [0, π

2
) ]

on a Hilbert space such that A is one-one then A has a bounded H∞(Σν)
calculus for all ν > w [M].

Since, for the special case (p, q) = (1,∞), weighted norm estimates of
the type in (1.4) and (1.5) are equivalent to Poisson heat kernel bounds for
the semigroup (e−tA) [see Prop. 3.5 below], our Theorem 1.2 generalizes
the result of Duong and McIntosh [DM, Thm. 6] . In Section 2 we apply
Theorem 1.2 to the above classes of elliptic operators and derive new results.

Besides Theorem 1.2, further applications of Theorem 1.1 to weak (p, p)
estimates for Riesz-type transforms are given in [BK2].

The outline of this paper is as follows. In Section 2 we comment on
our weak type (p, p) criterion Theorem 1.1 and discuss some modifications.
Moreover, we apply Theorem 1.2 to some types of elliptic operators and
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derive new results. Section 3 contains our main tools which are the Calderón-
Zygmund decomposition of Lp-functions and the interplay of weighted norm
estimates and maximal functions as already employed in [BK1]. In Section 4
we prove the results in Section 1 and Section 2.

2. Modifications and applications

2.1. Substitute of the weakened Hörmander condition

Here we compare our weak type (p, p) criterion Theorem 1.1 in the case
(p, q) = (1,∞) of integral operators with the following weak type (1, 1)
criterion of Duong and McIntosh [DM, Thm. 2] which was already mentioned
in the introduction.

Theorem A. Let (Ω1, d, µ) be a space of homogeneous type and dimension
D ≥ 1. Let Ω be a measurable subset of Ω1 , po ∈ (1,∞) and (St)t>0 be a
family in L(Lpo(Ω)) satisfying the weighted norm estimate

(2.1) ||PA(x,t1/m,k) St PB(x,t1/m) ||1→∞ ≤ |BΩ1(x, t
1/m)|−1 g(k)

for all x ∈ Ω1 , t > 0 , k ∈ N0 , for some m > 0 and a decreasing function
g : R≥0 → R+ with

∑
k (k + 1)D−1g(k) < ∞ . Let T ∈ L(Lpo(Ω)) such that

the operators T (I−St) have integral kernels kt(x, y) satisfying the weakened
Hörmander condition

(2.2)

∫
B(y,ct1/m)c

|kt(x, y)| dµ(x) ≤ C0 for all t > 0 , y ∈ Ω .

Then T is of weak type (1, 1) .

For the equivalence of the weighted norm estimate (2.1) and the Poisson
type heat kernel bound used in [DM] we refer to Proposition 3.5 below.
Observe that the weakened Hörmander condition (2.2) implies the following
estimate which is crucial in the proof of Theorem A :

(2.3) ||PB(z,t1/m) (T DSt)
∗ PB(z,(1+c)t1/m)cf ||∞ ≤ C0 || f ||∞

On the other hand, the maximal estimate (1.3) [which is our substitute
of (2.2) in order to treat non-integral operators] in the hypothesis of our
Theorem 1.1 means in the integral case (p, qo) = (1,∞) and for n = 1 the
following:

(2.4) ||PB(z,t1/m/2) (T DSt)
∗ PB(z,4t1/m)cf ||∞ ≤ C1M1f(x) , x ∈ B(z, t1/m

2
) .
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Hence the global uniform estimate (2.3) is replaced by the local maximal
estimate (2.4). We point out that our proof of Theorem 1.1 does not work if
the hypothesis (1.3) is replaced by the seemingly natural adaptation of (2.3)

||PB(z,t1/m/2) (T DSt)
∗ PB(z,4t1/m)cf ||p′ ≤ C || f ||p′ ,

i.e. by the boundedness of τ :={PB(z,4t1/m)c (T DSt)PB(z,t1/m/2) ; z∈Ω, t > 0}
on Lp(Ω) . On the other hand, the hypothesis (1.3) can be replaced by the
R1-boundedness of τ on the weak Lebesgue space Lw

p (Ω) in the sense of
Weis [W] :

||
∑

j

|Tjfj| ||X ≤ C ||
∑

j

|fj| ||X

whenever Tj ∈ τ and fj ∈ X := Lw
p (Ω) . This yields the following modifica-

tion of Theorem 1.1 which will be proved in Section 4.

Theorem 2.1 Let (Ω1, d, µ) be a space of homogeneous type and dimension
D ≥ 1. Let Ω be a measurable subset of Ω1 , let 1 ≤ p < po < q ≤ ∞
and (St)t≥0 a family in L(Lpo(Ω)) satisfying S0 = I and the weighted norm
estimate

||PA(x,t1/m,k) St PB(x,t1/m) ||p→q ≤ |BΩ1(x, t
1/m)| 1q− 1

p gt(k)

for all x ∈ Ω1 , t > 0 , k ∈ N0 , for some m > 0 and functions gt : R≥0 → R+

such that
∑

k (k+1)D−1gt(k) ≤ C for all t > 0 . Let T ∈ L(Lpo(Ω), Lw
po

(Ω))
be such that

(2.5) {PB(z,4t1/m)c (TDnSt)PB(z,t1/m/2) ; z∈Ω, t > 0} is R1-bounded on Lw
p (Ω)

for some n ∈ N . Then we have T ∈ L(Lp(Ω), Lw
p (Ω)) .

2.2. Exponential weights on R
D

The weighted norm estimates in the hypotheses of our main results use the
characteristic functions χB(x,t1/m) and χA(x,t1/m,k) as weight functions. A sim-
ilar hypothesis can be given in terms of the widely used exponential weights
e ρd(x,·) [with ρ ∈ R ] which involves the so-called Davies perturbations
e−ρd(x,·) e−tA eρd(x,·) of a given semigroup (e−tA) . Recently, norm estimates
for the Davies perturbations were used to show spectral p-independence,
[KV], [LSV], or maximal regularity [BK1] of the operator A . Here, for the
question of an H∞ calculus of A, they allow the following modification of
our Theorem 1.2 which will be proved in Section 4.



Calderón-Zygmund theory for non-integral operators 925

Theorem 2.2 Let Ω be a measurable subset of R
D , let 1 ≤ p < 2 < q ≤ p′

and w ∈ [0, π
2
) . Let (e−tA) be a bounded analytic semigroup of angle π

2
− w

on L2(Ω) satisfying

|| e−tA ||p→p , || e−tA ||p′→p′ , t
D
m

( 1
2
− 1

q
) || e−tA ||2→q ≤ C(2.6)

|| e−ρd(x,·) e−tA e ρd(x,·) ||2→2 ≤ C ec|ρ|mt(2.7)

for all x ∈ R
D , t > 0 , ρ ∈ R and some m > 1 , c > 0 . Furthermore, for

all ν > w, let A have a bounded H∞(Σν) calculus on L2(Ω) . Then, for all
ν > w and r ∈ (p, p′), A has a bounded H∞(Σν) calculus on Lr(Ω) .

It can be seen from the proof that the exponent p′ in Theorem 2.2 may
be replaced by an arbitrary q0 > 2. We have chosen p′ for simplicity since
this is the right choice for many (but not all) applications.

In the next section, our Theorem 2.2 is applied to obtain new results on
theH∞ calculus of certain classes of elliptic operators A on R

D . Note that in
this case an unweighted L2 → Lq-norm estimate as in (2.6) can be checked by
standard Sobolev or Nash type arguments and the weighted L2 → L2 -norm
estimate (2.7) is obtained by well-known ellipticity arguments.

2.3. H∞ calculus of elliptic operators on R
D

Let A be an elliptic divergence form operator on L2(R
D) of order 2m, m ∈ N,

which is one-one and satisfies

| arg〈Af, f〉| ≤ w for all f ∈ D(A) and some w ∈ [0, π
2
) .

Then (e−tA) is a contractive analytic semigroup of angle π
2
− w on L2(R

D)
and thus, as mentioned above, A has a bounded H∞(Σν) calculus on L2(R

D)
for all ν > w. Hence, by using our Theorem 2.2, it suffices to prove the
(weighted) norm estimates (2.6),(2.7) for some p, q in order to establish a
bounded H∞(Σν) calculus of A on Lr(R

D) for all ν > w and r ∈ (p, p′) .

We go into some detail for higher order operators with complex coeffi-
cients (cf. [D1] , [AT, §1.7] ) , Schrödinger operators with singular potentials
(cf. [BS] , [ScV] ) and second order operators with singular lower order terms
(cf. [KS] , [LSV] ) .

2.3.1. Higher order operators with complex coefficients

These operators are given by forms a : Hm(RD)×Hm(RD) → C of the type

(2.8) a(u, v) =

∫
RD

∑
|α|=|β|=m

aαβ ∂
αu ∂βv dx ,
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where the aα,β : R
D → C are bounded measurable functions and a satisfies

Garding’s inequality

(2.9) Re a(u) ≥ δ ‖∇mu‖2
2 for all u ∈ Hm(RD)

and for some δ > 0, where ‖∇mu‖2
2 :=

∑
|α|=m ‖∂αu‖2

2. Then a is a closed sec-

torial form and the associated operator A is given by u ∈ D(A) and Au = g
if and only if u ∈ Hm and 〈g, v〉 = a(u, v) for all v ∈ Hm. We denote the
sectoriality angle of the form a by w ∈ [0, π

2
). In this situation, Theorem 2.2

is applicable and yields

Proposition 2.3 Let p0 := 2D
2m+D

∨1 . Then, for all r ∈ (p0, p
′
0) and ν > w,

A has a bounded H∞(Σν) calculus on Lr(R
D).

If the semigroup (e−tA) is bounded on Lp(R
D) and Lp′(R

D) for some
p ∈ [1, p0) then, for all r ∈ (p, p′) and ν > w, A has a bounded H∞(Σν)
calculus on Lr(R

D).

For p = 1 the last assertion can be derived from [DR] , [DM]. Note that
boundedness of (e−tA) on L1 and L∞ can be obtained by imposing suit-
able regularity assumptions on the coefficients; cf. [D1] , [AT] , [AQ] and the
references given there.

Whenever (e−tA) is not bounded on L1 and L∞ the result on boundedness
of the H∞-calculus is new. Note in this context that [D2] shows optimality
of p0 for the given class of operators.

If we denote the inf over all p such that (e−tA) is bounded on Lp and Lp′

by popt we obtain anH∞ calculus of optimal angle in Lr for all r ∈ (popt, p
′
opt).

This shows how close to optimal our results are.

2.3.2. Schrödinger operators with singular potentials

We now turn to another class of operators for which Theorem 2.2 yields new
results. We study Schrödinger operators H = −∆+V on R

D, D ≥ 3, where
V = V+−V−, V± ≥ 0 are locally integrable, and V+ is bounded for simplicity
(for the general case, see [BS] , [ScV]). We assume

(2.10) 〈V−φ, φ〉 ≤ γ
(
‖∇φ‖2

2 + 〈V+φ, φ〉
)

+ c(γ)‖φ‖2
2 for all φ ∈ H1(RD)

and some 0 ≤ γ < 1. Then the form sum H := −∆+V = (−∆+V+)−V− is
defined and the associated form is closed and symmetric with form domain
H1(RD). For A := H+c(γ), we obtain the last estimate in (2.6) for q := 2D

D−2

by Sobolev embedding. By [BS], the first two estimates in (2.6) hold for
p = t(γ) := 2

1+
√

1−γ
, and the interval r ∈ [t(γ), t(γ)′] is optimal for quasi-

contractivity of (e−tH) on Lr(R
D) .
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In the case γ > 0, however, (e−tH) extends to a C0-semigroup on Lr(R
D)

for all r ∈ (p(γ), p(γ)′), where p(γ)′ := D
D−2

t(γ)′, i.e. p(γ) = 2D/(D(1 +√
1 − γ)+2(1−√

1 − γ)) ; cf. the remark on [BS, p. 542] and [LSV] . Hence
our Theorem 2.2 yields

Proposition 2.4 For all r ∈ (p(γ), p(γ)′) there exists a constant cr ≥ 0
such that, for all ν > 0, the operator H + cr = −∆ + V + cr has a bounded
H∞(Σν) calculus on Lr(R

D).

For r ∈ [t(γ), t(γ)′] one might use transference and Stein interpolation to
obtain a bounded H∞ calculus on Lr but this would not give the optimal an-
gle. If the semigroup (e−tH) is not quasi-contractive in Lr then transference
cannot be used.

2.3.3. Second order operators with singular lower order terms

More generally than Schrödinger operators, we consider uniformly elliptic
second order operators with real coefficients and with unbounded first order
terms as studied in [KS] [L] [LSV]. These operators are no longer symmetric.
Except for [LSV] which is based on a new method for the construction of
semigroups (more general than the form method) the Lp-scale for existence
of the semigroup depends on form bounds associated to the lower order
terms.

To give an example, assume that b = (b1, . . . , bD) : R
D → R

D is measur-
able and such that B :=

∑
j b

2
j is locally integrable and

〈Bφ, φ〉 ≤ β ‖∇φ‖2
2 + c(β) ‖φ‖2

2 for all φ ∈ C∞
c (RD)

and for some 0 ≤ β < 1. Moreover, assume that V is as above and such
that (2.10) and

√
β + γ < 1 hold. Let the form a on H1(RD) be given by

a(u, v) :=

∫
∇vt ∇u+ v(bt ∇u+ V v) dx .

Then a is closed and quasi-sectorial, hence the associated operator A is
formally given by A = −∆ + b∇ + V . It is shown in [L] that (e−tA) acts as
a quasi-contractive semigroup on Lr(R

D) for all

r ∈
[

4

2 −√
β +

√
(2 −√

β)2 − 4γ
,

4

2 −√
β −

√
(2 −√

β)2 − 4γ

]
.

Denoting this interval by [p−, p+] it is shown in [LSV] that (e−tA) acts as a
C0-semigroup on Lr(R

D) for all r ∈ (pmin, pmax) , where pmax := D
D−2

p+ and

pmin := ( D
D−2

p′−)′. Hence Theorem 2.2 yields
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Proposition 2.5 For all r ∈ (pmin, pmax) there exists a constant cr ≥ 0 such
that, for all ν > w, the operator A + cr has a bounded H∞(Σν) calculus on
Lr(R

D), where w ∈ [0, π
2
) denotes the sectoriality angle of the form a + cr.

We want to remark that the most general results on weighted norm estimates
for operators of this type are contained in [LSV] and that Theorem 2.2 also
yields boundedness of H∞ calculi for the operators studied there.

3. Tools

In this section we present our main tools which are the Calderón-Zygmund
decomposition of Lp−functions as well as the interplay of weighted norm
estimates and maximal functions [BK1] .

3.1. Calderón-Zygmund decomposition of Lp-functions

The following is a straight forward generalization of the usual Calderón-
Zygmund decomposition of L1-functions. It can, however, not be obtained
by applying the usual Calderón-Zygmund decomposition to |f |p. One has
to examine the proof and we give full details here for convenience.

Theorem 3.1 Let Ω be a space of homogeneous type and p ∈ [1,∞). There
exists a constant M such that, for all f ∈ Lp(Ω) and α > 0, we find a
function g and sequences (bj) of functions and (B∗

j ) of balls such that

(i) f = g +
∑

j bj ;

(ii) ‖g‖∞ ≤ Cα ;

(iii) supp(bj) ⊂ B∗
j and #{j;x ∈ B∗

j } ≤M for all x ∈ Ω ;

(iv) ‖bj‖p ≤ Cα|B∗
j |1/p ;

(v) (
∑

j |B∗
j |)1/p ≤ Cα−1‖f‖p .

Proof. We follow [St, I 4.1] in arguments and notation. Let Eα := {x ∈ Ω;
M̃(|f |p) > α}, where M̃ is the uncentered maximal operator. By [St, I 3.2],
we find sequences (Bj) of balls and (Qj) of mutually disjoint “cubes” (which
may recursively obtained from the balls byQk :=B∗

k∩(
⋃

j<k Qj)
c∩(

⋃
j>k Bj)

c)
such that

Bj ⊂ Qj ⊂ B∗
j ⊂ Eα ,

⋃
j
B∗

j = Eα , B∗∗
j �⊂ Eα .

If Bj = B(xj, rj) then B∗
j = B(xj, c

∗rj) and B∗∗
j = B(xj, c

∗∗rj) where c∗, c∗∗

are the constants from [St, I 3.2].
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Now define g and the sequence (bj) by

g(x) :=

{
f(x), x /∈ Eα

(|Qj|−1
∫

Qj
|f(y)|p dy)1/p, x ∈ Qj

(3.1) bj(x) := 1Qj
(x)

[
f(x) −

(
|Qj|−1

∫
Qj

|f(y)|p dy
)1/p

]
.

Then (i) holds. For each j we have B∗∗
j ∩ Eα �= ∅, hence, by the definition

of M̃ ,

|B∗∗
j |−1

∫
B∗∗

j

|f(y)|p dy ≤ αp

which leads to∫
Qj

|f(y)|p dy ≤
∫

B∗∗
j

|f(y)|p dy ≤ αp|B∗∗
j | ≤ c1α

p|Bj| ≤ c1α
p|Qj|

by the doubling property. Hence |g(x)| ≤ c
1/p
2 α for x ∈ Qj and clearly

|g(x)| ≤ α for x �∈ Eα. Since [St, I 3.2] gives also the bounded intersection
property for the B∗

j we have proved (ii) and (iii). To prove (iv) notice that
(a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0, hence

‖bj‖p
p ≤ 2p

∫
Qj

|f(x)|p dx ≤ 2pαpc2|B∗
j |.

Now (v) follows from the weak (1, 1) boundedness of M̃ :∑
j

|B∗
j | ≤ c3

∑
j

|Bj| ≤ c3
∑

j

|Qj| = c3|Eα| ≤ c4α
−p‖|f |p‖1 =

c4
αp

‖f‖p
p.

�

Remark 3.2 Recall from the proof that the bj have disjoint supports, hence

‖
∑

j

bj‖p
p =

∑
j

‖bj‖p
p ≤ Cαp

∑
j

|B∗
j | ≤ C ′ ‖f‖p

p

by (iv) and (v), which by (i) implies the following additional property:

(vi) ‖g‖p ≤ C ‖f‖p .



930 S. Blunck and P.C. Kunstmann

3.2. Weighted norm estimates and maximal functions

Here we continue the development of techniques from [BK1] relating weighted
norm estimates of the type appearing in our main results and the Hardy-
Littlewood p-maximal operator Mp defined by

Mpf(x) := sup
r>0

Np,rf(x) , where Np,rf(x) := |B(x, r)|−1/p || f ||Lp(B(x,r))

with obvious modification for the case p = ∞.

Lemma 3.3 Let p ∈ [1,∞) , q ∈ [1,∞] and Ω be a space of dimension
D ≥ 1 :

|B(x, λs)| ≤ C0 λ
D |B(x, s)| for all x ∈ Ω , λ ≥ 1 , s > 0 .

Let S be a linear operator such that for some r > 0 we have

(3.2) ||PB(x,r)SPA(x,r,k) ||p→q ≤ |B(x, r)| 1q− 1
p g(k) for all x ∈ Ω , k ∈ N0

and a function g : N0 → R+ satisfying K :=
∑∞

k=0 (k + 1)D−1 g(k) <∞ .

(a) We have for all s > 0 and x ∈ Ω , z ∈ B(x, s):

Nq,s(SPB(z,5s)cf )(z) ≤ C1K
( ∑

k≥4sr−1

kD−1g(k)
)1/p

(1 + s−1r)D/q Mpf(x) .

(b) We have for all x ∈ Ω:

Nq,rSf(x) ≤ C1K Mpf(x) .

Here the constant C1 depends on p, q, C0, D and on nothing else.

Note that part (b) corresponds to [BK1, Lemma 2.6] . Before giving the
proof of Lemma 3.3, we collect some simple but important properties of the
operators Np,r .

Lemma 3.4 Let p ∈ [1,∞] and Ω be a space of dimension D :

|B(x, λr)| ≤ C0 λ
D |B(x, r)| for all x ∈ Ω , λ ≥ 1 , r > 0 .

(a) We have for all R ≥ 2r > 0 , x ∈ Ω , y ∈ B(x, r) , f ∈ Lp(Ω) :

Np,rf(y) ≤ (C2
02D)1/p

(
R
r

)D/p

Np,R f(x)

(b) We have for all r > 0 , f ∈ Lp(Ω) :

|| f ||p ≤ (C02
D)1/p ||Np,rf ||p
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Proof. (a) Using the evident inclusions B(x, r) ⊂ B(y, 2r) and B(y, r) ⊂
B(x,R) we can estimate as follows :

Np,rf(y) = |B(y, r))|−1/p ||PB(y,r)f ||p
≤ (C02

D)1/p |B(x, r)|−1/p ||PB(x,R)f ||p

≤ (C2
02D)1/p

(
R
r

)D/p

|B(x,R)|−1/p ||PB(x,R)f ||p

(b) A simple calculation using Fubini’s Theorem shows || f ||p = || Ñp,rf ||p
for the

Ñp,rf(x) :=
( ∫

B(x,r)

|f(y)|p dµ(y)
|B(y,r)|

)1/p

.

But reasoning as in the proof of (a) yields Ñp,rf(x) ≤ (C02
D)1/pNp,rf(x) . �

Proof of Lemma 3.3. We use the symbol � to indicate domination up to
constants depending only on p, q, C0, D. Define bk := kD(g(k − 1) − g(k)) .
At first we will show that we have for all s, t ≥ 0 and x, z ∈ Ω :

(3.3) Nq,r(PB(z,s)SPB(z,t)cf )(x) � K

( ∑
k>(t−s)r−1

bk Np,krf(x)p

)1/p

For the proof of (3.3) we can assume supp(f) ⊂ B(z, t)c and d(x, z) ≤ s+r .
The latter implies:

k ≤ (t− s)r−1 − 1 =⇒ B(x, kr) ∩B(z, t)c = ∅ .

Therefore we deduce line (3.3) as follows :

Nq,r(PB(z,s)SPB(z,t)cf)(x) ≤ |B(x, r)|−1/q ||PB(x,r)Sf ||q

≤ |B(x, r)|−1/p

∞∑
k=0

g(k) ||PA(x,r,k) f ||p

≤ K1/p′
(
|B(x, r)|−1

∑
k>(t−s)r−1

bk

kD ||PB(x,kr)f ||pp
)1/p

� K
( ∑

k>(t−s)r−1

bk Np,krf(x)p
)1/p

(b) follows now from (3.3) for s := d(x, z) + r and t = 0 since one obviously
has Np,krf(x) ≤Mpf(x) .
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(a) The case r ≥ 2s can be handled directly using part (b) and Lemma 3.4(a):

Nq,s(SPB(z,5s)cf )(z) �
(

r
s

)D/q

Nq,r(SPB(z,5s)cf )(x) � K
(

r
s

)D/q

Mpf(x)

Hence we assume for the rest of the proof that r ≤ 2s . Lemma 3.4(a) then
shows

(3.4) Np,krf(y) � Np,2krf(x) ≤Mpf(x) for all y ∈ B(x, 4s) , k ≥ 4sr−1.

Moreover, since z ∈ B(x, s) , it is easy to see that

(3.5) Nq,r(PB(z,s)f )(y) = 0 for all y ∈ B(x, 4s)c .

Now we can finish the proof as follows :

Nq,s(SPB(z,5s)cf )(z) = |B(z, s)|−1/q ||PB(z,s)SPB(z,5s)cf ||q
� |B(x, s)|−1/q ||Nq,r(PB(z,s)SPB(z,5s)cf ) ||Lq(B(x,4s)) [by (3.5) , 3.4(b)]

� sup
y∈B(x,4s)

Nq,r(PB(z,s)SPB(z,5s)cf )(y)

� K sup
y∈B(x,4s)

( ∑
k>4sr−1

bk Np,krf(y)p
)1/p

[by (3.3) for t = 5s]

� K
( ∑

k>4sr−1

bk

)1/p

Mpf(x) [by (3.4)]

�

In the special case (p, q) = (1,∞) , the weighted norm estimates appear-
ing in our main results characterize the fact that the corresponding operators
have integral kernels satisfying certain Poisson upper bounds. This can be
seen from the following observation which is proved as e.g. [BK1, Prop. 2.9] .

Proposition 3.5 Let (Ω1, d, µ) be a space of homogenous type :

|BΩ1(x, 2s)| ≤ Cd |BΩ1(x, s)| for all x ∈ Ω1 , s > 0 .

Let Ω be a measurable subset of Ω1 and let S ∈ L(L1(Ω), L∞(Ω)) have
the integral kernel K ∈ L∞(Ω2) . Furthermore, let g : R≥0 → R≥0 be a
decreasing function and r > 0 . Then the following are equivalent :

(a) For all x ∈ Ω1 , k ∈ R≥0 we have

||PB(x,r) S PA(x,r,k) ||L1(Ω)→L∞(Ω) ≤ |BΩ1(x, r)|−1 g(k) .

(b) For all x, y ∈ Ω we have

|K(x, y)| ≤ |BΩ1(x, r)|−1 g(d(x, y)r−1) .

Here the statement is written modulo identification of g and g̃, where
g̃(s) := Cd g((s− 1)+) and Cd is the doubling constant from above.
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3.3. A lemma on the inverse Laplace transform

We will need a result on the inversion of the Laplace transform

LF (z) =

∫ ∞

0

e−szF (s) ds

on sectors Σν := {z; | arg(z)| < ν} . For the whole section we fix 0 < θ <
µ < ν < π

2
. For all F ∈ H∞(Σν), the space of all bounded holomorphic

functions on Σν , and all z ∈ ∂Σπ/2−θ , we define

L−1F (z) :=

{
(2πi)−1

∫
eiµR+

eλzF (λ) dλ arg(z) = π/2 − θ

(2πi)−1
∫

e−iµR+
eλzF (λ) dλ arg(z) = θ − π/2

.

Notice that L−1F (z) is well defined since we have for b := − cos(π
2
+µ−θ)> 0:

Re(λz) = |λ| |z|Re(e±i(π
2
+µ−θ)) = −b |λ| |z| .

Standard Cauchy formula arguments show that the following inversion for-
mula for the Laplace transform holds for all F ∈ H∞(Σµ) satisfying suitable
decay conditions:

F (y) =

∫
∂Σπ/2−θ

e−zyL−1F (z) dz , y ∈ Σθ .

We will employ the following boundedness property of L−1 .

Lemma 3.6 Let θ, µ, ν as before and α ∈ R , α− 1 < β, γ < n with β > 0 .
Then

L−1E : H∞(Σν) → L1(∂Σπ/2−θ , w(z)|dz| ) .
Here E is the operator of multiplication by

E(z) := z−α

n∑
k=0

(
n

k

)
(−1)k e−kz ,

and we consider the weight function w(z) := |z|β−α (1 + |z| )γ−β .

Proof. Observe that E ∈ H∞(Σν) and |E(λ)| ≤ C0
1∧|λ|n
|λ|α whenever

| arg(λ)| = µ. By definition of L−1, this implies for b := − cos(π
2
+µ−θ) > 0:

|L−1(EF )(z)| ≤ C0 (2π)−1

∫ ∞

0

e−bv|z| 1∧vn

vα dv ||F ||H∞(Σν) .
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Hence we can finish the proof as follows, denoting Γ := ∂Σπ/2−θ :

|| L−1(EF ) ||L1(Γ,w(z)|dz|) ≤ C0π
−1

∫ ∞

0

w(s)

∫ ∞

0

e−bvs 1∧vn

vα dv ds ||F ||H∞(Σν)

= C1 ||F ||H∞(Σν) .

Here we used the subsequent lemma for the last step. �
Lemma 3.7 Let α ∈ R , α− 1 < β, γ < δ with β > 0 and b > 0 . Then∫ ∞

0

sβ−α (1 + s)γ−β

∫ ∞

0

e−bsv 1∧vδ

vα dv ds < ∞ .

Proof. We split the integral as follows :∫ ∞

0

sβ−α (1 + s)γ−β

∫ ∞

0

e−bsv 1∧vδ

vα dv ds

=

∫ ∞

0

sβ−α (1 + s)γ−β

∫ 1

0

e−bsv vδ−α dv ds =: I1

+

∫ ∞

0

sβ−α (1 + s)γ−β

∫ ∞

1

e−bsv v−α dv ds =: I2

Hence it remains to show I1 <∞ and I2 <∞. For I1, we observe

I1 =

∫ 1

0

vδ−β−1

∫ ∞

0

rβ−α (1 + r
v
)γ−β e−br dr dv

≤ C

∫ 1

0

vδ−β−1

∫ ∞

0

rβ−α e−br dr dv + C

∫ 1

0

vδ−γ−1

∫ ∞

0

rγ−α e−br dr dv

which is finite since α− 1 < β, γ < δ . For I2, the estimate is similar:

I2 =

∫ ∞

0

e−bww−α

∫ w

0

sβ−1 (1 + s)γ−β ds dw < ∞ . �
These calculations are taken from [DM, p. 259] where the case γ = 0 is

considered.

4. Proofs of the main results

Proof of Theorem 1.1. We can assume Ω = Ω1 by otherwise applying
this case for the following 0-extensions to Ω1:

S̃tf(x) :=

{
St(f |Ω)(x) x ∈ Ω
0 x ∈ Ω1 \ Ω

for t > 0 ; S̃0 := I

T̃ f(x) :=

{
T (f |Ω)(x) x ∈ Ω
0 x ∈ Ω1 \ Ω

.
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Indeed, it is straightforward to check that the hypotheses (1.2) and (1.3) for

the the (St) and T on Ω imply the corresponding hypotheses for the (S̃t)

and T̃ on Ω1. Hence the special case Ω = Ω1 shows T ∈ L(Lp(Ω1), L
w
p (Ω1))

and it only remains to observe that || T̃ ||Lp(Ω1)→Lw
p (Ω1) = ||T ||Lp(Ω)→Lw

p (Ω) .

Now fix f ∈ Lp(Ω) and α > 0 . In the following we use the symbol � to
indicate domination up to constants independent of f and α .

Consider the Calderón-Zygmund decomposition f = g+
∑
bj at height α

according to Theorem 3.1. We write Bj = B(xj, rj) instead of B∗
j and let

tj := (2rj)
m. We then decompose

∑
j bj = h1 + h2 , where

h1 =
∑

j

(I −DnStj)bj and h2 =
∑

j

(DnStj)bj .

Then

|{x ∈ Ω ; |Tf(x)| > α }|

≤ |{x ∈ Ω ; |Tg(x)| > α/3 }| +
2∑

k=1

|{x ∈ Ω ; |Thk(x)| > α/3 }|

and we shall estimate the three terms separately where we write α instead
of α/3. We start with the first term. The assumption T ∈ L(Lpo(Ω), Lw

po
(Ω)),

the properties (ii) , (vi) in Theorem 3.1 and the hypothesis p ≤ po imply

|{x ∈ Ω ; |Tg(x)| > α }| � α−p0 ‖g‖p0
p0

� α−p ‖f‖p
p .

We turn to the second term, i.e. the term involving h1. We have

|{x ∈ Ω ; |Th1(x)| > α }| � α−p0 ‖
∑

j

(I −DnStj)bj‖p0
p0
,

where we used T ∈ L(Lpo(Ω), Lw
po

(Ω)) again. We shall show

(4.1) ‖
∑

j

(I −DnStj)bj‖p0 � α ‖
∑

j

1Bj
‖p0 .

Indeed, by the properties (iii) , (v) this implies

‖
∑

j

(I −DnStj)bj‖p0 � α (
∑

j

|Bj| )1/p0 � α1−p/p0 ‖f‖p/p0
p

which leads to the desired bound for the second term :

|{x ∈ Ω ; |Th1(x)| > α }| � α−p ‖f‖p
p .
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Now for the proof of (4.1). For any φ ∈ Lp′o and any j we have by prop-
erty (iv)

|〈φ , (I −DnStj)bj〉| = |〈(I −DnStj)
∗φ , bj〉| ≤ ‖1Bj

(I −DnStj)
∗φ‖p′ ‖bj‖p

� α |Bj|Np′,rj

(
(I −DnStj)

∗φ
)
(xj)

� α

∫
Bj

N
p′,t1/m

j

(
(I −DnStj)

∗φ
)
.

Here we used Lemma 3.4(a) in the last step, recall 2rj = t
1/m
j . Observe that

I −DnSt = −
n∑

k=1

(
n

k

)
(−1)kSkt for all t > 0

where we used the assumption S0 = I . Therefore, we obtain by hypothe-
sis (1.2) and Lemma 3.3(b) :

Np′,t1/m

(
(I −DnSt)

∗f
)
(x) � Mq′f(x) for all t > 0 .

Hence, sinceMq′ is bounded on Lp′o (here we use the hypothesis 1 ≤ po < q !):

|〈φ ,
∑

j

(I −DnStj)bj〉| � α

∫
(Mq′φ)

∑
j

1Bj
≤ α ‖Mq′φ‖p′0 ‖

∑
j

1Bj
‖p0

� α ‖φ‖p′0 ‖
∑

j

1Bj
‖p0 .

Since φ ∈ Lp′0 was arbitrary, this is (4.1). We turn to the third term, i.e.
the term which involves h2. Denoting B∗

j := B(xj, 8rj) we have

(4.2) |{x ∈ Ω ; |Th2(x)| > α}| ≤
∑

j

|B∗
j |+|{x ∈ Ω\∪jB

∗
j ; |Th2(x)| > α}|.

For the first term on the RHS, (v) together with the volume doubling prop-
erty yields ∑

j

|B∗
j | �

∑
j

|Bj| � α−p ‖f‖p
p .

The second term is estimated as follows by using (iii) :

|{x ∈ Ω\
⋃
j

B∗
j ; |Th2(x)| > α }| ≤ α−p ‖

∑
j

T (DnStj)bj‖p
p,Ω\⋃ B∗

j

= α−p ‖
∑

j

1(B∗
j )cT (DnStj)1Bj

bj‖p
p,Ω\⋃ B∗

j
≤ α−p ‖

∑
j

Gjbj‖p
p

where Gj := 1(B∗
j )cT (DnStj)1Bj

.
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We shall establish

(4.3) ‖
∑

j

Gjbj‖p � α ‖
∑

j

1Bj
‖p

and can then argue as before to obtain the desired bound

|{x ∈ Ω \
⋃
j

B∗
j ; |Th2(x)| > α }| � α−p ‖f‖p

p .

But the proof of (4.3) follows the lines of the proof of (4.1) :

|〈φ , Gjbj〉| = |〈G∗
jφ , bj〉| ≤ ‖1Bj

G∗
jφ‖p′ ‖bj‖p � α |Bj|Np′,rj

(G∗
jφ)(xj)

≤ α

∫
Bj

Np′,2rj
(G∗

jφ) � α

∫
Bj

Mq′oφ

where we used hypothesis (1.3) in the last step. Now we may finish as before
since Mq′o is bounded on Lp′ due to 1 ≤ p < qo . �

Proof of Theorem 2.1. We repeat the proof of Theorem 1.1 and modify
only the estimation of the second term in (4.2) . We denote again Gj :=
1(B∗

j )cT (DnStj)1Bj
. Moreover, we recall that, by definition of the bj in (3.1),

we have
∑

j |bj| ≤ |f | + M̃pf , where M̃p denotes the uncentered p-maximal
operator which is of weak type (p, p). Hence we can estimate as follows,
using the R1-boundedness hypothesis (2.5) in the third step :

|{x ∈ Ω \
⋃
j

B∗
j ; |Th2(x)| > α }| ≤ |{x ∈ Ω ;

∑
j

|Gjbj(x)| > α }|

≤ α−p ||
∑

j

|Gjbj| ||pLw
p (Ω) � α−p ||

∑
j

|bj| ||pLw
p (Ω)

≤ α−p || |f | + M̃pf ||pLw
p (Ω) � α−p || f ||pp . �

Before we prove Theorem 1.2 as an application of Theorem 1.1, we recall
some definitions. For ν ∈ (0, π], we denote by Σν the open sector Σν :=
{ z ; |arg(z)| < ν } and by H∞(Σν) the set of all bounded holomorphic
functions on Σν . Finally we say that an operator A has a bounded H∞(Σν)
calculus on Lr if there is an algebra homomorphism H∞(Σν) → L(Lr), F �→
F (A) such that

||F (A) ||L(Lr) ≤ C ||F ||H∞(Σν) for all F ∈ H∞(Σν)

F (A) = (A+ λ)−1 if F (z) = (z + λ)−1 ,
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and the following approximation property is satisfied: If (Fn) is a bounded
sequence in H∞(Σν) which converges, uniformly on compact subsets of Σν ,
to F ∈ H∞(Σν), then Fn(A) converges strongly to F (A). If µ ∈ (ν, π) and
ψ ∈ H∞(Σµ) with

|ψ(z)| ≤ C |z|s(1 + |z|)−2s for all z ∈ Σµ and some s > 0

then ψ(A) can be computed by the absolutely convergent Cauchy integral

ψ(A) =
1

2πi

∫
γ

ψ(z)(z − A)−1 dz,

where the path γ consists of two rays re±iθ, r ≥ 0 and ν < θ < µ, described
counterclockwise. We denote the class of those functions ψ by Ψ(Σµ). By
the approximation property the values on such functions ψ define the map
F �→ F (A) uniquely. We refer to [M] for details.

Proof of Theorem 1.2. As before, we can assume Ω = Ω1. We fix
ν ∈ (w, π/2) . By applying our weak type (p, p) criterion Theorem 1.1 for
St := e−tA, po := 2, qo := q, we shall establish a weak (p, p) estimate for
the operator T = F (A) where the constant does not depend on F ∈ Ψ(Σν)
with ‖F‖H∞(Σν) ≤ 1. Applying the argument in the dual situation leads to a
weak (q, q) estimate. By interpolation we hence obtain a bounded H∞(Σν)
calculus for A on each Lr(Ω), r ∈ (p, q).

By hypothesis (1.4), the condition (1.2) in Theorem 1.1 is satisfied. We
fix µ, θ ∈ (w, ν) with µ > θ and n ∈ N with n > κθ−D

q′m ∨ D
p′m and are then

left to check that

(4.4) Np′,t1/m/2

(
(F (A)DnSt)

∗ PB(y,4t1/m)cf
)
(y) ≤ C Mq′f(x)

whenever y ∈ B(x, t1/m/2) . Indeed, in this case the desired weak (p, p)
estimate for F (A) follows from Theorem 1.1 . Claim (4.4) will be established
by combining estimates for

(4.5) Np′,t1/m/2

(
(e−zA)∗ PB(y,4t1/m)cf

)
(y)

obtained from hypothesis (1.4) and Lemma 3.3(a) on the one hand, on the
other hand a Laplace integral representation for F (A)DnSt in terms of the
e−zA and the Laplace inversion Lemma 3.6 . In the following we use the
symbol � to indicate domination up to constants independent of t > 0 , x ∈
Ω , y ∈ B(x, t1/m/2) and the functions f, F . We follow the notation of
Section 3.3 (for α = 0) and set β := κθ−D

q′m , γ := D
p′m as well as

w(z) := |z|β (1 + |z|)γ−β and E(z) :=
n∑

k=0

(
n

k

)
(−1)k e−kz .
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Observe that 0 < γ, β < n by hypothesis κθ > D and choice of n. The
weighted norm estimate (1.4) yields by Lemma 3.3(a) the following bound
for the term in (4.5):

Np′,t1/m/2

(
(e−zA)∗ PB(y,4t1/m)cf

)
(y)

�
( ∑

k≥2t1/m|z|−1/m

(1 + k)D−1−κθ

)1/q′

(1 + |z|1/mt−1/m)D/p′ Mq′f(x)

� (1 + t|z|−1)−β (1 + t−1|z|)γ Mq′f(x) = w(t−1z) Mq′f(x)

For the second part of the proof of (4.4) we observe first that DnSt =
(δtE)(A) , where δt denotes the dilation operator δtg(z) := g(tz) . Now we
apply the inverse Laplace transform L−1 as in Section 3.3 and obtain the
following integral representation of the operator appearing in our claim (4.4):

F (A)DnSt = (F δtE)(A) =

∫
Γ

e−zAL−1(FδtE)(z) dz

= t−1

∫
Γ

e−zAL−1(Eδt−1F )(t−1z) dz

Here we denote Γ := ∂Σπ/2−θ and use the fact that L−1(δtg) = t−1δt−1(L−1g).
Now we finish the proof of (4.4) and thus of Theorem 1.2 as follows by using
Lemma 3.6 :

Np′,t1/m/2

(
(F (A)DnSt)

∗ PB(y,4t1/m)cf
)
(y)

≤ t−1

∫
Γ

Np′,t1/m/2

(
(e−zA)∗ PB(y,4t1/m)cf

)
(y) |L−1(Eδt−1F )(t−1z)| |dz|

� t−1

∫
Γ

w(t−1z) |L−1(Eδt−1F )(t−1z)| |dz|Mq′f(x)

= || L−1(Eδt−1F ) ||L1(Γ,w(z)|dz|) Mq′f(x) � || δt−1F ||H∞(Σν) Mq′f(x)

= ||F ||H∞(Σν) Mq′f(x) ≤Mq′f(x) .
�

Proof of Theorem 2.2. By extrapolation as in [C, § 1], our hypothesis
(2.6) yields

(4.6) || e−tA ||p→p′ ≤ C t
D
m

( 1
p′− 1

p
)

for all t > 0 .

Now fix r ∈ (p, p′) and then s such that p < s < 2, r < s′. By interpolation
between the unweighted Lp → Lp′ -norm estimate (4.6), the weighted L2 →
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L2 -norm estimate (2.7) and the L2-analyticity of (e−tA) as in the proof of
[BK1, Thm. 1.6], we obtain for all θ > w :

|| e−ρd(x,·) e−zA e ρd(x,·) ||s→s′ ≤ Cθ |z|D
m

( 1
s′− 1

s
) ecθ|ρ|m |z| for all z ∈ Σπ

2
−θ

and all x ∈ Ω1 , ρ ∈ R . By [BK1, Prop. 1.5], this yields for all θ > w :

(4.7) ||PB(x,|z|1/m) e
−zA PA(x,|z|1/m,k) ||s→s′ ≤ 3Cθ |z|D

m
( 1

s′− 1
s
) e−bθkm/(m−1)

for all x ∈ Ω1 , k ∈ N0 , z ∈ Σπ
2
−θ and some bθ > 0 . Since, by duality, the

(weighted) norm estimates (4.6),(2.7) and the L2-analyticity hold also for
A∗ instead of A, we obtain (4.7) also for A∗ instead of A. In other words,
we have for all θ > w :

(4.8) ||PA(x,|z|1/m,k) e
−zA PB(x,|z|1/m) ||s→s′ ≤ 3Cθ |z|D

m
( 1

s′− 1
s
) e−bθkm/(m−1)

for all x ∈ Ω1 , k ∈ N0 , z ∈ Σπ
2
−θ. Hence, in view of (4.7) and (4.8),

the hypotheses of our main result Theorem 1.2 are satisfied, and A has a
bounded H∞(Σν) calculus on Lr(Ω) for all ν > w . �

We now prove the applications of Theorem 2.2 in Section 2.3.

Proof of Proposition 2.3. Following Davies [D1] one defines the twisted
forms

aλφ(u, v) := a(eλφu, e−λφv) , u, v ∈ Hm(RD) ,

where λ ∈ R and φ is a real-valued C∞-function with compact support
satisfying ‖∂αφ‖∞ ≤ 1 for all 1 ≤ |α| ≤ m. The space of all such functions
is denoted by Em. Observe that the functions eλφ are pointwise multipliers
on Hm(RD) . Then

|aλφ(u, u) − a(u, u)| ≤ ε ‖∇mu‖2
2 + C(ε)(1 + λ2m)‖u‖2

2

for all u ∈ Hm, λ ∈ R, φ ∈ Em and for each ε > 0. Following the lines
of [D1] (for the case D = 2m one has to argue as in [AT, p. 59]) one can
show the following:

If p0 := 2D
2m+D

∨ 1 then there are constants M,ω > 0 such that

(4.9) ‖e−λφe−tAeλφ‖p0→p′0 ≤M t−D/(2m)·(1/p0−1/p′0) eωλ2mt

for all t > 0, λ ∈ R, and φ ∈ Em. By arguments as in [D1] or [LSV] this yields
that the semigroup (e−tA) is bounded in Lp0 and Lp′0 . The last estimate in
(2.6) and the estimate (2.7) can be obtained from (4.9) by interpolation,
[D1, Lemma 4] and Sections 3 and 4 in [BK1]. (Actually, these estimates
may be obtained as intermediate steps when proving (4.9).) The assertions
follow by application of Theorem 2.2. �
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Proof of Proposition 2.4. Given r ∈ (p(γ), p(γ)′) we fix p ∈ (p(γ), 2)
such that r ∈ (p, p′). We choose cr such that (e−t(H+cr)) is bounded in Lp

and Lp′ . The (weighted) estimates (2.6) , (2.7) we need for an application of
Theorem 2.2 are proved in [LSV]. �
Proof of Proposition 2.5. Given r ∈ (pmin, pmax) we fix p, q0 ∈ (pmin, pmax)
such that r, 2 ∈ (p, q0). The (weighted) norm estimates (2.6), (2.7) are
proved in [LSV]. Hence the assertion follows by application of (a variant of)
Theorem 2.2. �
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