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Critical nonlinear elliptic equations with
singularities and cylindrical symmetry

Marino Badiale and Enrico Serra

Abstract

Motivated by a problem arising in astrophysics we study a non-
linear elliptic equation in R

N with cylindrical symmetry and with
singularities on a whole subspace of R

N . We study the problem
in a variational framework and, as the nonlinearity also displays a
critical behavior, we use some suitable version of the Concentration–
Compactness Principle. We obtain several results on existence and
nonexistence of solutions.

1. Introduction

This paper continues the work begun in [1], which was concerned with
the problem

(1.1)




−∆u(x) = φ(r)|u|p−2u in R
3

u(x) > 0 in R
3

u ∈ D1,2(R3).

Here x = (x1, x2, x3) ∈ R
3, r =

√
x2

1 + x2
2 and the model function for φ is

(1.2) φ(r) =
r2α

(1 + r2)α+ 1
2

,

where α is a positive number.

The equation in (1.1) displays a cylindrical symmetry and its motivation
comes from some research in astrophysics where it was proposed as a model
for the study of elliptic galaxies (see [9]).
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There is a vast literature concerning the modeling of astronomical ob-
jects like galaxies or globular clusters of stars (we refer to the bibliography
in [1]) and several elliptic equations arising from this questions have been in-
vestigated. As far as we know most of these models are radial, because they
model radial objects (e.g. globular clusters of stars). Much less is known in
the case of cylindrical symmetry (derived from the axial symmetry of ellip-
tic galaxies) and many interesting problems from the mathematical point of
view are still open.

An analysis of the model proposed in [9] was carried out in the paper [1],
where it was proved that problem (1.1) can be handled by a variational
approach in the case p ∈ [4, 6], and where various results about existence
and nonexistence of solutions were obtained.

The case p = 4 turned out to be particularly interesting since for the
problem

(1.3)




−∆u(x) = φ(r)u3 in R
3

u(x) > 0 in R
3

u ∈ D1,2(R3),

only a negative result was obtained, that is, the nonexistence of solutions
for the minimization problem associated to (1.3) when φ(r) satisfies suitable
hypotheses, and in particular when it has exactly the form (1.2). The reason
for this is that in the case p = 4 the equation has a critical nature. Indeed, as
φ(r) is asymptotic to 1/r when r → ∞, problem (1.3) admits the equation

(1.4) −∆u(x) =
1

r
u3 in R

3

as a “limiting” problem, and this is critical in the usual sense, namely it
is invariant with respect to a class of dilations. If u is a solution of (1.4),
then uλ(x) = λ1/2u(λx) is still a solution. As usual, this invariance gener-
ates some lack of compactness for the Palais–Smale sequences when dealing
with the variational problem associated to (1.4), and this in turn takes place
also in problem (1.3), in the form of an invariance manifested by the limit-
ing equation.

Motivated by these observations, in this paper we study equation (1.3)
and a more general problem in R

N , with N ≥ 3, given by

(1.5)




−∆u(x) = φ(|x′|)u2∗−1 in R
N

u(x) > 0 in R
N

u ∈ D1,2(RN ),

where we have set x = (x′, z) ∈ R
K × R

N−K (2 ≤ K ≤ N) and 2∗ = 2N−s
N−2

,
with 0 < s < 2; the function φ(r) is asymptotic, at 0 or at ∞ (or both),
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to the function 1/rs. Exactly as problem (1.3) admits (1.4) as a limiting
equation, the more general problem (1.5) admits

(1.6)




−∆u(x) = 1
|x′|s u

2∗−1 in R
N

u(x) > 0 in R
N

u ∈ D1,2(RN ),

as a limiting problem, and this is critical because it is invariant with respect
to the scalings

uλ(x) = λ
N−2

2 u(λx).

We will associate to (1.3) or to (1.5) a variational formulation and we will
give some sufficient conditions for their solvability. As usual in critical prob-
lems, these conditions are expressed as strict inequalities between critical lev-
els (see Theorem 3.1). For this abstract result we use a nice version of the cel-
ebrated Concentration–Compactness principles of P. L. Lions. This version,
which in some sense gives a unified treatment of the different Concentration–
Compactness principles, is due to S. Solimini [16]. We then give some easy
applications of the existence result, and we also describe some cases where
nonexistence occurs (see theorems 4.1 and 4.2).

In the particular case of problem (1.3) we obtain some additional results.
To begin with, we obtain some information about regularity and decay prop-
erties of solutions (Lemmas 2.2 and Corollary 4.6), and from these results
we obtain the existence of solutions in the case in which the φ’s are small
perturbations of the function (1.2), for which, as proved in [1], the mini-
mization problem associated to (1.3) has no solutions. These results show,
once again, how critical problems are sensitive to perturbations.

Critical problems with nonlinearities exhibiting a singularity have been
much studied in recent years (see for example [5, 6, 7, 8, 10, 12, 18]), but to
our knowledge in the past literature the singularity is always concentrated
at a point, while in our case there is a whole subspace of singularities. The
only exception that we are aware of is the paper [14] by Ni, that studies an
equation of type (1.5) where K ≥ 3 and where the existence of solutions
bounded away from zero is established. These results are therefore very
different in spirit from ours.

For problems with singularities and cylindrical symmetry much work
has still to be done, for example about regularity or uniqueness of solutions,
even for the limiting equation in (1.6). Note for instance that this equation
cannot be reduced to an ordinary differential equation as is the case for
example with the analysis of the minimizers of the usual Sobolev quotients;
therefore problems of uniqueness of positive solutions appear to be genuinely
multi–dimensional and a general approach is still lacking.
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The present paper, along with [1], presents some initial results.

In Section 2 we give some preliminary results, we describe the regularity
properties and we give some nonexistence results. Section 3 is devoted to
the proof of the main compactness result, which is then applied in Section 4
to prove existence of solutions for problems (1.3) and (1.5).

After this work was completed, we became aware of the paper [15] where
some results similar to ours are obtained as far as existence problems are
concerned. Our results however treat also regularity, Pohozaev identities
and decay properties, and we make an analysis of the lack of compactness
for the minimizing sequences associated to problem (1.5).

Notation

We collect below a list of the main notation used throughout the paper.

• For any x = (x1 . . . , xN ) ∈ R
N and K ≥ 2 we write x = (x′, z) with

x′ = (x1, . . . , xK) ∈ R
K and z = (xK+1, . . . , xN ) ∈ R

N−K . We also
write r for |x′|. We define A = {x ∈ R

N | x′ �= 0}.
• D1,2(RN ) is the closure of C∞

0 (RN ) with respect to the norm

||u|| =

(∫
RN

|∇u|2dx

)1/2

.

As no misunderstanding is possible, we will also write D1,2 instead
of D1,2(RN).

• Lq = Lq(RN ), Lq
loc = Lq

loc(R
N ) are the usual Lebesgue spaces. For a

Lebesgue–measurable function g we will write Lq(g) to mean the space
Lq(RN ) with respect to the measure g(x)dx.

• 2∗ = 2N
N−2

is the critical exponent for the Sobolev embedding and

2∗ = 2∗(s) is 2(N−s)
N−2

.

• For any P ∈ R
N and r > 0 we denote by B(P, r) or Br(P ) the open

ball in R
N with center P and radius r, while Br = B(0, r).

• We will use C to denote any positive constant, that can change from
line to line.

• x · y is the usual scalar product in R
N .

• We set R
+ = [0,+∞[ and R+ = ]0,+∞[.
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2. Preliminary results

We first give our main hypotheses on the function φ. We assume that for
some η ∈ (0, 1) and s ∈ (0, 2)

φ ∈ C0,η
loc (R+, R+), φ(r)rs ∈ L∞(R+),

(2.1) and at least one between lim
r→0

φ(r)rs = 1 and lim
r→+∞

φ(r)rs = 1 holds.

As we said in the introduction, we will obtain existence results for prob-
lem (1.5) by the study of a minimization problem of a standard type. The
basic tool here is an embedding result obtained in [1], reminiscent of the
inequalities in [4], which we recall in a form well–suited for our study. In
its statement we consider R

N = R
K × R

N−K , with K ≥ 2, and we set
x′ = (x1, . . . , xK).

Theorem 2.1 (Theorem 2.1 in [1]) For each 0 < s < 2, let 2∗ = 2(N−s)
N−2

.

Then there exists a positive constant Cs such that, for all u ∈ D1,2(RN ),

(2.2)

∫
RN

1

|x′|s |u|
2∗dx ≤ Cs

(∫
RN

|∇u|2dx

)2∗/2

Theorem 2.1 implies that in the space D1,2(RN ) the integral
∫

RN
1

|x′|s |u|2∗dx

is finite, so, for u ∈ D1,2(RN )\{0}, we can define

J(u) =

∫
RN |∇u|2dx(∫

RN
1

|x′|s |u|2∗dx
)2/2∗

, and Jφ(u) =

∫
RN |∇u|2dx(∫

RN φ(|x′|) |u|2∗dx
)2/2∗

.

It is easy to see that J and Jφ are C1 functionals over D1,2 . We also define

S = inf
{
J(u)

∣∣ u ∈ D1,2\{0}} and Sφ = inf
{
Jφ(u)

∣∣ u ∈ D1,2\{0}} ,

and we consider the minimization problem

(2.3) find u ∈ D1,2\{0}, u ≥ 0, such that Jφ(u) = Sφ.

A solution of (2.3) gives, up to a constant, a good candidate to solve
problem (1.5). Indeed, usual arguments imply that a solution of (2.3), suit-
ably normalized, yields a weak solution to the equation in (1.5). Due to the
presence of φ this solution may be singular on x′ = 0, and therefore the con-
dition u > 0 in R

N must be interpreted with some care. In view of further
applications we now investigate the regularity and positivity of solutions in
some particular cases.

By standard elliptic regularity theory, it is obvious that the solutions
of (1.5) are C2 when x′ �= 0. The regularity across x′ = 0 depends on the
values of s and N .
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Lemma 2.2 Assume (2.1) and let u ∈ D1,2, u ≥ 0, be a weak solution of
the equation

−∆u(x) = φ(|x′|)u2∗−1

If sN < 4, then u ∈ C0,θ
loc (R

N ) for some θ ∈ (0, 1).

If sN < 2, then u ∈ C1,θ
loc (R

N ) for some θ ∈ (0, 1).

Proof. We first claim that u ∈ Lq
loc(R

N ) for all q < +∞. To prove this we
use a result due to Brézis and Kato [2], that we apply in the form that one
finds in the book of Struwe (Lemma B.3 p. 218 in [17]).

We write

φ(|x′|)u2∗−1 = φ(|x′|)u2∗−1

1 + u
(1 + u),

and we set

a(x) = φ(|x′|)u2∗−1(x)

1 + u(x)
,

so that u satisfies
−∆u = a(x)(1 + u).

We now prove that a ∈ LN/2(RN ). Once this is proved, Lemma B.3 in [17]
implies our claim, that is, u ∈ Lq

loc(R
N ) for all q < +∞. To prove that

a ∈ LN/2(RN ), we write

a(x) = φ(|x′|)|x′|s u
2∗−2

|x′|s
u

1 + u

and notice that, of course, u
1+u

is bounded (as u ≥ 0), while φ(|x′|)|x′|s is
bounded by (2.1). Hence we have to prove that

u2∗−2

|x′|s ∈ LN/2, that is,
u(2∗−2)N/2

|x′|Ns/2
∈ L1.

To show this we notice that since sN < 4, so that Ns/2 < 2 < K, we can
use the embedding results of [1] in the form (2.2). We just have to realize
that the exponents match correctly, namely

(2∗ − 2)
N

2
=

2(N − Ns/2)

N − 2
,

as a trivial computation shows. In this way we have proved the claim.

To complete the proof we observe that since u ∈ Lq
loc for all q < ∞,

the local integrability of
(

u2∗−1

|x′|s
)p

can be deduced from the local integrability

of
(

1
|x′|s

)p
.
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Now if sN < 4 we can take some p > N
2

such that sp < 2; since K ≥ 2,

we see that
(

1
|x′|

)sp
is locally integrable. This implies that u2∗−1

|x′|s is locally

in Lq for some p > q > N
2
. By the usual elliptic regularity theory and the

Sobolev embeddings, it follows that u ∈ C0,θ
loc (R

N ) for some θ ∈ (0, 1).
Finally, if sN < 2 we can repeat the above argument using some p > N

such that again sp < 2, to obtain that u ∈ C1,θ
loc (R

N ) for some θ ∈ (0, 1). �

Remark 2.3 Regularity questions for general N and s are open, but we no-
tice that not much more that the previous results is to be expected. Indeed,
equation (1.4) when K = N = 3 admits the solution u(x) =

√
2(1 + |x|)−1,

which is only Lipschitz continuous. Singular solutions might also be present
in some cases.

Notice however that the previous lemma covers some important par-
ticular cases such as problem (1.3). Furthermore, we remark that in the
astrophysical problem the function φ is not singular at zero (see (1.2)), so
that in this case the solutions are classical.

We now turn to the question of the positivity of solutions in all R
N .

Lemma 2.4 Assume (2.1) and let u ∈ D1,2, u ≥ 0, be a weak solution of
the equation

−∆u(x) = φ(|x′|)u2∗−1.

If sN < 4, then u > 0 in R
N .

Proof. By standard elliptic regularity, u ∈ C2,η
loc (A) for some η ∈ (0, 1),

where we recall that A = {x ∈ R
N | x′ �= 0}; hence we can apply the

classical strong maximum principle to obtain that u > 0 in A.
To conclude we first notice that, by Lemma 2.2, u ∈ C0,θ

loc , for some θ ∈
(0, 1). Let x0 ∈ R

N be such that x′
0 = 0 and consider the ball B = B1(x0).

Define φ̃(r) = min{1, φ(r)} and remark that φ̃ is Hölder continuous, because
so is φ. Let v be the classical solution of the problem

(2.4)

{
−∆v(x) = φ̃(|x′|)u2∗−1 in B,

v(x) = 0 on ∂B.

Notice that φ̃(|x′|)u2∗−1 is Hölder continuous. Clearly now −∆u ≥ −∆v
in the weak sense in B, and u ≥ v on ∂B, so that, using the maximum
principle for weak solutions, we have u ≥ v in all of B. But v is a classical
solution of (2.4), −∆v ≥ 0 and v is not a constant, so by the strong classical
maximum principle we have v > 0 in all of B and hence also u(x0) > 0. �
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We now want to prove some Pohozaev–type result for (1.5). We will
obtain that, under some very natural hypotheses, (1.5) has no solutions. In
the next section we also will prove some existence results for (1.5) and, as
usual in critical problems, we will see that one passes from existence to non
existence of solutions by small perturbations.

The first nonexistence result is a consequence of the following identity
of Pohozaev type. The validity of this identity is affected by the regularity
properties of the solutions, and for this reason we will state it in a form that
will suit our applications.

The argument to derive the identity is the standard one (see for example
the book of Kuzin and Pohozaev [13], Theorem 29.4), except of course for
the fact that in general our solutions are not C2 in all of R

N .

Proposition 2.5 Let a : R
N → R be a function such that

(2.5) a(x)|x′|s ∈ L∞(RN ), with a ∈ C(A),

and let u ∈ D1,2(RN ) be a weak solution of

(2.6) −∆u = a(x)|u|p−2u in R
N .

Assume that u ∈ C1,θ
loc (R

N ) ∩ Lp(RN ) ∩ C2(A) for some θ ∈ (0, 1) and
also that

(2.7) a|u|p ∈ L1(RN ) and ∇a(x) · x|u|p ∈ L1(RN ).

Then the following identity holds:

(2.8)

∫
RN

[(
N − 2

2
− N

p

)
a(x) − 1

p
∇a(x) · x

]
|u|pdx = 0.

Proof. For any R, ε > 0 we consider the ball BR and the sets

Ω1 = Ω1(R, ε) = {x ∈ BR | x1 > ε}, Ω2 = Ω2(R, ε) = {x ∈ BR | x1 < −ε}.
By our assumptions, u is a classical solution of (2.6) in Ω1 ∪ Ω2, so in each
of these sets we can repeat the standard arguments one uses to derive the
Pohozaev identity, that is, we multiply (2.6) by x · ∇u(x) and we integrate.
Recalling that

x · ∇u ∆u = div

(
(x · ∇u)∇u − 1

2
|∇u|2x

)
+

N − 2

2
|∇u|2

and

x · ∇u a(x)|u|p−2u = div

(
1

p
a(x)|u|px

)
− N

p
a(x)|u|p − 1

p
|u|p∇a(x) · x,
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we obtain, setting Ω = Ω1 ∪ Ω2,∫
∂Ω

(
− x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n

)
dσ − N − 2

2

∫
Ω

|∇u|2dx

=

∫
∂Ω

1

p
a(x)|u|px · ndσ − N

p

∫
Ω

a(x)|u|pdx − 1

p

∫
Ω

x · ∇a |u|pdx,

that is ∫
∂Ω

(
− x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ

=
N − 2

2

∫
Ω

|∇u|2dx − 1

p

∫
Ω

(Na(x) + ∇a(x) · x) |u|pdx.(2.9)

Here n is the outward normal at ∂Ω and dσ is the (N − 1)–dimensional
measure of ∂Ω. Now we pass to the limit in (2.9) as ε → 0. It is obvious
that the limit of the right hand side in (2.9) is

N − 2

2

∫
BR

|∇u|2dx − 1

p

∫
BR

(Na(x) + ∇a(x) · x) |u|pdx.

For the left hand side, we have

∂Ω = {x ∈ ∂BR | x1 > ε} ∪ {x ∈ ∂BR | x1 < −ε} ∪ {x ∈ BR | x1 = ε}
∪ {x ∈ BR | x1 = −ε}

= S1 ∪ S2 ∪ S3 ∪ S4,

with obvious definitions of Si = Si(ε). Again it is obvious that

lim
ε→0

∫
S1∪S2

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ

=

∫
∂BR

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ.

We have now to see what happens in S3 ∪ S4 as ε → 0. Notice that in S3,
n = (−1, 0, . . . , 0), while in S4, n = (1, 0, . . . , 0). Hence we can write∫

S3∪S4

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ

=

∫
S3

(
x · ∇uD1u − 1

2
|∇u|2x1 +

1

p
a(x)|u|px1

)
dσ

+

∫
S4

(
−x · ∇uD1u +

1

2
|∇u|2x1 − 1

p
a(x)|u|px1

)
dσ.
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By the hypotheses, the function −x · ∇uD1u + 1
2
|∇u|2x1 − 1

p
a(x)|u|px1 is

continuous everywhere, so that we can conclude that

lim
ε→0

∫
S3∪S4

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ = 0.

Hence, after passing to the limit as ε → 0, (2.9) implies

∫
∂BR

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ =

=
N − 2

2

∫
BR

|∇u|2dx − 1

p

∫
BR

(Na(x) + ∇a(x) · x) |u|pdx.(2.10)

Now the argument can proceed in the standard way (see [13]), so we will be
sketchy. The hypotheses |∇u| ∈ L2, and a|u|p ∈ L1 imply that there is a
sequence of radii Rn → +∞ such that

lim
n→+∞

∫
∂BRn

(
−x · ∇u

∂u

∂n
+

1

2
|∇u|2x · n − 1

p
a(x)|u|px · n

)
dσ = 0.

Therefore, passing to the limit in (2.10) we obtain

N − 2

2

∫
RN

|∇u|2dx − 1

p

∫
RN

(Na(x) + ∇a(x) · x) |u|pdx = 0.

But since
∫

RN |∇u|2dx =
∫

RN a|u|pdx, the result follows. �

We now apply this Pohozaev identity to problem (1.5), with the suitable
limitations on the values of s and N .

Corollary 2.6 Assume that sN < 2, that φ satisfies (2.1) and also that

(2.11) φ′ ∈ C(R+) and φ′(r)rs+1 ∈ L∞(R+).

Define ψ(r) = φ(r)rs and assume that ψ is monotone (increasing or
decreasing) and not constant. Then problem (1.5) has no solutions.

Proof. We apply Proposition 2.5 with p = 2∗ and a(x) = φ(|x′|). Let us
notice that ∇a(x) · x = φ′(|x′|)|x′|, so that (2.1), (2.11) and Theorem 2.1
imply that the hypotheses (2.5) and (2.7) of Proposition 2.5 are satisfied.
So, if we assume that u is a solution of (1.5), by Lemma 2.2 we have u ∈ C1,θ

loc

and by Lemma 2.4 we obtain that u > 0 everywhere.
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Moreover, computing(
N − 2

2
− N

2∗

)
a(x) − 1

2∗
∇a(x) · x = − s

2∗
a(x) − 1

2∗
∇a(x) · x

= − 1

2∗
( sφ(|x′|) + φ′(|x′|)|x′| )

= − 1

2∗

1

|x′|s−1

(
s|x′|s−1φ(|x′|) + φ′(|x′|)|x′|s) =

1

2∗|x′|s−1
ψ′(|x′|),

we see that (2.8) gives

(2.12) 0 =

∫
RN

1

|x′|s−1
ψ′(|x′|)|u|2∗dx.

Under the hypothesis that ψ is monotone and not constant we obtain
that ψ′ is not zero and has constant sign. Therefore (2.12) gives a contra-
diction and this implies that (1.5) has no solutions. �

Remark 2.7 Notice that the nonexistence result can be applied to prob-
lem (1.1), since its solutions are regular. Therefore we obtain a generalization
of the nonexistence result in [1], which concerned only the solutions of the
minimization problem associated to (1.1).

Let us consider now the minimization problem (2.3). We will prove
that it has no solutions assuming some hypotheses different than those of
Corollary 2.6. We first prove an inequality.

Lemma 2.8 Assume that φ satisfies (2.1). Then

Sφ ≤ S.

Proof. We know that S is achieved at some w ∈ D1,2(RN ) (Theorem 2.5

in [1]). Let us define, for λ > 0, wλ(x) = λ
N−2

2 w(λx). Then, by a standard
change of variables, J(wλ) = J(w) = S, while

Jφ(wλ) =

∫
RN |∇w|2dx(∫

RN φ( |x
′|

λ
) |x

′|s
λs

|w|2∗
|x′|s dx

)2/2∗
.

To fix ideas, assume that limr→+∞ φ(r)rs = 1. Since |w|2∗
|x′|s ∈ L1(RN ), it is

easy to see that Jφ(wλ) → J(w) = S as λ → 0. On the other hand, we have
by definition Sφ ≤ Jφ(wλ) for all λ > 0, so that the conclusion easily follows.
If limr→0 φ(r)rs = 1, the argument is the same, letting λ → +∞. �
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Theorem 2.9 Assume that φ satisfies (2.1) and also that

(2.13) φ(r)rs ≤ 1 ∀r > 0 and φ(r0)r
s
0 < 1 for some r0 > 0.

Then problem (2.3) has no positive solutions.

Proof. Assume by contradiction that u is a positive solution of (2.3). Hence
Jφ(u) = Sφ and u(x) > 0. We then obtain∫

RN

φ(|x′|)u2∗dx <

∫
RN

1

|x′|su
2∗dx,

which implies

Sφ =

∫
RN |∇u|2dx(∫

RN φ(|x′|)u2∗dx
)2/2∗

>

∫
RN |∇u|2dx(∫

RN
1

|x′|s u
2∗dx

)2/2∗
≥ S,

contradicting Lemma 2.8. �

Remark 2.10 Corollary 2.6 and Theorem 2.9 suggest the following open
question: suppose that φ(r)rs ≤ 1, φ(r)rs �= 1, but φ(r)rs is not monotone.
Then, by Theorem 2.9, the minimization problem (2.3) has no solutions, but
Corollary 2.6 does not apply. Is there any solution of problem (1.5)?

3. A compactness result

Throughout this section we will use the following hypothesis on φ:

(3.1) lim sup
r→0,+∞

φ(r)rs ≤ 1.

This section is devoted to the proof of the following Theorem 3.1. In the
next section we will apply it to find some existence results for problem (1.5).

Theorem 3.1 Assume that φ satisfies (2.1) and (3.1). If Sφ < S, then
problem (1.5) has a solution.

The main tool we use to prove Theorem 3.1 is the following Theorem 3.3, due
to Solimini, [16]. It is a version of the Concentration–Compactness Principle.
To state Theorem 3.3 we first define rescalings of functions in D1,2.

Definition 3.2 For any fixed λ > 0, p ∈ R
N , the rescaling T = T (λ, p) is

the function

T : D1,2(RN ) → D1,2(RN ) defined by Tv(x) = λ
N−2

2 v(λ(x − p)).
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Notice that if T = T (λ, p) then T−1 = T (1/λ,−λp), that is,

T−1v(x) = λ−N−2
2 v

(1

λ
x + p

)
.

Theorem 3.3 ([16]) Assume that {vk}k is a bounded sequence in D1,2(RN ).
Then, up to a subsequence, one of the following alternatives holds:

(i) vk → 0 strongly in L2∗(RN).

(ii) There is a sequence {Tk}k of rescalings such that Tkvk ⇀ v weakly in
L2∗(RN ) and v �≡ 0.

We will state now two preliminary results. The first is an easy consequence
of Theorem 2.1.

Lemma 3.4 Assume that {uk}k is a bounded sequence in D1,2(RN) such
that uk → 0 strongly in L2∗(RN ). Then uk → 0 strongly in L2∗( 1

|x′|s ).

Proof. Recalling that

2∗ − 2 =
2

N − 2
(2 − s)

and applying Hölder’s inequality with exponents N
2−s

, N
N−2+s

, we obtain

∫
RN

|uk|2∗
|x′|s dx =

∫
RN

|uk|2
|x′|s |uk| 2

N−2
(2−s)dx

≤
(∫

RN

|uk| 2N
N−2+s

|x′| sN
N−2+s

dx

)N−2+s
N (∫

RN

|uk|2∗dx

) 2−s
N

.

We have that ∫
RN

|uk|2∗dx → 0

by hypothesis. We now apply Theorem 2.1 replacing s by Ns
N−2+s

, so that

2∗ = 2N−s
N−2

is replaced by 2N
N−2+s

; notice that still 0 < sN
N−2+s

< 2. We obtain

∫
RN

|uk| 2N
N−2+s

|x′| sN
N−2+s

dx ≤ C

(∫
RN

|∇un|2
) N

N−2+s

≤ C,

and the conclusion follows immediately. �

We will also use the following version of a well known convergence result
by Brézis and Lieb, [3].
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Lemma 3.5 Assume that {wk}k ⊂ D1,2(RN ) satisfies

wk → 0 a.e. and

∫
RN

|wk|2∗
|x′|s dx ≤ C ∀ k.

Let {γk}k ⊂ L∞(R) be a sequence of uniformly bounded functions, i.e.,

||γk||∞ ≤ C for all k. Let u ∈ L2∗
(

1
|x′|s

)
. Then we have, as k → ∞,

i)
∫

RN

γk(|x′|) 1

|x′|s |u + wk|2∗dx =

∫
RN

γk(|x′|) 1

|x′|s |u|
2∗dx

+

∫
RN

γk(|x′|) 1

|x′|s |wk|2∗dx + o(1).

ii) Assume also that γk(x) → 1 a.e., as k → +∞. Then∫
RN

γk(|x′|) 1

|x′|s |u + wk|2∗dx =

∫
RN

1

|x′|s |u|
2∗dx

+

∫
RN

γk(|x′|) 1

|x′|s |wk|2∗dx + o(1).

We now begin the study of problem (2.3). Throughout this section {uk}k

will be a minimizing sequence for (2.3). Without loss of generality we can
assume that

(3.2)

∫
RN

φ(|x′|)|uk|2∗dx = 1,

∫
RN

|∇uk|2dx → Sφ, uk ⇀ u weakly in D1,2(RN ).

Remark 3.6 If u �≡ 0, it is not hard to prove, for example by using a suit-
able version of Ekeland’s variational principle, that u solves the minimization
problem. Therefore we could suppose in what follows that u ≡ 0; however
we prefer to carry out all the computations in the general form to have a
better insight of the compactness properties of the minimizing sequences.

In what follows we will pass several times to subsequences of {uk}k and
we will use the same indices. Let us define vk = uk − u, so that {vk}k is a
bounded sequence in D1,2(RN) such that vk ⇀ 0 weakly in D1,2(RN ); passing
to a subsequence we can also assume that vk(x) → 0 a.e., which, from now
on, will be taken for granted.

From Theorem 3.3 we deduce that one of the alternatives i), ii) therein
must hold. It is very easy to see that if i) holds, the sequence {uk}k is
actually compact in D1,2, so that in this case we obtain a solution. This is
proved in the following lemma.
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Lemma 3.7 Assume that vk → 0 strongly in L2∗. Then uk → u strongly in
D1,2(RN ) and u is a solution of the minimization problem (2.3).

Proof. By Lemma 3.4 we have that vk → 0 strongly in in L2∗( 1
|x′|s ), so that

uk → u strongly in L2∗( 1
|x′|s ). Then of course∫

RN

φ(|x′|)|uk − u|2∗dx =

∫
RN

φ(|x′|)|x′|s 1

|x′|s |uk − u|2∗dx

≤ C

∫
RN

1

|x′|s |uk − u|2∗dx → 0,

which implies that∫
RN

φ(|x′|)|u|2∗dx = lim
k

∫
RN

φ(|x′|)|uk|2∗dx = 1.

Therefore u �= 0, and

Jφ(u) =

∫
RN

|∇u|2dx ≤ lim inf
k

∫
RN

|∇uk|2dx = lim inf
k

J(uk) = Sφ.

This proves that u minimizes Jφ over D1,2\{0}. To obtain the strong con-
vergence of uk in D1,2 we compute

Sφ + o(1) =

∫
RN

|∇uk|2dx =

∫
RN

|∇uk −∇u + ∇u|2dx =

∫
RN

|∇uk −∇u|2dx +

∫
RN

|∇u|2dx + o(1) =

∫
RN

|∇uk −∇u|2dx + Sφ + o(1),

which gives
∫

RN |∇uk −∇u|2dx = o(1). �

The rest of this section is devoted to the study of case ii) of Theorem 3.3.
From now on we will therefore assume that ii) holds. Notice that, as {Tkvk}k

is bounded in D1,2, we can also assume, up to subsequences, that

(3.3) Tkvk ⇀ v weakly in D1,2 and Tkvk(x) → v(x) a.e., with v �≡ 0.

Let us write Tkvk = v + wk, so that vk = T−1
k v + T−1

k wk. We have
therefore obtained that the minimizing sequence uk can be represented as

(3.4) uk = u + T−1
k v + T−1

k wk,

with the obvious properties

(3.5) wk ⇀ 0 weakly in D1,2 and wk(x) → 0 a.e.

We now begin to analyze the behavior of Jφ(uk). The starting point is
the following lemma. In its statement recall that Tk = T (λk, pk) and that
T−1

k = T (1/λk,−λkpk), for some λk > 0 and pk ∈ R
N .
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Lemma 3.8 There is no subsequence of (λk, pk) converging to (λ0, p0) with
λ0 �= 0.

Proof. We argue by contradiction by assuming that for some subsequence,

(3.6) λk → λ0 �= 0 and pk → p0.

Recall that vk ⇀ 0 weakly in L2∗ and Tkvk ⇀ v �≡ 0 weakly in L2∗ . Fix
ϕ ∈ C∞

0 (RN ); then ∫
RN

Tkvkϕdx →
∫

RN

vϕdx.

On the other hand,∫
RN

Tkvkϕdx =

∫
RN

λ
N−2

2

k vk(λk(x−pk))ϕ(x)dx =

∫
RN

vk(y)λ
−N+2

2

k ϕ(
y

λk

+pk)dy.

From (3.6) we easily deduce that

λ
−N+2

2
k ϕ(

y

λk

+ pk) → λ
−N+2

2
0 ϕ(

y

λ0

+ p0) strongly in L2∗ ;

since vk ⇀ 0, this implies that∫
RN

Tkvkϕdx → 0.

But Tkvk ⇀ v weakly, so that ∫
RN

v ϕdx = 0.

This holds for all ϕ ∈ C∞
0 (RN ), and of course it implies v ≡ 0, contradict-

ing (3.3). �
The next lemma is perhaps well known; we prove it anyway, for com-

pleteness.

Lemma 3.9 As k → ∞, T−1
k v ⇀ 0 weakly in L2∗.

Proof. Let us set µk = 1/λk and qk = −λkpk. From Lemma 3.8 we easily
see that there exists a subsequence such that at least one among

(3.7) µk → 0, µk → +∞, and |qk| → +∞
is true (as usual we don’t change indices, passing to subsequences). We now
consider separately the three cases in (3.7) and we show that in each one we
have T−1

k v → 0 weakly in L2∗ .
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Assume first that µk → 0 and fix ϕ ∈ C∞
0 (RN ) with supp ϕ ⊂ BR.

We obtain∣∣∣∣
∫

RN

ϕT−1
k vdx

∣∣∣∣ =

∣∣∣∣
∫

RN

µ
N−2

2
k v(µk(x − qk))ϕ(x)dx

∣∣∣∣
=

∣∣∣∣
∫

RN

µ
−N+2

2
k v(y)ϕ(

y

µk

+ qk)dy

∣∣∣∣ ≤
∫

BµkR(−µkqk)

µ
−N+2

2
k |v||ϕ(

y

µk

+ qk)|dy

≤
( ∫

BµkR(−µkqk)

|v|2∗dy

)1/2∗(∫
BµkR(−µkqk)

µ−N
k |ϕ(

y

µk

+ qk)| 2N
N+2 dy

)N+2
2N

=

(∫
BµkR(−µkqk)

|v|2∗dy

)1/2∗ (∫
BR

|ϕ(y)| 2N
N+2 dy

)N+2
2N

.

By the hypothesis µk → 0 and the absolute continuity of Lebesgue integral
we have ∫

BµkR(−µkqk)

|v|2∗dy → 0 as k → ∞,

so that
∫

RN ϕT−1
k v dx → 0 for all ϕ ∈ C∞

0 (RN ), which of course implies
T−1

k v ⇀ 0 weakly in L2∗ .
Let us assume now that µk → +∞. As above we fix ϕ ∈ C∞

0 (RN ), but
this time we also fix ε > 0 and we choose a function w ∈ C∞

0 (RN ) such
that ||v − w||L2∗ < ε. Assuming that supp ϕ ⊂ BR and supp w ⊂ BR1 , we
compute∣∣∣∣
∫

RN

ϕT−1
k vdx

∣∣∣∣ ≤
∣∣∣∣
∫

RN

ϕ(T−1
k v − T−1

k w)dx

∣∣∣∣ +

∣∣∣∣
∫

RN

ϕT−1
k wdx

∣∣∣∣
≤ ||T−1

k v − T−1
k w||L2∗ ||ϕ||

L
2N

N+2
+

∫
RN

|ϕ| |T−1
k w|dx

≤ ε||ϕ||
L

2N
N+2

+

∫
BR1/µk

(qk)

µ
N−2

2

k |w(µk(x − qk))| |ϕ|dx

≤ εC +

(∫
BR1/µk

(qk)

µN
k |w(µk(x − qk))|

2N
N−2 dx

)N−2
2N

(∫
BR1/µk

(qk)

|ϕ| 2N
N+2 dx

)N+2
2N

≤ εC +

(∫
BR1

|w(x)| 2N
N−2 dx

)N−2
2N

(∫
BR1/µk

(qk)

|ϕ| 2N
N+2 dx

)N+2
2N

From the hypothesis µk → +∞ we see that
∫

BR1/µk
(qk)

|ϕ| 2N
N+2 dx → 0 (abso-

lute continuity of Lebesgue integral). It is then straightforward to conclude
that T−1

k v ⇀ 0 weakly in L2∗ .
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Last we assume that |qk| → ∞. As we have ruled out the cases µk → 0
and µk → ∞ without requiring anything on {qk}k, we may also assume that
there exist c1, c2 > 0 such that c1 ≤ µk ≤ c2 for all k (passing if necessary to a
subsequence). Arguing exactly as in the first case we have, for ϕ ∈ C∞

0 (RN )
with supp ϕ ⊂ BR,∣∣∣∣

∫
RN

ϕT−1
k vdx

∣∣∣∣ ≤
(∫

BµkR(−µkqk)

|v|2∗
) 1

2∗
(∫

BR

|ϕ| 2N
N+2 dx

)N+2
2N

.

Since µkR ≤ c2R and |µkqk| ≥ c1|qk| → +∞, we obtain∫
BµkR(−µkqk)

|v|2∗ → 0,

so that
∫

RN ϕT−1
k dx → 0 and hence T−1

k v ⇀ 0 weakly in L2∗ .

So in each of the three cases in (3.7) we obtain T−1
k v ⇀ 0, and the lemma

is proved. �
For future reference we notice that as a by–product of the previous lemma

we obtain

(3.8) T−1
k v ⇀ 0 weakly in D1,2 and T−1

k v(x) → 0 a.e.

and also

(3.9) T−1
k wk ⇀ 0 weakly in D1,2 and T−1

k wk(x) → 0 a.e.,

which should be kept in mind when dealing with the representation (3.4).

We can now go on with the study of Jφ(uk).

Lemma 3.10 There results, as k → +∞,∫
RN

|∇uk|2dx =

∫
RN

|∇u|2dx +

∫
RN

|∇v|2dx +

∫
RN

|∇wk|2dx + o(1).

Proof. Since uk = u + T−1
k v + T−1

k wk, from (3.8) and (3.9) and simple
changes of variables we obtain∫

RN

|∇uk|2dx =

∫
RN

|∇u|2dx +

∫
RN

|∇T−1
k v|2dx

+

∫
RN

|∇T−1
k wk|2dx + 2

∫
RN

∇u∇T−1
k vdx

+ 2

∫
RN

∇u∇T−1
k wkdx + 2

∫
RN

∇T−1
k v∇T−1

k wkdx

=

∫
RN

|∇u|2dx +

∫
RN

|∇v|2dx +

∫
RN

|∇wk|2dx + o(1).

�
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Remark 3.11 It is obvious that the conclusion of the preceding lemma can
also be written as∫

RN

|∇uk|2dx =

∫
RN

|∇u|2dx +

∫
RN

|∇T−1
1 v|2dx +

∫
RN

|∇T−1
2 wk|2dx + o(1),

where T1 and T2 are arbitrary rescalings. We will use this freedom at the
end of this section.

We now turn to the study of the term
∫

RN φ|uk|2∗dx. Most of this section
is devoted to this topic.

Lemma 3.12 There results, as k → +∞,∫
RN

φ|uk|2∗dx =

∫
RN

φ|u|2∗dx +

∫
RN

φ|T−1
k v + T−1

k wk|2∗dx + o(1).

Proof. The lemma follows from Lemma 3.5 writing∫
RN

φ(|x′|)|uk|2∗dx =

∫
RN

φ(|x′|)|x′|s 1

|x′|s |uk|2∗dx

and

γk(|x′|) = φ(|x′|)|x′|s ∀k. �

We now proceed to the study of
∫

RN φ|T−1
k v + T−1

k wk|2∗dx, where we
distinguish three cases, according to the behavior of the sequence (λk, pk).
From now on we will write pk = (p′k, zk) ∈ R

K × R
N−K . The complete

analysis we need will be obtained after a series of lemmas and intermediate
results.

Lemma 3.13 If |p′k| → +∞ as k → ∞, then
∫

RN
1

|x′|s |v(x + pk)|2∗ dx → 0.

Proof. Fix ε > 0 and choose ϕ ∈ C∞
0 (RN ) such that ||v − ϕ|| < ε, with

supp ϕ ⊂ BR; then∫
RN

1

|x′|s |v(x + pk)|2∗ dx =

∫
RN

1

|x′|s |v(x + pk) − ϕ(x + pk) + ϕ(x + pk)|2∗ dx

≤ C

∫
RN

1

|x′|s |v(x + pk) − ϕ(x + pk)|2∗ dx + C

∫
RN

1

|x′|s |ϕ(x + pk)|2∗ dx

≤ C||v − ϕ|| + C

∫
RN

1

|x′ − p′k|s
|ϕ|2∗ dx ≤ Cε + C

∫
BR

1

|x′ − p′k|s
|ϕ|2∗ dx,
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where we have also used (2.2). Since |x′| ≤ R, we have |x′−p′k|s ≥ (|p′k|−R)s,
so that∫

BR

1

|x′ − p′k|s
|ϕ|2∗ dx ≤ 1

(|p′k| − R)s

∫
BR

|ϕ|2∗ dx =
C

(|p′k| − R)s
.

As |p′k| → ∞, we obtain∫
BR

1

|x′ − p′k|s
|ϕ|2∗ dx → 0,

so that

lim sup
k

∫
RN

1

|x′|s |v(x + pk)|2∗ dx ≤ Cε.

Since this holds for every ε > 0, we obtain the conclusion. �

Lemma 3.14 Assume as before that |p′k| → +∞ as k → +∞. Then∫
RN

φ(|x′|) ∣∣T−1
k v + T−1

k wk

∣∣2∗ dx =

∫
RN

φ(|x′|) ∣∣T−1
k wk

∣∣2∗ dx + o(1).

Proof. Recalling the definition of T−1
k , by the change of variables x = λky

we can write∫
RN

φ(|x′|)∣∣ T−1
k v + T−1

k wk

∣∣2∗dx

=

∫
RN

φ(λk|y′|) 1

λN−s
k

|v(y + pk) + wk(y + pk)|2∗ λN
k dy

=

∫
RN

γk(|y′|) 1

|y′|s |v(y + pk) + wk(y + pk)|2∗ dy,

where we have set γk(r) = φ(λkr)λ
s
kr

s; notice that ||γk||∞ ≤C uniformly in k.

Setting

Ik =

∣∣∣∣
∫

RN

γk(|y′|) 1

|y′|s
(|v(y + pk) + wk(y + pk)|2∗ − |wk(y + pk)|2∗

)
dy

∣∣∣∣ ,
we want to prove that limk Ik = 0. This will end the proof. To this aim
we apply the well–known inequality: ∀ p > 1,∀ ε > 0,∃Cε > 0 such that
∀ a, b ∈ R

(3.10)
∣∣ |a + b|p − |b|p∣∣ ≤ ε|b|p + Cε|a|p
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to get

Ik ≤ Cε

∫
RN

1

|y′|s |wk(y + pk)|2∗dy + CCε

∫
RN

1

|y′|s |v(y + pk)|2∗dy

≤ Cε||wk||2∗/2 + CCε

∫
RN

1

|y′|s |v(y + pk)|2∗dy .

By the previous lemma we have lim supk Ik ≤ Cε, so that limk Ik = 0, as we
needed. �

From lemmas 3.12 and 3.14 we obtain the following corollary

Corollary 3.15 If pk = (p′k, zk) and |p′k| → ∞, then∫
RN

φ(|x′|)|uk|2∗dx =

∫
RN

φ(|x′|)|u|2∗dx +

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1).

Next, we study what happens in the case in which {p′k}k is bounded.
Up to a subsequence, we can of course assume that

(3.11) p′k → p′ ∈ R
K as k → ∞.

Lemma 3.16 Suppose that pk = (p′k, zk) satisfies (3.11). Then∫
RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx

=

∫
RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dx +

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1).

Proof. From now on, with some abuse of notation, we will denote (p′k, 0)
simply by p′k and, likewise, (0, zk) by zk.

Letting y = x
λk

+ zk we obtain

∫
RN

φ(|x′|) |T−1
k v + T−1

k wk|2∗dx(3.12)

=

∫
RN

φ(λk|y′|) 1

λN−s
k

|v(y + p′k) + wk(y + p′k)|2∗λN
k dy

=

∫
RN

γk(|y′|) 1

|y′|s |v(y + p′k) + wk(y + p′k)|2∗dy,

where we have set γk(r) = φ(λkr)λ
s
kr

s (which is uniformly bounded in L∞).
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Next we write (denoting (p′, 0) by p′)

Ik :=

∣∣∣∣
∫

RN

γk(|y′|) 1

|y′|s |v(y + p′k) + wk(y + p′k)|2∗dy

−
∫

RN

γk(|y′|) 1

|y′|s |v(y + p′) + wk(y + p′k)|2∗dy

∣∣∣∣
≤ C

∫
RN

1

|y′|s
∣∣|v(y + p′k) + wk(y + p′k)|2∗ − |v(y + p′) + wk(y + p′k)|2∗

∣∣ dy.

Using again the inequality (3.10) we evaluate∣∣|v(y + p′k) + wk(y + p′k)|2∗ − |v(y + p′) + wk(y + p′k)|2∗
∣∣

=
∣∣|v(y + p′k) − v(y + p′) + v(y + p′) + wk(y + p′k)|2∗
− |v(y + p′) + wk(y + p′k)|2∗

∣∣
≤ ε|v(y + p′) + wk(y + p′k)|2∗ + Cε|v(y + p′k) − v(y + p′)|2∗.

Hence

Ik ≤ Cε

∫
RN

1

|y′|s |v(y + p′) + wk(y + p′k)|2∗dy

+ CCε

∫
RN

1

|y′|s |v(y + p′k) − v(y + p′)|2∗dy

≤ Cε + o(1),

because p′k → p′. Therefore we obtain that limk Ik = 0.

From this we see, going back to (3.12), that∫
RN

γk(|y′|) 1

|y′|s |v(y + p′k) + wk(y + p′k)|2∗dy

=

∫
RN

γk(|y′|) 1

|y′|s |v(y + p′) + wk(y + p′k)|2∗dy + o(1).

Notice now that we have wk(y+p′k) → 0 a.e. Indeed, this follows from the fact
that wk ⇀ 0 weakly in D1,2 and p′k → p′, which imply that wk(y + p′k) ⇀ 0
weakly in D1,2.

We can then apply Lemma 3.5, obtaining∫
RN

γk(|y′|) 1

|y′|s |v(y + p′) + wk(y + p′k)|2∗dy

=

∫
RN

γk(|y′|) 1

|y′|s |v(y + p′)|2∗dy +

∫
RN

γk(|y′|) 1

|y′|s |wk(y + p′k)|2∗dy + o(1).
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Now we set
y =

x

λk

+ zk

in the second integral of the right-hand side, and we set y = x
λk

in the first
integral of the right-hand side. We obtain∫

RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx =

∫
RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dx(3.13)

+

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1),

and the lemma is proved. �

We now refine the previous lemma, by prescribing also the behavior of λk.

Lemma 3.17 Assume that in addition to (3.11), either λk → 0 or λk →
+∞. Then∫

RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx ≤
∫

RN

1

|x′|s |v(x + p′)|2∗dx

+

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1).

Proof. Since from the previous lemma we already have (3.13), we only have
to prove that

(3.14)

∫
RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dy ≤
∫

RN

1

|x′|s |v(x + p′)|2∗dx + o(1).

To prove (3.14) we first set x = λky and γk(r) = φ(λkr)(λkr)
s, obtaining∫

RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dy =

∫
RN

γk(|y′|) 1

|y′|s |v(y + p′)|2∗dy.

Next, as λk → 0 or λk → +∞, from (3.1) we easily see that in any case we
have lim supk γk(r) ≤ 1, so that by dominated convergence we conclude∫

RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx ≤
∫

RN

1

|x′|s |v(x + p′)|2∗dx

+

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1),

which completes the proof. �
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From the previous lemmas we obtain the following result.

Corollary 3.18 Assume that (3.11) holds and that either λk → 0 or λk →
+∞. Then∫

RN

φ|uk|2∗dx ≤
∫

RN

φ|u|2∗dx +

∫
RN

1

|x′|s |v(x + p′)|2∗dx

+

∫
RN

φ|T−1
k wk|2∗dx + o(1).

In the following lemma we treat the last case in which the sequence of
rescalings {Tk}k can induce some lack of compactness. As before we set
pk = (p′k, zk) and we denote p′k = (p′k, 0) and zk = (0, zk).

Lemma 3.19 Assume that p′k → p′, λk → λ0 �= 0 and |zk| → +∞. Then∫
RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx

=

∫
RN

φ(|x′|) 1

λN−s
0

|v(
x

λ0

+ p′)|2∗dx +

∫
RN

φ(|x′|)|T−1
k wk|2∗ + o(1).

Proof. From Lemma 3.16 we already know that∫
RN

φ(|x′|)|T−1
k v + T−1

k wk|2∗dx

=

∫
RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dx +

∫
RN

φ(|x′|)|T−1
k wk|2∗dx + o(1).

To conclude we set y = x/λk in the second integral, obtaining∫
RN

φ(|x′|) 1

λN−s
k

|v(
x

λk

+ p′)|2∗dx =

∫
RN

φ(λk|y′|)λs
k|y′|s 1

|y′|s |v(y + p′)|2∗dy.

Since
φ(λk|y′|)λs

k|y′|s → φ(λ0|y′|)λs
0|y′|s ,

by dominated convergence we immediately find that∫
RN

φ(λk|y′|)λs
k|y′|s 1

|y′|s |v(y + p′)|2∗dy

=

∫
RN

φ(λ0|y′|)λs
0|y′|s 1

|y′|s |v(y + p′)|2∗dy + o(1)

=

∫
RN

φ(|x′|) 1

λN−s
0

|v(
x

λ0

+ p′)|2∗dy + o(1),

which is what we wanted to prove. �
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As above, we isolate the result we will need in a single statement.

Corollary 3.20 Assume that p′k → p′, λk → λ0 �= 0 and |zk| → +∞. Then∫
RN

φ|uk|2∗dx =

∫
RN

φ|u|2∗dx +

∫
RN

φ
1

λN−s
0

|v(
x

λ0

+ p′)|2∗dx

+

∫
RN

φ|T−1
k wk|2∗dx + o(1).

Conclusion of the proof of Theorem 3.1. We now use all the results
obtained so far to conclude the proof of Theorem 3.1. Before we begin we
recall that we are dealing with a minimizing sequence uk for Jφ such that∫

RN φ|uk|2∗dx = 1 for all k. We have shown that this minimizing sequence
can be represented as

uk = u + T−1
k v + T−1

k wk,

where Tk = T (λk, pk), pk = (p′k, zk) and v �≡ 0. We also recall that∫
RN

|∇u|2dx ≥ S

(∫
RN

1

|x′|s |u|
2∗dx

)2/2∗

∀u ∈ D1,2,

∫
RN

|∇u|2dx ≥ Sφ

(∫
RN

φ(|x′|)|u|2∗dx

)2/2∗

∀u ∈ D1,2

and that our main assumption is Sφ < S.
We will consider the three cases, depending on the behavior of pk and λk,

which could give rise to a lack of compactness. We will show that two of
them cannot hold, while the third yields the existence of a solution.

At more than one stage we will make use of the following well–known
inequality: ∀p > 1 ∃C = Cp > 0 such that ∀a, b ∈ R

+,

(3.15) (a + b)p ≥ ap + bp + Cap−1b + Cabp−1.

A. Assume that |p′k| → ∞. Then from Corollary 3.15 we have

(3.16) 1 =

∫
RN

φ|uk|2∗dx =

∫
RN

φ|u|2∗dx +

∫
RN

φ|T−1
k wk|2∗dx + o(1).

From Lemma 3.10 (see also Remark 3.11) and using (3.15), we compute

S
2∗/2
φ + o(1) =

(∫
RN

|∇uk|2dx

)2∗/2

≥
(∫

RN

|∇u|2dx

)2∗/2

+

(∫
RN

|∇v|2dx

)2∗/2

+

(∫
RN

|∇T−1
k wk|2dx

)2∗/2

+ o(1)

≥ S
2∗/2
φ

∫
RN

φ|u|2∗dx + S
2∗/2
φ

∫
RN

φ|v|2∗dx + S
2∗/2
φ

∫
RN

φ|T−1
k wk|2∗dx + o(1).
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From (3.16) we see that
∫

RN φ|T−1
k wk|2∗dx = 1 − ∫

RN φ|u|2∗dx + o(1) and
hence

S
2∗/2
φ + o(1) ≥ S

2∗/2
φ

∫
RN

φ|u|2∗dx + S
2∗/2
φ

∫
RN

φ|v|2∗dx

+ S
2∗/2
φ − S

2∗/2
φ

∫
RN

φ|u|2∗dx + o(1),

that is,

o(1) ≥ S
2∗/2
φ

∫
RN

φ|v|2∗dx,

which is impossible, as v �≡ 0. Therefore this case is ruled out.

B. Assume that p′k → p′ and that either λk → 0 or λk → ∞. Then from
Corollary 3.18 we have

(3.17)

1 =

∫
RN

φ|uk|2∗dx ≤
∫

RN

φ|u|2∗dx +

∫
RN

1

|x′|s |v(x + p′)|2∗dx

+

∫
RN

φ|T−1
k wk|2∗dx + o(1).

Arguing as in case A, we obtain

S
2∗/2
φ + o(1) ≥ S

2∗/2
φ

∫
RN

φ|u|2∗dx + S2∗/2

∫
RN

1

|x′|s |v(x + p′)|2∗dx

+ S
2∗/2
φ

∫
RN

φ|T−1
k wk|2∗dx + o(1).

Using (3.17) this reduces to

S
2∗/2
φ + o(1) ≥ S

2∗/2
φ

∫
RN

φ|u|2∗dx + S2∗/2

∫
RN

1

|x′|s |v(x + p′)|2∗dx + S
2∗/2
φ

− S
2∗/2
φ

∫
RN

1

|x′|s |v(x + p′)|2∗dx − S
2∗/2
φ

∫
RN

φ|u|2∗dx + o(1),

that is,

o(1) ≥
(
S2∗/2 − S

2∗/2
φ

)∫
RN

1

|x′|s |v(x + p′)|2∗dx.

This is impossible because S > Sφ and v �≡ 0. Also this case is ruled out.

C. At this point we are left with the last case, that is p′k → p′, λk →
λ0 �= 0 and |zk| → ∞.

Let T̂ be the rescaling given by T̂ = T (λ0, p
′), so that

T̂−1v(x) = λ
−N−2

2
0 v

( x

λ0

+ p′
)
.
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From Lemma 3.10 in the form of Remark (3.11) we can write

S
2∗/2
φ + o(1) =

(∫
RN

|∇u|2dx +

∫
RN

|∇T̂−1v|2dx +

∫
RN

|∇T−1
k wk|2dx

)2∗/2

.

Applying (3.15) two times and getting rid of some extra terms we arrive at

S
2∗/2
φ + o(1) ≥

(∫
RN

|∇u|2dx

)2∗/2

+

(∫
RN

|∇T̂−1v|2dx

)2∗/2

+

(∫
RN

|∇T−1
k wk|2dx

)2∗/2

+ C

(∫
RN

|∇u|2dx

)2∗/2−1 ∫
RN

|∇T̂−1v|2dx

+ C

(∫
RN

|∇u|2dx

)2∗/2−1 ∫
RN

|∇T−1
k wk|2dx

+ C

(∫
RN

|∇T̂−1v|2dx

)2∗/2−1 ∫
RN

|∇T−1
k wk|2dx + o(1).

Now from Corollary 3.20 we have

1 =

∫
RN

φ|uk|2∗dx

=

∫
RN

φ|u|2∗dx +

∫
RN

φ|T̂−1v|2∗dx +

∫
RN

φ|T−1
k wk|2∗dx + o(1),

so that with the same estimates and substitutions we used in the previous
cases we obtain

o(1) ≥
(∫

RN

|∇u|2dx

)2∗/2−1 ∫
RN

|∇T̂−1v|2dx

+

(∫
RN

|∇u|2dx

)2∗/2−1 ∫
RN

|∇T−1
k wk|2dx

+

(∫
RN

|∇T̂−1v|2dx

)2∗/2−1 ∫
RN

|∇T−1
k wk|2dx + o(1).

As v �≡ 0, this implies that u = 0 and that wk → 0 strongly in D1,2.

Since Tkvk = v + wk, we see that Tkvk − v → 0 strongly in D1,2, and,
by invariance, vk − T−1

k v → 0 strongly in D1,2.

Recalling that uk = u+ vk with u = 0 in this case, we finally obtain that

uk − T−1
k v → 0 strongly in D1,2.

This implies, by continuity, that {T−1
k v}k is a minimizing sequence as well.

Recall now that

T−1
k v(x) = λ

−N−2
2

k v
( x

λk

+ pk

)
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with pk = (p′k, zk) and λk satisfying p′k → p′, λk → λ0 and |zk| → ∞. As Jφ

is invariant when its argument is shifted along the last N − K coordinates,
we obtain, setting p′k = (p′k, 0), that also the sequence

vk,1(x) = λ
−N−2

2

k v(
x

λk

+ p′k)

is minimizing for Jφ. But it is easy to see that

vk,1 → v strongly in D1,2,

where v(x) = λ
−N−2

2
0 v( x

λ0
+ p′). Hence in this case we have constructed a

minimizing sequence which converges strongly, yielding thereby a solution
of the minimization problem (2.3), and Theorem 3.1 is proved.

4. Existence results

In this section we give some applications of Theorem 3.1. A first and easy
example is the following.

Theorem 4.1 Assume that φ satisfies (2.1) and

(4.1) lim
r→0

φ(r)rs = lim
r→∞

φ(r)rs = 1, with φ(r)rs ≥ 1 for all r > 0.

Then problem (2.3) admits a solution.

Proof. If φ(r)rs ≡ 1, then the problem reduces to (1.6), and of course
Sφ = S. This problem has been studied in [1], where the existence of a
solution has been proved.

Otherwise there exists r1 > 0 such that

(4.2) φ(r1)r
s
1 > 1.

Let w ∈ D1,2 be such that

(4.3)

∫
RN

|∇w|2dx = S, and

∫
RN

1

|x′|s |w|2∗dx = 1;

the existence of this function is again guaranteed by [1] and we can also
assume that w > 0. Hence, by (4.1) and (4.2) we see that∫

RN

φ(|x′|)|w|2∗dx >

∫
RN

1

|x′|s |w|2∗dx = 1,
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which implies that

Sφ ≤
∫

RN |∇w|2dx(∫
RN φ(|x′|)|w|2∗dx

)2/2∗
< S.

The conclusion follows then from Theorem 3.1. �

Up to now, we have obtained existence of solutions for (2.3) when φ(r)rs ≥ 1
(Theorem 4.1) and nonexistence of solutions when φ(r)rs ≤ 1 and φ(r)rs �≡ 1
(Theorem 2.9). One may ask what happens when φ(r)rs has some oscilla-
tions around 1. The next theorem gives a result in this direction.

Theorem 4.2 Assume that sN < 4 and that in addition to (2.1) and (3.1),
φ satisfies also limr→∞ φ(r)rs = 1 and

∃r0 > 0, ∃β ∈ (0,K − s) such that φ(r)rs ≥ 1 +
1

rβ
for all r ≥ r0.

Then problem (2.3) has a solution.

Remark 4.3 Notice that the hypotheses of Theorem 4.2 require φ(r)rs to
be above 1 just for large values of r.

In order to prove Theorem 4.2 we need the some estimates on the decay
of w, the solution of problem (1.6). We obtain them by an application of
the following result, due to Egnell (see [11]).

Theorem 4.4 ([11]) Let u ∈ D1,2(RN ), u ≥ 0 be a weak solution of the
equation

−∆u = f(x, u),

where 0 ≤ f(x, u) ≤ b(x)uσ and

1 < σ <
N + 2

N − 2
, b ∈ Lτ (RN ), τ =

2N

N + 2 − (N − 2)σ
.

Then lim sup|x|→+∞ |x|N−2u(x) < +∞.

In the next lemma we show that the hypotheses of Theorem 4.4 are
satisfied.

Lemma 4.5 Let w be a solution of problem (1.6) and assume that sN < 4.
Then there exists C > 0 such that

w(x) ≤ C

|x|N−2
as |x| → ∞.
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Proof. Fix some σ ∈ (1, N+2
N−2

) very close to 1 and write the equation as

−∆w = b(x)wσ, with b(x) = 1
|x′|s w

2∗−1−σ. We must show that b ∈ Lτ (RN ),
where

τ =
2N

N + 2 − σ(N − 2)

as in Theorem 4.4. To to this we apply the inequality (2.2); we just have to
check that sτ < 2 and that the exponents match correctly, namely

(4.4)
2(N − sτ)

N − 2
= (2∗ − 1 − σ)τ.

Now since s < 4/N and τ is as close as we wish to N/2 (by taking
σ sufficiently close to 1), we see that sτ < 2. Checking (4.4) amounts
to checking that 2N = ((2∗ − 1 − σ)(N − 2) + 2s)τ but, noticing that
(2∗ − 1 − σ)(N − 2) + 2s = N + 2 − σ(N − 2), we immediately obtain the
conclusion, by definition of τ . �

Before the proof of Theorem 4.2 we notice the following application of
Theorem 4.4 to problem (1.3).

Corollary 4.6 Let u be a solution of (1.3). Then there exists C > 0 such
that

u(x) ≤ C

|x| as |x| → ∞.

Proof. Writing

φ(|x′|)u3 = φ(|x′|)|x′|u
3−σ

|x′| uσ = b(x)uσ

for some σ ∈ (
1, N+2

N−2

)
, and noticing that sN = 3 < 4, and that φ(|x′|)|x′| ∈

L∞, we can argue like in Lemma 4.5 to see that (1.3) fits in the framework
of Theorem 4.4. �

Proof of Theorem 4.2. In order to apply Theorem 3.1, we will prove that
Sφ < S. Let w verify (4.3) and define wλ(x) = λ

N−2
2 w(λx). We compute,

setting y = λx,∫
RN

φ(|x′|)w2∗
λ (x)dx =

∫
RN

φ
(∣∣∣y′

λ

∣∣∣) 1

λs
w(y)2∗dy

=

∫
RN

φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

1

|y′|s w(y)2∗dy

=

∫
RN

1

|y′|sw
2∗dy +

∫
RN

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|s w
2∗dy

= 1 +

∫
RN

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|sw
2∗dy.
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Let us study the last integral. We write it as∫
RN

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|s w
2∗dy =

∫
|y′|<λr0

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|sw
2∗dy

+

∫
|y′|≥λr0

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|sw
2∗dy

and we consider these two integrals separately. We have, by our assumptions,∫
|y′|≥λr0

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|s w
2∗dy ≥

∫
|y′|≥λr0

1

|y′
λ
|β

1

|y′|s w
2∗dy

= λβ

∫
|y′|≥λr0

1

|y′|s+β
w2∗dy.

When λ ≤ 1/r0 we obtain

λβ

∫
|y′|≥λr0

1

|y′|s+β
w2∗dy ≥ λβ

∫
|y′|≥1

1

|y′|s+β
w2∗dy = aλβ ,

where a =
∫
|y′|≥1

1
|y′|s+β w2∗dy is (positive) and finite since

∫
|y′|≥1

1

|y′|s+β
w2∗dy ≤

∫
|y′|≥1

1

|y′|s w
2∗dy ≤

∫
RN

1

|y′|s w
2∗dy = 1.

Therefore we have proved that∫
|y′|≥λr0

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|s w
2∗dy ≥ aλβ,

with a > 0. Concerning the other integral we obtain, writing y = (y′, z),∣∣∣∣
∫
|y′|≤λr0

[
φ
(∣∣∣y′

λ

∣∣∣) |y′|s
λs

− 1
] 1

|y′|sw
2∗dy

∣∣∣∣ ≤ C

∫
|y′|≤λr0,|z|≤C1

1

|y′|sw
2∗dy

+ C

∫
|y′|≤λr0,|z|≥C1

1

|y′|s w
2∗dy.

As w is continuous (Lemma 2.2) we first see that∫
|y′|≤λr0,|z|≤C1

1

|y′|sw
2∗dy ≤ C

∫
|y′|≤λr0,|z|≤C1

1

|y′|sdy

≤ C

∫ λr0

0

1

ρs
ρK−1dρ = CλK−s.
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Next, from Lemma 4.5 we obtain∫
|y′|≤λr0,|z|≥C1

1

|y′|sw
2∗dy ≤ C

∫
|y′|≤λr0,|z|≥C1

1

|y′|s
1

|y|2(N−s)
dy

≤ C

∫
|y′|≤λr0,|z|≥C1

1

|y′|s
1

|z|2(N−s)
dy′dz = CλK−s

∫
|z|≥C1

1

|z|2(N−s)
dz

= CλK−s

∫ +∞

C1

1

ρ2(N−s)
ρN−K−1dρ = CλK−s

∫ +∞

C1

1

ρN+K−2s+1
dρ.

But since N + K − 2s + 1 > 1 (because s < K ≤ N), we have that∫ +∞

C1

1

ρN+K−2s+1
dρ < +∞ ,

which shows that ∫
|y′|≤λr0,|z|≥C1

1

|y′|s w
2∗dy ≤ CλK−s.

Collecting all the above estimates we finally arrive at∫
RN

φ(|x′|)w2∗
λ dx ≥ 1 + aλβ − bλK−s,

with a, b > 0. As β < K − s, when λ is small we obtain∫
RN

φ(|x′|)w2∗
λ dx > 1,

which implies that

Sφ ≤ Jφ(wλ) =

∫
RN |∇wλ|2(∫

RN φ(|x′|)w2∗
λ dx

)2/2∗
< S.

The conclusion follows then from Theorem 3.1.

Remark 4.7 As we said in the introduction, problem (1.1) was studied
in [1]. This problem was suggested by some research in astrophysics (see [9]),
where a particular form for φ was considered, namely

φ(r) =
r2α

(1 + r2)
1
2
+α

(α > 0).

For this φ the function r �→ rφ(r) is increasing, and so by Corollary 2.6 (re-
calling Remark 2.3) we have that (for N = 3 and p = 2∗ = 4) problem (1.1)
has no solutions.
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Notice that not only the usual minimization problem, but the equation
itself has no solutions. Anyhow, Theorem 4.2 shows that by a small per-
turbation of such φ we can obtain a problem which does have a solution.
Indeed, let us fix γ ∈ (2α − 1, 2α) and ε > 0, and let us define

φε(r) = φ(r) + ε
rγ

(1 + r2)α+ 1
2

.

By trivial computations one has, for large r’s,

φε(r)r − 1 ≥ C

r2α−γ
.

As 0 < 2α − γ < 1 = K − s, the hypotheses of Theorem 4.2 are then
satisfied and we obtain a solution for problem (1.3) with φε replacing φ.
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[3] Brézis, H. and Lieb, E.: A relation between pointwise convergence of
functionals and convergence of functionals. Proc. Amer. Math. Soc. 28
(1983), 486–490.

[4] Caffarelli, L., Kohn, R. and Nirenberg, L.: First order interpolation
inequalities with weights. Compositio Math. 53 (1984), 259–275.

[5] Caldiroli, P. and Musina, R.: On the existence of extremal functions
for a weighted Sobolev embedding with critical exponent. Calc. Var. Partial
Differential Equations 8 (1999), no. 4, 365–387.

[6] Caldiroli, P. and Musina, R.: Stationary states for a two-dimensional
singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric.
Mat. (8) 4 (2001), no. 3, 609–633.

[7] Caldiroli, P. and Musina, R.: Existence and non existence results for
a class of nonlinear singular Sturm-Liouville equations. Adv. Differential
Equations 6 (2001), 303–326.

[8] Caldiroli, P. and Musina, R.: On a class of 2-dimensional singular
elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 3,
479–497.

[9] Ciotti, L.: Dynamical models in astrophysics. Scuola Normale Superiore,
Pisa 2001.



66 M. Badiale and E. Serra

[10] Egnell, H.: Elliptic boundary value problems with singular coefficients
and critical nonlinearity. Indiana Univ. Math. J. 38 (1989), 235–251.

[11] Egnell, H.: Asymptotic results for finite energy solutions of semilinear
elliptic equations. J. Differential Equations 98 (1992), 34–56.

[12] Ghoussoub, N. and Yuan, C.: Multiple solutions for quasilinear PDEs
involving the critical Sobolev and Hardy exponents. Trans. Amer. Math.
Soc. 352 (2000), 5703–5743.

[13] Kuzin, I. and Pohozaev, S.: Entire solutions of semilinear elliptic
equations. Progress in Nonlinear Differential Equations and their Appli-
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